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Abstract Where X is the transverse co-ordinate of the different
The beam which the SPS has to be provided for the LHBuUnches. The theory of coupled linear differential
combines the inconveniences of a high single bunduquations says that the motion of each bunch can be
intensity together with a high total intensity of closelydescribed as the sum of n oscillators,

spaced bunches. Single bunches with the intensity
required for the LHC were already accelerated the SPS
during the collider period and experience could be gained
concerning space charge effects and head t&ifch having a frequency, wuch that \i are eigenvalues
instabilities. The close spacing of the bunches wilfthe following matrix :

jw.t

X, =c, " +..+c,e"

inevitably lead to multi-bunch instabilities. For this kind K K 7
of instabilities the details of the transverse impedance @ s 12 : 1n
(existence of narrow band oscillators) can become
important.

1 WAKE FIELDS Ky - Kona @,

The bunches in an accelerator induce currents and

changing charge distributions in the vacuum chambgit each eigenfrequency, wthe motion of the different
surrounding them, resulting in an electromagnetic fiel@articles is correlated. This correlation is given by the
inside the vacuum chamber, called "wake field". Ircoefficients ¢ which describe the amplitude and phase
symmetrical vacuum chambers (circular, elliptic elationship between the different bunches ( j ) for each
rectangular,..) the transverse component of the walkgcillator exp(iwt). They correspond to the eigenvectors
field is zero when the bunch is in the centre. For smadf each w. This correlated motions at each of the n
deviations from the centre, the transverse component %enfreqhencies are called “modes”.

the wake-field is proportional to the transverse com order to find the eigenfrequencison has to put the
ordinate of the beam (1). This fields decay normallys|iowing determinant to O :

rather quickly after the bunch passage. The transverse

wake field from a smooth vacuum pipe (resistive wall}- q
decays as 1/8, D being the distance behind the bunch, @ - W k12 : kln
The field from cavity like structures behaves typically
like a damped sine wave. This damping time can vafy ' ' ' =0
from the order of 1lnsec (broadband resonator) up ffo

somepseconds (High Q resonators such as RF cavities). | )
n

2 COUPLED BUNCH MODES

2.1 System of coupled oscillators

The transverse motion of n coupled bunches c nAa).Za)ﬁ k12 ' kl”
generally be described by n oscillators with betatr . . .
frequency ¢;), and coupled to each other by the line =0
coupling coefficients k representing the normalised ) ) | |
force from the wakefield created by particle j on particle K, . Ky Aw2e,

i

" 2 The second determinant is obtained by making the

X, T, X, = _k12x2 - k13x3"' approximation that the resulting frequencies are not too
different fromeg, so that :

X, rw, X, =KX, — K X,

B
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a)ﬁz-V\f= ( ar -W)(ca)ﬁ +W) ~ 24w. ar ! ! !

0.001 [~ X X -

This determinant is an equation of nth degreeAim X X

giving n roots. One has to bear in mind that these roots

can be complex so that they have a non-zero imaginary im <A i) ol x < —

part. The imaginary part of this frequency result in XXX

exponential growth or decay when putting them in the X X

eneral solution :
g —0.001f X X —
ei(wReiiwlm)t — einet .e¢w|mt 70I001 I0 0I001

Re(/\ i)

Fig 1:frequency shifts due to coupling between bunches.

2.2 A simple example The imaginary parts give the growth-rate constants.

As already mentioned, one of the general features of
wake fields is that they decay in function of the distance
behind the bunch. The wake field seen by the fir®-3 Another extreme case
following bunch is normally much stronger than the
wake field seen by the second following bunch. If w . .
. et us now consider a train of bunches, each coupled to
ignore the effect on the second bunch and only keep the

. : ext but with no closure at the end, i.e. there is a big gap
coupling between subsequent bunches the equation,tQ : 2
: . Sl . i between the last and the first bunch. The characteristic
find the eigenfrequencies is very simple :

determinant then looks like this :

renaming
ZwﬁAa) =A A 0 0 0
gives. k A 0
A 0 0 k o k . 0
K A O 0 k A
=A"—(-k)"=0
0 k 0
0 K A This gives as solution n equal rodts0 . However, the
theory of differential equation says that there have to be
n independent solutions. In this case it can be shown that
A" = 4K the different solutions look like :
T x, = ag””
Depending whether n is odd or even . The complete , ka ,
set of solutions in the complex plane can be found by :  x = ae”’' + == 1!
27mi 20 p
A=tke " K K 2
Giving n equidistant points on a circle with radius kiin - x - ae”" +._a t e +£ _a t2g @4t
the complex plane (fig 1) 2w s 2\ 2w 4

Each bunch acts on the next one as simple resonant
external force. One can see that the amplitude of the
second bunch is growing linear with time, the amplitude
of the third is growing quadratic etc. This phenomenon
is equivalent to the beam break up on can observe in
LINAC's.
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2.4 Closer to reality the simple example in 2.3. This behaviour could be

) ) observed for gsec long batches in tig&PS.
We now consider a wake field that extends over a

longer range. In the example the field is going down

guadraticaly with the distance between the bunches. A{5 The real world

we consider also a weak coupling through a gap form the . o

last bunch to the firsts]. The result (fig 2) does not 'N€ matrix to calculate the tune shifts in a real

differ much from the one calculated in fig 1. machine is given by :
A o O g_ A .
kK A 0o k, A
k
~— k A o k, k, A
. k
K2k oa
L8 4 J
) T o T
0.001k _| - NeC2 e g n+n, EI_-J'Z(W)eIWmnOde
< X nET I
X
X
Im <Xi> or X x N is the total number protons, n the number of filled
XXX X « bunches, nthe number of empty bunches , T is the
X x revolution period and Z the transverse impedance. The
—0.00 _| factor : )
| | | m}ﬁm—
0199 02 0201 e "%
Re<x_> comes from the fact that the field seen by subsequent
1

bunches at time t is proportional to the betatron
E\mplitude of the previous bunches at t -F#r). This
phase shift term makes that the circle in the complex
o . T lane is turned so that other modes can become unstable
It is interesting to see that the results still lie on epending on the tune. The result for a single bunch

circle which means that the maximum growth rates ariﬁtensity of 10" and 80 bunches gives growth rates of
comparable to the frequency shift. The radius of the012 (turns)

circle is proportional to k" . It is interesting to look at
the eigenvectors which give the amplitude of the
oscillation of each bunch (fig 3).

Fig 2 : Eigenfrequencies for a system with longe
range and weak closure (i.e. a gap).

3 HEAD TAIL INSTABILITY

0 0.011 In order to understand the instabilities of a single
1 0015 bunch one can imagine the bunch as being composed of
2 0.024 smaller bunches, following each other very closely, so
3 0.039 coupled together very strongly, and with a negligible
W o 065 coupling to the next bunch (series of micro bunches).

_ The solution looks then like described in 2.3. i.e. the

eigenvec (M .x,) =B 0.107 oscillation amplitude of the particles towards the end of
§ 0177 bunch increases with an increasing power of time. In
0292 linacs this phenomenon leads to so called beam break
z 0.482 up. In synchrotrons however, the leading and trailing

0.795

_ . . particles in the bunch exchange their position due to the
Fig 3 : eigenvector for a series of coupled bunchegnchrotron motion and this has normally a stabilising
with a big gap between last and first. effect. In order to understand this we model the single by

) o ) only two particles (head and tail) represented by the
As one can see the amplitude is increasing towards thg|owing two oscillators:

end of the batch. This result shows the same features as
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x, = a,e”" and x, = a,&""

synchrotron period that s the head, the amplitude of
the second particle changes as described in 2.3 :

@ o, = k (cogy + i siny) [2wg

This means, that depending on the chromaticity on can

ik T, . make one or the other mode unstable (imaginary
Aa, = - 2—a1 5 l.e. frequency shift). Experience shows that it is better to
@ g damp the dipole mode with the chromaticity, the

guadrupole mode (particles having opposite phase) being
much stronger landau-damped.

During the next half synchrotron period we have : 4 LASSLETT TUNE SHIFT

ik T
Aa, = - —a, —ie Particles travelling in a dense bunch experience a
20 I 2 defocusing force from the charges in the bunch. This
defocusing force is strongest in the centre of the bunch
da1 ik going to zero for large amplitude particles resulting in a
E = —gag tune spread. The tune shift for the central particles is
B given by :

Differentiating the second equation and replacing the

first in the second we find: ~Nrpl5L 1 pXx

dQy dQy=0.03241
3 .
dt?> 20, %=
And the same for ,a This just means that both ~NrplbL 1 px
amplitudes are oscillating with a frequeney = k/2a,. dQx= T dQx=0.02569

The equation of motion for the two particles is then : 5-05-73 41 ox%(cy+0X)
The numeric values correspond to the typical LHC

Xlz _ qué({oﬁ *eip
bunch at 26 GeV.

So the first result of this head tail interaction is that there

are two d|ff<_arent frequenues,_one Sh'fteq up ?_md thl% Fig 4 is the summary given of the different tune shifts
other one shifted down, proportional to the intensity. It 1% volved for an LHC bunch (1 1 at 26 GeV
easy to see that one mode corresponds to the two ’

particles moving in phase and the other one
coresponding to the particles moving with opposite
phase.

In the case of finite chromaticity one has to take into

account a phase shift between the particle that moves
from head to tail and visa versa. The amplitude change
per half synchrotron period is than :

S

2

ik
2a)/j

Aa, = — e' a,

With v proportional to the chromaticity.
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Fig 4 : Tune footprint of an LHC bunch at 26 GeV. The
square is the coherent tune i.e. the tune as measured.
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