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Introduction 

The study of the behaviour of particle polarization in 
accelerators is normally confined/5-8/ to the case of an almost 
uniform magnetic field. The present work sets out the general 
results of spin motion studies in storage rings (accelerators) with 
an arbitrary electromagnetic field, on the assumption of the 
existence of a closed orbit. 

The present work consists of two parts. 
The first part gives a simple and physically transparent 

derivation of the equations of the spin motion of relativistic particles 
without the intermediate use of the 4-vector of polarization. 
In the second part, an investigation is made of the nature of spin 
motion, disregarding the particle trajectory deviations from the 
closed (equilibrium) orbit. It is shown that there is always a 
periodic spin motion with a fixed polarization along the field in 
an almost uniform magnetic field. 

This being the case, it is in practice possible to 
create, at a given point of the orbit, an arbitrary spin orientation 
in relation to the velocity and field. This opens up considerable 
prospects for controlling the polarization in light and heavy particle 
storage rings. 

The following work is devoted to a detailed study of 
particle spin behaviour on a real trajectory, and of beam polarization 
as a whole. 

1. Spin motion equations 
1. general equations 

In non-relativistic theory, the quantum mechanical mean 
of the spin vector <> = of a particle moving along a conventional 
trajectory satisfies the equation: 

(1.1) 
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where magnetic moment of the particle, q gyromagnetic 
ratio. 

The polarization state in the relativistic case may also 
be characterized conveniently by the spin vector . in the rest 
system. 

The equations for the vector can be obtained from 
the well-known BMT co-variant equations for the 4-vector of polari1zation/1,2/. 

In this case the physical simplicity of the equations for is masked. 
In fact, there is a very simple derivation 
of the equations without intermediate use of the 4-vector of 
polarization. 

Let us define the proper system as a system obtained by 
Lorentz transformation from the laboratory system. According to 
the transformation, the orientation of the velocity in relation 
to the spatial axis of the proper system at any moment of time 
coincides with the orientation in the laboratory system. The equation 
for can be obtained by using directly the non-relativistic 
equation (1.1). 

let us change over to an inertial system coinciding with 
the proper system at a moment of time t ( u -system). The change 
in the spin vector in this system over an interval of proper 
time dz = dt will be determined by the equation (1.1): 

where c the magnetic field in the intrinsic system. 
However, du will not coincide with the unknown increment 

d, because when the particle velocity direction changes, 
the spatial axes of the proper system (obtained from the laboratory 
axes by the Lorentz transformation) are rotated in relation to the 
u - system. Let us assume that d is the angle by which the 
proper system is rotated in relation to the u-system. Then, we 
may write 

(1.2) 
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The angle d can be found by simple reasoning. 
Let us assume that d is the vector of the velocity 

rotation angle in the laboratory system: 

Then the proper system of coordinates, in accordance 
with its definition, will rotate in relation to the new velocity 
direction + d by an angle of -d. At the same time the 
direction (+d) u in the u-system will form an angle of rd 
with the direction .In reality, these directions in the 
u-system are obtained in accordance with the Lorentz transformation 
by projecting the corresponding directions of the laboratory 
system onto a plane z=const. This procedure does in fact 
correspond with the definition of the angle in the u-system between 
two "bars" which are at rest in the laboratory system. 

In this way the angle of rotation d is: 

By substituting this expression in (1.2), we obtain the 
desired equation 

(1.3) 

The first term on the right-hand side of the equation 
is directly related to the magnetic moment of the particle, and the 
second term is the consequence of the relativistic kinematics of 
rotation. 

The occurence of the last term can be demonstrated by 
the following model. Let us assume that the centre-of-mass of a bar 
having a short length moves around a radius R at a speed v, and 
that the moment of the forces acting on the bar is equal to Ο . 
For simplicity let us locate the bar in the plane of rotation. In 
non-relativistic mechanics, in the laboratory system the bar does 
not rotate, whereas in the rest system of the centre of the bar, 
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which rotates with the velocity ( C -system), the bar rotates at 
an angular speed of-v/R. In the relativistic case, rotation of 
the bar in the C-system will appear exactly as in the non-relativistic 
case: the angle of rotation dψc of the bar in the 
C -system for two consecutive positions of the centre, situated 
at a distance dlc (measured in the C-system), will be: 

During a period of velocity rotation, the bar will rotate through 
an angle of 

In this way, in relation to the laboratory system, the 
bar will rotate through an angle -2π(r-1). 

The effect under consideration is phenomenologically 
related to the well-known "twin paradox". The idea for this derivation 
is contained in early papers by Thomas/4/. 

Using the equation for c the electromagnetic field 
in the laboratory system 

(,v) = the transverse and longitudinal components of the 
magnetic field in relation to the velocity) and the equations for 
particle motion 

it is possible to transform (1.3) to its well known form/2/: 

where q' = q-e/m ≡ q-q0 is the anomalous part of the gyromagnetic 
ratio (c = 1). The vector has the direction of the 
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angular velocity of spin rotation relative to frames fixed in the 
laboratory system. As can be seen, the normal q0 and anomalous q' 
parts of the gyromagnetic relation are included non-additively in 
the spin motion equation. The immediate explanation of this factor 
is given by equation (1.3) from which it follows that this fact is 
due to perturbation of the particle's trajectory. 

The angular velocity of spin rotation will be proportional 
to the total magnetic moment if the particle moves along a straight 
line (this is possible when e=0, or when +[ ]=0). 

It is convenient to write in the form: 

(1.4) 

with the condition 

(1.5) 

the last term in (1.4) can be neglected ([ ] ≠ 0). is 
expressed directly by the parameters of the trajectory and the longitudinal 

magnetic field which does not change the particle's acceleration. 

For even higher energies (rq'»q0), is determined 
by the anomalous moment and does not depend on energy: 

This is explained by the fact that the normal part (the first term 
in (l.3)) is reduced by a factor of ~1/r compared with the kinematic 
term. If q' = C, then 

when = 0. coincides with the larmor frequency e/rm. 
Let us examine now the question of- the transformation of 

spin equations during transformation to any other system of unit 
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vectors (t) (α = 1.2.3.). Let be the angular speed of 
rotation of the basis in relation to the initial system: 

(1.6) 

The equations for spin motion in the new system will, 
obviously, be: 

(1.7) 

The expression for , follows directly from (1.6) 
if (t) are given: 

(1.8) 

The spin equations, as any equations of type (1.7) can 
be written in canonical form: 

where {;} are Poisson brackets, either conventional or quantum, 
and 

(1.9) 

is a Hamiltonian. 
In many respects it is convenient to write the spin 

motion in the Hamiltonian variables and ψ, where is the projection on a selected axis, and ψ is the spin rotation 
phase around this axis. In these variables, the Hamiltonian 

(1.10) 
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where 

The Hamiltonians of the equation are of the form 

(1.11) 

2. Equations in the "natural" reference system 

For certain applications it is convenient to use a 
moving system of unit vectors, linked with the particle trajectory: 

(1.12) 

The expression for is obtained from (1.8): 

In this way the spin equations in this system are 

(1.13) 
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If the condition (1.5) r2 y' » q is fulfilled, then has a simple form; 

Let us consider some specific cases in which the equations(1.13) 
allow precise solutions. 

When q'=0 and =0 polarization is maintained in 
the direction of the velocity/2/. This being the case, we have 
from (1.11): 

i.e. the spin moves in a plane perpendicular to the velocity and 
over a time π/v and z change their sign. In fact if 
the average value of v=0, then the spin will oscillate in 
this plane around a given average position. 

In the case of motion in a magnetic field, W r = W v = 0 
(see 1.13), if the particle trajectory remains in the same plane 
and there is no longitudinal magnetic field on the orbit. The same 
occurs also in the presence of an electric field, if (1.5) is 
satisfied. In this case the polarization component is constant. 
The angular velocity of rotation around the direction z 

is fully determined by the anomalous magnetic moment. 
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The spin mores in a similar manner, also in an arbitrary 

electromagnetic field at the limit of high energies, when the field 
on the particle trajectory varies adiabatically slowly in comparison 
with spin rotation: 

(1.14) 

In the laboratory system, the solution in this case is 
of the form: 

(1.15) 

where i.e. the spin 
has a constant projection in a direction perpendicular to the plane 

II. Spin motion in a storage ring 
1· Formulation of the problem 

Let us now turn to an investigation of the dynamics of 
spin motion, taking into account the specific nature of particle 
motion in storage rings and accelerators. The main property of 
particle orbital motion in these systems is the existence of a 
closed (equilibrium, periodic) orbit, along which all particles move 
with small coordinate and momentum deviations from the equilibrium 
values. Consequently, it is reasonable to represent n in the 
form: 

(II.1) 
where s is the value of on the equilibrium trajectory, 
θ=∫ωsdt is the generalized azimuth of the particle, ωs is the 
equilibrium frequency of rotation. s is a periodic function of 
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the azimuth: 

If email deviations in the particle trajectory from the 
equilibrium value lead to small variations in the electromagnetic 
field on the trajectory, the effect of may be considered as a 
small disturbance in relation to the motion in the equilibrium field. 
Consequently when investigating spin motion the normal procedure may 
be used: First the spin motion integrals on the equilibrium trajectory 
are determined, and then a study made of the influence of 
adding to the ideal spin motion. 

It is usually assumed/5-8/ that the real conditions on 
the closed orbit are such that in one revolution the polarization in 
a direction transverse to the average plane of the orbit varies only 
slightly: 

(II.2) 

This condition denotes, in practice, the closeness of the closed 
orbit to the flat one and the smallness of the longitudinal magnetic 
field. A considerable variation in the initial polarization in this oase may be accumulated only after a sufficiently large 
number of particle revolutions in the region of spin resonances. 

We shall study spin motion without imposing any conditions 
on the electromagnetic field of the storage ring, apart from 
the existence of a closed particle trajectory. It is important for 
the treatment that at a given point of the orbit there is a fixed 
polarization direction which is constant during the motion. In a 
magnetic field which is almost uniform, this direction is the 
direction of the field). In view of this, we may formulate the 
following approach to the problem. First of all, it is necessary 
to elucidate whether there exists on this equilibrium trajectory 
a periodic spin motion. If this motion exists, its stability must be 
investigated. 
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2. Spin motion on an equilibrium trajectory 

The spin of an equilibrium particle satisfies the 
equation 

(II.3) 

We shall consider the equilibrium energy to be constant. Then 

In accordance with the objective in mind, let us investigate 
whether a periodic solution exists 

(II.4) 

Let us prove that this solution exists for any (θ) 
The general solution of equation (II.3) can be represented in the 
form of a combination of three linearly-independent solutions of 
α (θ) (α = 1,2,3). Since the scalar product of any two 
solutions (II.3) is retained 

(II.5) 

These three solutions can always be chosen to be orthogonal: 

We shall seek the periodic equation of the form 

where 
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In accordance with the condition of periodicity (II.4) 

or 

where 

The matrix Λ does not depend on time, since β (θ + 2π) 
is again the solution of (II.3) owing to the periodicity of s(θ). 

The non-trivial solution of nα exists if the determinant 
of the system is equal to zero: 

As the maxtrix Λ is, in fact, the matrix of rotation, 
it has the following properties: 

Hence: 

In this way for any periodic s (θ) there is a 
periodic solution for (θ). 

This proof does, in fact, contain a possible way of 
finding the periodic solution. 

From the existence of the periodic solution emerges the 
general character of spin motion in a periodic field. Let (θ)  
be the solution of (II.3) for the arbitrary initial condition of 
(O) ≠ S(θ) : Since 

(II.5a) 

spin motion takes place in the following manner. There is a certain 
periodic direction (θ), which has the sense of the direction of 
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polarization of the periodic field, around which the spin rotates, 
retaining the projection on this direction. At the same time a 
solution is found also for the problem of the stability of the 
periodic solution in the case of motion around an equilibrium orbit. 

The characteristic of (II.5a) suggests a way of constructing 
a general solution, if (θ) is known. Let us introduce the 
following system of unit vectors: 

where , are any two orthogonal periodic directions in a 
plane transverse to (θ). We shall specify the polarization by 
the projection on to and by the phase ψ of rotation around 

: 

(II.6) 

Here 

For the angular velocity b (see 1.8) we obtain, by 
taking into account (II.4): 

(II.7) 

Consequently the Hamiltonian in this system is equal to: 

As must be the case, =0; the spin rotates around at an 
angular velocity of 

(II.8) 

The arbitariness in the choice of the transverse unit 
vectors and does not, of course, lead to an unique solution 
of (II.6) in the "laboratory" system. This can easily be proved 
by checking the invariance of the solution of (II.6) with regard to 
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the substitution 

The convenience of using precisely the periodic systems 
(θ)= (θ+2π) is that when the spin is observed at a 
specific point of the orbit, the variation in polarization during a 
revolution in relation to the selected periodic system coincides 
with the variation compared with the stationary system. A special 
sense is acquired by the fractional part of the mean value, for the 
period, of the angular speed indicated ν = <ψ>/ωs-Κ(K = nearest whole number), 
thus specifying the variation in spin orientation 
during a revolution. This physical value does not depend on 
the choice of periodic system. In fact, let and be two 
periodic systems: 

whilst, in accordance with the condition of periodicity, 

Then from (II.8) we obtain: 

i.e. the fractional part is retained. 
Now it is easy to answer the question of the uniqueness 

of the periodic solution. As all solutions rotate around with 
one angular frequency ψ, then on the condition that 

the periodic solution of is, obviously, unique. In the case of 
the precise resonance<ψ> = Kωs any solution is periodic, i.e. is fully undetermined. 

The frequency ν can be expressed also through the 
basic solution of α. By definition, πν is the angle 
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through which the solution of equation (II.3) transverse to is rotated during the revolution. In a complex form: 

By breaking down η by basis (II.5a) 

we obtain the equation: 

In this manner we have reached the problem of determining the 
intrinsic values of the matrix Λ: 

This equation has three roots 
It has already been proved that λ = 1 is the intrinsic 

value corresponding to the periodic solution of (θ). Two others 
can be found by using the following relations: 

Hence 

(II.9) 

From (II.5) it follows that cos 2πν, as must be the 
case, does not depend on the choice of the basis α. The reality 
of ν follows from the inequalities: 
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which can easily be checked in the system where one of the basic 
vectors is directed along · The eigenvectors of ,, 
which correspond to the eigen values 1, e-2πiν,e2πiν are 
orthogonal if cos 2πν ≠ 1: 

The periodic solution of is unique. In the case of the resonance 

there is a degeneracy 

and any solution is periodic. 
From the two complex solutions we can construct a pair 

of real orthogonal solutions , which, 
however, are not eigenvectors. 

For future use it is convenient to utilize the periodic 
basis 

(II.10) 

The general solution of (II.3) is written in the form: 

(II.11) 

The simplest examples of particle spin motion on an equilibrium 
orbit are given in the Appendix. 
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Let us examine the question of the stability of the 
periodic solution of for a slight variation in s. A 
variation of δs may be linked both with the deviation of the 
real field and closed orbit from the ideal (calculated) ones, and 
with the variation in the parameters (for example, energy) which 
determine s. In the linear approximation δ satisfies the 
equation 

In this approximation δ is transverse to , i.e. 
we can write 

For c(θ) we obtain the equation: 

Hence 

By expanding into a Fourier series 

we obtain 
(II.12) 

(const = 0 from the requirement of periodicty of S ) . 
As can be seen, the periodic solution of is very 

sensitive to a slight change in s in the region of the ν = K 
resonances. This is the physical meaning of the indeterminacy of referred to above in the case of a precise resonance. 

3. Spin motion equations for non-equilibrium particles 

Let us turn to a study of the dynamics of spin motion 
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in the case of particles moving near to a closed orbit. 
We shall examine spin motion in relation to a periodic 

system of unit vectors (II.10). 
For an angular velocity b (see 1.8) we obtain 

Consequently, the Hamiltonian in this system is 

(II.13) 

where (see II.6; 1.10). 
The spin motion equations in vector form and in Hamiltonian 

variables are of the form: 

(II.14) 

(II.15) 

When = 0 , the equations (II.14,15) coincide with 
(II.11) and describe spin motion on the equilibrium trajectory of a 
particle. The deviation of spin motion from (II.11) is entirely due 
to the deviation of the particle from the equilibrium orbit. 

When investigating the dynamics of spin motion it is 
useful, both from the mathematical and physical stand-points, to 
make a comparison of the properties of spin and orbital motion. In 
many respects, there appears a qualitative and quantitative analogy 
between the fundamental properties of the dynamics of these degrees 
of freedom. It is already possible to make such a comparison in general 
terms. 
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Tha main characteristic of orbital motion is the 
equilibrium trajectory. One may compare with it the periodic 
trajectory of spin (θ). These trajectories are produced by 
special initial conditions. In practice, a very important factor 
is the existence of the periodic trajectory on any closed 
particle orbit. To the particle oscillations around the equilibrium 
orbit there corresponds a spin motion along the periodic solution. 
Corresponding to the non-perturbed spin motion (rotation around ) 
there are the "free oscillations" of the particle along the closed 
orbit, which are obtained in the linear approximation. In this sense and the frequency ν play the same part as the amplitudes 
and frequencies of the normal linear oscillations of orbital motion. 
In particular, at a resonance ν = K, the periodic solution becomes indeterminate precisely in the same manner as, in the case 
of the resonance of betatron frequencies with the harmonics of the 
rotation frequency, the equilibrium orbit loses its determinacy. 

If we know the ideal motion, there remains the problem of its stability when the perturbation is included. 

The methods of investigating the spin motion of non-equilibrium 
particles depend substantially on the order of magnitude 
of . As can be seen from (1.4), the relative order of perturbation 
is almost always determined by the relative scatter of 
momenta in the beam: 

(II.16 

The general condition for the "slowness" of the perturbation 
of spin motion is fulfilled during particle deviation from 
the equilibrium trajectory: 

(II.17) 
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and the equations (11.14,15) can be solved approximately, using 
in general the same methods as when studying the action of small 
perturbations on the betatron and synchrotron oscillations of the 
particle. 

As we know, in the solution of the question concerning 
the stability of the orbital motion a decisive part is played by the 
resonances between the frequencies of the ideal motion and frequencies 
of the perturbation. In precisely this way the stability of 
spin motion should be defined by the strength of the resonances 
between the frequency of precession ν and the spectral frequencies 
of perturbation. Basically, the criteria of the stability of spin 
motion should be the same as for the orbital case. However, it is 
necessary to bear in mind also the substantial difference in the 
dynamic properties of orbital and spin motion. As the Hamiltonian 
of spin motion is linear with respect to spin, resonances of the 
type 

any frequenoy from the spectrum ), with l > 1 are 
impossible, i.e. the spectrum of perturbation does not depend on 
spin (disregarding the effect of spin on orbital motion). 

For high energies, the evaluation of (II.16) may be 
violated at those points where the curvature of the equilibrium 
orbit is zero (see 1.4), whilst the gradient of the field transverse 
to the orbit is non-vanishing. In view of the anomalous part of q', 
the condition (II.17) will not be fulfilled in the limit r → , 
or for a sufficient length of such a section. This phenomenon is 
linked with the violation of the similarity of spin trajectories in 
a magnetic field, which occurs in orbital motion: unlike the case of 
orbital motion, where the frequencies of motion over a fixed trajectory, 
when r → , do not vary (H,E~r), the anomalous 
part of the spin precession frequency increases in proportion to 
the energy. 

If equation (II.17) is not fulfilled, the theory of 
perturbations cannot be applied to equations (II.14, 15) and they 
must be solved by other methods. The "fast" spin motion for 
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different beam particles will be very different (see 1.4). 

4. Radiation polarization 

In accordance with papers/9-12/, the radiation during 
ultra-relativistic motion in a uniform magnetic field leads to polarization 
of the electrons and positrons along the magnetic field 
over a time 

(II.18) 

where λ and π0 are the Compton wave-length and conventional 
electron radius, R is the radius of the orbit 
is the decrement of radiation losses. 

The degree of equilibrium polarization 

It is of interest to investigate how particles will be 
polarized during motion in an arbitrary periodic field. For this, 
let us use the equation for the average polarization for the overall 
system, during motion in an arbitrary external field taking into 
account the damping obtained in /12/: 

(II.19) 
where 

(the particle deviations from the equilibrium orbit can be disregarded 
if there is not any spin resonance). 

Let us represent in the form (II.11), considering and C to be dependent on time. After obtaining the equations 
for n and C they may be averaged over time in view of the small 
size of the radiation term. When ν ≠ K this operation can be 
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reduced to independent averaging over the phase ψ of spin 
rotation around and over the period of particle motion. 

After this we obtain the following equations: 

(II.20) 

where 

For the equilibrium polarization we obtain: 

(II.21) 

As was to be expected, the average polarization over 
the particle beam is directed along the periodic solution of (θ). 
The degree of equilibrium polarization is reduced, whilst its actual 
value depends essentially on (θ). 

The authors are grateful to V.N. Bajer and S.T. Belyaev 
for reviewing the work and for their discussions. 
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A P P E N D I X 

Let us examine two model examples, where the necessary 
spin orientation in relation to velocity and field can be produced 
for a slight deformation of the orbit. 

1. For high energies (rq' >> q0) the following 
method may be proposed. Let us assume that on a flat equilibrium 
orbit there are gaps without fields. If we introduoe a radial 
magnetic field Hr in the gap (or a vertical electrical field Ez), 
the spin may rotate around a radial direction through an angle of 
~ 1 for a small deformation of the particle orbit (δp┴/p ~ q0/rq' << 1). 
Let us change to the system of unit vectors, linked 
with the undistorted equilibrium orbit ( r , v , z ) . In this 
system, the angular velocity of spin rotation has the form: 

(1) 

The general solution of (θ) with the initial condition (θ)= 
has the form (0 ≤ θ ≤ 2π): 

(2) 

where 

From the requirement of periodicity (2π) = , we 
obtain the initial conditions for the periodic solution of (θ): 
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where 

In this way the periodic solution of : 

(3) 

In order to determine the frequency ν, let us 
construct a normalized solution of transverse to : 

The constants α and β are found from the condition of continuity 
of when θ = θ0. 

By definition: 

(4) 

Prom this it can be seen that the resonances ν = K are possible 
only when 
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i.e. subject to the periodicity of spin motion independently in each 
of the two sections. 

From (5) it can be seen that by varying Ø and ψ it 
is possible to produce any polarization direction at the necessary 
point of the orbit. 

The simplest example is the case when, on the section 
of the leading field 0 < θ < θ0 an equilibrium polarization is 
directed along the field. As can be seen from (3), this necessitates 
Ψ = 0, i.e. the average radial field in the gap is zero. 
Then, by changing the value of H(θ) it is possible in this case 
to produce an equilibrium polarization at any angle in relation to 
the velocity (including longitudinal). The degree of equilibrium 
radiation polarization of electrons and positrons is reduced insignificantly 
if 2π-θ0 << 2π: 

Let us examine the case when, in the gap, the magnetic 
field is directed along ν : 

(5) 

The equilibrium orbit is not distorted. 
The periodic solution in this case is obtained from (3) 

by substituting 

(6) 

here 
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A special feature of this example is that when 

(7) 

the velocity polarisation (for the periodic solution) is effected 
over the whole length of the gap. For energies r qc / q', the 
condition (7) can, in practice, be satisfied only for specific 
energy value·. Por large values, under the condition (7) it is 
always possible to "get by" by introducing an additional magnetic 
field along in the basic section. We note that without a 
longitudinal field in the gap, (7) would imply a resonance, and such 
spin motion would be unstable. The inclusion of the longitudinal 
field displaces the resonanoe, as can be seen from (4). For 
stability, we require only: 

where |K| is the value of the resonance Fourier-harmonic of 
perturbation ┴ (see II.12 - II.15). 

As can be seen from (II.20) in the case of electrons 
and positrons, the radiation in this case leads to the disappearance 
of the initial polarization over a time ~ Τ (II.18). 
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