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Abstract

We construct a new minimal extension of the Minimal Supersymmetric Standard Model
(MSSM) by promoting the µ-parameter to a singlet superfield. The resulting renormalizable
superpotential is enforced by a Z5 R-symmetry which is imposed on the non-renormalizable
operators as well. The proposed model provides a natural solution to the µ-problem and is
free from phenomenological and cosmological problems.

August 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25264674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Minimal Supersymmetric extension of the Standard Model (MSSM) [1], defined by
promoting each standard field to a superfield, doubling the higgs fields and imposing R-parity
conservation, seems to be preferred by the low energy data which support unification of the
gauge couplings in the supersymmetric case. The most viable scenario for the breaking of
supersymmetry at some low scale ms, no larger than ∼ 1 TeV, is the one based on sponta-
neously broken supergravity. The breaking of supergravity takes place in some hidden sector
and is communicated to the visible sector through gravitational interactions. The resulting
theory with broken supersymmetry contains, independently of the details of the underlying
high energy theory, a number of soft supersymmetry (susy) breaking terms proportional to
powers of the scale ms. Probably the most attractive feature of the MSSM is that it realizes a
version of “dimensional transmutation” where radiative corrections generate the electroweak
scale MW from the susy-breaking scale ms. Unfortunately, a realistic implementation of
radiative symmetry breaking [2] in MSSM requires the presence of a coupling µH1H2 in-
volving the higgs fields H1 and H2, the so called µ term, with values of the theoretically
arbitrary parameter µ close to ms ∼ MW . This nullifies all merits of radiative symmetry
breaking since it amounts to introducing the electroweak scale by hand. Of course, there
exist scenarios to account for the origin of the µ term, alas, all in extended settings [3].

A straightforward solution to the µ-problem would be to enlarge the field content of
MSSM by adding a massless gauge singlet field S that couples to the higgs fields as λSH1H2

and acquires a vacuum expectation value (vev) of the order of ms ∼ MW . Such a model
with a purely cubic renormalizable superpotential containing a self-coupling of S as well
became known as the “Next to Minimal” SSM or NMSSM [4]. At the renormalizable level
the model possesses a Z3 symmetry under which all superfields are multiplied by e2πi/3

whose spontaneous breaking leads to the formation of cosmologically catastrophic domain
walls unless the discrete symmetry is not respected by higher order (non-renormalizable)
operators. The existence of higher order operators 1 violating the Z3 symmetry, however,
was shown [5] to be intimately related to the generation of quadratically divergent tadpoles
for the singlet [6]. Their generic contribution to the effective potential, cut-off at the Planck
scale MP , is

δV ∼ ξMPm2
sS + h.c., (1)

where ξ is a factor depending on the loop order in which the tadpole is generated. Such
terms tend to destabilize the gauge hierarchy through a vev for the light singlet S much
larger than the electroweak scale.

Recently we have found [7] a simple resolution to the above problems of NMSSM by
imposing a Z2 R-symmetry on the non-renormalizable operators under which all superfields
as well as the superpotential flip sign. Thus, the potentially harmful to the gauge hierarchy
operators [8] are forbidden but a harmless tadpole

δV ∼ ξm3
sS + h.c. (2)

breaking the Z3 symmetry and making the walls disappear can still be generated.

1These non-renormalizable terms appear either as D-terms in the Kähler potential or as F -terms in the
superpotential. The natural setting for these interactions is N = 1 Supergravity spontaneously broken by a
set of hidden sector fields.
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Our purpose in the present note is to get rid of the cubic superpotential self-coupling of
the singlet S thereby constructing the simplest extension of the MSSM. To accomplish our
goal we should, of course, find substitutes for the twofold role played by the S3 coupling, as
this trilinear coupling contributes to the mechanism generating the vev of S through the soft
susy-breaking terms and explicitly breaks the unwanted Peccei-Quinn symmetry present in
its absence.

The renormalizable superpotential of the proposed model

Wren = λSH1H2 + Y (u)QU cH1 + Y (d)QDcH2 + Y (e)LEcH2 (3)

possesses the global symmetries

U(1)B : Q(
1

3
), U c(−1

3
), Dc(−1

3
), L(0), Ec(0), H1(0), H2(0), S(0);

U(1)L : Q(0), U c(0), Dc(0), L(1), Ec(−1), H1(0), H2(0), S(0);

U(1)PQ : Q(−1), U c(0), Dc(0), L(−1), Ec(0), H1(1), H2(1), S(−2);

U(1)R : Q(1), U c(1), Dc(1), L(1), Ec(1), H1(0), H2(0), S(2),

where the charge of the superfield under the corresponding symmetry is given in parenthesis.
U(1)B and U(1)L are the usual baryon and lepton number symmetries, U(1)PQ is an anoma-
lous Peccei-Quinn symmetry whereas U(1)R is a non-anomalous R-symmetry under which
the renormalizable superpotential Wren has charge 2. The soft trilinear susy-breaking terms
break the continuous R-symmetry U(1)R down to its maximal non-R Z2 subgroup which
is the usual matter-parity. The U(1)PQ, which remains unbroken by the soft susy-breaking
terms, could be broken by a linear effective potential term of the type given by Eq. (2) with
ξ ∼ 1 arising from non-divergent tadpoles. It is, however, quite difficult to achieve such an
unsuppressed value of ξ. Thus, we rather have to resort to divergent tadpole contributions
cut-off at MP which occur at very high order such that ξMP ∼ ms. Finally, U(1)B and U(1)L

remain unbroken by both the susy-breaking terms and the tadpole but might be violated
by some non-renormalizable operators hopefully of sufficiently high order. Consequently, it
is sufficient to find a symmetry which ensures the renormalizable superpotential of Eq. (3)
and allows the generation of an adequately suppressed tadpole. All unwanted symmetries
will then be broken and a vev < S >∼ ms will readily be generated by combining the soft
susy-breaking mass-squared term ∼ m2

sSS∗ with the above linear in S contribution to the
effective potential.

A continuous symmetry enforcing the form of Wren in Eq. (3) is the U(1) R-symmetry
obtained as the linear combination R′ = 3R + PQ of U(1)R and U(1)PQ :

U(1)R′ : Q(2), U c(3), Dc(3), L(2), Ec(3), H1(1), H2(1), S(4)

under which the superpotential W has charge 6. U(1)R′ is broken by the trilinear soft
susy-breaking terms down to its maximal non-R subgroup Z6 which is the product of a
Z2 and a Z3 subgroup. The Z2 is essentially the usual matter parity (up to a SU(2)L

element reversing the sign of all doublets) which leaves the tadpole invariant. Under the Z3
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(which is a subgroup of U(1)PQ) instead, S transforms non-trivially and the tadpole does
not remain invariant. Thus, we should avoid imposing the whole U(1)R′ symmetry or one of
its subgroups which contains the aforementioned Z3 if we want a tadpole to be generated.

A subgroup of U(1)R′ which is completely broken by the trilinear soft susy-breaking
terms and is sufficiently large to enforce Wren of Eq. (3) but sufficiently small to allow the
generation of a sizeable tadpole is the Z5 subgroup Zr

5 of U(1)R′ generated by

Zr
5 : (H1, H2)→ α(H1, H2), (Q, L)→ α2(Q, L), (U c, Dc, Ec)→ α3(U c, Dc, Ec),

S → α4S, W → αW
with α = e2πi/5. To examine the generation of the tadpole we bear in mind that the poten-
tially harmful non-renormalizable terms are either even superpotential terms or odd Kähler
potential ones. Moreover, a tadpole diagram is divergent if an odd number of such “dan-
gerous” non-renormalizable terms is combined with any number of renormalizable ones.
Respecting the above rules [8] and the Zr

5 R-symmetry we were able to show, not without
some effort, that divergent tadpoles first appear at six loops. One example of such a di-
vergent six-loop tadpole diagram is obtained by combining the non-renormalizable Kähler
potential terms λ1S

2H1H2/M
2
P + h.c. and λ2S(H1H2)

3/M5
P + h.c. with the renormalizable

superpotential term λSH1H2 (four times). The so generated linear effective potential term

δV ∼ (16π2)−6λ1λ2λ
4MP m2

sS + h.c.

is of the desired order of magnitude.

Notice that the Z5 R-symmetry Zr
5 , although it does not contain the usual matter parity,

still manages to adequately stabilize the proton since, in addition to all d = 4 baryon and
lepton number violating operators, it also forbids the dangerous QQQL and U cU cDcEc d = 5
ones.

It is very interesting that non-zero light neutrino masses are readily incorporated in the
model by simply introducing gauge singlet states νc transforming like Ec under all global
symmetries. The allowed large majorana mass terms for these states break U(1)L down to
its Z2 subgroup and generate small ordinary neutrino masses through the standard see-saw
mechanism.

In conclusion, we have shown that the µ term of MSSM can be generated by promoting
the parameter µ to a singlet superfield and imposing a Z5 R-symmetry. The resulting model
is a truly minimal extension of MSSM.

Acknowledgements

We acknowledge support by the TMR network “Beyond the Standard Model”. We also wish
to thank A. Pilaftsis for his valuable comments on the manuscript. C.P. wishes to thank S.
Abel for many useful discussions.

3



References

[1] H.-P. Nilles, Phys. Rep. 110 (1984) 1;
H. E. Haber and G. L. Kane, Phys. Rep. 117 (1985) 75;
A. B. Lahanas and D. V. Nanopoulos, Phys. Rep. 145 (1987) 1.
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