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Abstract

We propose a new mechanism for the formation of conical singularities on
D-branes by means of recoil resulting from scattering of closed string states
propagating in the (large) transverse dimensions. By viewing the (spatial
part of the) four-dimensional world as a 3-brane with large transverse dimen-
sions the above mechanism can lead to supersymmetry obstruction at the TeV
scale. The vacuum remains supersymmetric while the mass spectrum picks up
a supersymmetry obstructing mass splitting. The state with “broken” super-
symmetry is not an equilibrium ground state, but is rather an excited state of
the D-brane which relaxes to the supersymmetric ground state asymptotically
in (cosmic) time.
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The issue of supersymmetry breaking remains unresolved; while supersymmetry pro-
vides a natural explanation for the vanishing of the cosmological constant (vacuum energy)
and offers a resolution of the hierarchy problem it is not a symmetry of the low-energy
world. Softly broken supersymmetry can still control the Higgs mass and resolve the hierar-
chy problem, but radiative corrections to Standard Model processes measured in precision
electroweak experiments at LEP coupled with direct Higgs and sparticle searches require
that the scale of supersymmetry breaking (i.e. the masses of the lightest sparticles) be no
more than a few TeV without necessitating unnatural fine tuning of the Standard Model
parameters [1]. Some years ago a novel scenario for generating massive sparticles while
maintaining the vanishing cosmological constant was proposed [2]. The scenario referred to
(2+1)-dimensional supergravity theories and, instead of breaking supersymmetry, involved
the obstruction of supersymmetry by massive states in the spectrum of supergravity living
in a spacetime with conical singularities. In fact, as pointed out in reference [2] based on
work in reference [3], any state in (2+1) dimensions which has non-zero energy produces
a geometry which is asymptotically conical. In such spacetimes there are no covariantly
constant spinors; given that in supersymmetry the unbroken supercharges are spinor fields
which are covariantly constant at infinity, this suggests that there are no unbroken super-
symmetries in (2+1)-dimensional supergravity theories. The Bose–Fermi degeneracy in the
massive spectrum is lifted in proportion to the deficit angle δ of the conical geometry,

δ = 2πG3δm (1)

where m is the mass splitting, and G3 is Newton’s constant in three dimensions [3]. How-
ever, the vacuum energy (cosmological constant) remains zero, given that the vacuum state
remains supersymmetric.

An explicit realization of the above phenomenon in the context of a specific supergrav-
ity model in three spacetime dimensions has been provided in reference [4], while conical
singularities and supersymmetry obstruction in the context of N = 1 supergravity in four
spacetime dimensions have been discussed in [5]. The presence of conical singularities on any
Einstein manifold X will in general lead to a complete breaking of supersymmetry, except
for special choices of the manifold X, in which case some supersymmetries may survive.
Their number depends on the number of covariantly constant spinors (or equivalently the
number of Killing spinors) on the manifold X. For certain geometries a classification of the
unbroken supersymmetries is complete [6].. In the present work we shall be interested in the
case where no supersymmetries are left unobstructed; in particular we shall be interested
in four-dimensional N =1 supergravity models, viewed as low-energy field theories of some
string (or D-brane) theories.

The point of this article is to describe what is in our opinion a novel way to generate
conical singularities on the four-dimensional world by adopting the modern view [7–9] that
the four-dimensional spacetime we observe is actually a D-3-brane living in a higher-(ten
or eleven)-dimensional universe. Only closed string states (gravitons) propagate in the
dimensions transverse to the brane while gauge and matter fields are described by open
string states ending on the brane. Consistent embeddings of this idea in detailed string
models have recently been discussed in references [8, 9].

Despite the fact that in such a picture the detailed dynamics of the bulk higher-
dimensional spacetime is not fully known, several non-trivial predictions for the (low-energy)
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physics on four-dimensional spacetime can emerge [7]. In this article we shall point out yet
another prediction, that of possible supersymmetry obstruction at the TeV scale.

We first note an important ingredient of closed-string scattering: that of the resulting
recoil of the D-brane [10–13]. This has been ignored in most discussions of the scattering
process, such as emission of closed string states into the bulk and/or absorption by the brane.
From a worldsheet viewpoint the recoil is described [10] by deformations of the pertinent
σ-model which obey a logarithmic conformal algebra [14]. Field theories described by such
algebras lie on the border between conformal field theories and general renormalizable two-
dimensional quantum field theories. The fact that recoil of a D-brane is described not by
an ordinary conformal field theory but by a logarithmic one is associated with the fact that
the recoil process describes a change of state in the σ-model background, and as such is a
non-equilibrium process. This is reflected [11, 13] in the logarithmic operator algebra itself.

It has been argued recently [15] that when properly taken into account the recoil may
lead to non-trivial phenomena on the brane such as stochastic fluctuations in the arrival
times of photons propagating on the brane. Given that such effects are considerably larger
in size than the string scale, it is evident that they are further enhanced in the picture of
reference [7] where the string scale in the bulk is of the order of a TeV. In reference [15] this
has been used to place bounds on consistent string models of large extra dimensions [9].

In the present article the recoil process will be discussed in conjunction with another
phenomenon that characterizes such theories, namely supersymmetry obstruction on the
brane. Our objective is to discuss the appearance and nature of the conical singularities
due to the recoil process, mentioned in references [10,15], and then to estimate the order of
magnitude of the induced supersymmetry obstruction [2].

As discussed in references [10, 11, 13] in the case of D-brane string solitons, their recoil
after interaction with a closed string (graviton) state is characterized in a worldsheet context
by a σ-model deformed by pairs of logarithmic operators [14]:

CI
ε ∼ εΘε(X

I), DI
ε ∼ XIΘε(X

I), I ∈ {0, . . . , 3} (2)

defined on the boundary ∂Σ of the string worldsheet. Here XI obey Neumann bound-
ary conditions on the string worldsheet, and denote the brane coordinates. The remaining
yi, i ∈ {4, . . . , 9} denote the transverse directions. In the case of D-particles, examined in ref-
erences [10–13], I takes the value 0 only, in which case the operators (2) act as deformations
of the conformal field theory on the worldsheet: the operator

Ui

∫
∂Σ

∂nX iDε

describes the shift of the D-brane induced by the scattering, where Ui is its recoil velocity,
and

Yi

∫
∂Σ

∂nX iCε

describes quantum fluctuations in the initial position Yi of the D-particle. It has been
shown [13] that energy-momentum is conserved during the recoil process. We also note that
Ui = gsPi, where Pi is the momentum and gs is the string coupling, which is assumed here

3



to be weak enough to ensure that D-branes are very massive, with mass MD = 1/(`sgs),
where `s is the string length. From these one obtains Ui = `sgs(k

1
i + k2

i ), where k1 (k2) is
the momentum of the propagating closed string state before (after) the recoil [13].

In the case of D-p-branes, the pertinent deformations are slightly more complicated. As
discussed in reference [10], the deformations are given by∑

I

g1
iI

∫
∂Σ

∂nX iDI
ε and

∑
I

g2
Ii

∫
∂Σ

∂nX iCI
ε .

The 0i component of the “tensor” couplings gα
Ii, α ∈ {1, 2} include the collective momenta

and coordinates of the D-brane as in the D-particle case above, but now there are addi-
tional couplings gα

Ii, I 6= 0, describing the “folding” of the D-brane under the emission of a
closed string state propagating in a transverse direction, as shown schematically in Fig. 1.
Intuitively it is clear that this emission and the resulting recoil results in a wedge-shaped
“folded” conical space, like a surface tension effect on the higher-dimensional analogue of an
elastic membrane. In the following we will verify this for the D-particle case after correctly
Liouville-dressing the deformation operators.

D1

FIG. 1. Schematic representation of the recoil effect: the surface of the D-brane D1 is distorted
by the conical singularity that results from closed string emission into the bulk. The dashed line
on D1 represents the (disturbed) trajectory of a matter particle living on the brane.

The correct specification of the logarithmic pair in equation (2) entails a regulating
parameter ε→ 0+, which appears inside the ε-regularized Θε(t) operator:

Θε(X
I) =

∫
dω

2π

1

ω − iε
eiωXI

.

In order to realize the logarithmic algebra between the operators C and D, one takes [10]:

ε−2 ∼ ln[L/a] ≡ Λ, (3)

where L (a) are infrared (ultraviolet) worldsheet cutoffs. The recoil operators (2) are slightly
relevant, in the sense of the renormalization group for the worldsheet field theory, having
small conformal dimensions ∆ε = −ε2/2. Thus the σ-model perturbed by these operators is
not conformal for ε 6= 0, and the theory requires Liouville dressing [16, 17, 11, 12].
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To determine the effect of such dressing on the spacetime geometry, it is essential to
write [11] the boundary recoil deformations as bulk worldsheet deformations by partial
integration ∫

∂Σ

g1
iIX

IΘε(X
I)∂nX i =

∫
Σ

∂α

(
g1

iIX
IΘε(X

I)∂αX i
)

(4)

These operators can be made marginal on a curved worldsheet by Liouville-dressing [17].
One Liouville-dresses the (bulk) integrand by multiplying it by a factor eαIiφ, where φ is the
Liouville field and αIi is the gravitational conformal dimension, which is related to the flat
worldsheet anomalous dimension −ε2/2 by

αIi = −Qb

2
+

√
Q2

b

4
+

ε2

2
(5)

where Qb is the central-charge deficit of the bulk worldsheet theory. In the recoil problem
at hand, as discussed inreference [12], Q2

b ∼ ε4/g2
s for weak folding deformations g1

Ii. This
yields αIi ∼ −ε to leading order in perturbation theory in ε, to which we restrict ourselves
here.

We next remark that, as the analysis of reference [11] indicates, the XI-dependent field
operators Θε(X

I) scale as follows with ε: Θε(X
I) ∼ e−εXI

Θ(XI), where Θ(XI) is the normal
(not ε-regularized) Heaviside step function without any field content, evaluated in the limit
ε→ 0+. The bulk deformations, therefore, yield the following σ-model terms:

εg1
iIX

Ieε(φ(0)−XI
(0)

)Θ(XI
(0))

∫
Σ

∂αXI∂αX i (6)

where the subscripts (0) denote worldsheet zero modes. Upon the interpretation of the
Liouville zero mode φ(0) as target time t, the deformations (6) yield spacetime metric de-
formations in a σ-model sense, which were interpreted in reference [11] as expressing the
distortion of the spacetime surrounding the recoiling D-brane soliton.

We choose to work in a region of spacetime on the D-3-brane such that ε(φ−XI) is finite
in the limit ε→ 0+. The resulting spacetime distortion is therefore described by the metric
elements

G0i = εg1
iIX

IΘ(XI) +O(ε2). (7)

The presence of the Θ(XI) functions indicate that the induced spacetime is piecewise con-
tinuous 1.

To see how the Liouville dressing above leads to conical spacetimes, it is sufficient to
restrict attention to the D-particle case [12]. In that case, the resulting spacetime resembles
flat Minkowski spacetime to O(ε2) [12], upon making the following transformation for t > 0:

1The important implications for non-thermal particle production and decoherence for a spectator
low-energy field theory in such spacetimes were discussed in [12, 11], where only the D-particle
recoil case was considered.
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X̃ i = X i +
1

2
εU it2, t̃ = t. (8)

This implies that the spacetime induced by the recoiling D-brane resembles, for t � 0 and
to order O(ε2), a Rindler wedge space with (non-uniform [12]) ‘acceleration’ εU i. This space
is well known to produce a conical singularity when the (Euclidean) time is compactified
over an inverse ‘temperature’ interval, and has bulk deficit angle

δ0i ∼ 2π
(
1− 1/ε|U i|) . (9)

Such conical singularities lead to supersymmetry breaking in the bulk, not on the D-particle’s
world-line. An interesting realization of this D-particle case is that of a D-0-brane defect
embedded in a D-p-brane, i.e. dimensionally reduced intersecting D-branes. In the deficit
above the rôle of the ‘temperature’ is played by the ‘acceleration’ ε|U i| [18]. Indeed, the
conical spaces described here have a similar effect to non-zero temperatures which can be
computed using a thermal superspace formalism [19]: there are thermal mass splittings be-
tween superpartners, proportional to T (for particles massless at T = 0 like the graviton
and photon and their supersymmetric partners). Our discussion above refers, rather generi-
cally, to mass splittings on the D-p-brane (specifically a D-3-brane). However, for scattering
events like the one depicted in Figure 1, the formalism also implies similar “thermal” mass
splittings in the bulk. Let the compactification volume (in units of the (bulk) string scale
M−1

s ) of the extra n dimensions be denoted by Ω = (ΛMs)
n, where Λ is the radius of the

extra dimensions (assumed, for simplicity, to be of equal size). The scale Λ is related to the

Planck scale MP on the D-p-brane by [7]: MP = Ms/gs = (ΛMs)
n/2 . Then a (“thermal”)

mass splitting on the D-3-brane, δMD3, can be estimated by naive dimensional reduction
from the corresponding one in the bulk geometry, δMb ∼Msε|Ui|, as:

δMD3 ∼ δMbΩ = MP (1/gs) ε|Ui|.
Taking into account energy-momentum conservation during the recoil process [13] one has:
Ui = gs∆Pi/Ms, where ∆Pi is a typical momentum transfer in the bulk, along the direction
of recoil. In such a case,

δMD3 ∼ MP ε (∆Pi/Ms) .

As we shall discuss below, if the scattering occured at very early times, then a typical bulk
scattering energy would be of order Ms, which implies that the induced supersymmetry-
obstructing mass splittings on the D-3-brane would be of order εMP .

When the above formalism is extended to the full recoiling D-p-brane case the deforma-
tions arising from localized emissions (e.g. closed strings or heavy D-particles) into the bulk
induce a wedged or conical (for the deformation should be symmetric around the axis of
recoil) world-volume for the brane also; see Figure 1. This excited state of the brane is ex-
pected to lead to mass-splittings proportional to the properly renormalized recoil couplings
giI , being proper generalizations of the D-particle operators Y i and U i. In the following we
will show how careful interpretation of the Liouville-dressing, and proper identification of
the parameter ε as the physical time, lead to the possibility of supersymmetry obstruction
well below the natural scale MP .
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To this end, we recall that the worldsheet two-point correlation functions of the recoil
operators have the following form [10]:

〈Cε(z)Cε(0)〉 ε→0∼ 0 +O(ε2)

〈Cε(z)Dε(0)〉 ε→0∼ π

2

√
π

ε2Λ

(
1 + 2ε2 log |z/a|2)

〈Dε(z)Dε(0)〉 =
1

ε2
〈Cε(z)Dε(0)〉 ε→0∼ π

2

√
π

ε2Λ

(
1

ε2
+ 2 log |z/a|2

)
(10)

which in the limit ε→ 0+ gives the logarithmic algebra [14] modulo the leading divergence
in the 〈DεDε〉 recoil correlation function.

The identification (3) turns out to be very important for our purposes here. As discussed
in references [10, 20], under worldsheet scaling transformations parametrized by variations
of the cutoff

L 7−→ L′ = Let ⇒ ε2 7−→ ε′2 =
ε2

1 + 2ε2t
,

then as a result of the logarithmic algebra (10) the operators C and D transform as

Dε 7−→ Dε′ = Dε + tCε,

Cε 7−→ Cε′ = Cε

which implies a similar transformation for the couplings. In particular, the the g2
Ii bending

couplings are shifted as

g2
Ii 7−→ (g2

Ii)
′ = g2

Ii + g1
Iit,

while the g1
Ii couplings remain invariant. From this and the fact that g2,1

0i are interpreted
respectively as the collective coordinates and momenta of the recoiling D-brane, one observes
that the scale ε−2 may be interpreted as a Galilean time for the (heavy) defect system.

It is important to understand the connexion of this time with the physical time as mea-
sured by an observer on the brane. To answer this question we remark that the worldsheet
renormalization group scale ln |L/a|2 may be associated with the zero-mode of the Liouville
field [16, 17], which in turn is identified with the target time t on the brane, as justified in
detail in references [11, 13]. From this one immediately has the identification

ε−2 ←→ ηt,

where the time t is measured in string units ts = `s/c, where `s is the string length. The
constant of proportionality η can be determined as follows: the Liouville field used to dress
and hence restore conformal invariance [16, 17] in the non-conformal σ-model perturbed by
the recoil operators [11] has a kinetic term in the σ-model of the form:∫

Σ

d2z Q2(∂φ)2 (11)
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where Σ denotes a (closed string) worldsheet surface. The central charge deficit Q2 =
C[g]−C∗ is written in terms of the running central charge C[g] given by the Zamolodchikov
C-function which can in turn be defined by an appropriate combination of the two-point
worldsheet correlation functions of the stress tensor for the σ-model 〈TαβTγδ〉 (the indices
run over worldsheet coordinates). For closed string excitations the worldsheet is assumed
to be a sphere, with Euler characteristic χ=2. This implies that the worldsheet correlation
functions entering in the expression for the C-function will have a prefactor of 1/g2

s . For the
weakly coupled string theories in which we are interested, and for which the recoil formalism
of references [10, 13] applies, the detailed analysis of reference [13] demonstrated that the
identification of the Liouville mode φ with the target time t leads to a consistent interpre-
tation of the central charge deficit Q2 in the deformed σ-model. The recoil is described by
an effective Lagrangian in target space of Born–Infeld type as a result of the identification:

Q2 ∼ 1

g2
s

√
1− |g1

Ii|2 + . . .

to leading orders in worldsheet perturbation theory.
The set of bending couplings g1

Ii ≡ gIi, I ∈ {0, . . . , p}, i ∈ {p + 1, . . . , 9}, are relevant
couplings with a worldsheet renormalization-group β-function of the form

βg =
d

dt
gIi = − 1

2t
gIi, t ∼ ε−2 (12)

which implies that one may construct an exactly marginal set of couplings gIi by redefining

gIi ≡
gIi

ε
(13)

The renormalized couplings g0i in [13] play the rôle of the physical recoil velocity of the
D-brane, while the remaining gIi, I 6= 0, describe the bending of the D-p-brane, p 6= 0.

By following an analysis similar to that for the D-particle case in reference [13] it can
easily be shown that the renormalized bending couplings gIi are related to the sum of
momenta of the closed string states along the transverse directions k1,2

i as follows:

gIi ∼
gs

Ms
(k1

i + k2
i ), I ∈ {0, . . . , p}, i ∈ {p + 1, . . . , 9} (14)

where Ms ∼ `−1
s is the string scale (in units where ~=c=1).

In this way we find that gIi =O(1) for closed string excitations with Planckian energies of
order Ms/gs, in which case Q2 → 0. For any other low-energy state E �Ms/gs Q2 ∼ 1/g2

s .
We now notice that from a target spacetime point of view such a kinetic term contributes
to the G00 temporal component of the metric. In order to obtain a Robertson–Walker type
of target-space universe under the above identifications, it is crucial that we rescale the
Liouville mode φ to Qφ before identifying it with the (observable) cosmic time tphys. In this
way, from (3), one obtains

ε−2 = gstphys (15)

where tphys is the physical (cosmic) time in string units ts, pertaining to a Robertson–Walker
universe.
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The identification (15) implies that the recoil/bending deformation operators gIi

∫
∂Σ

D
can be expressed in terms of the marginal couplings gIi through (reinstating the string
timescale ts)

gIi → gs

Ms
(k1

i + k2
i )

(
ts

gstphys

)1/2

(16)

which in turn implies that the conical singularities on the D-brane due to these deformations
will have a deficit which will be decaying with time as t

−1/2
phys , as the system relaxes towards

its ground state. Therefore if we view the world as a D-brane living in a higher-dimensional
string (or M-theory) universe, then a scattering process whereby a closed string state prop-
agates in the transverse extra dimensions will excite the D-brane through recoil. This will
create a conical singularity at the time of the scattering event whose formation can be de-
scribed by deforming the worldsheet σ-model by recoil operators. It is crucial to identify
the worldsheet renormalization-group scale with the target time for the mathematical con-
sistency of the logarithmic algebra [11,13]. This identification naturally implies a relaxation
process for the recoiling brane.

During this relaxation process the presence of a conical singularity with a deficit implies
supersymmetry obstruction with mass splittings given by a formula analogous to (1), where
now G should be Newton’s constant on the D-brane. The latter is related to the four-
dimensional Planck mass scale M

(4)
P ∼Ms/gs ∼ 1019 GeV. Thus the induced supersymmetry-

obstructing mass splitting δm would be of the form:

δm ∼ gIiM
(4)
P ∼ M

(4)
P gs
|k1

i + k2
i |

Ms

(
ts

gstphys

)1/2

(17)

The result (17) has to be interpreted with care. First of all one should note that asymptot-
ically in time tphys → ∞ the splitting tends to zero, implying the restoration of supersym-
metry in the spectrum. This is natural from the point of view adopted here, i.e. that the
world we live on is a 3-brane in a recoiling excited state after scattering with a closed string
state. The low-energy supersymmetry obstruction today is a result of the relaxation of the
brane.

In this scenario, at early times tphys ∼ ts, the D-brane had a small size, of order of the
string length `s. Therefore the closed string states trapped on it should have uncertainties in
energies of order M

(4)
P , implying that at times tphys ∼ ts after the initial scattering event, the

recoiling D-brane would have experienced obstructed supersymmetry with mass splittings

δm(ts) ∼M
(4)
P (18)

This initial splitting diminishes as the time elapses according to

δm ∼M
(4)
P

(
ts

gstphys

)1/2

, (19)

One may arrange for the present day supersymmetry obstruction to be of order a few TeV
by selecting appropriately the “frequency” of the scattering events, i.e. the quantities tphys,
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gs and ts. For instance, for a scattering event occurring at early cosmological times, e.g.
at the time of last scattering tphys ∼ 1026/c, for “large” string sizes ts ' 10−27 s, as in the
scenario of reference [7], and small couplings gs ' 10−14, as required for a consistent string
theory embedding of such scenarios in type IIB closed string theories [9], one obtains from
(19) a supersymmetry obstruction scale today of order of a few TeV.

In the type I′ open string case [8] there exist D-3-branes as solutions in the model, with
the restriction that only gravitational closed string states can propagate in the bulk, exactly
as required by the picture of reference [7]. In this model the string coupling gs is given by
the Yang–Mills fine structure constant at the string scale,

gs = 4αG(Ms).

According to reference [15] this results in stochastic fluctuations in the arrival times of
photons with energy E and travelling a distance L of

∆t ∼ αG
LE

Ms

.

Astrophysical data on gamma ray bursters are sensitive [21] to ∆t ∼ LE/MQG with MQG ∼
1015 GeV, whence the type I′ model seems incompatible with a low (TeV) string scale [15],
and hence also with TeV scale supersymmetry obstruction by the mechanism described here.

In this article we have presented a mechanism by which supersymmetry can be obstructed
on our world at the TeV scale as a result of D-brane recoil within the large extra dimension
picture of reference [7]. Supersymmetry is obstructed by a Planck scale mass splitting on
the brane as a result of the formation of a conical singularity. As this excited state of the
brane relaxes back to the ground state the scale of supersymmetry obstruction is lowered. We
stress that this is a non-equilibrium process, and that the relaxation we have described differs
fundamentally from the “slow rolling” by which a false vacuum decays to a true vacuum. In
our case supersymmetry is obstructed [2] so that the vacuum remains supersymmetric, and
hence the cosmological constant on the brane vanishes, and it is only the matter spectrum
which does not respect supersymmetry as a result of the excited state of the brane.

As stressed above, this scenario for supersymmetry obstruction is based on the Liou-
ville (non-critical-string) approach to D-brane recoil, which involves the identification of the
target time with the Liouville mode. Moreover, for the scenario to yield viable phenomeno-
logical predictions, it is essential that the extra dimensions are relatively “large”, compared
with the Planck scale, and that the emission of closed string states from the brane into the
bulk is a very rare event. Such rare emissions, although compatible with the depletion of
closed string states due to inflation, are still far from being understood at a satisfactory
level of mathematical rigour in the context of the Liouville-string approach to D-brane re-
coil. This would require a detailed knowledge of the udnerlying non-perturbative D-brane
dynamics, which is still lacking. Nevertheless, we believe that the scenario for supersymme-
try obstruction presented here is of sufficient interest to motivate further detailed studies of
such issues.
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