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Ya. S. Derbenev, A.M. Kondratenko, A.N. Skrinskij 

DYNAMICS OP PARTICLE POLARIZATION 
NEAR THE SPIN RESONANCES 

ABSTRACT 

The report considers the effect of particle deviations 
from the equilibrium orbit on spin motion in the storage ring. The 
methods and results of reports /1-6/ are applied to the case of an 
arbitrary closed orbit /7/. In addition to first-approximation 
resonances, resonances of higher orders are also investigated. The 
case of overlapping resonances is considered. 

The paper is mainly devoted to resonance crossing. A 
complete solution to the single crossing problem is given. On this 
basis, by making use of the general nature of spin motion in a 
periodic field, as established in /7/, the problem of periodic 
resonance crossing is raised and solved. 
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1. INTRODUCTION 

The present report concerns the study of the dynamics of 
particle polarization near the spin resonances. It is known /1-7/ 
that the spin motion of a particle in the storage ring becomes un
stable when the spin precession frequency on the particle's equilib
rium trajectory is close to any combination of the orbital motion 
frequencies. Owing to the spread of the particle trajectories, the 
beam's initial degree of polarization may be substantially reduced. 
This phenomenon may cause problems for experiments with polarized 
beams; on the other hand, it may be used for intentional depolariza
tion. 

The report examines stationary resonances and resonance 
crossing. There are a considerable number of reports /1-6/ dealing 
with polarization dynamics near resonances when the unperturbed spin 
motion takes the form of a precession around a fixed axis (flat 
equilibrium orbit). 

The report discusses a generalized case of an arbitrary 
closed orbit where the direction of the equilibrium particle's spin 
precession axis is a periodic function of the azimuth /7/. All the 
methods and qualitative results of reports /1-6/ may be transposed 
to the general case without any great changes. Apart from the first-approximation 
resonances, the higher-order resonances are also exam
ined first. 

The case of overlapping resonances of substantially dif
fering strengths is considered in section 5. This problem may be 
solved by a modified form of averaging (modulation resonances). 

The major part of the report is devoted to the study of 
the important problem of resonance crossing. Single crossing was 
first examined in /1/ for a constant crossing rate and a special 
initial condition of polarization in terms of the field far from 
the resonance. For an arbitrary initial condition, the result is 
known only for fast crossing /1, 4-6/. The methods we use for 
dealing with the single crossing problem provide results of a more 
general nature than those of /1/, and a solution is obtained for an 
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arbitrary initial condition. On this basis, by making use of the 
general nature of the spin motion in a periodic field /7/, a solu
tion is also found to the problem of periodic resonance crossing. 
This solution sheds light on the conditions of beam depolarization 
at periodic crossings. 

The case of heavily overlapping resonances in an equi
distant perturbation spectrum forms an important systematic applica
tion of the problem. 

2. Basic equations 

The motion of the spin vector is described by the equa
tion /7-9/: 

(2.1) 

where q = q0 + q' = e/m + q' is the gyromagnetic ratio, is 
its anomalous part, (1-)-½(c = 1) and are the 
velocity and acceleration of a particle moving in an electromagnetic 
field . A specific property of particle motion in storage 
rings (accelerators) is the small amount of deviation from the 
equilibrium trajectory. Let us represent in the form of a 
sum 

(θ is the particle's azimuth), where is the value on 
the equilibrium (closed) orbit. possesses periodicity: 

In our previous report /7/, it was shown that the solu
tion of the equation on an arbitrary equilibrium trajectory 
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(2.1a) 

(Ws is the particle's equilibrium rotation frequency) takes the 
form 

where are the intrinsic orthogonal solutions (2.1a) 
with the properties: ( = const): 

(2.2) 

2πν means the spin flip angle per period of particle motion 
around the periodic solution . In the moving periodic system 
of unit vectors 

(2.3) 

the spin satisfies the equation 

(2.4) 

(The particle's azimuth θ serves as the time). Equation (2.4) 
is equivalent to (2.1). 
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The spin equations in vector form, being geometrically 
visualizable, are a system of third-order differential equations. To 
solve them directly, it is sometimes advisable to reduce the order 
of the equation, which can be done owing to the existence of the 
motion integral = const. In some cases use is made of the 
variable projections ≡ and the spin's rotation phase ψ 
about . The Hamilton equations for ( ψ) are non-linear. 

A second-order linear system may be obtained for the two 
complex variables x+, x- which we shall write in the form: 

(2.5) 

For spin s = ½ the variable x is a spin wave func
tion which satisfies the Schrödinger equation: 

(2.6) 

where are the Pauli matrices: 

and 

(2.7) 

Since the vector equations are linear and do not depend on the value 
of spin s, transform (2.7) also leads to equation (2.6) for an 
arbitrary spin. The meaning of variables x is as follows: 
|x+|2-|x-|2 = , and the phase difference x- and x+ 
is the phase ψ of the spin precession around axis . 
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We should point out that rotation matrix 0 ( θ ) 

(2.8) 

not only tells one that <> = (θ) but also gives one a 
complete physical description. By using 0 (θ), the wave function 
of arbitrary spin xs (θ) may be written in the form: 

where (θ) is the rotation angle vector (2.8). 
In the case of an arbitrary spin s, equation (2.6) 

may be interpreted as an equation for the wave functions xa 
(a = 1,2 . . . 2 ) of 2s independent particles from which a 
system with spin s may be formally composed /16/. 

The possibility of switching from vector equations to 
"Pauli equations" (2.6) is, in fact, not related to the spin's quan
tum nature. Generally speaking, transform (2.7) represents a spinor 
of first rank of a group of rotations in three-dimensional space, 
and it may be used to describe the rotation of any type of vector. 

In the case of complex variables, the formulae obtained 
in /7/ for vector-type equations are the simplest to use for the 
periodic solution of spin motion in fields with the periodic de
pendence (θ). Let us assume that we know matrix Λ , which 
transforms the solution at θ = 0 x0 to time Τ : 

On account of unitarity (Λ+Λ = ) the matrix Λ 
takes the form: 

(2.9) 

and ν signify the following: is the direction 
about which the spin vector must be turned through angle 
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2πν in order to obtain a solution in period . Hence obviously coincides with the periodic solution (θ) at instants 
θ = 0, Τ ..., and 2πν is the angle through which the 
solution diametrically opposed to turns in a period. Clear 
expressions for and ν may be obtained from (2.9): 

(2.10) 

In the case of integer ν , is completely undefined, and 
any solution is periodic. 

This report deals with the study of the effect of perturbation, caused by the deviation of a particle from the equilibrium 
trajectory, on ideal spin motion (at = 0 ) . We 

would point out that at arbitrary (θ) this problem is basically 
the same as the well-studied case of a magnetic field which is almost 
constant in direction /1-6/ ((θ) = const.). As at = const., 

, owing to its smallness, may lead to a substantial variation 
of spin motion only near a resonance (the closeness of ν to any 
frequency in the perturbation spectrum). 

3. first-approximation resonances 

The part played by spin resonances may be most clearly 
expressed in the following way. 

let us write solution (2.4) as a first approximation of 
the conventional perturbation theory, 

(3.1) 

Let us express the integral in the form of a sum 

(3.2) 
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(νi ωs is the particle's motion frequency and ki are whole 
numbers). By substituting into (3.1) and integrating we obtain 

(3.3) 

It is clear from the form of solution (3.3) that it may be used for 
times θ > 1 θ > || under the condition 

and oscillates at low amplitude near . 
However, in the resonance region 

(3.4) 

the conventional perturbation theory is applicable only at 

(3.5) 

Thus, the spin behaviour at large time values will be 
determined by the resonance harmonics which fulfil condition (3.4). 

Let us consider the case of an isolated resonance, when 
(3.4) is fulfilled only for one harmonic k = k0 and the other 
resonance harmonics are so small that (3.5) is fulfilled. In this 
case, a solution which is also suitable for times θ  1 θ  |ωk0| may be obtained by averaging. 

Let us introduce the slow phase 

(3.6) 
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This signifies a transition to the "resonance" system of co-ordinates 
rotating about with a frequency ν{k0} in relation to system 
(2.3). The new vectors are connected to unit 
vectors by the relation 

In this system: 

(3.7) 

where 

Equations (3.7) may be solved by an averaging method. In the first 
approximation, the averaged equations have the form: 

(3.8) 

Consequently, the averaging method is equivalent to the 
rejection of all harmonics except the resonance one, and the problem 
is reduced to motion in a constant "field" . The solution is 
obvious: the spin in the "resonance" system slowly precesses about with a constant angular velocity 

The precession axis makes an angle with which 
is equal to 

The spin motion appears as follows from system (2.3): 
the spin rotates rapidly with a frequency ν{k0} ε2-|ωk0|2/ε2+|ωk0|2, and 
slowly alters the component. The rotation taper slowly 
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oscillates with frequency h about a mean value 2 with an 
amplitude dependent on the initial conditions. When the initial 
polarization is towards , the component oscillates from 
1 to ε2-|ωk0|2/ε2+|ωk0|2. At a precise resonance (ε = 0) 
after a time π/h, the spin flips. As is to be expected (cf. 3.3), 
the spin motion differs substantially from the non-resonance case 
only at ε~ |ωk0|. In this sense, the strength of the reson
ance |ωk0| at the same time defines the width of the resonance. 

4. Higher-order resonances 

As we had expected, in a first order approximation the 
spin motion may be considerably perturbed only near resonances 

where ν{k} is any frequency from the spectrum . If there 
are no first-approximation resonances, then according to the averag
ing method it may be stated that the spin component will last until 
times 

where θxap. is the characteristic "fast" time for the variation 
of . As for the spin behaviour at θ θ m a x . , averaged 
equations allowing for the higher orders must be compiled. Then 
combination resonances will also be taken into account: 

(4.1) 

As before, in order to study spin behaviour near reson
ance νp, we shall switch to the resonance system rotating with 
frequency νp about (viz. 3.6) and shall compile averaged 
equations of the required accuracy. 

A matrix description of the spin equations proves con
venient for this purpose 
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where is the column from the components of vector and is the matrix 

For short times ( Τ || « 1 ) the solution for at the 
instant θ is written in the form of a series: 

(4.2) 

where 

In our case the averaging method indicates the location of a constant 
effective "field" , such that the solution: 

of the averaged equation 
(4.3) 

coincides in time T with (4.2) 

hence 

(4.4) 

Here we confine ourselves to plotting accurately up to the 
fourth order. By using (4.2) we obtain from (4.3) 

[A,B] denotes the commutator of matrices A and B. In vector form, 
the matrix commutator is replaced by the vector product: 

(4.5) 
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Time T must take into account the relations: 

(4.6) 

Under this condition does not depend on T and the brackets 
<∙∙∙> correspond to the definition of an average value. 

Solution (4.3) will obviously differ slightly from the 
accurate solution up to times 

(4.7) 

If (θ)ls periodic, then for times θ« θmax. will 
coincide in direction with the corresponding periodic solution at instants 0, Τ, 2Τ... (in this case Τ may be identified with 
the period of variation of ). Between these instants solution 
(4.3) differs from the exact solution by a first-order correction 
(hence the dependence of direction on the selection of θ = 0: 
|Δ| ~ h T ) . Similarly, in the general case, under condition 
(4.6), Τ is an approximate period of variation of . The 
value h defines the frequency of the spin's rotation about the 
periodic solution (and, therefore, does not depend on when the read
ing begins). 

Let us discuss the types of resonance that are possible 
in the following approximations. By resonance we mean a situation 
where the direction of the mean axis of precession differs 
substantially from , i.e. at 

As we have seen, only the following resonances are possible in the 
first order approximation: 
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where ν{k} is a frequency from the spectrum of the transverse 
part of . It follows from (4.5) that the following resonances 
are possible in the second order approximation. 

(Here the subscripts " l " and " k " denote frequencies from the 
spectra and respectively). Consequently, second-order 
resonances occur only as a result of the correlation between 
the transverse perturbation and oscillations of the precession 
frequency. At constant (νe = 0), the second approximation 
dose not produce a new resonance but rather forms a correction to 
the first. 

In the third-order approximation, combination resonances 
are possible: 

(4.7) 

There are usually enough of these approximations. To 
complete the picture, we shall point out a simple rule for the 
selection of frequency combinations for a resonance of arbitrary 
order. The general condition for an n-th order resonance is : a 
given combination of n frequencies of the spectra and (some of them may be the same) must be close to ν . In the re
sonance system this condition may be expressed a s : 

(The choice of sign to precede νl may be included in subscript 
l, since frequencies νl form a spectrum of real value ). 
Since only linear resonances are possible for the spin system, then 
we must have: 

(4.8) 
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Hence, n┴ is odd. Thus, the following nth-order 
resonances are possible 

(4.9) 

in conformity with condition (4.8). Sometimes, nth-order resonances 
amount to a correction of lower resonances. It is then necessary 
to separate out the low-value part from the full combination; the 
number of frequencies νk in the subcombination with positive 

(si > 0) signs must be the same as that with negative (si < 0) 
signs. 

For example, third-order resonances (4.7) may be reduced 
to corrections of first-order and second-order resonances if νe ≈ 0, 
νl + νl'. ≈ 0 or νk'- νk" ≈ 0. 

5. Modulation resonances 

The above averaging method may be applied directly to 
the case of a single resonance, i.e. when the condition 

(5.1) 

is fulfilled only for one combination ν p . After averaging over 
the remaining fast oscillations, we obtain the motion in the effect
ive constant field correctly describing the spin motion at large 
time values. If condition (5.1) satisfies several combinations of 
νp, then after averaging over the fast oscillations, the time 
dependence of the effective field will have a frequency spread 
of order of the value h: 

(5.2) 
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where h┴ and ε are the width and frequency difference of the 
selected (main resonance, and Δ m defines the strength of the 
other resonances.Ωm is the distance between the main and other 
resonances. This problem may be solved in certain cases of practical 
significance. 

In this section we shall consider the case of overlapping 
resonances with substantially differing strengths. Let us assume 
that ∆m « Ωm. The averaging method may also be used to 
solve this problem. In the zero approximation ( = 0 ) , there is 
an isolated main resonance and the spin processes around . By 
following for , the motion is considerably distorted only near 
(in the first order approximation) the modulation resonances: 

In the higher order approximations combination resonances are also 
possible. 

Let us take as an example the case of periodic modula
tion (for instance, synchrotron oscillations of energy near the spin 
resonance at fast frequencies). In this case, 

Ω is the synchrotron oscillation frequency. In the first ap
proximation the possible resonances are 

The strength of this resonance 

(5.3) 
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is determined by the part which is transverse to . The 
spin motion takes place as follows. In a system rotating about with frequency Ω the spin slowly precesses with frequency 
√ε + ω about a direction which forms the following angle 
with : 

Resonances h0 ≈ kΩ occur in the K-th approximation of the 
averaging method. 

This method gives results which differ substantially 
from the isolated resonance theory only at |ε| h┴. In 
the opposite case (|ε| » h ┴ ) the subsidiary resonances are 
actually separated from the main resonance and may be considered as 
independent, isolated resonances. 

The case of periodic modulation at ∆ » Ω, when 
many resonances with the same strength overlap, requires a different 
approach. It is better to tackle this problem by assuming repeated 
crossings of the "main" resonance rather than an overlapping of 
separate resonances. 

6. Single resonance crossing 

Let us now examine the problems of single and multiple 
(periodic) crossing of the spin resonances. Both these problems are 
encountered in storage ring technology (for instance, resonance 
crossing during particle acceleration, modulation of the particle 
motion frequencies etc.) 

Single crossing was first considered in /1/ for a 
constant crossing rate (ε = const, h┴ = const.) and a special 
initial field polarization condition ( = 1 ) . 

The following result was obtained: 

(6.1) 
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In the case of the arbitrary initial condition, the 
result is known only for fast crossing (|| » h 2

┴ ) / 1 , 4-6/. 
A complete answer to the problem of single crossing is 

not only interesting in itself but is also essential for a solution 
to the case of periodic crossing. The answer to the problem may be 
expressed in a slightly more general way. 

Let us assume that the spin in the resonance system moves 
in the field 

(6.2) 

(Rotation of may always be excluded by transforming to a 
system which rotates relative to the resonance system and ). 

Certain initial conditions are set for spin at h → -∞. 
It is essential to find the solution of at h → ∞. We 
would point out that, in the region where direction varies 
adiabatically, the equation in field (6.2) is solved 

(6.3) 

where is a complex unit vector which is fixed in relation to 
, and = 0, i.e. the spin precesses about with a 
frequency h. The adiabatic condition is easily derived from a 
system of co-ordinates where the 3 axis lies in direction .  
In this system the field has the following components: 

where 
is the angular velocity of rotation . In order to meet the 
adiabatic condition (the spin's precession axis lies in the 
direction of the field). it is essential that is small in 
comparison with the spin precession frequency h and that the pre
cession frequency itself varies only slightly during the time it 
takes for the spin to rotate 2π/h about the field: 
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Hence it follows that 
(6.4) 

Condition (6.4) ensures the exponential accuracy of the 
solution in the adiabatic region when varies monotonically. If oscillates during crossing, then an additional condition for 
the smallness of the oscillation frequency Ω is essential: 

(6.4a) 

We would point out that if the adiabatic condition (6.4) is met 
for all values of h, (h┴ » ( + ) ¼ ) , then solu
tion (6.3) is always correct with exponential accuracy in terms of 
the adiabatic parameter. An exponentially slight inaccuracy builds 
up in the region where condition (6.4) is the least well satisfied, 
i.e. in the region h ~ h┴. Therefore, the limit of the 
effective resonance region will be taken to mean 

(6.5) 

Thus, outside the effective region (6.5), the solution takes the 
form (6.3) with constant parameters and ψ0. 

Our aim is to connect the components and phases ψ0 
before crossing (θ < 0) and after crossing (θ > 0). This 
problem may be fully solved for an arbitrary crossing rate if the fractional variations of and h┴ are small i.e. in the 
effective region 

(6.6) 

In this case it is more convenient to use equation (2.6) for the 
variable 

(6.7) 
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In the adiabatic region equivalent to (6.3) in a system where the 
axis 3 lies along the direction of field , solution (6.7) takes 
the form: 

(6.8) 

The relations between , ψ0 and A,B are obvious: 

In order to find the connection between A and Β at θ < 0  
and θ > 0 , we shall use the method for combining the solutions by 
using a complex time plane /10-12/. 
In our case the singular points determined from 

lie in the complex plane θ and the problem is equivalent to 
that of above-the-barrier reflection in quantum mechanics. If and h┴ are constant, then there are only two singular points - those 
"of closest approach" 

Deviations and h┴ lead to a movement of these points and to the appearance of new ones which may be ignored under condition (6.6). As in reports /10-12/, let us avoid the two points of closest approach θn, θn* in the complex plane θ (i.e. we skirt around the effective area in which the solution is unknown on a wide circumference where the solution takes the form (6.8)). We obtain the required link between A and Β*): 

*)In papers /10-12/ the cut in the complex plane θ is made between 
the points of closest approach. In our determination, h is positive 
all along the real axis. 
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(6.9) 

where 
(6.10) 

is the value of the integral between the points of closest approach 
θn* θn. φ is the constant phase which is undefined in 
/10-12/. The instant θ = 0 is selected so that 

(6.11) 

From (6.8,9) we obtain the connection 

(6.12) 

The phase φ may be found by a comparison with the accurate solu
tion for constant and h┴ which is set out in Appendix 2. In 
this case 

in accordance with (6.10), and 

(6.13) 

A graph of the dependence φ ( a2 4 ) is shown in Fig. 1 /17/. For 
small deviations (condition 6.6) of and h┴ from constant 
values in the effective area, the difference φ from (6.13) may 
always be ignored. (We should point out that in the case of slow 
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crossing (a2 >> 1 ) , the absolute variation of δ and the shift 
θ - 0 may be large.) 

Thus, under condition (6.6) matrix R may generally 
be found from expression (6.9) and φ from (6.15). 

The connection between projections on to field and 
phases Ψ may be obtained from (6.12). We give the expression for 
: 

(6.14) 

In the case of slow crossing || « h 2
┴ , the spin maintains its 

projection on to with exponential accuracy and flips with .  
In the fast case (|| » h2┴), the variation of the projection 
on is slight (~√δ). Formula (6.14) generalizes result /1/ 
(viz. 6.1). 

A practical application of the problem of resonance cros
sing is given in Appendix 1. 

7. Periodic crossing 

When a beam is stored in a storage ring for a long time, 
the problem of periodic resonance crossing may acquire significance. 
Generally speaking, the problem of periodic resonance crossing is a 
problem of spin motion in the periodic field 

(7.1) 

where Ω is the crossing frequency. 
The results of /7/ illustrate the general nature of spin 
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motion in periodic crossing. There is a certain periodic solution 
m (θ) for a spin recurring after a period 2π/Ω. All the 

other solutions precess with the same frequency µ about ( 
= const.). Our problem is thus reduced to a search for solution and precession frequency µ. 

In section 2 formulae are obtained for and µ in the 
form of a "wave function" x. Let us assume that the matrix Λ 
is known (Λ +Λ = 1). Then 

(7.2) 

We shall examine a case where condition (6.6) is ful
filled for each separate resonance crossing in the effective area. 
(It is assumed that the amplitude of the oscillations ( θ ) is 
large enough). In this case the matrix Λ may be constructed 
from (6.12). Using the results from the previous section, we obtain: 

(7.3) 

Here θ2 and θ1 are the resonance crossing times which meet 
condition (6.1l). 
By introducing the notation: 

(7.4) 
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we obtain from (7.3) the matrix elements Λ: 

(7.5) 

Thus, from (7.2): 

(7.6) 

(7.7) 

(We remind the reader that is defined in a system connected 
with field .) 

These formulae give us all the information we require on 
spin behaviour during periodic crossings fulfilling condition (6.6). 
The vector (0) defines the direction of the periodic solution 
at times 0, 2π/Ω, ... (The time θ = 0 is chosen in an adiabatic 
region where the spin motion is known). Formula (7.6) defines 
the angle 2πµ at which the spin rotates about (0) over 
period 2π/Ω. 

It is interesting to study how the projection on axis in the adiabatic region varies during periodic crossing. The variation 
obviously depends to a large extent on the orientation of 
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in relation to . For instance, under an initial condition = 1, the projection varies over the range: 

Let us see how the orientation of depends on the 
parameters of the problem. 

a) Fast crossing (δ1 « 1, δ2 « 1 ) . It is easy to 
see that 

(7.8) 

Clearly m 1 almost always, except in the case of narrow bands 
in terms of y: 

(7.9) 

(7.9) determines the "resonanoe" region in which the periodic solu
tion depends heavily on the parameters. The polarization may 
vary substantially only in this region. The spin then rotates 
slowly about with a frequency ~√δ. 

For instance, in the case of symmetrical crossing 
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A slight violation of the crossing symmetry ( ) 
shifts the resonance (7.9) and then polarization is preserved. 

b) Slow crossing (lδ1 » 1 » lδ2 » 1 ) . 
In this case 

(7.10) 

As in the previous case, m = 1 almost always, except 
in the resonance region: 

(7.11) 

c) Mixed case (δ1 « 1 lδ2 » 1) 

This solution may be easily explained in the following way. During 
fast motion "from bottom to top" does not change. Then, dur
ing slow crossing "from top to bottom" changes its sign. Con
sequently, the spin completes half a turn (µ ½) about a 
certain direction diametrically opposed to the axis . 
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Unlike the previous cases, small m do not signify a 
resonance (µ ≠ k). 

d) Intermediate case (δ1 ~ 1, δ2 ~ 1). 

Unlike the above oases, the direction of does not 
depend on (x, y) throughout their range of variation. In this case 
m passes smoothly through all the possible values: 

(7.12) 

The greatest sensitivity to the position of point (x, y) is 
observed near the resonances µ = k, when 

The approximated formula near the resonanoe takes the form: 

Here Δx and Δy are the deviations from the resonance 
point 

8. Fast crossings witharbitrary periodic 
dependence (θ) 

Formulae (7.6,7) of the periodic solution are correct 
for condition (6.6). Normally for fast crossing, the problem may be 
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solved without imposing limitations on the form of the periodic 
dependence (θ). In order to find the periodic solution, it is 
sufficient to know the spin motion in the period of variation (θ). 
In the case of fast crossings, the spin in the effective region 
does not change a great deal, and the solution in this region may, 
therefore, be found by using the perturbation theory. 

In the case of single crossing, the connection of x 
at θ > 0 and θ < 0 in the system rotating about axis at a 
velocity h takes the following form in the first approximation: 

(8.1) 

By returning to the original system and matching the solutions in 
the adiabatic regions, we obtain the matrix Λ (in the system 
(7.1)): 

(8.2) 

in the effective region 

in the adiabatic region 
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Hence: 

(8.3) 

Unlike (7.8), this solution may also be used when the adiabatic 
region is not reached. 

When there are adiabatio regions and condition (6.6) 
applies, solution (8.3) switches to (7.8). As before, the periodic 
solution is always directed along the axis, except in the case 
of the resonance region: 

(c.f. 7.9) (8.4) 

We should point out that, if there are no adiabatio re
gions, then æT — T « 1. In this case, as may be seen from 
(8.3), the spin moves in the mean field: 
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9. Crossing of resonances with rotation frequency ν = k 

Up until now we have not studied effects linked with the 
variation of ( θ) as a function of energy (or other 
parameters) with time. In the periodic system (, θ), 
(, θ), owing to the variation of , equation (2.4) has the 
additional terms ~ . Far from the resonance 
ν = k, they are small and may be ignored like non-resonant 
terms. Problems arise with those energy values at which the reso
nance ν() k occurs. 

This resonance crossing problem may be solved by the 
methods described above. Let us assume that the periodic solution (, θ) and the precession frequency ν ( ) are known 
for every value. As resonance point = we shall select 
an energy value at whioh ν ( ) is closest to the whole number 

(In particular, ∆ν min may equal zero). In the resonance periodic 
system ( , θ), (, θ) the spin motion equa
tions take the form 
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(the deviations from the equilibrium orbit are insignificant). 
The equations averaged in terms of θ take the form: 

according to the definition of the 
resonance point 

The direction defines the direction of the periodic 
solution ( 0): 

(9.1) 

The value h defines 

at δ = 0, as should be the case, 

As can be seen from (9.1), the direction of the periodic 
solution at the resonance point (θ) is transverse to ( θ) far from the resonance. This corresponds to the normal 
behaviour of the precession axis in the region of the spin resonance. 

In the case of resonance orossing, according to the 
condition obtained above (6.4), the variation of and ν may be 
considered adiabatic if: 

(9.2) 
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In the case of slow crossing 

the projection on is maintained and flips together with . 
In the case of fast crossing, the spin cannot follow (, θ) 
and the projection changes sign. 

The authors wish to thank V.N. Bajer, S.T. Belyaev, 
N.S. Dikanskij and Yu. M. Shatunov for studying the report and 
offering their advice. 
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Appendix 1. 

Let us consider one practical application of the results 
we have obtained, for instance in a colliding-beam experiment using 
electrons and positrons with the same polarization. As they move 
through the storage ring's magnetic field, the beams are polarized 
in opposite directions under the influence of synchrotron radiation 
/13,14/. In order to reverse the polarization (of the positrons for 
instance), we shall separate the energy of the electrons and positrons 
by introducing a radial electric field En. This leads to a dis
tinction between ν p o s . and ν. 

(<H> is the storage ring's mean steering magnetic field). Let 
us construct the resonance by introducing into an orbit section of 
length θ0 (where || is minimal) a longitudinal (in terms of 
velocity), variable, magnetic field H sin νext.θ with an 
external frequency νext.. 

(1) 

The width of this resonance 

must not overlap the next resonance for electrons: 

by changing νext. it is possible slowly √|| « |h┴| to pass  
resonance (1), so that the polarization of the positrons changes sign. 
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Appendix 2. 

Equations (6.7) may be solved exactly at constant values 
of and h┴. These equations: 

are functional relations for functions of the parabolic cylinder 
/15/ D p ( ) . The solution takes the form ( > 0): 

where 

are constants determined by the initial conditions. The determinant 
|M| ("Wronskian") does not depend on time and may be calculated, 

for instance, at θ → ∞: 

(3) 
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Thus we find the elements of the matrix Λ0 : 

(4) 

To find the matrix Λ0 linking the adiabatic regions 

(5) 

it is essential to know the asymptotics D p ( ) , Dp-1 (). Their 
extreme expressions are known /15/ in the case of condition: 

(6) 

By using the method of steepest descent and by the constancy of the 
solutions' "Wronksian", the asymptotics can also be found under 
condition (5). 
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It is sufficient for our purposes to know the limiting 
expressions of Dp ( ) , since the asymptotic form of Λ (viz 6. 
12) (and of Λ0) is known under condition (5). In order to define 
Λ fully, it is essential to determine the constant (under 

condition (5) ) phase φ which obviously may also be found in the 
limit |θ1|,|θ2|→∞. In order to link Λ and Λ0, the matrix 
of Λ0 must be converted into a system related to direction , 
which can be done by rotating about axis "y" through an angle 

(7) 
At the limit 

(8) 

By comparing (θ) and (4) at the limit |θ1|,|θ2| → ∞,we 
obtain the following expression for phase φ 

(9) 

where Γ () is the gamma function. 
In paper /1/ condition (6) was used to obtain result 

(6.1). From what has gone before, it follows that, if matrix Λ 
is to take the form (6.12) with φ from (9), and h┴ must be 
constant only in the effective region (6.5). 
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Figure 1. 
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