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1. INTRODUCTION 

The intensity of strong focusing proton synchrotrons is limited 
in general by the transverse incoherent Coulomb effect. It excites 
betatron oscillations, when the working point crosses a strong resonance 
line under the influence of space-charge forces. 

The intensity of the CERN and Brookhaven accelerators is limited 
for this reason. Apparently the IHEP Accelerator works now in a regime 
near the limit. The characteristic intensity level at which space-charge 
influences significantly the betatron motion is 1012 protons per pulse. 

The largest unfavourable effects appears at the initial stage 
of the accelerating cycle. The maximum current depends on the energy of 
the particles (neglecting the effect of the vacuum chamber wails and of 
the magnet poles) as γ (γ2-1) (γ: relativistic factor). The natural way 
to overcome the difficulty connected with this transverse repulsion is 
to increase the injection energy. The task of the next years appears 
to be the increase of intensity of the large proton accelerators to the 

1013 - 1014 proton/pulse level. 

In the accelerators with a high enough injection energy, the 
intensity limitation factor may well be the longitudinal Coulomb repulsion 
of the particles/1/. The space-charge force may become comparable with 
the focusing forces of the accelerating electric field. 

In this report, we study the longitudinal motion taking into 
account the proper field of the bunch. In order to solve the phase equations 
we have used the analog computer MN-7 which has been used earlier to study 
the phase motion without space-charge/2/. The results are obtained in 
a concrete aspect. The difficult solution of non-linear equations in the 
non-adiabatic region near transition is not called for. One succeeded in 
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obtaining the essential results by integrating the equation in a 
sufficiently short interval with respect to the variation of the variable 
so that one can avoid errors occuring by long duration integration on 
analog computers. The numerical values correspond to the 70 GeV IHEP 
proton synchrotron. 

2. ELECTRIC FIELD OF THE BUNCH 

We calculate the self-field of the bunch in the system of coordi­
nates which follows the centre of gravity of the bunch. We suppose that 
the bunch length is much larger than the transverse dimension of the vacuum 
chamber, but the relation between the line charge density and the azimuthal 
coordinate s is described by a general function λ(s). The beginning of 
the calculation coincides with the position of the bunch centre of gravity. 

The metallic vacuum chamber wall screens the electric field of 
the particles separated by a distance ∆s > h (h: chamber height). The 
longitudinal field is equal to: 

εso = -dU(s) (1) εso = -ds (1) 

where U is the average potential in a transverse section of the bunch. 
The relation between the longitudinal charge density and the potential is 
determined by: 

U(s) = 1 λ(s) (2) U(s) = c λ(s) (2) 

C is the electric capacity of a unit length of the beam-chamber system. 

In this way, with the adopted hypothesis, it is sufficient in order to 
find the longitudinal field to calculate the capacity and to know the charge 
distribution along the bunch. 

In the simple case, of a bunch with circular cross-section of 
radius r 1 , in a circular metallic tube of radius r2 the capacity is equal to 

C = 1 (3) 
) 

C = 
2 (ln 

r2 1 
(3) 

) 
C = 

2 (ln r1 4 

(3) 
) 
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The logarithmic dependence of the capacity with the ratio of 
chamber to beam size makes it possible to limit oneself to relation 
(3). The examination of other cases (elliptic beam in elliptic chamber, 
circular beam between parallel surface) leads to the conclusion that the 
capacity in all cases of practical interest does not differ from the 
value given by formula (3) by more than 20%. The capacity depends also 
very weakly on the charge distribution across the bunch cross-section. In 
particular if the charge is concentrated in a thin circular layer of radius 
r 1 , we get the well-known formula of the cylindrical condenser: 

c = 1 c = 
2 ln 

The explicit form of the λ(s) function is determined by the 
trapping conditions in the accelerating regime and the subsequent adiabatic 
damping. At very high intensities, the longitudinal charge distribution 
may change under the action of the self-fields. Usually it is assumed 
for the calculation that the longitudinal phase plane is uniformly filled. 
If the phase oscillations amplitude is small, the line density is an even 
function of s : 

λ(s)~ √smax2 - s2 ( 2 s m a x : longitudinal length 
of the bunch) 

Nevertheless, the differentiation of the equation set (1) and (2) leads to 
infinite values of the field intensity at the boundaries of the bunch. 
Indeed the field strength is everywhere limited and on the edge of the 
bunch it is simply the hypothesis that the solution is uniform which is 
violated. Consequently/3/, we shall start with a longitudinal distribution 
for which λ(s) ~ smax2 - s2. 

In this case, the phase plane density decreases slightly towards 
the bunch edge which seems natural. 
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Thus: 
λ(s) = ¾ Ν e 

( s m a x
2 - s 2 ) λ(s) = ¾ h s m a x

3 ( s m a x
2 - s 2 ) 

εs(0) = 
3 Ν e s (5) εs(0) = 2 C h s m a x

3 (5) 

here N is the number of protons in the accelerator, 
h the number of bunches (RF harmonic number). 

When going to the laboratory coordinate system, the relativistic 
factor appears in (5). 

3. PHASE EQUATIONS 

The phase equations with the canonic variables , Ø without 
taking into account the self-fields of the bunch may be written a s : 

d ( ΔΕ 
) 

e V (cos Ø - cos Øo) (6) dt ( ωo 
) 

2 π (cos Ø - cos Øo) (6) 

where V is the amplitude of the accelerating voltage; Øo the equilibrium 
phase; e V cos Ø the energy gain per turn; ΔΕ the energy variation from 
equilibrium and ωo the revolution frequency. 

The action of the bunch self-fields on an arbitrary particle may 
be taken into account in the phase equation if one makes the substitution: 

e V cos Ø → e V cos Ø + e εs. 2π 
s 

εs - εs(0)/γ2 
: mean accelerator radius. 

One can deduce a few general conclusions by considering the small 
amplitude phase equations. 
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Let us take: Ø = Øo + η η < < 1 
We get: 

d 
( Εo  

+ ( eV sin Øo + - 3 Ν e2 h ) η = 0 (7) dt 

( 

ωo2 h K 
+ ( 2π sin Øo + - 2 C γ 2 ηmax3 

) η = 0 (7) 

ηmax = - h 
s m a x 

(8) 

Κ = α γ2 - 1 Κ = 
γ2 - 1 

For an adiabatic variation of the parameters, the factor 
be taken out of the derivation bracket so that: 

Ε ο 

ω02 h K may 

+ Ω2 η = 0 (9) 

Ω 2 = 
ω02h Κ e V sin Øo 

( 1 χ) (10) Ω 2 = 
2π Ε ο 

( 1 χ) (10) 

Χ = 3π h e Ν 1 (11) Χ = 
c V |sin Øo| γ2 η

max
3 

(11) 

Ω is the frequency of small amplitude oscillations which is constant 
in the adiabatic region along a given phase trajectory, but in the general 
case it has the meaning of instantaneous frequency. 

The minus sign applies when γ < γtr (K<0, sin Øo <0) 
The plus sign applies when γ > γ (K>0, sin Øo >0) 
γtr is the relative transition energy of the accelerator. 

The space charge decreases the longitudinal focusing of the 
oscillating system for γ<γtr and increases it for γ>γtr. 

In a qualitative and rough evaluation of the intensity limit, 
one may take the condition: χ = 1. 
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As shown by (11) the effect of the self-field on the longitudinal 
motion depends extremely strongly on the bunch length. On Fig. 1 the graph 
of the function: 

f(γ) = 1 
γ2 ηmax3 (γ) 

is given for the IHEP Accelerator. It is assumed that the relation η m a x
( γ ) 

follows the law of linear oscillations of particles of a low intensity beam, 
and V and sin Øo are constant in the accelerating process. 
It is clear that the relative effect of the Coulomb term in the 
phase motion is largest around transition. 

4. SOLUTION OF THE EQUATION IN THE TRANSITION REGION 

The time interval during which the effect of space charge is 
important, is determined before all by the beam intensity and the bunch 
length ηmax. In the IHEP accelerator, this interval does not exceed 
100 µsec (compared with an acceleration time of 2.5 sec). 

The integration of the phase equation was carried in an interval 
of 24 µsec before transition, to 24 µsec. after. The integration interval 
was split in 6 µsec steps up to the transition point and 2 µsec steps after­
wards. Such a procedure is justified because after the transition point, 
the bunch dimensions change much more rapidly. Within each step, the 
Coulomb term is approximated by a linear function. 

The results of the integration are represented on the phase plane 
in the canonic units ΔΕ/ωo, Ø by closed curves containing all the repre-
sentative points at a given time instant. In the region where parameters 
vary adiabatically, these curves coincide with boundary phase trajectories. 
The area enclosed by the boundary curve must be preserved in agreement with 
Liouville's theorem. The area variation in the integration process 
characterizes the error of the computing machine. 
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The first results were obtained with the assumption that the 
bunches have a natural length determined by the usual trapping conditions 
and the subsequent adiabatic damping. 

At transition ηmax = 8°. It so happens that at the 1012 protons/pulse 
intensity level, the space-charge effect is negligibly small, but by 

1013 p/p after crossing transition energy, the radial bunch dimensions equal 
the vacuum chamber width. 

Let us suppose that the bunch length in the transition region be 
increased for instance by means of noise excitation of phase oscillations. 
The bunch lengthening appears mostly as a simple means of decreasing the 
longitudinal Coulomb effect if there is no special requirement on the 
particle density in the longitudinal phase plane. The effective phase 
volume at the end of the accelerating cycle is smaller in the case where 
there has not been a preliminary excitation of oscillations. In the example 
described below, the initial beam size is three times larger than the 
"natural"; the intensity being 5.1013 p/p. 

The particularities of the transition region crossing are 
illustrated by the boundary curves (curve 2) represented on Fig. 2. For 
comparison we have drawn the curves (curve 1) which correspond to zero 
intensity and enclose the same area. 

The parameters entering in the phase equations and in formula (5) 
have in this example the following values: 

Ν = 5.1013 h = 30 γtrans = 9.46 
c = 1/4.5 V = 380 kV ωo = 1.25 106 sec-1 

= 236 m cos Øo = 0.5 α = 0.011 

The time τ is calculated from the moment of crossing the transition point. 
The boundary curve at the limit of the represented interval (τ = - 24 µsec) 
practically coincides with the phase trajectories. The shape of the trajec-



- 8 -

tories differ slightly from an ellipse because the oscillations are not 
completely linear. The hypothesis on the symmetric charge distribution 
with respect to the equilibrium point (formula 4) may yet be fulfilled 
in as much as the Coulomb term in the right hand side of the equation does 
not exceed 0.1 of the basic term, for a bunch for which ηmax > 30°. If 
ηmax < 30°, the longitudinal asymmetry of the bunch lies in the limit of 

accuracy of the instruments which gives the results of the calculations. 
The non-linearity of the accelerating field is most important and must be 
taken into account in the integration. 

Important shape differences between curves (1) and (2) appear 
suddenly after crossing transition. At this instant, the azimuthal bunch 
dimension diminishes and the self-field effect is largest. The space-charge 
force strength increases 6-8 times in 10 µsec. The period of phase oscilla­
tions in the vicinity of the transition point is large and the deformation 
of the area representing the beam occurs non-adiabatically; as a result of 
this bunch dimension,oscillations are created. The non-linear alteration 
of the bunch area is determined by the non-linear internal fields. The 
effective phase surface is increased by about 4 in the represented example. 

When going away from the limits of the represented interval one 
can calculate that the phase oscillations vary adiabatically. 

The authors express their thanks to V.I. Balhekov for his review 
of this work and his valuable remarks. 
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Fig. 1 : Function f(γ) for the IHEP accelerator. 



Fig. 2: Solution of the phase oscillation equations in the transition region 
i) without longitudinal space charge 

ii) with longitudinal space charge 


