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Abstract

Above a critical matter density the propagating modes of the neutral kaon system are
essentially eigenstates of strangeness, but below it they are almost complete eigenstates
of CP. We estimate the real and imaginary parts of the energies of these modes and their
mixing at all densities up to nuclear matter density 2×1014 g/cm3. In a heavy ion collision
the strong interactions create eigenstates of strangeness, and these propagate adiabatically
until the density has fallen to the critical value, whereupon the system undergoes a sudden
transition to (near) eigenstates of CP. We estimate the critical density to be 20 g/cm3,
and that this density will be reached about 2× 105 fm/c after the end of the collision.
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Neutral kaon systems are extremely interesting for a variety of reasons [1]. When they
are created in a collision among hadrons or leptons they are essentially in eigenstates of
strangeness because the strong and electromagnetic interactions conserve flavor. When
they propagate freely in vacuum the weak interactions are operative and both C and P
are violated. The eigenstates of the full Hamiltonian are then almost completely flavor
mixed as short- and long-lived kaons:

|KS〉 =
[
(1 + ε)|K0〉 − (1− ε)|K̄0〉

]
/
√

2(1 + |ε|2

|KL〉 =
[
(1 + ε)|K0〉+ (1− ε)|K̄0〉

]
/
√

2(1 + |ε|2 . (1)

Here |ε| ≈ 2×10−3 is the measure of CP violation. When a beam of long-lived kaons is sent
through ordinary matter, short-lived kaons are generated due to the different interactions
between the components of the former, namely K0 and K̄0, and atomic nuclei. This
is called kaon regeneration. The goal of this paper is to study the collective modes of
propagation of the neutral kaons in dense matter, and to determine the fate of these
modes after they are created in a collision between large nuclei at high energy.

We will use a strong interaction basis with

|K0〉 = |ds̄〉 = |1〉 =

(
1
0

)

|K̄0〉 = |d̄s〉 = |2〉 =

(
0
1

)
. (2)

Because it is so small and plays no special role in our analysis we shall set ε = 0. Then
|KS〉 and |KL〉 are eigenstates of CP with eigenvalues +1 and −1, respectively.

First we do a relativistic analysis. Poles of the propagator determine the time evolu-
tion of small amplitude excitations. These are obtained from solutions to the equation

ω2 − k2 − Πvac(ω
2 − k2)− Πmat(ω, k) = 0 , (3)

where the vacuum and matter contributions to the self-energy are indicated. Generally
it is an excellent approximation to evaluate these 2× 2 matrices on the mass shell. This
means that Πvac is a constant and Πmat depends on the momentum k only. The usual
analysis gives

Πvac =

(
A B
B A

)2

(4)

where A and B are complex numbers. In terms of measurables they are [2]:

A = mK − i(ΓS + ΓL)/4

B = ∆m/2 + i∆Γ

mK = (mS +mL)/2 = 497.67 MeV
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∆m = 3.52× 10−12 MeV

∆Γ = ΓS − ΓL

ΓS = 7.38× 10−12 MeV

ΓL = 1.27× 10−14 MeV

∆m = (0.478± 0.003)∆Γ . (5)

The matter contribution is diagonal in flavor and is expressed as

Πmat =

(
F 0
0 F̄

)
. (6)

In matter with an excess of baryons over antibaryons the strange and antistrange compo-
nents, F and F̄ , are different. Of course, this is the origin of kaon regeneration in matter.
One reason they are different is because the valence antiquark d̄ in the K̄0 can annihilate
on a valence quark d in the proton or neutron, producing a hyperon. This is not possible
with a K0.

Diagonalization of the equation

(k2 + Π)

(
α
β

)
= ω2

(
α
β

)
(7)

yields the energy eigenvalues

ω2
± = k2 + A2 + B2 +

1

2
(F + F̄ )±

√
4A2B2 +

1

4
(F − F̄ )2 (8)

and eigenstates

β± =
(
−χ±

√
1 + χ2

)
α± (9)

where χ = (F − F̄ )/4AB. The states evolve in time as exp(−iω±t). In baryon-free
matter, even at finite temperature, there is no difference between F and F̄ (from the
point of view of the strong and electromagnetic interactions). Then, with the above
conventions, β± = ±α±, and the upper sign corresponds to KL and the lower sign to KS.
These are the familiar modes in vacuum except that the square of the mass is shifted by
F , which generally has both real and imaginary parts.

At nuclear matter density, 0.155 nucleons/fm3, the situation is very different. One
should expect that |F−F̄ | is only somewhat smaller than typical nuclear energies, implying
something on the order of (100 MeV)2. Since

2AB = mK(∆m+ i∆Γ/2) = (4.19× 10−5 MeV)2 + i(4.28× 10−5 MeV)2 (10)

this means that |χ| >> 1. In this case, the off-diagonal matrix elements in the self-energy,
due to the weak interactions, are totally ignorable, and the energy eigenstates are also
eigenstates of strangeness.
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Let us now estimate F − F̄ as a function of density. At low to moderate densities
the self-energy may be expressed in terms of the scattering amplitude for kaons scattering
on the constituents of the medium, here taken to be an equal mixture of protons and
neutrons [3].

F (ω, k) = −4π
∫

d3q

(2π)3
4nFD(q)

√
s

m2
N + q2

f(s)

= −4πρN

(
1 +

mK

mN

)
〈f〉 . (11)

In the first line, nFD(q) is the Fermi-Dirac distribution for a nucleon with momentum q,
the extra factor of 4 appears because of summation over spin and isospin of the nucleons,
f is the forward scattering amplitude in the center-of-momentum frame, and s is the
usual Mandelstam variable. The angular brackets in the second line denote the particular
momentum averaging, and ρN is the spatial density of nucleons. If the nucleons are
not distributed according to a Fermi-Dirac distribution then one ought to use the actual
momentum distribution; this will affect the numerical value of 〈f〉 to some extent. Formula
(11) is simply a version of the low density virial expansion familiar in statistical physics. Its
applicability has been discussed in [3]. Essentially it requires that the average separation
of nucleons be larger than both the real part of the forward scattering amplitude and the
inverse of the average relative momentum between a nucleon and a kaon. One may think
of this formula quantum mechanically as representing indices of refraction (real part) and
attentuation (imaginary part). Indeed, it is only a variation of the usual formulae used
in kaon regeneration sudies.

There is an identical expression for antikaons with F̄ replacing F and f̄ replacing
f . The difference f̄ − f has been estimated, or may be inferred, from several sources.
For example, Eberhard and Uchiyama [4] calculated the real and imaginary parts of the
forward scattering amplitudes for neutral kaons incident on proton and nuclear targets.
These calculations were based on measured total cross sections forK+ and K− on protons
and neutrons, on published values of K-nucleon elastic scattering, and charge symmetry.
From their figures 2 and 3 we estimate that

〈f̄ − f〉 ≈ 0.3(1 + i) fm .

Here the averaging is for kaon momenta ranging from 0.3 to 1 GeV, relevant for the
conditions in hot and dense nuclear matter created in a heavy ion collision. Shuryak
and Thorsson [5] have calculated the scattering amplitudes for charged kaons incident on
nucleons based on partial wave analyses of data. From their figures 1 and 2 we estimate
that

Re 〈f̄ − f〉 ≈ 1.5 fm .

Here the averaging is for
√
s ranging between 1.5 to 1.8 GeV corresponding to the range

of kaon momenta quoted above. (Unfortunately they have only displayed the real parts
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explicitly.) We do not know the reason for this discrepancy. Fortunately the precise num-
bers are totally irrelevant for the mixing of the neutral kaons in dense matter, since even
the smallest estimate of the strong interaction induced self-energy overwhelms that due
to the weak interactions. For example, using the estimate from Eberhard and Uchiyama,
we obtain

F − F̄ ≈ (150 MeV)2(1 + i)

(
ρN

0.1/fm3

)
, (12)

which ought to be compared to eq. (10). The fact that the real part of F − F̄ is
positive implies that the nonrelativistic one-body potential, U = F/2mK , is relatively
more repulsive for kaons than for antikaons. This is quite natural for the reasons stated
earlier. The fact that the imaginary part is positive is also to be expected because the
imaginary part of the scattering amplitude and cross section are related by the optical
theorem, σ = (4π/kcm)Im f , and antikaons have a much bigger inelastic cross section with
nucleons than kaons.

An alternative approach to the kaon self-energy at moderate to high density is to use
an effective Lagrangian incorporating the relevant degrees of freedom and symmetries [6].
One finds that [7]

F (ω, k) = −ΣKN

f 2
π

ρS +
3

4

ρN

f 2
π

ω

F̄ (ω, k) = −ΣKN

f 2
π

ρS − 3

4

ρN

f 2
π

ω . (13)

Here ΣKN is the kaon-nucleon sigma term, estimated to be of order 350 MeV. One dis-
tinquishes the scalar nucleon density, ρS = 〈N̄N〉, from the conserved vector density,
ρN = 〈N̄γ0N〉, although they only begin to differ significantly above twice nuclear den-
sity. The difference in sign in the above equations results from the fact that the scalar
density treats particles and antiparticles the same whereas the vector density distinguishes
particles from antiparticles. Thus

Re (F − F̄ ) =
3

2

ρN

f 2
π

ω = (260 MeV)2
(
ω

mK

)(
ρN

0.1/fm3

)
(14)

which lies between the estimates from Eberhard-Uchiyama and Shuryak-Thorsson. So
far, to our knowledge, no one has calculated the imaginary part in this approach.

What happens to the neutral kaons after production in a heavy ion collision? Based
on the above analysis of F − F̄ we see that the dimensionless ratio χ is proportional to
the nucleon density and has a very small imaginary part relative to the positive real part.
Using the results of Eberhard-Uchiyama we get

χ = 6.3× 1012

(
ρN

0.1/fm3

)
. (15)
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From eq. (9) one finds that |α+| � |β+| and |β−| � |α−|. Hence the eigenstates are
|+〉 = |1〉 and |−〉 = |2〉 with corrections of order 1/χ. As the matter expands the density
decreases until χ becomes very small. Then the eigenstates are the vacuum ones, |KL〉
and |KS〉. If this evolution is adiabatic it would have extremely interesting consequences.
A K0 produced in the collision would evolve into a KL (rather than into an equal mixture
of KL and KS), and a K̄0 would evolve into a KS. Based on valence quark counting [8]
one expects that

(
KL

KS

)
observed

=

(
K0

K̄0

)
in matter

=

(
K+

K−

)(
π−

π+

)
. (16)

That is, the observed ratio of KL to KS should be equal to the ratio of K0 to K̄0 produced
in dense matter, which then is equal to the ratio of charged kaons times the ratio of charged
pions. The latter product of ratios should not change during the very late dilute expansion
phase of a heavy ion collision. It has been measured [9] in central Au-Au collisions at the
AGS at Brookhaven National Laboratory (Ebeam = 11 GeV/nucleon) with the value 6.
It has also been measured [10] in central Pb-Pb collisions at the SPS at CERN (Ebeam =
160 GeV/nucleon) with the value 2. Hence, contrary to all other high energy accelerator
experiments, the ratio of long-lived to short-lived kaons would be far from one! But does
the neutral kaon system evolve adiabatically?

To answer this question, consider what happens in the kaon’s own frame of reference.
As time goes on, the surrounding density of matter decreases as 1/t3. This naturally
follows from dimensional analysis, and it also emerges from a calculation of the free
expansion of an ideal relativistic gas [11]. A good estimate of the local nucleon density is
ρN (t) = ρ0(t0/t)

3. For numerical estimates we shall use ρ0 = 0.1 nucleons/fm3 and t0 = 10
fm/c, which are characteristic of central collisions between nuclei of atomic number near
200 at the AGS and the SPS [12]. Furthermore, the average relative speed in an encounter
between a kaon and a nucleon will decrease with time. The reason is that the fireball has
an initial radius of R ≈ 10 fm or so. After an elapsed time ∆t = t − t0 nucleons with
a relative speed greater than R/∆t are unlikely to ever encounter the kaon. If we are
interested in what happens at late times in the expansion, when the strong and weak
interactions affecting the neutral kaon system become comparable, the relevant averaged
scattering amplitudes are not those discussed above. Rather, one can use only the s-wave
scattering lengths. A compilation of data yields [13]

f̄0 − f0 = 0.1 + 0.6i fm , (17)

with an uncertainty of about 0.1 fm in both the real and imaginary parts. This all leads
to the difference of one-body potentials being

U(t)− Ū(t) = (7.5 + 45i)

(
10 fm/c

t

)3

MeV . (18)

6



The problem can be reduced to a two-level Schrödinger equation with a time-dependent
complex potential. Taking out the kaon mass leads to

i
∂

∂t
ψ(t) = H(t)ψ(t) =

( − i
4
(ΓS + ΓL) + U(t) 1

2
∆m+ i

4
∆Γ

1
2
∆m+ i

4
∆Γ − i

4
(ΓS + ΓL) + Ū(t)

)
ψ(t) . (19)

The instantaneous energy eigenvalues are

E± =
1

2
(U + Ū)− i

4
(ΓS + ΓL)±

√(
1

2
∆m+

i

4
∆Γ

)2

+
1

4
(U − Ū)2 . (20)

The instantaneous eigenstates are given by eq. (9). The exact solutions can be expanded
in terms of these, with time-dependent coefficients a±(t), as

ψ(t) = a+(t)|+, t〉+ a−(t)|−, t〉 (21)

where

|±, t〉 =

(
α±(t)
β±(t)

)
exp

{
−i
∫ t

0
E±(t′)dt′

}
. (22)

There exists a critical density ρc defined by the condition that |χ| = 1. With the above
input its numerical value is ρc = 1.1×10−14 nucleons/fm3 or about 19 g/cm3. For densities
much greater than ρc the strong interactions dominate and the eigenstates of the system
are eigenstates of strangeness. For densities much less than ρc the weak interactions
dominate and the eigenstates of the system are eigenstates of CP. The critical region may
be conservatively defined as 8 > |χ| > 1/8 or 8 > ρN/ρc > 1/8.

The picture that emerges is as follows. For t < 105 fm/c the matter expands freely,
with frequent (on the time scale of 1/∆m and 1/∆Γ) interactions of the kaons with the
nucleons maintaining the kaons in eigenstates of strangeness, namely, K0 and K̄0. For
105 < t < 4 × 105 fm/c the system is in a transition region where |χ| ≈ 1, meaning
that interactions with the nucleons are comparable in strength with the internal weak
interactions of the kaons. In this region there is nothing to prevent transitions between
the states. For t > 4×105 fm/c the matter is so dilute that the internal weak interactions
of the kaons dominate and they propagate essentially as in vacuum, namely, as KL and
KS. Thus the states of the neutral kaon system evolve adiabatically at both high and
low density. The time to pass through the transition region, about 3 × 105 fm/c, is so
short compared to the natural oscillation time of the neutral kaons, 1/∆m = 5.6 × 1013

fm/c, that this transition may be treated with the sudden approximation. It is at the time
t ≈ 2×105 fm/c and the density ρc ≈ 20 g/cm3 that the strangeness eigenstatesK0 and K̄0

decompose into the eigenstates KL and KS of CP. This may be shown mathematically
from the equations of motion of a±.1 As a consequence of this sudden transition the

1However, the analysis is more complicated than that given in textbook discussions of time-dependent
perturbation theory and the adiabatic and sudden approximations because the Hamiltonian is not Her-
mitian, and the instantaneous eigenstates are not orthogonal in the transition region.
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observed ratio of long-lived to short-lived kaons should be 1. Finally we should remark
that the probability for a kaon to decay before the transition region is reached is negligible
because the lifetime of even KS is much greater than the time to reach the critical density.

The phenomenon described here does not happen in elementary particle collisions
such as e+e−, pp̄, and pp because the net baryon number is either zero or negligibly small.
It should be noted that the critical density of 20 g/cm3 is characteristic of heavy metals2,
perhaps opening the window on new types of experiments with neutral kaons.
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