
CERN-TH/99-232
hep–th/9908143

The Prepotential of
N = 2 SU(2)× SU(2) Supersymmetric Yang–Mills Theory

with Bifundamental Matter

Ulrike Feichtinger∗

Theory Division, CERN,
Geneva, Switzerland

Abstract

We study the non-perturbative, instanton-corrected effective action of the
N = 2 SU(2) × SU(2) supersymmetric Yang–Mills theory with a mass-
less hypermultiplet in the bifundamental representation. Starting from the
appropriate hyperelliptic curve, we determine the periods and the exact
holomorphic prepotential in a certain weak coupling expansion. We discuss
the dependence of the solution on the parameter q = Λ2

2

Λ1
2 and several other

interesting properties.
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1 Introduction

Many field theoretical results have been obtained by considering brane con-
figurations in string theory and M-theory. In particular M-theory five-branes
provide a very fruitful approach to N = 2 [1, 2] and N = 1 [3, 4, 5]
supersymmetric field theories. In this note we study the case of product
gauge group SU(2) × SU(2) with a hypermultiplet in the bifundamental
representation. Seiberg–Witten curves of theories with product gauge groups
have been obtained from the M-theory [2] and the geometric engineering
approach [6]. The precise relation between the moduli of the curve and the
moduli of the field theory has been described in [7].

Yet another account of supersymmetric field theories with product gauge
groups of the form G =

∏
i SU(Ni) has been obtained in the framework

of Calogero–Moser systems, using certain limits of SU(N) supersymmetric
Yang–Mills theory with matter in the adjoint representation [8]. In this
approach the dynamical scales of the different gauge group factors are all
equal to the scale of the underlying SU(N) group. One-instanton predictions
for the prepotential of N = 2 supersymmetric field theories with gauge group
SU(N1)× SU(N2) and massless matter in the bifundamental representation
have been made by using a perturbation expansion of the non-hyperelliptic
curve around its hyperelliptic approximation [9].

In the present paper we study the instanton expansion for the case of a mass-
less hypermultiplet in the bifundamental representation of SU(2) × SU(2).
Specifically we will compute the periods as solutions of the Picard–Fuchs
equations and obtain in this way the holomorphic prepotential F that governs
the low-energy effective action of the theory. The solution reproduces the
existing results in the appropriate limits and has interesting properties in
the general region of moduli space.

2 The Setup

By considering the appropriate brane configuration in M-theory [2] one finds
that the defining polynomial for the Seiberg–Witten curve of N = 2 super-
symmetric Yang–Mills theory with a gauge group of the form

∏n
i SU(ki) is
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given by

P (x, t) = tn+1 + pk1(x) tn + pk2(x) tn−1 + · · ·+ pkn(x) t + c = 0 . (2.1)

The pki
(x) are polynomials of order ki in x, and c is a constant that depends

on the dynamical scales Λi of the different gauge group factors. In this
expression the variables x and t correspond to the combinations x4 + ix5 and
e−(x6+ix10)/R in the notation of [2].

For the case of SU(2)× SU(2) with a massless hypermultiplet in the bifun-
damental representation, the explicit expressions for the polynomials pki

(x)
in (2.1) have been derived by using symmetries and classical limits [7]. The
curve for the massive case is given by

P (x, t) = Λ1
2t3 + t2

[
x2 − u +

Λ1
2

2

]
+ t

[
(x + m)2 − v +

Λ2
2

2

]
+ Λ2

2 = 0.

(2.2)
Here u and v are the moduli of the two gauge group factors, Λi are the
corresponding dynamical scales, and m is the bare mass of the hypermultiplet.
Note that the dimensionless parameter q = Λ2

2

Λ1
2 cannot be eliminated from

the curve by rescaling of the moduli, unless q = 1.

-

6

x

x6

Figure 1: The brane configuration that gives rise to a four-dimensional
field theory with gauge group SU(2) × SU(2) and a hypermultiplet in the
bifundamental representation. Vertical lines represent five-branes, horizontal
lines are four-branes.

Exchanging the two gauge group factors, i.e. u ↔ v, Λ1 ↔ Λ2, t ↔ 1
t
, and

x ↔ −(x + m), leaves the curve (2.2) invariant. Pulling the rightmost five-
brane to x6 = ∞ gives the brane configuration of a theory with gauge group
SU(2) and two fundamental flavours with masses m1 and m2. To make this
transformation manifest in the curve one has to perform the limit Λ2 → 0,
v → 1

4
(m1 −m2)

2 and m → 1
2
(m1 + m2). The theory with pure gauge group
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SU(2) can be obtained by moving the two four-branes of one gauge group
factor to x = ∞, so that the resulting configuration consists only of two four-
branes stretched between two five-branes. To obtain the curve of this theory
we have to take the limit v → ∞, m → ∞ while keeping Λ1

2(m2 − v) = Λ4
0

fixed.

In the case of gauge group SU(2)× SU(2) the polynomials p1(x) and p2(x)
are quadratic in x; we can therefore rewrite (2.2) in hyperelliptic form by
redefining1 x → i y√

2 t (1+t)
:

y2 = t (1 + t)
(
2 Λ1

2 t3 + t2 (Λ1
2 − 2 u) + t (Λ2

2 − 2 v) + 2 Λ2
2
)
. (2.3)

The discriminant ∆ of this curve consists of two factors, ∆ = ∆1 ∆2, with

∆1 = 4

(
u− v +

1

2
Λ1

2 − 1

2
Λ2

2

)2

, (2.4)

∆2 = 8 Λ1
6Λ2

2 + 359 Λ1
4Λ2

4 + 8 Λ1
2Λ2

6 − 48 Λ1
4Λ2

2 u + 148 Λ1
2Λ2

4 u +

96 Λ1
2 Λ2

2 u2 − 4 Λ2
4 u2 − 64 Λ2

2 u3 + 148 Λ1
4 Λ2

2 v − 48 Λ1
2 Λ2

4 v −
304 Λ1

2 Λ2
2 u v + 16 Λ2

2 u2 v − 4 Λ1
4 v2 + 96 Λ1

2 Λ2
2 v2 +

16 Λ1
2 u v2 − 16 u2 v2 − 64 Λ1

2 v3. (2.5)

As expected, ∆1 and ∆2 are symmetric under the exchange of the two gauge
group factors. In general the vanishing of discriminant factors describes
points in moduli space where extra massless states appear. Following the
analysis of [7], the vanishing of ∆1 determines the subspace of the moduli
space where the Coulomb branch meets the Higgs branch and the gauge group
SU(2)× SU(2) is broken to the diagonal SU(2). Therefore the extra massless
states that occur at this point are two components of the bifundamental
hypermultiplet. The vanishing of the second discriminant factor describes the
singular locus where other massless states appear, in particular monopoles.

The classical intersection point of the Coulomb branch and the Higgs branch
at u = v gets shifted by non-perturbative effects if the two scales do not
have equal values, i.e. if q 6= 1. This dependence is inferred by the terms Λi

2

2

in the curve (2.2) and could formally be avoided by choosing the defining
polynomial to be

P (x, t) = Λ1
2 t3 + t2

(
x2 − u + Λ1

2
)

+ t
(
x2 − v + Λ2

2
)

+ Λ2
2 = 0. (2.6)

1In the following we set the bare mass m of the hypermultiplet to zero.
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Then the two scales no longer explicitly appear in ∆1. In order to reduce (2.6)
to the curve for SU(2) with two flavours we then have to perform a shift in the

modulus u in addition to the above-stated transformation: u → ū = u+ 7 Λ1
2

8
.

This means that the origins of the two moduli spaces would simply be shifted
by 7Λ1

2

8
, though classically the moduli still coincide.

The polynomial (2.3) describes a Riemann surface § of genus 2. If we choose
a symplectic homology basis of §, i.e. αi and βi (i = 1, 2) with intersection
pairing αi∩βj = δij, αi∩αj = βi∩βj = 0, we can define the period integrals
in terms of a properly chosen meromorphic one-form λ:

ai =

∫
αi

λ, aDi =

∫
βi

λ. (2.7)

The periods are functions of the moduli u and v, ai(u, v) is identified with
the scalar component of the N = 1 chiral multiplet in the i-th gauge group
factor, aDi(u, v) is its dual. Once the periods ai and aDi are known, the
exact quantum-corrected prepotential F(ak) of the theory can be computed
by integrating the relations

aDi(ak) =
∂F(ak)

∂ai
. (2.8)

The second-order derivatives of F with respect to ai imply the integrability
condition

∂aDi(ak)

∂aj
=

∂aDj(ak)

∂ai
. (2.9)

The meromorphic one-form λ of the curve (2.2) is given by [1]

λ ∝ x dt

t
, (2.10)

or, after the redefinition x → i y√
2 t (1+t)

, by

λ ∝ y dt

t2 (1 + t)
, (2.11)

where the proportionality factor is determined by the requirements

∂λ

∂v
=

dt

y
and

∂λ

∂u
=

t dt

y
. (2.12)
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It is rather tedious to perform the integrals (2.7) explicitly. However, the
periods as functions of the moduli u and v satisfy a system of partial dif-
ferential equations, the so-called Picard–Fuchs equations. This method to
obtain the periods is relatively straightforward and will be the subject of the
next sections.

3 The Picard–Fuchs Equations

Starting with the hyperelliptic form (2.3) of the curve2 for SU(2) × SU(2),
we will derive the system of partial differential equations for the periods

∫
αi

λ

and
∫

βi
λ.

On a Riemann surface § of genus 2 there are two holomorphic differentials
and two meromorphic differentials with no residues (abelian differentials of
first and second kind) [10]. Therefore we can choose {dx

y
, x dx

y
, x2 dx

y
, x3 dx

y
}

as basis of meromorphic forms on §. When considering derivatives of the
meromorphic one-form λ with respect to the moduli, only four of them will
be linearly independent up to exact forms. The linear relations between these
derivatives define the Picard–Fuchs equations.

Derivatives of λ with respect to u and v involve terms of the form φ(x) dx
yn

with some polynomials φ(x). In order to express φ(x) dx
yn in terms of abelian

differentials of first and second kind, we need a method to reduce high powers
of x in the numerator and high powers of y in the denominator. For the latter
we use the fact that the discriminant of a polynomial p(x) of order n can
always be written in the form [11]

∆ = a(x) p(x) + b(x) p′(x), (3.1)

where a(x), resp. b(x), is a polynomial of order (n − 2), resp. (n − 1), in x.
With this formula it can easily be shown that the following relation holds up
to exact forms:

φ(x)

yn
=

1

∆

a(x) φ(x) + 2
n−2

d
dx

(b(x) φ(x))

yn−2
. (3.2)

2For convenience we replace t by x in the following.
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Following [11] we derive a formula to reduce high powers of x that is valid
up to addition of total derivatives:

xn

y
= − (2n− 7)

(2n− 3)

Λ2
2

Λ1
2

xn−4

y
− (n− 3)

(2n− 3)

(3 Λ2
2 − 2 v)

Λ1
2

xn−3

y
−

(2n− 5)

(2n− 3)

(Λ1
2 + Λ2

2 − 2 u− 2 v)

2Λ1
2

xn−2

y
−

(n− 2)

(2n− 3)

(3 Λ1
2 − 2 u)

Λ1
2

xn−1

y
. (3.3)

With these formulae we can re-express the meromorphic one-form (2.11) in
terms of abelian differentials of first and second kind

λ = (2 v − Λ2
2)

dx

y
+ (4 u + 2 v − 2Λ1

2 − Λ2
2)

x dx

y
+

4 (u− 2 Λ1
2)

x2 dx

y
− 6 Λ1

2 x3 dx

y
. (3.4)

When we consider derivatives of λ with respect to u and v up to second order,
we find that these derivatives satisfy two linear relations as only four out of
six are linearly independent. These two relations give rise to the following
Picard–Fuchs operators:

L1 = (5 Λ1
2 + 2 u) ∂2

u + 2
(
Λ1

2 − Λ2
2 − 2 u + 2 v

)
∂u∂v −

(5 Λ2
2 + 2 v) ∂2

v + ∂u − ∂v, (3.5)

L2 = (Λ1
4 + 14 Λ1

2 Λ2
2 − 4 u2 − 4 Λ1

2 v) ∂2
u −

(14 Λ1
2 Λ2

2 + Λ2
4 − 4 Λ2

2 u− 4 v2) ∂2
v −

2
(
15 Λ1

2 Λ2
2 − 2 Λ2

2 u− 2 Λ1
2 v − 4 u v

)
∂u∂v + 1. (3.6)

Note that the first (second) operator is antisymmetric (symmetric) under the
exchange of the two gauge group factors.

4 The Periods and the Prepotential

We are interested in the prepotential of SU(2) × SU(2) supersymmetric
Yang–Mills theory in the weak coupling regime, which is parametrized by
large values of the moduli u and v. As usual, if we have two variables that
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simultaneously become large, we have to specify an appropriate coordinate
patch in which the limit is well-defined. By inspection of the first discriminant
factor (2.4), we choose the variables to be

z1 =
Λ1

2

u
and z2 =

u− v + 1
2
(Λ1

2 − Λ2
2)

Λ1
2 . (4.1)

This choice is not symmetric under the exchange of the two gauge group
factors, but of course there exists the analogous patch in the moduli space
where the rôle of the two moduli is interchanged. Using Frobenius’ method,
we find two series solutions and two logarithmic solutions with indices

(−1
2
, 0

)
and

(
1
2
, 1

)
in the coordinate patch of the moduli space parametrized by (4.1):

w1(z1, z2) = z
− 1

2
1

∞∑
i,j=0

aij zi
1 zj

2, (4.2)

w2(z1, z2) = z
1
2
1 z2

∞∑
i,j=0

bij zi
1 zj

2, (4.3)

w3(z1, z2) = w1(z1, z2) ln (z1) + z
− 1

2
1

∞∑
i,j=0

cij zi
1 zj

2, (4.4)

w4(z1, z2) = w2(z1, z2) ln (z3
1z

2
2) + z

− 1
2

1

∞∑
i,j=0

dij zi
1 zj

2. (4.5)

The first few coefficients of these series expansions are listed in the appendix.

In order to get the periods we have to consider linear combinations of the
solutions that match the infrared asymptotic behaviour. To analyse these
leading terms one can either evaluate the lowest order of the integrals (2.7)
explicitly or one uses semi-classical relations of the gauge couplings and the
integrability condition (2.9).

The gauge couplings τij of the theory are related to the prepotential F by

τij =
∂2F(ak)

∂ai∂aj
=

∂aDi

∂aj
. (4.6)

The one-loop terms of the pure couplings τii consist of the logarithmic con-
tributions of the massless spectrum. In each gauge group factor there is a
gauge field in the adjoint representation; moreover there is a hypermultiplet
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in the bifundamental representation. Therefore the one-loop contributions of
the pure gauge couplings are given by

τ11 ∼ −4 ln (a1) + ln (a1
2 − a2

2),

τ22 ∼ −4 ln (a2) + ln (a1
2 − a2

2). (4.7)

In order to examine the asymptotic behaviour of the periods, we integrate
the gauge couplings τii in (4.7) to obtain aDi(ak) =

∫
τii(ak) dai, introduce

a new variable ε = a1 − a2, and expand around the point (a1, ε) = (∞, 0).
This procedure gives the leading terms of the periods aDi:

aD1 ∼ −2 a1 ln(a1)− ε ln(a1) + ε ln(ε) + . . . ,

aD2 ∼ −2 a1 ln(a1) + 3 ε ln(a1)− ε ln(ε) + . . . . (4.8)

To compare the solutions (4.4) and (4.5) with these expansions, we have to
replace the moduli u and v by the corresponding classical expressions u = a1

2

and v = a2
2. We apply the same procedure as above to a linear combination

of the logarithmic solutions A w3 + B w4 and find, in leading order:

−2 A a1 ln(a1) + (A− 8 B) ε ln(a1) + 4 B ε ln(ε) + . . . . (4.9)

Hence the periods aDi are reproduced by the following linear combinations
of the solutions

aD1

Λ1
= A1w1 + B1w2 + w3 +

1

4
w4,

aD2

Λ1
= A2w1 + B2w2 + w3 − 1

4
w4, (4.10)

where the coefficients A1, A2, B1, B2 are still undetermined. We also find that
the periods ai are given by

a1

Λ1
= w1 +

1

4
w2,

a2

Λ1

= w1 − 1

4
w2. (4.11)

It can easily be checked that in the limits of SU(2) Nf = 0, resp. Nf = 2,
stated in section 2, a1 reduces to the corresponding periods known in the
literature. By imposing the integrability condition (2.9), one finds that
A2 = A1 and B2 = −B1.
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The prepotential can be computed by integrating the equations (2.8). To this
end we have to know the magnetic periods aDi as functions of the electric
periods ak. By inverting the series expansions of ak in (4.11) we get the
variables zi and in consequence the magnetic periods as functions of ak:

aD1(a1, a2) = a1

(
1

2
A1 + 2 B1 + ln (2)

)
+

a2

(
1

2
A1 − 2 B1 − ln (2)

)
−

4 a1 ln (a1) + (a1 + a2) ln (a1 + a2) + (a1 − a2) ln (a1 − a2) +

1

2

Λ1
2

a1

(
a2

2

a1
2
− q

a1
2

a2
2

)
+

Λ1
4

32

[
2

1

a1
7

(
a1

4 − 12 a1
2a2

2 + 15 a2
4
)−

8 q
1

a1
3

+ q2 a1

a2
6

(
5 a1

2 − 3 a2
2
)]

+ . . . (4.12)

aD2(a1, a2) = a1

(
1

2
A1 − 2 B1 − ln (2)

)
+

a2

(
1

2
A1 + 2 B1 + ln (2)

)
−

4 a2 ln (a2) + (a1 + a2) ln (a1 + a2)− (a1 − a2) ln (a1 − a2)−
1

2

Λ1
2

a2

(
a2

2

a1
2
− q

a1
2

a2
2

)
−

Λ1
4

32

[
a2

a1
6

(
3 a1

2 − 5 a2
2
)

+ 8 q
1

a2
3
−

2 q2 1

a2
7

(
15 a1

4 − 12 a1
2a2

2 + a2
4
)]

+ . . . (4.13)

Notice that exchanging a1 and a2 transforms aD1 into aD2 and vice versa.
Integrating the expression (4.12), resp. (4.13), with respect to a1, resp. a2,
yields the prepotential

F = Fclass + F1−loop +
∞∑

n=1

Fn−inst , (4.14)
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with the following expressions for the first few terms:

Fclass = (a1
2 + a2

2)

(
1

2
+

1

4
A1 + B1 +

1

2
ln (2)

)
+

a1a2

(
1

2
A1 − 2 B1 − ln (2)

)
, (4.15)

F1−loop = −2 a1
2 ln (a1)− 2 a2

2 ln (a2) +

1

2
(a1 + a2)

2 ln (a1 + a2) +
1

2
(a1 − a2)

2 ln (a1 − a2) , (4.16)

F1−inst =
Λ1

2

4

(
a1

2 − a2
2
) (

1

a1
2
− q

1

a2
2

)
, (4.17)

F2−inst = − Λ1
4

4
q

1

a1
2
− Λ1

4

128

(
a1

2 − a2
2
) [

a2
2

a1
4

(
5

a1
2
− 1

a2
2

)
−

16 q
1

a1
2 a2

2
+ q2 a1

2

a2
4

(
1

a1
2
− 5

a2
2

)]
, (4.18)

F3−inst = − Λ1
6

384
(a1

2 − a2
2)

[
a2

4

a1
8

(
9

a1
2
− 5

a2
2

)
+ 3 q

1

a1
4

(
5

a1
2
− 1

a2
2

)
+

3 q2 1

a2
4

(
1

a1
2
− 5

a2
2

)
+ q3 a1

4

a2
8

(
5

a1
2
− 9

a2
2

)]
. (4.19)

As expected, all contributions to the prepotential are totally symmetric under
the exchange of the two gauge group factors. The constants A1 and B1 are
determined by the classical coupling constants. The one-loop contribution
F1−loop is in agreement with the corresponding term of the prepotential
reported in [8] and [9].

Up to an overall scaling factor of the two scales, F1−inst coincides with the
one-instanton term in the prepotential of [9]. If the bare mass m of the
hypermultiplet in the prepotential obtained in [8] is set to zero, the one-
instanton term coincides with F1−inst for q = 1, but the terms proportional
to q in F2−inst are not present. This is a priori no contradiction, since sending
the bare mass to zero is a singular limit.

The instanton terms cannot be written as simple sums of contributions
stemming from the two subgroups, but show a non-trivial mixing of a1 and
a2, as it is expected in the presence of a hypermultiplet in the bifundamental
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representation. In particular the n-th instanton term is not just a sum of
contributions proportional to Λi

2 n, but all possible combinations Λ1
2 i Λ2

2 j

with i + j = n appear in Fn−inst. Terms proportional to odd powers of the
scales are forbidden as they would violate the anomaly-free discrete symmetry
of the theory [12].

It is quite striking that nearly all terms in the instanton expansion of the
prepotential are proportional to (a1

2 − a2
2) and therefore vanish for a1 = ± a2.

In either of the two cases two components of the hypermultiplet become
massless and one expects to recover the point in moduli space where the
Coulomb branch meets the Higgs branch and the gauge group is broken to
the diagonal SU(2). Continuity of the prepotential at the intersection point
ensures that F collapses to the prepotential of pure SU(2). Indeed, if one sets
a1 = ± a2 = a in the prepotential (4.14), the non-vanishing terms reproduce
the prepotential of SU(2) theory with the dynamical scale Λ2 = 4 Λ1Λ2 to
all calculated orders.

In [7] a different argumentation, namely considerations of the brane configu-
ration and the curve, led to the insight that the same point in moduli space
is determined by the equation u + 1

2
Λ1

2 = v + 1
2
Λ2

2. At first sight it is quite
astounding that this condition is equivalent to a1

2 = a2
2, but it is clear that

these two relations describe the same physical scenario.
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Appendix Coefficients of the Solutions

In table 1 the non-vanishing coefficients of the series solutions (4.2) and (4.3)

are listed up to fourth order in the variables z1 = Λ1
2

u
and z2 =

u−v+ 1
2
(Λ1

2−Λ2
2)

Λ1
2 .

In table 2 the corresponding coefficients for the logarithmic solutions (4.4)
and (4.5) are listed.

i j aij bij

0 0 1 1

1 0 1
4

−3
4

(
1 + 2

3
q
)

2 0 − 1
32

(1 + 8q) 27
32

(
1 + 4

3
q + 4

9
q2

)
3 0 1

128
(1 + 24q) −135

128

(
1 + 2q + 4

3
q2 + 8

27
q3

)
4 0 − 5

2048
(1 + 48q + 96q2) 2835

2048

(
1 + 8

3
q + 8

3
q3 + 32

27
q3 + 16

81
q4

)
1 1 −1

4
1
4

2 1 − 1
16

(1− 2q) − 3
16

(1 + 4q)

3 1 21
128

(
1− 12

7
q − 4

7
q2

) − 45
128

(
1− 16

3
q − 4q2

)
2 2 − 1

16
1
8

Table 1: The non-vanishing coefficients of the series solutions.

i j cij dij

0 0 1 1

1 0 −1
4

9
4

(
1− 8

9
q
)

2 0 − 1
32

−25
32

(
1− 8

25
q − 8

25
q2

)
3 0 5

384

(
1 + 48

5
q
)

179
384

(
1 + 288

179
q − 360

179
q2 − 32

179
q3

)
4 0 − 31

6144

(
1 + 768

31
q + 816

31
q2

) −2095
6144

(
1 + 1584

419
q − 1008

419
q2 − 512

419
q3 − 48

419
q4

)
1 1 1

40
2
15

2 1 37
160

(
1 + 18

37
q
) −87

20

(
1 + 214

261
q
)

3 1 − 193
1280

(
1 + 564

193
q + 128

193
q2

)
141
20

(
1 + 117

94
q + 289

564
q2

)
2 2 − 29

160
23
15

Table 2: The non-vanishing coefficients of the logarithmic solutions.
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