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Abstract

Many of the CERN secondary-particle production targets are plate shaped, and
intercept a centred ‘slow’ extracted (order of ms) primary beam, which heats the
material. This heat distribution can be modelled as Gaussian profiles in both the
horizontal and vertical transverse planes. Modern techniques such as finite
element methods provide fast and reliable analyses of the transient thermal and
mechanical response of such a ‘slow’ process (no dynamic effects). However, it is
of interest to compare these results with those obtained by simplified analytical
calculations which, moreover, allow an easier optimisation of the various
geometrical and physical parameters.
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Transient quasi-static thermal stresses in a bar subject to
transverse 2D-Gaussian heating and to lateral cooling

S. Péraire

European Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland.

This paper is divided into three parts. The first part presents the analytical study of the transient thermal
field produced in a rectangular bar, by a transverse 2D-Gaussian heating generated from a time dependent
trapezoidal function. The bar is laterally cooled, and the two lateral heat transfer coefficients may be different.
The thermal diffusivity is assumed to be temperature dependent.

The second part is split into two steps of quasi-static stress analysis. In the first step, a generalised Airy
equation of compatibility is solved in the case of elastic plane strain with free uniform longitudinal expansion,
while the boundary conditions are left unsatisfied. The second step cancels the remaining spurious stresses at the
boundary. Young’s modulus and thermal expansion coefficient are assumed to be temperature dependent.

In the last part, numerical aspects are discussed, and results compared with finite element calculations.

Key words:  Transient, quasi-static, 2D-Gaussian, bar.

1 Introduction

Many of the CERN secondary-particle
production targets are plate shaped, and intercept a
centred ‘slow’ extracted (order of ms) primary beam,
which heats the material. This heat distribution can be
modelled as Gaussian profiles in both the horizontal
and vertical transverse planes. Modern techniques
such as finite element methods provide fast and
reliable analyses of the transient thermal and
mechanical response of such a ‘slow’ process (no
dynamic effects). However, it is of interest to compare
these results with those obtained by simplified
analytical calculations which, moreover, allow an
easier optimisation of the various geometrical and
physical parameters.

The main quantities, symbols and units used in
this study are listed in Table 1.

2 Transient thermal analysis

An infinite rectangular bar of 2lxu2ly transverse
dimensions (see Fig. 1) is subjected to the following
heating distribution, Ti  :

� � )F(  exp ) ,,(T 22
0i tybxbTtyx yx ������ . (1)

In the interval (0, 2t2), the dimensionless F(t)
function is defined by the speed and duration (2t2) of
the heat load of the bar (see § 2.2.1). The subsequent
transient thermal field T(x,y,t) should satisfy Fourier’s
equation :
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Figure 1: Temperature rise distribution in the ¼
transverse section of the rectangular bar.

Table 1: Main quantities, symbols and units.

Quantity Symbol Unit

Cartesian coordinate
Transverse ½ dimension

Gaussian factor
Biot’s number per unit length

Diffusivity
Temperature rise

T/T0

Time
mth root of Eq. (6)

see Eqs (7, 8)
Lin. thermal expansion coef.

Poisson’s ratio
Young’s modulus
Stress, pressure

x, y, z
lx, ly
bx, by

hx, hy

a
T, T0

T*

t,T
Dxm

Jxm

D

Q

E
V, W, p

mm
mm
mm-2

mm-1

mm2/s
°C
--
s

mm-1

--
10-6/°C

--
GPa
MPa

M
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The Biot’s number per unit length h is defined as
the ratio of convective heat transfer coefficient to
thermal conductivity of the material.

In order to solve this differential equation more
easily, a 1D instantaneous (t2=0) heat load is assumed
first; a 2D instantaneous heating is then considered
and, finally, the function F(t) is introduced, which
generates a progressive heating.

2.1 INSTANTANEOUS HEATING
2.1.1 1D-Gaussian For by, hy =0, the solution
of Fourier’s equation  is [1]:
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the three infinite series Dx , Ex and Jx being defined as :
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For bx, hx =0, Ty
*  is defined in the same way.

2.1.2 2D-Gaussian The solution Tx
*
y of Eq (2) is

now the product Tx
*�Ty

* :
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where
yxyx ynxmynxmmn DDJJ*  cos  cos  ),( ��� . (10)

Figure 2: Heat load function.

2.2 PROGRESSIVE HEATING
2.2.1 Heat load The heat load history is
described by a symmetric trapezoidal function H(t) of
rise and fall time t1, and of duration 2t2 (see Fig. 2). Its
maximum value Hmax is equal to 1/(2t2-t1), in order to
satisfy :
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2.2.2 General solution Under this heating
condition, the transient thermal field is :
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which also satisfies the initial condition T(x, y, 0)= 0.

Table 2: Input data, in units defined in Table 1.

Symbol Value Symbol Value

lx, ly
bx, by

hx, hy

a20°, a200°

T0

10, 1.5
2, 0.2

5�10-2, 10-3

44, 25
200

t1,  t2
D20°,D200°

Q

E20°, E200°

10-3, 3�10-3

12, 14
0.03

300, 290

2.3 NUMERICAL APPLICATION

As a realistic example, a flat high intensity
beryllium target is considered here. The input data are
listed in Table 2, in units defined in Table 1. T0, bx and
by are derived from particle cascade simulation
programs, such as FLUKA [2] . hy correspond to a
forced convective air cooling, and  hx is supposed to
roughly account  for a partial thermal contact with the
aluminium support of the target. E, D and a are
assumed to vary linearly from 20°C  to 200°C.

The temperature evolution of some typical points
of the ¼ section is shown in Fig. 3, under various
assumptions; those defined in Table 2 are drawn in
solid lines. The maximum temperature of  172qC is
reached on-axis at the end of heating (t= 6 ms). About
21 s are needed to bring the whole bar to a uniform
temperature, i.e. to cancel any thermal stress. Note
that the dashed curves, which assume a constant
thermal diffusivity a20°, display an appreciably
different temperature level. This level is also strongly
affected by the heating duration; a ten times longer
heating (60 ms) decreases the maximum temperature
by a factor 2 (‘crosses’ curves). The cooling
conditions affect level and time at which the
temperatures equalise (‘circles’ curves);  31qC after
1.7 s for natural air convection (hx=hy=3�10-4 mm-1).
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Figure 3: Temperature evolution of points O, A, C and
M, under various assumptions.
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3 Quasi-static stress analysis

At any moment t of the transient process, the
second spatial derivatives of the thermal field T*

xy
  can

be calculated from Eq. (12). On this basis, a
generalised Airy equation may be used to infer the
corresponding stress field Vx, Vy, Vz, Wxy. Elastic plane
strain with free longitudinal expansion is assumed:
Hz (x,y)=Ct .

3.1 AIRY EQUATION AND FUNCTIONS

The generalised Airy equation of compatibility is
[3] :
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M (x,y) being defined (in absence of body load) as :
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and  V0  being  equal  to : 
Q

D
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.

The problem is then to find Airy functions
M (x,y) which also satisfy the boundary conditions :

� � � � � � � � 0 ,, ,,  W W V V yxyxxyyyxx lxyllxyl . (15)

 3.1.1 Thermal strain compatibility   The following
‘thermal’ Airy function M t (x,y) :
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satisfies Eq. (13), but not Eqs (15); one writes :

� � � �yyl xxx p , � V , � � � �xlx yyy p , � V . (18)

 It is then required to superimpose two more Airy
functions to cancel the spurious external pressures px

and py (the boundary value of Wxy is discussed in § 3.2).
3.1.2 Mechanical strain compatibility  The following
‘mechanical’ Airy function M px(x,y) : (19)
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satisfies Eq. (13) when making V0 = 0, and the two
boundary conditions :

)(p)(p),( yxxxx lyyl � V , 0  ),(  W yl xxy . (23)

The infinite series Cx  is defined as:
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M py is defined in the same way.

All the functions defined in this chapter are,
obviously, also time dependent.

3.2 STRESS FIELDS

Each of the three Airy functions M t, M px and M py

provides a stress field derived from Eqs (14). The
complete stress solution results from their
superimposition increased by the constant fields px (ly)
and py (lx).

Note that the boundary value of Wxy derived from
M t is not strictly zero. Nevertheless, it is proportional
to hx (in AB) or hy (in BC), and then practically
negligible.

The longitudinal stress Vz is computed as follows :
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where ),T(E  )( 0 yxyxz D�V�VQ V ; (26)

Vz0 is the value of Vz  if Hz is assumed to be zero.
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Figure 4: Charts of Vx, Vy, Vz and Wxy fields, at 6 ms.
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3D charts of Vx, Vy, Vz and Wxy fields at 6 ms, are
displayed in Fig. 4 which shows that, in the ¼
transverse section OABC, Vx  is within –75 and 180
MPa, Vy within –80 and 40 MPa, Vz within –560 and
40 MPa, and Wxy within –40 and 10 Mpa; Vx, Vy and Vz

are symmetrical about Ox and Oy axis, while Wxy is
anti-symmetric. The boundary conditions defined by
Eq. (15) are satisfied, as well as the symmetry
conditions :
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The equivalent stress Veq (Von Mises criterion) is
shown in Fig. 5; it reaches 515 MPa at point C. This
point is therefore the most critical of the section,
though it is not the hottest (135qC). It will probably
suffer plastic deformation or even worse local
damage, as the yield and ultimate strengths of the
beryllium are respectively about 350 MPa and 470
MPa at this temperature. This important aspect is yet
out of the scope of the present study.

The longitudinal strain Hz is uniform over the
transverse section, and equal to 1.4�10-4.
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Figure 5: Equivalent stress Veq (Von Mises criterion)
from the two methods, at 6 ms.

4 Numerical aspects

Several stratagems are used to make the
computation easier and/or faster :
x m and n are limited to 80; an absolute convergence
criterion (generally 10-12) is furthermore applied to
some  slow algorithms.
x The first 80 positive roots D  of Eq. (6) are computed
from:

f(D*) = D*
�tgD*- h� l , D*=D� l ; (28)

a rough estimation is first obtained by scanning the
function by steps of 10-2 to detect changes of sign; this
is then refined by an iterative minimisation of ~f(D*)~
within the step interval.
x In spite of an existing analytical solution, values of E

from Eq. (7) are numerically integrated, in order to
avoid overflow problems.
x Even though the diffusivity a should be a constant in
Eq. (2), it is strongly temperature dependent. To
overcome this difficulty, a is iteratively adapted to the
local temperature:
 a20°oT1oa(T1)oT2oa(T2)…up to ~Tn-Tn-1~d 0.1qC.

x Coefficients C of Eq. (24) are time dependent.
Nevertheless, they are computed only for several
typical times, and then logarithmically interpolated .
For a typical time t and for each plane x and y, the 80
coefficients are derived by inverting a 80u80 matrix
which accounts for 80 different values of y in px  (or of
x in py ).

The computer code was developed in Nodal, an
interpretative language similar to Basic and very well
suited to iterative processes. Its translation into a more
portable language is under consideration.

5 Comparison with the FEM

A plane strain finite element model (FEM) has
been analysed by ANSYS [4], in order to check the
validity and accuracy of the present analytical method
(AM). The same input data were used. The material
density U was assumed to be constant (1.85 g/cm3) as
well as its specific heat Cp (2 J/gqC); the thermal
conductivity O then varying according to a (O20°=1.63
W/cmqC, O200°= 0.93 W/cmqC) :

O = a U  Cp ; (29)

 Hmax (200 s-1) was converted into Dmax  (148 kW/cm3):

Dmax  = T0 U Cp Hmax . (30)

The ¼ transverse section OABC was meshed
into 450 rectangular elements : 'x= 0.08 to 0.33 mm,
'y= 0.1 mm. Figure 5 shows the equivalent stress Veq

obtained by the two methods, at 6 ms along COA. The
results are in reasonable agreement, as it is the case for
the other components Vx, Vy and Wxy, from which Veq is
derived. In spite of local discrepancies, the strong
topographical similarity of such complex stress fields
validates the AM; its accuracy is similar to that of  the
FEM.
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