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Abstract

Beam spectra observed during the development of a coupled bunch instability contain
information about the coupled bunch mode n, which describes the phase shift between
adjacent bunch oscillations. This number indicates the possible frequency of the guilty
impedance with accuracy up to an integer multiple of the bunch spacing frequency. How-
ever when there are many possible candidates with imprecisely known frequencies this can
be insufficient. In this paper we discuss what additional information about the frequency
of the source of instability can be obtained from the analysis of the unstable beam spectra
envelope. This is applied to the measurements in the CERN SPS.

Presented at the Workshop on Instabilities of High intensity Hadron Beams in Rings,
BNL, Upton, USA, 28.06 - 1.07 1999

Geneva, Switzerland

July 19, 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25263427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Longitudinal coupled bunch instabilities can present a serious limitation to the beam intensity in an
accelerator. In the CERN SPS in normal operation the result of these instabilities is a longitudinal
emittance blow-up of the proton beam by almost a factor 10 during the acceleration cycle, [1]. It is not
harmful for the present fixed target beam operation, total intensity4.7×1013, but may become a problem
for future roles of the SPS as LHC injector or as a high intensity machine for neutrino experiments.

There are several possible solutions to this problem. They are for example: increased passive damp-
ing of resonant impedances, increased Landau damping by applying a high harmonic RF system, active
damping using a specially designated feedback system and others. At the moment the most efficient is
to use the 4-th harmonic RF system in bunch shortening mode through the cycle. This can stabilize the
beam almost up to the top energy (450 GeV), [2]. Nevertheless in all cases identification of the source
of instability seems to be an important issue.

For the single bunch in the SPS it was possible to use measurements of the unstable spectrum to
determine the sources of microwave instability. For multi-bunch operation, the development of coupled
bunch instabilities after transition crossing towards higher energies, is associated with the growth of a
broad-band spectrum, see examples in Fig.1.

Figure 1: Beam spectrum from 0 to 2 GHz just after transition crossing (left) and at the end of fixed
target proton cycle in the CERN SPS (right) for beam intensity4.2 × 1013 (left) and1.6 × 1013 (right).
200 MHz vertical lines are stable beam spectrum.

The spectrum of the unstable bunched beam has components at frequencies

ω = (n+ lM)ω0 +mωs,

whereω0 = 2πf0 andωs = 2πfs are revolution and synchrotron frequencies, M is the number of
bunches in the ring,n = 0, 1...M − 1 is the coupled bunch mode number, describing the phase shift
2πn/M between adjacent bunches,m = 0, 1... is the multipole number (m = 1 - dipole, 2 - quadrupole
and so on) andl = 0,±1, ... Often measurement ofn alone is sufficient to guess which HOM in the
cavity drives this instability. However sometimes it is not obvious, as in the case of the SPS with its
5 different RF systems installed in the ring and many other cavity-like objects. Then any additional
information about the frequency of the guilty impedance would be appreciated. Below we show that
under certain conditions the envelope of the longitudinal coupled bunch mode spectrum contains this
information. This analysis is then applied to the SPS.
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2 Review of theory

2.1 Main equations

Let us consider an accelerator withM identical and equally spaced bunches. A general equation de-
scribing stability of the system in the presence of coupling impedanceZ(ω) can be obtained from the
equations of motion and linearised to give the first order perturbation Vlasov equation, see [3], [4]. This
equation can be written in the form:

jk =
∞∑

l′=−∞
Gkk′

Zk′

k′
jk′, (1)

wherek = n + lM , k′ = n + l′M , −∞ < l, l′ < ∞, Zk = Z(kω0 + Ω) andjk = j(kω0 + Ω) is the
Fourier transform of the beam current perturbation

j(θ, t) = eiΩt
∫ ∞

−∞
j(ω)e

−i ω
ω0
θ dω

ω0
.

The elements of matrixGkk′ are

Gkk′ = A
∞∑

m=−∞
mωs0

∫ ∞

0

dF
dr

Imk(r)I
∗
mk′(r)

Ω −mωs(r)
dr, (2)

where

A = −i JA
V0h cos (hθs)S

.

HereJA is the average beam current,V0 is the RF voltage amplitude,hθs is the synchronous phase,h is
the RF harmonic number,F(r) is the unperturbed distribution function and

Imk(r) =
1

2π

∫ π

−π
eikθ(r,ψ)−imψdψ. (3)

The normalisation factorS is defined as

S = ωs0

∫ ∞

0

F(r)rdr

ωs(r)
. (4)

To describe the system two sets of variables are used: (θ, θ̇), whereθ is the azimuthal coordinate in
the rotating coordinate system, and (r, ψ) - the amplitude and phase of the synchrotron oscillations. For
small oscillations with linear synchrotron frequencyωs0 and maximum oscillation amplitudermax '
ω0τ/2, we haver2 = θ̇2

ω2
s0

+ θ2. Hereτ is the bunch length in seconds.
Equation (1) can be used for instability threshold calculations in very general cases taking into

account the nonlinearity of synchrotron motion (long bunches), an arbitrary RF waveform (double RF
system) and so on, see for example [5]. Below we will restrict ourselves to linear synchrotron motion
in the single RF system. Then the integral defined in (3) isImk ' imJm(kr), whereJm(x) is the Bessel
function of orderm.

We will consider the excitation of a single multipolem for given frequencyΩ and will discuss this
assumption later.

Assuming thatΩ � ω0 we neglect the dependence onΩ in jk andZk.1 This allows us to simplify
eq.(1) to the following eigenvalue problem, [6]:

Ω −mωs0
mωs0

jk = A
∑
l′
gmkk′

Zk′

k′
jk′ , (5)

1We exclude the Robinson instability from consideration.
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where

gmkk′ =
∫ ∞

0

dF
dr
Jm(kr)Jm(k′r)dr. (6)

Eigenvalues of this equation give the frequency shifts of the coherent modes and the eigenfunctions -
their spectrum. Below we will concentrate on the properties of these eigenfunctions.

2.2 Analysis of beam spectra

Let us consider the narrow band impedance with bandwidth∆ωr � Mω0. The most simple case for
analysis is when the resonant frequency of the impedanceωr = 2πfr = prω0 is far away from an
integer or half integer multipole of the bunch spacing frequencyMω0. (More general case is considered
in Appendix.) Then in the sum in equation (5) we can keep only one term withl′ = lp, wherep =
n + lpM ' ±pr and (5) becomes

λjk = Agmkp
Zp
p
jp, (7)

wherek = n+ lM and−∞ < l <∞.
The coherent frequency shift is

λ =
Ω −mωs0
mωs0

= −i JA
V0h cos (hθs)S

gmpp
Zp
p
. (8)

For instability one needs resistance. SinceReZ is always positive andgmpp - negative,p is positive or
negative depending on whether we are above or below transition.

As follows from (7) the unstable spectrum for coherent mode(m,n) consists of lines at frequencies
ωk = 2πfk = (n+ lM)ω0 +mωs,−∞ < l <∞. Negative frequencies appear on the spectrum analyzer
as lower synchrotron sidebands at(l+ 1)Mω0 − nω0 −mωs, 0 < l <∞. The amplitudes of these lines
are defined by an eigenfunction which can be written as [6]

jp = 1, jk = gmkp/g
m
pp, (9)

wheregmkp is given by expression (6). For negative frequenciesj−k = (−1)mjk and for oddm lower
sidebands will have a phase shiftπ, which of course will not be seen on the spectrum analyzer.

In measurements with low frequency resolution similar spectra will be seen due to the resonant
impedance at frequencies(lM + n)ω0 and [(l + 1)M − n]ω0. However with high enough frequency
resolution, the position of the synchrotron sidebands around the revolution linesn andM − n gives
information about whichn is driven by the impedance: above transition internal sidebands indicate an
impedance situated at a higher frequency and external - at a lower, see also [7]. The opposite is true
below transition. However the valuelM is still unknown.

To proceed further let us consider the binomial family of distribution functions:

F(r) = F0(1 − r2

r2
max

)µ (10)

with µ ≥ 1. Then functiongmkp can be written as

gmkp = −2µF0

∫ 1

0
(1 − x2)µ−1xJm(ykx)Jm(yrx)dx, (11)

whereyk = krmax ' πfkτ andyr = prrmax ' πfrτ . In Fig.2 a few examples of beam spectrum
envelope are shown for different sets of parametersm, µ andfrτ .

From these examples it is not obvious to derive a connection between the shape of the unstable
beam spectrum envelope and the resonant frequency, although we notice that for some parameters the
maximum of the spectrum is close to the resonant frequency. If we now plot the position of the absolute
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Figure 2: Beam spectrum envelope for: top, left -m = 1, frτ = 1 andµ = 1.5 (solid line),µ = 2
(dash-dot) andµ = 2.5 (dash); top, right -m = 1, µ = 2 and andfrτ = 0.5 (solid),frτ = 1 (dash-dot)
andfrτ = 1.5 (dash); bottom, left -frτ = 1.5, µ = 2 andm = 1 (solid),m = 2 (dash-dot) andm = 3
(dash); bottom, right -m = 1, µ = 1 andfrτ = 1 (solid),frτ = 2 (dash-dot) andfrτ = 3 (dash).
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Figure 3: Position of the maximum in the beam spectrum envelope as a function offrτ for dipole mode
m = 1 and two different distribution functions withµ = 1 (left) andµ = 3 (right).

maximumfmaxτ as a function of the resonant frequencyfrτ (both normalised to bunch length) we get
dependencies as shown in Fig.3 for the dipole modem = 1 and the distribution function withµ = 1
(left) andµ = 3 (right). One can clearly see two different regimes: one, whenfmaxτ ' constand
another, whenfmax ' fr. The transition between them form = 1 occurs aroundfrτ ∼ 1. Theconst
is in fact a function ofµ andm. Similar behaviour for the maximum of the spectrum envelope can be
observed for higher multipolesm. Examples form = 2, 3 andµ = 1 are presented in Fig.4.

The existence of two different regimes can formally be understood from the behaviour of the Bessel
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Figure 4: Position of the maximum in the beam spectrum envelope as a function offrτ for µ = 1 and
modesm = 2 (left) andm = 3 (right).

functions for small and large arguments. Using the first term in the expansion ofJm(yrx) for yr < 1 we
see that

jk ∝
∫ 1

0
x(1 − x2)µ−1xmJm(ykx)dx (12)

and the position of the maximum does not depend onyr. Forµ = 1 the beam spectrum has amplitudes

jk ∝ Jm+1(yk)

yk
. (13)

The asymptotic behaviour of the Bessel functions for large argumentsx� 1

Jm(x) ' (
2

πx
)1/2 cos(x− mπ

2
− π

4
)

explains why starting from some value offrτ the spectrum peaks atfmax ∼ fr. Indeed, the function
under the integral in (11) is zero atx = 0 and the error using this asymptotic at smallx can be shown to
be of the orderln(yr)/(yr). Then foryr, yk > 1

jk ∼ 1

y
1/2
k

∫ 1

0
(1 − x2)µ−1 cos[(yk − yr)x]dx. (14)

Forµ = 1 this gives

jk ∼ sin(yk − yr)

y
1/2
k (yk − yr)

. (15)

These results have a clear physical meaning as well. If the wavelength of the wake field is longer
than the bunch length, the spectrum of the perturbation does not contain any information about it. For
higher frequencies or smaller wavelength the bunch length is already sufficiently long to “resolve” the
frequency of the perturbation. The most efficiently excited is the perturbation with a maximum of the
spectrum closest in frequency to the driving impedance.

From this analysis we can already conclude that for a fixed bunch length the resonant frequency of
the impedance driving the instability is either below or very close (and slightly above) the maximum
of the bunch spectrum envelope. However if one also takes into account values offrτ at which the
given modem is most efficiently excited then, as we will see below, for all modes, except dipole, the
maximum of the spectrum is close to the resonant frequency.
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To understand under which conditions a given spectrum will be excited, one should consider simul-
taneously the thresholds or growth rates for different modesm. 2 Growth rates (8) for the distribution
function (10) can be presented in the form:

ImΩ

ωs
=

4

π2

JAReZ

hV0 cos(hθs)

F ∗
m

f0τ
, F ∗

m =
mµ(µ+ 1)

frτ

∫ 1

0
x(1 − x2)µ−1J2

m(yrx)dx. (16)

In Fig.5 the dependence of the formfactorF ∗
m on frτ = yr/π for modesm = 1, 2, 3, 4 is shown for

distribution functions withµ = 1 (left) andµ = 2 (right).
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Figure 5: FormfactorF ∗
m from eq.(16) for modesm = 1, 2, 3, 4 as a function offrτ for distributions

with µ = 1 (left) andµ = 2 (right).

From Fig.5 one can notice that forµ = 1 modem = 1 is dominant up tofrτ ' 0.9, m = 2
from this value up to 1.4,m = 3 from 1.4 to 1.85 and so on... At low values offrτ higher modes are
strongly supressed in comparison with the dipole mode. Then we see that in Fig.4 in the first regime
(fmaxτ ' const) only the part of the curve which is close to the diagonal has sense.

Above we considered independent excitation of the different modes m. This assumption is valid for
bunches with small synchrotron frequency spread and resonant frequency which is not too high [5]. If
one of these conditions is not satisfied, then many multipoles can be excited simultaneously. Then it is
possible, [5], [8], to sum up terms with differentm in equation (1). This situation describes the so called
microwave instability with a spectrum having a maximum at the frequency of the resonant impedance.

2.3 Coupled bunch instabilities in the CERN SPS

Calculations show [9] that after transition crossing during the fixed target cycle in the SPS the threshold
for coupled bunch instabilities is continuously decreasing. It also has a frequency dependence so that
the lowest threshold is forfr ∼ 0.4/τ . As a result, different HOM can be successively excited during
the cycle due to a bunch length change.

One other example of the bunch spectrum during the development of a coupled bunch instability
towards the end of the cycle in the CERN SPS is shown in Fig.6. This beam had a total intensity 10
times lower than in the measurements presented in Fig.1 (left). As one can notice, at this intensity the
signals are much clearer.

From the measured value ofnf0 ∼113 MHz a few candidates were possible. These measurements
were done with at low intensity. At the end of the cycle the bunch length was (1.5 - 2) ns, significantly
shorter than in the measurements presented in Fig.1 (left) for the high intensity beam (2.5 - 3 ns).
However both spectra have a maximum around 700 MHz. In both cases parameterfmaxτ is more than
1. From this and also the fact that the maximum is the same, we expect the resonant frequency to be
close to the maximum of the spectrum. This can be a HOM in the travelling wave 200 MHz RF system
with resonant frequency 912 MHz.

2In this analysis bunch length is assumed constant.

6



Figure 6: Beam spectrum from 0 to 2 GHz (left) and from 0.8 GHz to 1 GHz (right) at the end of the
fixed target proton cycle in the CERN SPS for low beam intensity4 × 1012.

In Fig.1 (right) we presented the signal obtained with quite long bunches, during the development of
instability due to the fundamental frequency of the 352 MHz superconducting RF system, installed in
the SPS for lepton acceleration, when non-optimal passive damping was accidentally used. In this case
the spectrum had a maximum close to the resonant frequency.

3 Conclusions

As a conclusion we summarise which additional information about the resonant frequency of the guilty
impedance can be obtained from the measured beam spectrum:

• The measured bunch profile and the stable beam spectrum can give some idea about the distribution
function (µ)

• Measurements of the bunch lengthτ andfmax from the unstable bunch spectrum givefmaxτ
• Now there are two possibilities:
- parameterfmaxτ < 1; then one only can say thatfrτ ≤ 1.2
- parameterfmaxτ > 1, then the most probablefr ∼ fmax. The uncertainty can be estimated, for

example, from the vertical displacement of the curves from the diagonal and in the region with efficient
excitation (see Fig.5) does not exceed±0.2/τ . The smaller the bunch length - the larger the uncertainty.

Acknowledgements

I am grateful to T.Linnecar and T.Bohl for stimulating discussions and support.

Appendix

Now let us consider the possibility that the resonant frequency of the narrow-band impedance is close
to an integer or half integer multipole of the bunch spacing frequencyMω0. Then we should keep two
terms in the sum in equation (5) and it becomes

λjk = Agmkp1
Zp1
p1

jp1 + Agmkp2
Zp2
p2

jp2 , (17)

wherep1 = p = n + l1M ' ±pr andp2 = n + l2M . Herep1p2 < 0 and for values ofl2 we have 2
possibilities, depending on where the resonant impedance is situated:l2 = −l1 or l2 = −(l1 + 1).
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Taking for k valuesp1 and p2 we can find eigenvalues for this situation. For the narrow band
impedance assumed above∆ωr �Mω0 � 1/τ . In this case we can write

gmp1p1 ' gmp2p2 = gmp
gmp1p2 = gmp2p1 ' (−1)mgmp
gmkp1 ' (−1)mgmkp2.

Then for the growing mode, the eigenvalue is

λ ' Agmp

(
Zp1
p1

+
Zp2
p2

)
. (18)

There is no instability ifp1 = −p2, which can happen [4] when theωr is equal to an integer or half
integer (for evenM) multipole of the bunch spacing frequencyMω0.

For the beam spectrum we finally have an expression similar to (1):

jk = A

[
Zp1
p1

gmkp1 + (−1)m
Zp2
p2

gmkp2

]
/λ ' gmkp/g

m
p . (19)
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