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Abstract

The beam which the SPS has to be provided for the LHC,
combines the inconveniences of a high single bunch
intensity  together with a high total intensity of closely
spaced bunches. Single bunches with the intensity
required for the LHC were already accelerated the SPS
during the collider period and experience could be gained
concerning space charge effects and head tail
instabilities. The close spacing of the bunches will
inevitably lead to multi-bunch instabilities. For this kind
of instabilities the details of  the transverse impedance
(existence of narrow band oscillators) can become
important.

1 WAKE FIELDS
The bunches in an accelerator induce currents and

changing charge distributions in the vacuum chamber
surrounding them, resulting in an electromagnetic field
inside the vacuum chamber, called “wake field”. In
symmetrical vacuum chambers (circular, elliptic,
rectangular,..) the transverse component of the wake
field is zero when the bunch is in the centre. For small
deviations from the centre, the transverse component of
the wake-field is proportional to the transverse co-
ordinate of the beam (1). This fields decay normally
rather quickly after the bunch passage. The transverse
wake field from a smooth vacuum pipe (resistive wall)
decays as 1/D5/2, D being the distance behind the bunch.
The field from cavity like structures behaves typically
like a damped sine wave. This damping time can vary
from the order of 1nsec (broadband resonator) up to
some Pseconds (High Q resonators such as RF cavities).

2  COUPLED BUNCH MODES

2.1  System of coupled oscillators

The transverse motion of n coupled bunches can
generally be described by n oscillators with betatron
frequency (ZE), and coupled to each other by the linear
coupling coefficients k

ij
, representing the normalised

force from the wakefield created by particle j on particle
i :

Where X is the transverse co-ordinate of the different
bunches. The theory of coupled linear differential
equations says that the motion of each bunch can be
described as the sum of n oscillators,

 
each having a frequency wk such that wk

2 are eigenvalues
of the following matrix :

At each eigenfrequency wi , the motion of the different
particles is correlated. This correlation is given by the
coefficients cij which describe the amplitude and phase
relationship between the different bunches ( j ) for each
oscillator exp(iwit). They correspond to the eigenvectors
of each wi . This correlated motions at each of the n
eigenfrequencies are called “modes”.
In order to find the eigenfrequencies w on has to put the
following determinant to 0 :

The second determinant is obtained by making the
approximation that the resulting frequencies are not too
different from ZE so that :
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ZE
2-w2 = ( ZE -w)(ZZE +w) ~ 2'w.ZE

This determinant is an equation of nth degree in 'w
giving n roots. One has to bear in mind that these roots
can be complex so that they have a non-zero imaginary
part. The imaginary part of this frequency result in
exponential growth or decay when putting them in the
general solution :

2.2  A simple example

As already mentioned, one of the general features of
wake fields is that they decay in function of the distance
behind the bunch. The wake field seen by the first
following bunch is normally much stronger than the
wake field seen by the second following bunch. If we
ignore the effect on the second bunch and only keep the
coupling between subsequent bunches the equation to
find the eigenfrequencies is very simple :

 Depending whether n is odd or even .  The complete
set of solutions in the complex plane can be found by :

Giving n equidistant points on a circle with radius k in
the complex plane (fig 1)
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Fig 1: frequency shifts due to coupling between bunches.
The imaginary parts give the growth-rate constants.

2.3 Another extreme case

Let us now consider a train of bunches, each coupled to
next but with no closure at the end, i.e. there is a big gap
between the last and the first bunch. The characteristic
determinant then looks like this :

This gives as solution n equal roots '=0 . However, the
theory of differential equation says that there have to be
n independent solutions. In this case it can be shown that
the different solutions look like :

Each bunch acts on the next one as simple resonant
external force. One can see that the amplitude of the
second bunch is growing linear with time, the amplitude
of the third is growing quadratic etc.  This phenomenon
is equivalent to the beam break up on can observe in
LINAC’s.
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2.4 Closer to reality

We now consider a wake field that extends over a
longer range. In the example the field is going down
quadraticaly with the distance between the bunches. And
we consider also a weak coupling through a gap form the
last bunch to the first (H). The result (fig 2) does not
differ much from the one calculated in fig 1.

Fig 2 : Eigenfrequencies for a system with longer
range  and weak closure (i.e. a gap).

It is interesting to see that the results still lie on a
circle which means that the maximum growth rates are
comparable to the frequency shift. The radius of the
circle is proportional to k.H1/n .  It is interesting to look at
the eigenvectors which give the amplitude of the
oscillation of each bunch  (fig 3).

Fig 3 : eigenvector for a series of coupled bunches
with a big gap between last and first.

As one can see the amplitude is increasing towards the
end of the batch. This result shows the same features as

the simple example in 2.3. This behaviour could be
observed for 2Psec long batches in the SPS.

2.5 The real world

The matrix to calculate the tune shifts in a real
machine is given by :

  N is the total number protons, n the number of filled
bunches, n0 the number of empty bunches , T is the
revolution period and Z the transverse impedance. The
factor :

comes from the fact that the field seen by subsequent
bunches at time t is proportional to the betatron
amplitude of the previous bunches at t -T/(n0+n). This
phase shift term makes that the circle in the complex
plane is turned so that other modes can become unstable
depending on the tune.  The result for a single bunch
intensity of 1011 and 80 bunches gives  growth rates of
.012 (turns).

3 HEAD TAIL INSTABILITY

In order to understand the instabilities of a single
bunch one can imagine the bunch as being composed of
smaller bunches, following each other very closely, so
coupled together very strongly, and with a negligible
coupling to the next bunch (series of micro bunches).
The solution looks then like described in 2.3. i.e. the
oscillation amplitude of the particles towards the end of
bunch increases with an increasing power of time. In
linacs this phenomenon leads to so called beam break
up. In synchrotrons however, the leading and trailing
particles in the bunch exchange their position due to the
synchrotron motion and this has normally a stabilising
effect. In order to understand this we model the single by
only two particles (head and tail) represented by the
following two oscillators:
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x a ei t
1 1 

ZE  and x a ei t
2 2 

ZE  . During the half
synchrotron period that x1 is the head, the amplitude of
the second particle changes as described in 2.3 :

' a
i k

a
T s

2 12 2
 �

Z E

   i.e.

da

dt

ik
a2

12
 �

ZE

During the next half synchrotron period we have :

' a
i k

a
T s

1 22 2
 �

Z E

 i.e.

da

dt

ik
a1

22
 �

Z E

Differentiating the second equation and replacing the
first in the second we find:

d a

dt

k
a

2
1

2
2

12
0�  ( )

ZE

And the same for a2. This just means that both
amplitudes are oscillating with a frequency Zht = k/2Zb.
The equation of motion for the two particles is then :

x A ei tht

1 2 1 2, ,
( )

 

rZ ZE

So the first result of this head tail interaction is that there
are two different frequencies, one shifted up and the
other one shifted down, proportional to the intensity. It is
easy to see that one mode corresponds to the two
particles moving in phase and the other one
coresponding to the particles moving with opposite
phase.

In the case of finite chromaticity one has to take into
account a phase shift between the particle that moves
from head to tail and visa versa. The amplitude change
per half synchrotron period is than :

' a
i k

e a
Ti s

2 12 2
 �

Z E

\

With \ proportional to the chromaticity.

The tune shift Zht is then :

Z Zht = k (cos\ + i sin\) /�ZE

This means, that depending on the chromaticity on can
make one or the other mode unstable (imaginary
frequency shift). Experience shows that it is better to
damp the dipole mode with the chromaticity, the
quadrupole mode (particles having opposite phase) being
much stronger landau-damped.

4 LASSLETT TUNE SHIFT

Particles travelling in a dense bunch experience a
defocusing force from the charges in the bunch. This
defocusing force is strongest in the centre of the bunch
going to zero for large amplitude particles resulting in a
tune spread. The tune shift for the central particles is
given by :

dQy ..
...Nrp1.5L

..E Vs J
3

1
.4S

Ex
.Vy ( )Vy Vx

=dQy 0.03241

dQx ..
...Nrp1.5L

..E Vs J
3

1
.4S

Ex
.Vx( )Vy Vx =dQx 0.02569

The numeric values correspond to the typical LHC
bunch at 26 GeV.

In Fig 4 is the summary given of the different tune shifts
involved for an LHC bunch (1 1011) at 26 GeV.
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Fig 4 : Tune footprint of an LHC bunch at 26 GeV. The
square is the coherent tune i.e. the tune as measured.
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