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Preface

The following chapters describe most parts of the work that I carried out at
the high energy physics group in Innsbruck. This group is a collaborator of the
ALEPH experiment at LEP/CERN, which was established with the aim of studying
the annihilation of electron-positron pairs into photons or Zparticles by observing
the characteristics of the resulting final states.

We were especially interested in so-called hadronic final states which are
built by decays of these intermediate particles into a quark-antiquark pair, plus a
succeeding conversion of these colored objects into colorless hadrons.

The analysis is restricted to the contributions of charged particles to hadronic
final states. A detailed look is taken on quantities that describe the appearance of
the whole set of charged particles in these final states, and to observables that
describe some of the kinematical details of their constituents. Charged particles
have the advantage that their momenta can be measured to a very high level of
accuracy. As a consequence, systematic errors in our data should be less than for
example in the data of neutral particles, and our measurements should be able to
give very restrictive conditions to the tuning of models as performed in the second
part of this work. Before the measurement is done, some detailed introduction
into the used methodology is given. The methods, the obtained results and some
discussions about the surrounding are given in part [ of this thesis, and in
appendix A.

In the second part, the QCD-related models from chapter 2 (JETSET 7.4 in
the variant of isotropic and for anisotropic decaying gluons, AR/ADNE 4.05 and
HERWIG 5.8) are tuned to gain optimal agreement with the observed
experimental data. For this purpose, an algorithm for tuning models based on the
"maximum likelihood principle” and linear parametrizations of the model
predictions - LinFit - is used, after it is tested in some detail. The main problem in
this tuning of the models is due to the inclusion of systematic errors in the tuning
algorithm. The inclusion of systematic deviations between measured data and the
predictions of a given model in particular can cause serious problems. As a
consequence, the fit is restricted to a so-called "fitable region".

This work is a continuation and an extension of [Al1,92]. The main
improvements are with respect to the higher statistics of input data (571800 events



taken in the year 1992), the inclusion of other observables and the consideration
of more model parameters. The main message of this work is the comparison
between the tuned models and the measured data, carried out both in a graphical
and a numeric way. These comparisons could give a guide for the regions in
which the models "cry out for" improvement.

The work is split in an introduction (consisting of two chapters), two main
parts and two appendices. Both main parts start with introductory chapters and
conclude with the measurements results. In the appendices some additional
information and explanations are given that are not directly related to our
analysis, but are worth noting.

The aim of my work at the high energy physics group at the University of
Innsbruck was not only to carry out the measurements in the best way possible,
but also to go through the final part of preparing myself for becoming a teacher at
high school. Because of that | tried to include some examples to illustrate all the
topics discussed and to get used to some kind of graphical explanation. It was
always very important for me to have some pictorial impressions about things to
be understood. They often led the way to ideas that made an explanation and an
understanding of difficult topics possible.

It is my opinion that a illustrative example often says "more than thousand
words", and therefore it is really important for me to get used to some kind of
technique that could open a door to the art of illustrative explanation. I tried to
find such a technique by applying detailed examples, and hope, that these
attemnpts will be beneficial for future explanations to future students, even if they
somewhat increased the size of this thesis.

While the major contributions to this thesis are derived from studies and
theoretical work that I carried out as a doctoral student during the past three
years, | did want to accomplish an extra goal with this final report, that seemed
especially important to myself. Current regulations do allow Austrian students to
publish in English instead of German, however this practice is by no means
common at this time, although [ personally feel that it is highly desirable and
appropriate for scientific work on the Ph.D. level. When I set out to implement this
goal I helt some hope that readers who have a more firm command of the English
language than I do have at this time, would be willing to apply a bit of extra
tolerance in cases where slight grammatical imperfections might have remained.

AH.
Innsbruck, July 22, 1996
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Chapter 1.

An Introduction to the ALEPH
experiment

1.1. Overview

The aim of this introductory chapter is to give a brief description of the
ALEPH experiment and its supporting infrastructure. The main source for this
summary is [AL,94]. More details can be found in [A4,94], [AL,90] and [AL,95].

Figure 1.1: The LEP storage ring
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Overview

ALEPH ("a detector for LEP physics") is one of the four experiments at the
LEP storage ring. LEP (the "large electron positron storage ring") is situated at
CERN (the European Laboratory for Particle Physics) in a circular tunnel of 8 .5km
diameter, whose depth below ground ranges from 50to 150m due to the rise and
fall of the terrain. A coarse impression is given in the figure above (taken from
[AL,94]). The first stage setup of the machine is able to accelerate, store and
collide electrons and positrons with a beam energy of up to 55GeV. At later stages
an increase of the c.m. energy up to 200GeV is planned. The following figure
shows a cut-away view of the whole ALEPH detector. It is a composition of
several independent subdetectors (1 to 8 to be explained later). The detector as a
whole is sensitive to almost every known elementary particle.

S

Figure 1.2: The ALEPH detector

.. Minivertex detector

.. Inner track chamber

.. Time projection chamber

.. Electromagnetic calorimeter

.. Superconducting magnetic coil
.. Hadron calorimeter

.. Muon detection chambers Figure 1.3: The ALEPH symbol
.. Luminosity monitors

PN DR N~
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Tracking subdetectors

1.2. The ALEPH subdetectors
1.2.1. Tracking subdetectors

1.2.1.1. VDET (minivertex detector)

This subdetector consists of two layers of silicon wafers that are arranged
around the beam pipe in two barrels at radii of 6.3and 11.0cm. Each wafer has a
100um strip readout both parallel and perpendicular to the beam direction. The
extent along the beam pipe is £ I0cm with respect to the interaction point where
electrons and positrons collide. Particles passing through one of the wafers deposit
ionization energy, and can therefore be detected by averaging the charge-
weighted positions of adjacent strips that have at least three times the mean noise
charge. The accuracy of the measured points is about 72um.

VDET hits are used for extrapolating a track that was found by the /TC
and/or the 7PC in the direction of the interaction point. By using VDET together
with the other tracking subdetectors, the spatial coordinates of a given charged
particles helix can be measured within about S0um accuracy.

1.2.1.2. ITC (inner tracking chamber)

The /TC'is a cylindrical multiwire drift chamber, which measures up to eight
r¢ coordinates in the radial region between 160and 260mm. The drift chamber is
filled with gas (a mixture of 91% Ar and 9% CH,). A charged particle that is
passing through the chamber ionizes this gas along its track and produces pairs of
charged particles. The negative electrons are accelerated to the wires. On their
way they collide with other molecules of the gas and produce pairs of charged
particles again. The resulting avalanche of particles is large enough to be
measured as a electric pulse. The time between the beam crossing and rising slope
of the pulse in one of the wires is measured. From this quantity the distance
between the point where the avalanche started and the wire can be calculated
with an accuracy of about I0Oum. The coordinate along the beam direction is
determined by the difference in arrival time of the signals at each end of the wires.
This has a resolution of about 3cm, and is not used for the standard tracking, but
allows the implementation of a three-dimensional first-level track trigger.

13



The ALEPH subdetectors

1.2.1.3. TPC (time projection chamber)

This part of ALEPH provides most of the information about charged particle
tracks, and is therefore essential for our analysis. It is shown in the following
picture, which was taken from [AL,90].

Figure 1.3: TPC overall view

The TPCis 4.7m long and extends to a radius of 1.8m measured from the
beam pipe. It has magnetic (1.57) and electric (115V/cm) fields that are parallel to
the beam axis. The electric drift field points from each end plate to the central
membrane. As in the /7C, a charged particle ionizes the gas (a non-flammable
mixture of 91% Ar and 9% CH, at atmospheric pressure) along its track through
the chamber. The electrons produced in this ionization drift with a velocity of
S5.Zcmfus towards one of the end plates, where they induce ionization avalanches
in a plane of wire chambers (so-called "sectors"). The ionization density dE/dx can
be measured and used for particle identification. Each end plate consists of 18
sectors.

The 7PC measures up to 21 three-dimensional points per track. The =
coordinate is obtained from the drift time and the known drift velocity with about
800um accuracy. The r¢ coordinate is calculated by interpolating signals induced
on cathode pads that are located on the sectors; here the accuracy is about
180um. The rcoordinate is given by the radial position of the pads involved in the
measurement. The trajectory of a charged particle inside the 7PCis a helix, and
its projection onto the endplates is an arc of a circle. A measurement of the sagitta

14



Calorimeters

of this arc yields the curvature radius which is proportional to the component of
the momentum perpendicular to the magnetic field. Because of that, a
measurement of this transverse component of charged particle momenta is
possible by using the 7PC. The measurement can be improved by using
information from the /7C and the VDET to obtain a total accuracy of
o(1/p,)=0.6-10"GeV™".

A problem is the possible presence of positive ions in the drift volume. They
are produced near the sense wires of the sectors; if they reach the drift region,
they can alter the drift field and cause track distortions. To overcome related
problems, the ALEPH TPC has a "gating wire grid" situated between the cathode
grid at the end plates and the drift region. Normally the gate is closed, that means,
the potentials V, + AV, are placed on alternate wires of the grid. In the ALEPH
TPCthe values V; =—67V and AV, =40V are used, and the resulting dipole fields
are sufficient to block the passage of positive ions. The "open" state of the gate is
reached by applying the same potential V, to each of the wires in the grid. This
produces only a parallel addition to the drift field. About Sus before every bunch
crossing, the gate is opened in order to allow electrons to drift into the
amplification region of the sections. Only if the first-level trigger is positive, the
gate is held open for the maximum drift time of the electrons, which is 45ys.

A laser system is used to provide information on the distortion of particle
tracks and to measure the vector of the drift velocity in the 7PC. Thirty straight
ionization tracks are created in the 7PC by firing two ultraviolet lasers. The
measured curvature of these tracks is used to correct the sagitta of particle tracks.
The drift velocity is determined from the polar angles and the measured drift
times.

1.2.2. Calorimeters
1.2.2.1. ECAL (electromagnetic calorimeter)

The ECAL consists of a barrel region which is located inside the magnetic
coil surrounding the 7PC, and two end-caps. Each of these building blocks is
divided into 12 modules, each of them is covering an angle of 30° The modules
are built as sandwiches of 45 lead/wire chamber layers. The lead sheets cause
electrons, positrons and photons to produce identical showers of particles. The
total thickness of the modules is 22 radiation lengths. The energy and position of
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each shower is read out via small cathode pads, that are arranged in towers
pointing to the interaction point. There are 74000 such towers corresponding to a
granularity of 0.9%0.9° Such a fine granularity in solid angle allows for the
distinction of narrowly separated showers. In addition, signals are also available
from the wire chambers, providing redundancy in the energy measurement and a
low-noise trigger.

ECAL can be used to identify electrons, positrons and photons. The energy
of photons is measured with an accuracy of about 18%/ JE(GeV). The efficiency
of identifying electrons and positrons is close to 100%.

1.2.2.2. HCAL (hadron calorimeter) and MUON (muon detector)

The main mechanical support of the ALEPH detector is a large iron
structure, which serves both as the passive part of the HCAL and as the return
yoke of the magnet. The magnet iron is instrumented with 23 layers of streamer
tubes that are separated by Scm thick iron slabs. For the barrel region, the total
thickness of iron, which forces hadrons to build showers, is 1.2m, corresponding to
7.16 interaction lengths for a hadron passing in a direction perpendicular to these
slabs. The energy of the neutral hadrons can be measured with an accuracy of
about 84%/\[E(GeV).

Although hadrons also interact with the ECAL, it is only in the HCAL where
they are fully absorbed by producing showers. HCAL is also a part of the muon
identification system. Two layers of streamer tubes are installed outside the iron,
these layers form the muon chambers. They do not contribute to the measurement
of hadronic shower energy, but are used as tracking devices. Each layer reads out
two orthogonal coordinates.

1.3. Trigger System

The ALEPH trigger system is designed to reduce the background (e.g. signals
due to beam-gas interactions) to a low level, and to accept all genuine e e*
interactions for disk storage processing and later physics analysis. It is based on
three levels:
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¢ The Level-1 trigger initiates the event processing if basic conditions
such as /TC-ECAL coincidence, or /TC-HCAL coincidence are fulfilled.

e The Level-2 trigger checks for the presence of charged particle
trajectories that originate from the vertex.

e The Level-3 trigger is applied after data is read out from the detector
hardware modules. It is performed entirely in software.

1.4. Superconducting coil

The ALEPH magnet consists of a superconducting magnet that is cooled by
liquid Helium, and an iron yoke. A current of 5000A creates a magnetic field of
1.5T. lts orientation is parallel to the beam pipe. The absolute curvatures of the
tracks of charged particles in this magnetic field give their momenta, the signs of
the curvatures give the signs of the particles charges.

1.5. Luminosity monitors

The luminosity L:= R/c has to be known in order to calculate the cross
section ¢ of a given reaction from the measurable rate K of the same process. L is
a number given by the characteristics of the storage ring. The principle of
measuring this quantity is to look at a reaction which is well understood. Usually
one looks at Bhabha reactions (elastic scattering of electrons and positrons) which
can be measured at small angles with respect to the beam axis.

For example the time-integrated luminosity was about 22.4pb~" in the year
1992 This number corresponds to 687680 collected hadronic events; we used the
hadronic cross section at the Z-peak including initial state radiation ¢"* =30.7nb
to compute this number.
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1.6. Hadronic ALEPH events

Hadronic events contain on average about 27 charged particles and a similar
number of neutrals. They result from the creation of a ¢g pair by the incoming
electron and positron via an intermediate photon or Z°. This conversion of a high
energetic pair of quarks to a set of hadrons
is a very complicated process which is
(hopefully) described by QCD. Hopefully
means, that we are at the moment not able
to calculate details of the reaction
e e’ — hadrons from first principles, and
the question if the standard model
describes this process in every detail has
not yet an answer. Up to now, "only"
models that deal with parts of the full
solution of this problem, and try to fill the
remaining gaps by phenomenological ansatzes are available.

The pictures on this page show two views of the ALEPH detector with the
tracks of the charged particles in a "two jet event". The straight lines correspond to
charged particles with large
momenta, while the strongly
curved tracks correspond to
particles with very low momentum.
In most of the hadronic events the
original quark and antiquark
hadronize in two sets of particles
which are called jets. Jet examples
can be seen very clearly in the
event illustrated on this page.

Sometimes a very high
energetic gluon is radiated by the
quark or the antiquark. Because
this is also a colored object, it has to hadronize. The result can be a third jet, if the
energy of the gluon is big enough, and if it is radiated at wide angle with respect
to the momentum of the radiating particle. A very beautiful example of such a
three jet event is given in the next figures.
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In some cases even more than three jets may be observed. The figures in this
section are taken from [AL,95].
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Chapter 2.

An introduction to some QCD models

2.1. Abstract

The QCD (Quantum Chromo Dynamics) models that are referred to in this
chapter lie at the heart of the further analysis, either as a tool for correcting the
data or as the object of main interest in the model tuning section. For that reason
an introductory chapter seems to be necessary. The main source of the following
summary is [L1,89]. A section on common ideas and principles is followed by
some sections where each of the three models of interest (JETSET 7.4, ARIADNE
4.05and HERWIG 5.8) is introduced. In these sections all the parameters used for
the tuning of the models are discussed in some detail.

2.2. Common ideas

2.2.1. Structure of an electron-positron annihilation

The mainly produced particle at the electron positron annihilation at LEP is
the Zparticle. 70% of these particles decay into hadronic final states ([PP, 94]).
Today the description of this complicated reaction e’¢* — Z — hadrons (or more
exactly e¢* —y*/Z — hadrons) is done by QFD (Quantum Flavor Dynamics or
Electroweak Theory) together with QCD as far as results are calculable. Up to now
it is not possible to calculate expressions for every detail of hadronic final states
from first principles. Only parts of the reaction are described up to a given order in
some expansion parameter, and the remaining gaps are filled by
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phenomenological ansatzes. A schematically overview of the whole reaction is
given in the following figure (from [L1,89])

(i) (i) (i) liv)

s -

Figure 2.1: Visualization of an electron-positron annihilation event.

The final state emerges after a series of sequential steps as follows

(i) creation of the primary g7 pair by the decay of a Z-particle or a virtual
photon.

(iiy QCDbremsstrahlung and gluon decays
(iii) fragmentation of quarks and gluons into colorless hadrons
(iv) decays

In the first step a major contribution to the quantitative predictions comes
from QFD. In addition to the generation of the y"/Z° also a possible initial state
bremsstrahlung has to be described. The decay of the y"/Z° into a ¢g -pair and
an eventually appearing radiation of one or more high energetic gluons already
belongs to the area that is believed to be described by QCD, and that is
responsible for the observed jet structure of the hadronic final states. Because of
the relatively small value of the strong coupling (o, (M,) = 0.12) due to the very
high center of momentum energy of the colliding particles, an expansion of the
quantities of interest in a power series seems promising, and can be carried out up

22



Structure of an electron-positron annihilation

to low orders by the methods of perturbative (CD (the expansion parameter is
o,(M,)/n). For the differential cross section full calculations up to O(a?) are
available, for the total cross section the same is true even for O(o?).

In the second part, at lower Q% more gluons are created by QCD:
bremsstrahlung, and some of them decay into g7 -pairs. Again it is believed, that a
description can in principle be done by the methods of perturbative QCD.
Because the coupling increases in this part, higher order contributions play a more
important role. One possibility that allows for the inclusion of the leading
contributions in all orders is the so called "leading logarithm approximation"
(LLA). Here the leading terms in all orders are taken into account. This kind of
approximation makes an iterative ansatz, the parfon shower, possible, which is
used in most of the models for describing this second part. This part ends at the
point where the description based upon the LLA fails, that means where the
contribution of next to leading or higher terms can not be neglected.

In the third part illustrated by figure 2.1, colorless hadrons are built up from
the colored partons (quarks and gluons). In principle even this part should be
described by QCD, but because the mathematical methods fail completely in this
highly complicated region, phenomenological QCinspired ansatzes are used to
"jump over the gap". The idea behind these ansatzes are, together with different
realizations of the parton shower, the main differences between the different
models.

The fourth part describes the decays of unstable particles under the strong,
electromagnetic and weak interactions. This is essential for particles with a short
lifetime, because their daughters or their daughters' daughters reach the sensitive
parts of the detector, and these decay products, not the original particle, are seen
in the event. In general an exponential decay law is used together with measured
lifetimes and branching ratios to simulate this part of the reaction. The large
branching fractions TZ — cc,bb)/T,,, of 17% and 22% respectively, makes a
reliable simulation of charm and bottom hadrons very important.
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2.3. JETSET (version 7.4)
(JETSET: The Lund Monte Carlo for Jet Fragmentation and e*e” Physics)

Characteristics: JETSET is a model based upon a coherent parton shower and
the concept of string fragmentation. It turns out, that this model is able to fit most
parts of the data really well (c.f. chapter 7). This bright advantage is darkened by
the fact that the fragmentation part is a function of lots of model parameters, and
so this part of the model is a kind of QCD-motivated parametrization rather than a
model based on calculations from first principles.

The most important of the model parameters are described below.

2.3.1. Parton shower

LLA plus some simplifications in kinematical variables serve as starting
points. These simplifications lead to a limited predictive power for wide-angle
parton emission. Consequently a parton shower is believed to give a good
description of the substructure of jets, while it is too inaccurate to determine the
global event topology. The figure left
(taken from [L1,89]) illustrates how a
parton shower is built up from a
sequence of branchings. It is possible due
to the usage of the LLA approximation,
to formulate this sequence in an iterative
way. Possible types of branchings are
q—>qg, g~ ggand g—4q7.

Every branching is characterized by
the quantities Qand z and an additional azimuth angle that gives the orientation
of the plane in which the momenta of the daughters (the products of the
branching) lie. This angle is assumed as equally distributed in the JETSET-version
of "isotropic decaying gluons” In the default option, of ’anisotropic decaying

gluons", some effects of gluon polarization plus interference with neighboring
gluons are included. This second version correlates the production and the decay
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plane of gluons. While the branching g — gg¢ tends to take place in the production
plane of the gluon, a decay out of the plane is favored for g — 47 .

z describes the sharing of the four momentum between the daughters b and
¢ in the reaction a — bc. In all models @ has the dimension of a mass (in natural
units) and is closely related to the virtual mass of the decaying particle a or to the
transverse momentum of the daughters. The exact definition of this quantity marks
one of the differences between the parton showers as used in different models.
JETSET uses Q*:=m?. The quantity @ represents the evolution parameter of the
Parton Shower t:=In(Q?/A%). (The "characteristic scale A of QCD"is described
later.) In JETSET knowledge about the evolution parameter at the decay of a
parton corresponds to a knowledge about the mass of the decaying particle.

Even if the evolution parameter fis an analogy to time, it is really not the
same. An ordering in ¢ (or ¢J) does, in JETSET, mean an ordering with respect to
the particle masses, and the same ordering does in general not hold in time?. 7
is the starting value of the evolution variable, and corresponds to the @ value of
the very first parton in the shower. The decay probability is set to zero as soon as
some lower limit 7, is reached. Because of the relations of the (2value to the mass
of the decaying particle, only particles with a mass above this lower limit are able
to decay. The (}value belonging to the minimal evolution parameter ¢, is one of
the free model parameters?.

The probability that a branching a — bc happens at a given value £ of the
evolution parameter in a small interval df around ¢ and with a value of the four-
momentum sharing in a small interval dz around z is given by the Altarelli Parisi
equations

2
dPa-)bc = E.‘.zgi___). pa—)bc(z)dtdz

The running couplingis in first order given by:

(lx(llz)= 127 2)

(33- 2nf)1n[PA-2—

1 A similar statement is also true for the other models.
2 Q, is the parameter PARJ(82). Default=1.0GeV " cut-off for the parton shower".
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Here 1 denotes a typical energy scale, which is taken as an approximation of the
transverse momentumn squared of the branching (u’:= p? = Q°z(1-2z)). The condition
0, > 2A avoids the divergence of 0. (In JETSET Q) > 2.2A is used.)

In the expression above n, =5 is the number of quark flavors contributing at
LEP energies, and A is a model parameter that has to be fixed by tuning the
model to the data3. Roughly speaking, A controls the rate of gluon emission. The
Altarelli-Parisi splitting kernels are

1+22 (1-z(1-2))°
Pyge(2) = Cr‘ffz" Pyoge(2) = NF_—z_(l-:?)_’

Pz (2) = TR(Z2 +(1 “Z)z)
with C, =4/3, N.=3 and T, =n, /2.
With this input, the probability for a parton branching in an interval df

around ¢, "after" a value ¢ of the evolution parameter where it is known to be
undecayed can be computed as follows:

dP, = exp| - j dr | dz o )p(,_,,,c( )}[j d2 (”“““’) Hbc(z))dr

Ldeca ay

The first factor describes the probability that the branching did not happen
between t and ¢,,.,,, while the second factor represents the probability that the
decay happens in this interval df The values of the evolution parameter are
generated according to this distribution starting at the maximum value 7,__ . After
this step the masses of the decaying particles are known. The values of z are
generated by the distributions given by the Altarelli-Parisi splitting kernels.
Following the generation of an azimuth angle according to the used option of
isotropic or non-isotropic gluon decay, each of the. branchings is fixed. The flavor
of the quarks is restricted by the phase space.

At the branching of the two initial partons an algorithm is used to match on
to the first order three-jet matrix elements.

3 A is the parameter PARJ(81). Default=0.29GeV "characteristic scale of QCD"
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So far the parton shower is termed as "conventional shower”. In this state it
is still possible that "late” branchings result in partons with large emission angles.
Studies beyond the leading-log level show that this is not correct. It turns out that
destructive interference effects are large in the region of non-ordered emission
angles. As an approximation, these so-called "coherence effects” can be taken into
account in parton shower programs by requiring a strict ordering in terms of
decreasing emission angles. Models that provide such an ordering are called
"coherent models”.

2.3.2. Fragmentation
2.3.2.1. Fragmentation into mesons

The key to every fragmentation algorithm is again an ansatz that can be used
in an iterative way. In addition to an initial quark ¢,, a mechanism that allows for
the production of new quark-antiquark pairs g,g, is used. In the case of JETSET
this mechanism is called string fragmentation mechanism (it will be discussed
later). The new antiquark g, and the old quark g, build up a meson ¢,g,, and the
new quark g, is ready to take the position of the initial quark g,. The proportion of
the three quark flavors used in the fragmentation is given by uii:dd:ss = 1:1:y_, the
production of flavors with higher mass is restricted to the parton shower process4.
The program accounts for the multiplets given in the following table. L is the
orbital angular momentum, S the spin of the quark-antiquark system and ¢ the
resulting angular momentum of the meson.

name

pseudo scalar meson multiplet
first axial vector meson multiplet

vector meson multiplet

scalar meson multiplet

NIQ N INQ T

second axial vector meson multiplet

NiNININD
N NN I~

2 tensor meson multiplet

Table 1.1: Meson multiplets in JETSET

4 v is the parameter PARJ(2). Default=0.3 "s quark suppression"
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First of all a decision has to be made on whether the spin of the gg -system is
O or 1. There are three parameters that account for different possibilities with
S =1: systems built up form u- and d-quarks®, systems which contain an s-quark or
are built of from s-quarks only®, and systems which contain ¢- and b-quarks?.

The default values for these parameters are motivated by g7 -systems with
L=0. Their proportions are estimated by looking at the spin part only. The
number of states for S=1 is three times the number of states for $=0, and
therefore a system with S=1 should appear with a probability of 3/(1+3)=0.75.
In contrast to this “spin counting argument”, mesons with $S=1 are heavier and
should therefore be suppressed by phase space. This difference in mass due to a
spin excitation should appear mostly at mesons which are built up from very light
quarks. The heavier the constituents, the smaller the mass contribution of the spin
excitation. This explains the decreasing values of the default values for decreasing
quark masses.

After the value of Sis fixed, L will be assigned. If $=0 two multiplets are
possible; the multiplet of pseudo scalar mesons, and the first multiplet of axial
vector mesons. There is one model parameter to regulate the probability for
ending up with a meson belonging to the latter®. For S=1, four multiplets are
possible. There are three model parameters which determine the probabilities for
obtaining with mesons belonging to one of these four multiplets (9,10,11),

The probabilities for producing mesons that belong to one of the multiplets
included in JETSET are therefore:

ps= ={1- PARI(i)){1- PARJ (14)}

L=0AJ=0

P ={1- PARI (i)} PARJ (14)

L=lad=]

P, = PARJ(i){1- PARJ(15)- PARJ (16)- PARJ (17)}

L=0AJ =}

5 PuS;' is the parameter PARJ(11). Default=0.5 "S=1 probability for a light meson”

6 szl is the parameter PARJ(12). Default=0.6 "S=1 probability for strange mesons"
7 PC‘S;' is the parameter PARJ(13). Default=0.75 "S=1 probability for higher mesons"
8 P.7 is the parameter PARJ(14). Default=0.0

® P, is the parameter PARJ(15). Default=0.0

10 p>t ., is the parameter PARJ(16). Default=0.0

11 pS=l _, is the parameter PARJ(17). Default=0.0
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P! = PARJ (i) PARJ (15)
P! = PARJ(i) PARJ(16)
P> = PARJ(i)PARJ(17)

The index /is used as an abbreviation to stand for 17 if the meson is a light
one, 121if it is an smeson and I3 if it is a higher meson. It should be noted that
the probabilities for the value of the angular momentum J/(described by PARJ(14)
to PARJ(17)) are assumed to be independent of flavor in JETSET.

For the flavor-diagonal meson states uiz, dd and s5 mixing into physical
mesons is included. The 1 particles can be suppressed by the factor iy’ 12.

2.3.2.2. Fragmentation into baryons

The parameter MSTJ/12) allows for a choice of the mechanism for the
production of baryons. We use MSTJ(12)=3 (the diquark mechanism), with the
possibility of the diquark to be split according to the popcorn scheme. Additionally
the production of first rank baryons is suppressed by a given factor!?. We leave the
parameters concerning the popcorn mechanism on their default values, because
the data we used for tuning JETSET turned out to be insensitive to this parameter.

Baryon production can be achieved by assuming that any flavor represents
either a quark or an anti-diquark in a color friplet state. Three parameters are
included to cover this phenomenon. The first one is the probability that a gggq is
produced instead of a gq!4. The second one is to suppress the production of
gqqq containing s-(anti)quarks!®. Only the ground state baryons with L=0 are
taken into account. The third parameter decides whether the baryon belongs to
the J=1/2 octet or the J=3/2 decuplet?®.

127" is the parameter PARJ(26). Default=0.4 "Extra 1\ suppression”
13 E, is the parameter PARJ(19). Default=1.0 "leading baryon suppression"
14 4q/q is the parameter PARJ(1). Default=0.1 "diquark-antidiquark suppression”

15 (su)/(du) is the parameter PARJ(3). Default=0.4 "extra strange diquark suppression’
16 (51)/(s0) is the parameter PARJ(4). Default=0.05 "spin I diquark suppression”
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2.3.2.3. String fragmentation

Until now we have only mentioned that some mechanism for creating g7 -
pairs is required in the fragmentation procedure, but the idea behind this
mechanism has not been explained. In JE7TSET the so-called string fragmentation
mechanism is used. This algorithm is very complicated if gluons are radiated from
the initial ¢g-system. A restriction to the case of a pure gg-system makes the
discussion rather easy, and because even this simplest case shows the main part of
the principle behind string fragmentation, it will be used as a "playground" for the
following explanations.

The quark and the antiquark interact via a color field, which can be
represented by a 1-dimensional string between them. Consequently the effect of
the corresponding string forces can be described by a potential which increases
linearly with increasing separation of the quark and the antiquark. This increase of
the potential with an increasing distance is the reason for the confinement of
quarks into hadrons.

If the quark and the antiquark separate, and the distance between them
grows, the energy in the color field between them increases too. If this energy
exceeds some threshold the possibility for creating a new quark-antiquark pair
q'g' is given. After a production of this type we can observe two color neutral
systems: ¢gg' and ¢'g (a remaining string, and a meson) in spite of the initial one
qq which no longer interact. If the mass of the remaining string exceeds some
threshold!?, a further production of gg -pairs is possible. If not, the fragmentation
is stopped.

The assumption is made, that the probability for creating the pair ¢'g' is

proportional to
exp ——mi“’ =exp _m_: exp —pi"’
o’ o’ o’

Here m is the rest mass of the produced quark, and p, , is the transverse
momentum of the new quark and antiquark. From this follows, that heavy quarks
are suppressed, and the densities for m, and p, , factorize. There is a restriction of
heavy quark production to the parton shower and these heavy quarks are actually

17 PARJ(33) (Default=0.8GeV) and quark masses are used to define the remaining energy below
which the fragmentation of a jet system is stopped and two final hadrons are formed.
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not produced by the string fragmentation mechanism. The width o of this
distribution is again a parameter that can be used for tuning JE7SET to the datal®.

The longitudinal momentum of the hadron has to be calculated next. In
JETSET the distribution of the variable z is given. z(E +p,) is the fraction of
E + p, of the quark (or the antiquark) that goes to the new hadron. In JETSET this
distribution is given by the "Lund symmetric fragmentation function”:

_) 2
T L

The parameters a and b (they are assumed as flavor independent) determine
the shape of the fragmentation function!®. Here an increase in b leads to a
distribution that favors higher values of z and therefore leads to a harder hadron
spectrum, where mis the mass of the new hadron.

Since the Lund fragmentation function produces a spectrum for B mesons
somewhat harder than observed in real data, the Peterson et al fragmentation
function (or SLAC-formula) is used in the case of ¢- and b-quarks?C.

1
(1)
Z [ —
z 1-z2

Here €,, O €{c,b} are two parameters that allow for the tuning of JETSET
to c-and b-data?!.

f(z)ee

18 G is the parameter PARJ(21). Default=0.35GeV ‘transverse momentum width in
fragmentation”

19 g is the parameter PARJ(41). Default=0.5 "First parameter in the Lund string fragmentation
Sfunction”, b is the parameter PARJ(42). Default=0.9 GeV™* "Second parameter in the Lund
string fragmentation function”

20 Different methods exist for changing the fragmentation function. The parameter MSTJ(11) is
used to switch between this possibilities. We are using MSTJ(11)=3, that is the "hybrid
scheme", where light flavors are treated with the Lund fragmentation function where heavier are
described by the Peterson et.al. formula.

21 ¢_ is the minus the parameter PARJ(54); default of PARJ(54)=-0.05; €, is minus the parameter
PARJ(55), default of PARJ(55)=-0.005.
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2.3.2.4. Remarks

Not all of the parameters available in JETSET have been used to tune the
model. The parameters of the heavy flavor (c,b) sector have been fixed before the
actual fitting using recent data, since they are almost independent of other
parameters. The following assumptions were used:

(i) PARJ(17):PARJ(16).PARJ(15) = 5:3:1 ("Spin counting")
(i) PARJ(14)=PARJ(16)

This assumption leaves only one free parameter, which we choose as
PARJ(17). We fix it to the value of 0.2 to allow for a description of the ratio
I'(b— B™) / I'(b — B) as taken from [A4,95]. The parameter a is fixed at the value
0.4 because it was observed that this restriction of the model parameter does not
decrease the quality of the model. In addition P’;':=0.65 is used as a compromise
in the description of D*/D (taken from [A1,93]) and B"/B production rates (taken
from [A4,95]). €,.:=0.04 is used to get an appropriate description of the
xp:=2E[E_. distribution of the D" in the region x,>0.5, and ¢,:=0.004
reproduces the mean value (x,) of Bmesons. T':=0.275 is used to describe the
rate of 1 -particles. (All quoted values were taken from [Ru,95])
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2.4. ARIADNE (version 4.05)

(ARIADNE: A Monte Carlo for QCD Cascades in the Color Dipole Formulation)

Characteristics: ARIADNE is a coherent QCD model, which uses the concept of
radiating color dipoles. The fragmentation part is the same as in JETSET, i.e. the
color string fragmentation. Again we have lots of parameters, and again we can
observe a good agreement between model predictions and the data.

The QCD cascade is realized by color dipoles (for example the primary ¢g
pair which was created in the e”e” annihilation), these are able to do the following
reactions:

99 — 4998, 98—>q988, 88> 888

If a gluon is emitted, the system decays into two independent parts, which
are assumed as independent. For example the reaction gg — ggg ends with the
two dipoles gg and gg. These new dipoles can also radiate gluons and therefore
the way to an iterative sequence of branchings is open. Expressions are known
that are analogous to the Altarelli-Parisi splitting kernels for the reactions
mentioned above. On that basis a parton shower analogous to JETSET's can be
generated. The expressions for the individual emissions are based on first order
QCD.

In contrast to JETSET, Q*:=p} is used in ARIADNE as ordering variable,
and the two parameters that fix the behavior of the parton shower are "the
characteristic scale of QCD" A and the transversal momentum p™ at which the
cascade stops. A decrease in the evolution variable does therefore mean a
decrease in transverse momenta, and angular ordering is automatically included in
the description.
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2.5. HERWIG (version 5.8)

(HERWIG: Hadron Emission Reaction With Interfering Gluons)

Characteristics: HERWIG is a model based on a coherent parton shower that is
analogous to the one used in JETSET, but that uses a different evolution variable.
The fragmentation part of this model is based on the principle of “cluster decays”
HERWIG does not reproduce the data as well as either JETSET or ARIADNE: In
this work we are using HERWIG version 5.8. A really nasty feature of this model is
the incomplete and partly incorrect table of particle decay modes. Better
agreement with published values are expected for version 59, which is
unfortunately not available while writing this thesis.

2.5.1. Parton shower

The parton shower is done in the same way as discussed in the JETSET
section, but here the evolution variable

2o R = PoPe
Q a &.ch &bc EbEC

is used, where p, and p, are the four momenta of the daughters in the reaction
a— be. For the case E, >> pl =m;_, that means for the case where the parton
masses can be neglected, the &, in this evolution variable can be approximated
well by §, =1-cos®9, , and a cascade with decreasing values of the evolution
variable corresponds to a series of decreasing angles between the momenta of the
daughters. Therefore, angular ordering is included in the parton shower, and
HERWIG is a coherent QCD model.

Again the shower is stopped as soon as the value of the evolution parameter
drops beneath a given limit 22.

22 M, is the parameter RMASS(13). Default=0.75GeV "Gluon effective mass". The condition
M, >4 A —0.1 must be fulfilled to avoid divergences in the parton shower.

A is the parameter QCDLAM. Default=0.18GeV
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2.5.2. Fragmentation

2.5.2.1. The cluster concept

In a first step all the double-colored gluons are split up into single-colored
quarks and antiquarks.

The "effective gluon mass"is constrained to a value that is bigger than twice
the mass of the lightest quark (2x0.32GeV), in order to allow for the splitting
procedure mentioned above. After splitting, every parton is a single-colored
object. Now a definition of a distance between two particles is made, and every
quark is combined with its closest antiquark with the corresponding anti-color.
Together they form a colorless "cluster”. A condition according to the mass of this
cluster is introduced as:

My <M, . +(qu +mq2)n
(Here M, is the mass of the cluster, m, and m, are the rest masses of the
constituents, and M, as well as n are model parameters that allow for a tuning of
HERWIG to the data (23, 24).)

M, defines an upper limit for the mass of the clusters. If this condition is
not fulfilled, the cluster is split up into two clusters with masses less than M. A
new quark-antiquark pair ¢,g, is generated in order to realize this decay of the
cluster (g,,g,), a , and the clusters (¢,,g,) and (g,,7,) are formed. The flavor of
the new quark g, is equally distributed over u, d and s. The masses of the new
clusters are computed as M,,:= M R’,. Here R, are two values of a random
variable which is equally distributed between Oand I, and B again is one of the
HERWIG -parameters?®. The directions of the momenta of the decay products are
set to be parallel to the direction of the momenta of the primary components g,
and g,, and their absolute values are computed from energy-momentum
conservation.

2 M., is the parameter CLMAX. Default=3.35GeV "maximum cluster mass parameter"

24 n is the parameter CLPOW. Default=2 "power in Maximum cluster mass parameter"

25 3 is the parameter PSPLT. Default=1 "split cluster spectrum parameter"
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2.5.2.2. Cluster decay into hadrons

HERWIG includes two possibilities that allow for a transition from a cluster to
hadrons. They are called one-body mechanism and the two-body mechanism
respectively. The decision between them is made by looking at the quark content
and the mass of the decaying cluster. The following conditions are used:

M > m,(ql,'ﬂ)+m,(u,§2)
M. > mz(%’a—)*'ml(d’q—z)
Here M, is the mass of the cluster (g,,7,), and m,(a,b) is the mass of the

lightest hadron with quark content ab . Let us for example consider a ¢5 cluster. In
this case the conditions above correspond to:

M, >m/(c,u)+m(u,5)= m, +m, ., =186GeV+0.50GeV =2.36GeV

M, >m(c,d)+m(d,5)=m  +m ,=187GeV+0.50GeV =2.37GeV

If both of them are fulfilled, the cluster decays according to the two-body
mechanism. For that reason one quark or diquark flavor g, is taken by chance
from the set {u,d,s,c,t,b,ut,ud,us,d5,dd,55}. By default, all the elements of this
set have the same probability, but it is possible to change these settings by
changing the values of the parameters PWT(1)- PWT(7) (26, 27). Now a decay of
the cluster into two hadrons

C(‘]l’qz) - ]'Ll(%’q%)'*'h](q_%z]-z)

is forced if the mass condition

M, > m,(q,,21'3)+m,(q3,c72)

is fulfilled. This condition suppresses the contribution of quarks with big mass. In
the default version the momenta of the decaying particle are generated isotropic

26 PWT(1)-PWT{(6) measures the probability, that the flavor of the new quark g, is u,...,t.
27 PWT(7) is the diquark-probability.
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in the center of momentum system of the decaying cluster. If this condition is not
fulfilled, the cluster "decays" via the one-particle mechanism, that means it is
replaced by the lightest hadron with the same quark content. The three
momentum is by definition the same as the three momentum of the decaying
cluster. A possible overflow in energy is distributed over the surrounding clusters
by chance.

2.5.2.3. Remarks

There exists a possibility of influencing the behavior of hadrons containing
so-called ‘perturbative quarks” These are quarks generated in the primary
reaction or during the parton shower, but not in the decay of gluons. The idea
behind this is, that these quarks should "remember" their original direction even if
they are confined in a cluster. In the default version, the cluster decays isotropic in
its center of momentum system ( CLD/R=0), while the option CLDIR=1 allows for
a consideration of perturbative quarks directions. Every decay product (hadron)
which contains a perturbative quark inherits the direction of its momentum from
this perturbative constituent. After this step, a smearing of the direction of
momenta can be carried out according to an exponential distribution in
{I-cos®}. Here ¥ is the angle between the direction of the perturbative
constituent and the direction of the final hadron. The mean value p of this
distribution is a parameter of HERWIG 28. This modification leads to an
improvement in the description of the distribution of charged particle momenta.

28 11 is the parameter CLSMR. Default=0.0 "width of Gaussian angle smearing"
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Measurement of charged particles distributions
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Chapter 3.

Distributions and Methods

3.1. Abstract

Based on ALEPH data recorded in the year 1992 distributions of event
properties and single particle properties of charged particles are measured. The
main tool of the measuring procedure is the simulation model HVFLO3, which
consists of the QCD generator JETSET on one hand and the detector simulation
program GALEPH on the other. The distributions introduced here provide a
major part of the input information for the parameter tuning in part II of this
thesis.

Initially all the event and single particle properties will be explained. An
unfolding procedure will be discussed in some detail. This unfolding procedure is
used to correct the observed data from detector influences. The last part of this
chapter describes the restriction to hadronic events and to reliable tracks of
charged particles, and therefore opens the way to the measurement.

3.2. Measured quantities

Each event can be described by the set of four momenta p;:=(E,p,) of its
final state particles. Because we are only interested in properties of charged
particles, the index 7 numbers the set of charged particles in a given event. The
following definitions are taken from [JS,93], [A1.92].
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3.2.1. Event properties
3.2.1.1. Sphericity

Starting from the three real eigenvalues A,,1,, A, (A, 2%, 2%, A, + A, +A;:=1)
of the "sphericity-tensor”

2.0p
Py

i

Seb:= o,Be{1,2,3}

the quantities sphericity S:= %(xz +1,), aplanarity A:= %k3 and planarity P:=\, -\,
= %—(S —-2A) are defined.

The value of S lies between 0 and I and is a measure of the shape of the
event. Small values correspond to events in which the directions of the particle
momenta are roughly parallel to a given axis (defined by the eigenvector
corresponding to the biggest of the eigenvalues, also called the ’spericity axis”),
while events which large values of S are isotropic. The former type of events is
called "Z-jet event”.

The value of A lies between 0and 0.5 and is a measure of the momentum
flow out of the so-called 'event plane” as defined by the eigenvectors
corresponding to the largest and the middle eigenvalue.

In an analogous way the "generalized sphericity tensor”is defined:

2B pe
ST = ,r€R

Py

With the definition r:=1 the C-parameter C:=3(A\,+AA,+A,\,) can be
calculated using the Eigenvalues of this generalized tensor.

3.2.1.2. Thrust

The quantity measured is 1- T, with
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ZIﬁ'ﬁl

T:= max -

Tis called "thrust” The direction which corresponds to this maximum value
is called “thrust-axis”, and we use the symbol 7. The value of 1-7T lies between 0
and 0.5, where the 2-jet events correspond to values close to 0, while isotropic
events correspond to values around 0.5. If the maximum T is calculated from the
set of momentum vectors perpendicular to the thrust-axis it is called "major™value

M
Y |a-p,

M:= max “‘=——
|fl=1,A7=0 Z’ ﬁil
i

The corresponding direction defines the "major-axis”. A third axis, the minor
axis, is defined perpendicular to the thrust and major ones, and a "minor"value is
calculated just as thrust and major. The value of the "oblateness” is defined as
O:= M -m. The closer Ois to zero, the more symmetric is the corresponding event
with respect to the thrust-axis. Large values of O correspond to planar events.

3.2.1.3. Jet masses

Events are split into two hemispheres by any separation criterion to define
the jet masses. The four momenta in these two hemispheres define the following
quantities, called the masses of the hemispheres:

(3] -3

Here S, is the symbol for the two hemispheres. If the plane which separates
the two hemispheres is constructed in a way that lead to a maximum of m’ +n’,
the bigger mass is called "heavy jet mass” M} while the other. one is the "/ight jet
mass" M? . Sometimes the "mass difference” M}:= M} — M} is also of interest.

Since the calculation of these jet masses is very time consuming, one has to
restrict the analysis to some approximations or these complicated definitions have
to be replaced by simpler ones. In our analysis we choose the latter and define
"simplified jet masses"by dividing the full space into two hemispheres with respect
to the thrust-axes. We define the "simplified heavy jet mass” M} as the maximum
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of the corresponding masses, and the ’simplified light jet mass" M} as the
minimum. In the remaining chapters we will always leave out the word simplified
to be as short as possible, but use the bars in the symbols. In fact not the simplified
jet masses, but these masses devided by the "visible energy", that is the sum of the
energies of all charged particles in a hadronic final state is measured.

3.2.1.4. Jet broadenings !

Again a separation of the full space into two hemispheres is made by a plane
that is perpendicular to the thrust axis. In both hemispheres S, the following
quantity is calculated:

Z] P, x|

The sum in the numerator includes the momenta in the hemisphere signed
by the + or the - symbol, while in the denominator the sum is done over all
momenta of the event. These quantities define the 'fotal/ jet broadening’
B:=B, + B and the "wide jet broadening” B :=max(B_,B_). Both of them are close
to zero for 2-jet events.

i

3.2.1.5. Jet resolution parameter y,

As mentioned before, the particles in the final state of an e¢'-annihilation
event appear in jets. This property is quantified by so-called cluster algorithms. In
this work the "Durham cluster algorithm"is used. For each pair of four momenta
(p,.p,) a value of the "resolution variable”

~ 2 min(E?, E?)(1-cosH,,)

Y= Evzis
can be computed. In this formula we used
cos8, = -@*——fi
|7/

1 Source: [01,93]



Single particle properties

The pair with the smallest value of this variable is replaced by a new pseudo
particle. The four momentum of this pseudo particle is the sum of the four
momenta of its constituents. y, is the smallest value of y, when only three pseudo
particles are left.

3.2.2. Single particle properties
3.2.2.1. The normalized particle momentum

We normalize the particle momentum by the momentum of the initial

electron:
]

r pe_

3.2.2.2. In-momenta

The "event plane”is defined in two ways. In the first way it is based on the
eigenvectors corresponding to the first (that is the biggest) and the second
eigenvalue of the sphericity tensor. In the second way it is defined by the thrust
axis and the analogous axis defined by the major value. The "in-momentum” is
then the component of the momentum that corresponds to this plane and that is
perpendicular to the sphericity axis or the thrust axis respectively.

That means, that the in-momentum is the component of the momentum in
the direction corresponding to the second eigenvalue or in the direction
corresponding to the major respectively.

pl:=|a,.p|
3.2.2.3. Out-momenta

As in the case of in-momenta, the event plane is defined with the sphericity
or the thrust axis. The ‘out-momenta” are the components of the particle
momenta that are perpendicular to this event plane. That means that the out-
momentum is the component of the momentum in the direction corresponding to
the smallest eigenvalue of the sphericity tensor or in the direction that is defined
by the minor respectively.
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our ,

P, = Iﬁspl
3.2.2.4. Rapidities

After the definition of an "event axis” by the thrust or the spericity axis, the
rapidity of a particle corresponding to this axis is defined as:

y:==~1—ln Etp
2 \E-p

Here p, is the longitudinal component of the momentum, that is the
component in the direction of the event axis; E'is the energy of the particle. The
computation of this quantity requires knowledge of the mass of the particle under
observation. Because this is not known in general, normally the ® mass is
assumed.



Treatment of event properties

3.3. Unfolding procedures
3.3.1. Treatment of event properties
3.3.1.1. Introduction and definitions

The true distribution #(x) of a given quantity x€[x,,x ] is in general not the
same as the distribution o y) of the same quantity observed by the detector. Even
if the quantity is the same, we use the symbol y (e[y,,,]) for the measured value
possibly biased by the detector to avoid confusion in the following discussions.
The restricted resolution of the detector as well as secondary reactions and decays
are reasons for this bias. Both distributions are connected by the following
formula:

X

o(y)= | D(y,x)t(x)dx (3.1)

X

i

All detector influences are absorbed in the ’'detector function’
D:fx,.x]x[y,,y,] - R". The probability that a value of the quantity of interest which
lies in a "very small'? interval of width Ax around x is measured in a "very small"
interval of width Ay around yis given by D(y,x)Ay.

The calculation of this detector function (in fact we calculate a discrete
version, not the full detector function) is normally done by using a simulation
which consists of a QCD model and a detector simulation. The former fills the
phase space, while the latter deforms this filling. If one of these constituents of the
full simulation is wrong, systematic deviations from the exact detector function can
not be excluded. Because of this, we have to introduce the assumption that the
simulation that was used for the calculation of the detector function provides a
good description of the data.

The measurement is carried out on the basis of the following discretization:
=X, ¥, =Y, <y <.<y:=y, mneN

X) B Xy =i X <Xy <o <X IF X,

2 "very small" means that the function D can be approximated by a constant in this interval.
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and on the basis of the discretized versions of the distributions and the detector
function which become column vectors f and 6 and the detector matrix D (the
response matrix) respectively:

Ax:=x - x

i-1°?

i=L...m; Ay:=y -y ,j=Ll...,n

¥

tAx:= Jt(x)dx, oAy ;= Io(y)dy

11 ¥i-t

?‘Ale f f D(y, x)t(x)dxdy (3.2)

i
Yj1 Xiy

Dﬁijzz

It follows from the relation (3.2) that the elements of the detector matrix will
in general depend on the true distribution #(x), if the width of the bins is that large
that neither #(x) nor D(y,x) can be approximated by a constant within the bins
[x..x]. For that reason the bin widths used in our analysis are small in regions
where the slope of #(x) has large absolute values, while larger bins are allowed in
regions where #(x) has a more constant behavior.

Now the discretization of (3.1) can be done:

oAy = T]ZD(y,x)t(x)dxdy = 2’": :{ j.D(y,x)t(x)dxdy = ngiijtiAx, (3.3)

Yjethu =1y

Because it is highly improbable that a complete event is lost, the probability
of detecting an event property is one3. That means:

Yo

JD(y,x)dy =1 or iDﬁAy, =1

Yo

Conclusion: The discretized versions of the true and the observed distributions
are connected via a system of linear equations. The matrix appearing in this
system of linear equations describes the influences of the detector. If this
matrix and the observed distributions are known with a very high accuracy,

In the case of single particle properties the possibility of annihilation and creation mechanisms
has to be taken into account. Because of that new particles will be added, or some of the particles
that penetrate the detector will not leave it, and the detection probability for single particles will
in general fall below one.

48



Treatment of event properties

the measurement corresponds to the solution of this system of linear

equations*.

Before the algorithm for measuring event properties is applied to ALEPH
data, it will be tested in a very simple model surrounding. This simple model is
introduced and illustrated in the following example.

Example 3.1: A simple model scenario

Idea: Before the algorithms discussed below are applied to data, they should
be explained and illustrated in detail For that reason, a detector function
together with two 'ftrue distributions” and the corresponding "observed
distributions" biased by the 'detector” are given. The first of them play the
role of the data (dat), while the second provide an illustration of the
simulation (sim). A dependence of the detector matrix from the model as it
would eventually appear is not included in this simple model.

Numerical values: x =y =0, x, =y, =8, m=12, n=13. All bins have the same
width..

"data distribution” (t dat):

G,

Xy 3 - 1 . A 2
tdal(x)::: N(;lf(x)v Nd::Jf(x‘)dx" f(x):zzaiexp{:_a[i——,ﬁ') ]
pu,=150=154a=35, pu,=45,06,=0354a,=08,
p,=550,=15a =10

simulated distribution” (t sim):

- I{x—n, ’ Tt 1 x'-u, ’ . 3 _
tm(x).— N’ exp{—;(-—-—g——) }, Nm.—;’:exp[-—i[ S )}dx, p,=2.0,0,=2.0

m m

4 In fact the accuracy will in general not be sufficiently large. The problems that arise from this
point are discussed in the next section.
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Figure 3.1: Observed and true distributions for "data" and "simulation”

detector function:

2 . 2
e AJ-1 1 y—Xx .___) _1 y'_x ! —
D(y,x):=N exp{—-z—( o ):}, N.—!:exp{ 5( o ):}dy, c,=1

Figure 3.2: Detector function o
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3.3.1.2. Behavior at finite statistics

Naive thinking might suggest, that since the observed distribution and the
detector function are known, the true distribution can be calculated by inverting
the detector matrix and multiplying this inverse with the vector that represents the
observed distribution. Serious problems arise because of the finite number of
events we are able to use in the analysis (called the "finite statistics’). To
demonstrate these problems, the model surrounding is provided with finite
statistics in the next example. This example also demonstrates the way to calculate
estimates for bin contents in the case of finite statistics and the widths of these

quantities.

Example 53.2: The model scenario at finite statistics

Idea: Since we have to use finite statistics in the measurement we do only
have estimates for the bin contents, and we are able to calculate estimates
for their widths. The estimation procedure will be infroduced here.

These statistical inaccuracies lead to serious difficulties. To get some
deeper understanding of this topic, the model scenario should be generated
with finite statistics.

(i) Generation of a discrete distribution

Starting point is the discrete probability distribution (p,,...,p,) of a given
random variable x with

ipkzl’ pki=pkAXk

Here p, is the probability for the case that a value of the random
variable x lies in the Ath bin. On this basis a separation of the interval ]0,1]
into subintervals is made:

k-1

k
ZP”ZP,], k=2,..n
1=1

1=1

I,:=]O,p,] , Ik:=]
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The width of the kth interval is given by the probability p,. Normally
every programming language used in natural sciences provides a random
number generator which produces random numbers equally distributed in
the interval ]0,1]. If a value of this equally distributed variable lies in the
interval I , a counter that registers the entries in the &th bin is increased by
unity. The values of these counters are then distributed according to the
given discrete probability.

(ii) Estimation of the bin contents and their widths

The bin contents B, of the discrete distribution generated in section (i)
are distributed by a polynomial distributior. (The bar marks that this is the
bin content of a given sample, and it is in general different in another
sample.) If samples are generated with s independent throws (s marks the
used ’sfatistics’), the mean values and the covariance matrix can be
calculated (c.f. [Ea,71]). For example we have

E(B,)=sp, (mean value), V(B )=:6*(B )=sp,(1-p,) (variance)

k

Because of this expression for the mean value, the normalized bin contents

are unbiased estimates for the values of the discrete probability distributions
p, (that means E(p,)=p,), and the standard deviation can be taken as a
measure of the distance from p, to p,6. Because of V(oX)=0V(X), aeR,
and because Xis any random variable we have

sp, (

vell-p) _ 1 |B(s-B,)
sAx, sAx, s

5 The polynomial distribution is also called "multinomial distribution" (c.f. [Br,87]).

o, =

® The standard deviation marks the mean of the difference of a given value of a random variable
from its mean value. Only if this mean value is identical with the quantity of interest (that means
if the estimator is unbiased), it is also a measure of the deviation of any output of the random
variable from this quantity of interest.
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and we end up with

G, = 1 B_L(S—Ek) (34_)
sAx, V s

We neglect the width of this width due to the statistical fluctuation of
the B, and take the formula above as an expression for the standard
deviation.

(iii) Simulation of detector influences

Every content of the ith bin of the true distribution is "scattered" into
the kth bin of the observed distribution with a probability D Ay,. To
generate the observed distribution, the algorithm introduced in (i) is

repeated with
5= Bi v P = DkiAyl'

(iv) Graphical illustration

The "simulated distribution" is generated with s_:=4000, and the "data
distribution” is generated with s, :=1000. The following figure illustrates the
results. The fact that the normalized bin contents lie inside the error bars (as
defined by the standard deviation) with a probability smaller than one can
be seen from these graphs in particular.
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Figure 3.3: Distributions at finite statistics

In fact the estimates p, for high values of s are in good approximation
distributed by a normal distribution (c.f. generalized theorem of Moivre and
Laplace [F1,62]). The true value therefore lies in the region marked by the
error bars with a 68% probability. From the expression for the standard
deviation (3.4) it is clear that one has to provide a factor 4 in s to end up
with 50% of the error bars. This fact can also be seen in the figure above.

Equation (3.3) is a system of linear equations, and it seems to be clear that a
solution can be found using standard methods. This is true in principle, but since
we only have estimates for the coefficients of this system of linear equations, we
will also get estimates for the solutions. The crucial point will be the size of the
widths of the solutions. It turns out, that in general the errors of the solutions will
be that large, that the result is quite meaningless’. The following example
illustrates this fact.

7 An example of a meaningless result is the estimate of a probabilitiy with an error bigger than
one.
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Example 3.3: Error propagation in systems of linear equations

Idea: /n some steps of the solution of a system of linear equations some
critical mathematical operations, such as the subtraction of nearly equal
numbers can appear. These critical operations can lead to big relative errors
in the resulfs. To characterize this critical behavior, normally a number that is
called condition is used. This condition is introduced in the following
example, and a characterization of the systems of linear equations appearing
in our analysis is carried out8.

Starting point is the following system of linear equations

Ax=b

In the case of the measurements of event properties, the matrix A will
be the detector matrix. In the cases that are interesting for this work, the
matrix A is quadratic and invertable. Because of this the following
discussions are also restricted to this special type of matrices.

In a first step the errors of the matrix coefficients should be zero, only
the inhomogenous part b should be biased. This is the same case that can
be found in the example "Unfolding of a distribution of a discrete variable” in
[BL,34]. To begin let us define the length of a vector and the generalized

"length" of a matrix:
b= (S and A= 33

The definition of the condition of the matrix A comes next:

A)=]alja*]=1

The inequality (c.f. [Sc,93])
lax] _ «(A) "Ab ”
Eaaa Tl

8 For details c.f. [Sc,93] or any textbook of numerical mathematics.
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holds. This formula makes only predictions about lengths of vectors, but it
should be enough to give a first impression about the error propagation
behavior. The condition is in this first case of an unbiased matrix A an
amplification factor for the relative errors. In the example found in [Bl,84],
the condition is k(A) =162, thus the relative errors of the solutions can be a
hundred times larger than the relative errors of .

If not only 4 is biased, but also the coefficients of the matrix A, the
following generalization of the expression above can be used (c.f. [Sc,93]):

lag) . x(a) {IIAAN MABII}

ERR DG
A

[aa]

lal
If this is not the case, the result of the inversion process should not be
trusted. If this condition is fulfilled, the expression above leads to an upper
limit that is in general pessimistic. The next figure illustrates this behavior in a

rather drastic way.

Note that this expression makes only sense if 1> x(A)
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Figure 3.4: Solution of a well conditioned and of a badly conditioned sysfem of linear
equations

Again the simple model set up with s, :=5000 and s, :=50000 is used to

obtain this illustration. The change in the condition is produced by a change
of the width o, in the detector function. A small width corresponds to a
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rather diagonal detector matrix, and therefore to an unproblematic system of
equations, while a larger width leads to the difficulties mentioned above. The
next table shows more of the details. The following abbreviations are used:

“AA” ”AA” “N;” :zM, ”Af = K(A) IAA” UA””
el P 1S STAAT | Al
A
s, k(A) | laal , [<Caal | lasl | A,
035 3.34 0.0338 01129 0.0427 029
1 34323 | 00721 39.160 0.0432 -

Table 3.1: Matrix conditions in the simple model

Now the interesting question is about the behavior of the detector
matrices used in our analysis. To calculate these conditions, we used the bins
:=1186173. The

given in chapter 4. The statistics were s,:=571825 and s,

results are shown in the following table.

quantity | | (A) | faal o [s(alaal | sl | (el | JAs],,
S 7740 | 00073 0.56 0.0045 0.35 211
A 53.68 | 0.0071 0.38 0.0029 0.15 0.87
P 26.08 | 0.0091 0.24 0.0027 0.07 0.40
C 3571 | 01012 3.61 0.0043 015 -
T 90.55 | 0.0161 1.46 0.0048 0.43 -
M 19.27 | 0.0140 027 0.0049 0.09 0.50
m 23.88 | 00343 0.82 0.0038 0.09 5.00
o 1744 | 00129 023 0.0042 0.07 0.38
M; 191.26 | 0.0165 3.15 0.0043 082 -
M} 2281.2 | 00372 | 84938 | 0.0026 593 -
M? 190.90 | 0.0164 3.13 0.0036 0.69 -
B, 542 0.1185 0.64 0.0036 0.02 1.86
B, 6.96 0.0460 0.32 0.0030 0.02 0.50
¥, 150.74 | 0.0186 2.80 0.0019 0.29 -

Table 3.2: Conditions of relevant detector matrices
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Conclusion: Even if the upper limit as calculated by the condition of the
detector matrix is pessimistic, the given results clearly indicate that results
calculated by inversion of the detector matrix should be mistrusted. If
satisfactory results are required, we have to use other methods. If we want to
end up with smaller errors we have to provide additional information to the

measurement.

This additional information will be achieved by using of a simulation model.
The better the model used for the measurement is, the better the results will be.
The discussion of the inclusion for a given model into the analysis is described in

the next section.
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3.3.1.3. Unfolding of event properties (matrix method)

The detector matrix D that was introduced in the last section is calculated by
a Monte Carlo simulation. Finite statistics will in general lead to estimates for the
normalized bin contents with errors that are too big for an accurate inversion of
the detector matrix. This section introduces a method that allows for an unfolding
without any inversion. This big advantage is reached by adding information in
form of a simulation model that represents the current "state of the art". If this
model describes nature exactly, the analysis is exact too. Because this is not quite
the case it will be necessary to introduce an estimation of the error due to the
imperfections of this model.

Let oAy, = P(Ay,) be the probability for the case that a given event property
is measured in an interval Ay, and tAx, =: P(Ax,) the probability for the case that
the true value of this quantity lies in the interval Ax. D,Ay, = P(Ay,/Ax) is the
probability, that this quantity of interest is measured in the interval Ay, under the
condition that its' true value lies in Ax. We can now rewrite formula (3.3) and
identify the "Satz ueber die vollstandige Wahrscheinlichkeit” (c.f. [Bo,91]):

P(ay,)= 3 P(y,/Ax )P(ax)
Because this is true, the expression

P(Ax) =Y P(Ax/Ay )P(Ay) & 1Ax = CAxoAy,
j=1 J=1

also holds, and the correction can be done by:

n
;= 2 (ONVE
j=1

Here CAx, = P(Ax,,/ij) is the probability that the true value lies in the
interval Ax, under the condition that it is measured in Ay,. Thus we know the
correction matrix C if we are able to compute the conditioned probabilities
P(Axi/ij). The key to this calculation will be the Bayes theorem (c.f. [Bo,91],
[Br,87]):
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D,

P /oy, ) P(ay,) = Play, fax ) Pax) = Play, at) = €=

Even in the case of a detector matrix that is independent from the model
predictions, this equation shows a linear dependence of the correction matrix from
the model distribution. The key for calculating the elements of the correction

matrix is given by:

P(ij AAxi)

C.'iji = P(Axi/ij) :W (3.5)

The sometimes very drastic influences of the model predictions on the
unfolding procedure should be illustrated (in a pessimistic but nevertheless
interesting way) by the following example.

Example 3.4. Matrix correction in the model scenario

Idea: In the model scenarioc we provided a "model” that is somewhat
different from the "data”. Now we play the following "game’. What happens
if we use this false model to "correct” the observed distribution with the
method introduced above?

In the figure right, the result of this "game" is illustrated. The bars
represent the given true

distribution (dat). A correction 0.25
matrix that was calculated with — o : .
this true distribution reproduces bt N R T
the distribution as it should be. otsl ] s
The crosses show the different
(and false) "model". The circles 0.1 i ]
illustrate the result of the X
unfolding procedure using this 0.05 x|lo| —
false model. A large bias is the HE [2]
consequence, and indeed the % 2 6 8
result is not very satisfactory. ’

o Figure 3.5: - ... t dat, 0 ... t_comr, X ... t_sim
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We explained how to calculate the elements of the correction matrix. Not
only estimates for this elements have to be calculated, but also their widths, and
the widths of the corrected distribution. This topic will be dealt with in section
3.5.2. 1 where the calculation of errors is introduced.

Conclusion: /t is possible to reproduce the true distribution, if a good
simulation is available. The crucial assumption is therefore, that the model
reproduces the data "very well". Additional tests should be done to check the
quality of the models. Because even the best of the available models does not
reproduce data in every detail, an estimation of systematic errors due fo this
imperfections of the simulation models has to be calculated.

Before some tests of the model accuracy are done and a method for the
estimation of systematic errors is introduced, the discussion about the unfolding
procedures should be finished by a section that deals with the single particle
distributions.
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3.3.2. Treatment of single particle properties

There are two important differences between the unfolding of event
properties and the unfolding of single particle properties. The first difference is due
to the calculation of the statistical error. In the case of event properties we used
the fact that each event is generated under the same conditions and that all events
are independent. That means: different entries are independent in the case of
event properties. On that basis we applied the rules of statistics. In the case of
single particle properties this basic assumption does no longer hold. Entries are
correlated in general, and we have to use different methods.

The second and even more important difference is that a detector matrix is
not available. This is due to the facts that single particles can be annihilated or
they can be produced in the detector, and to some technical details in ALPHA®.

3.3.2.1. Calculation of the statistical error

One possibility is to forget about the correlation mentioned above. In this
case one would expect a statistical error that is much smaller than the error that is
calculated for event properties, because on average each event contributes
roughly 21 charged particles, and so the statistics used for single particle
distributions should be 27 times higher than the statistics used for event properties.
This calculation can be used for a first approximation.

If one wants to calculate more accurate values for the widths, he has to take
the correlations into account. These correlations are due to the fact that a
hadronic event is not isotropic, but is arranged in jets. If one knows for example
the direction of movement of a given particle in a given jet, he also knows that all
the directions of movements of the other constituents of this jet are very similar.
The direction of one particle restricts the direction of many others. They are no
longer independent and thus correlated. These correlations are especially
important for the true distributions. Bins of observed distributions are less
correlated because the smearing of the detector decreases the effect.

? It turned out to be impossible to relate true properties of single particles to observed properties in
a unique way. For details see [Ap,95]
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Treatment of single particle properties

For example the rapidity of a particle is essentially a measure of the angle
between the direction of movement of this particle and the thrust axis. If the
directions of movement are highly correlated, one could argue, that the rapidities
are highly correlated too. Indeed discrepancies between the widths calculated with
and without including correlations can be observed here.

If one wants to include correlations in the calculation of the widths, one can
again use the fact that events are independent, even if single particle contributions
are correlated. For each event the full histogram of the single particle distribution
is calculated, and on that basis the width in each of the bins can be calculated by

the following formula.

2
1 &y, - \2 n I I
2 i i i
ol =—>3(t -1 ) = =Y - =Y
by n__lizl(b,v b.‘) n_l{(nizl b, ) (ng b, )}

Here n is the number of events, 1, , is the bin content of the b-th bin of the
th distribution in the fth event. We are interested in the mean value

I RN
tb,v = Z tb,v
Ny

of a given bin content. The width of this mean value is given by

. o-b,v

oo \/;

[e)

This can be seen by error propagation. The off-diagonal elements of the
covariance matrix are again neglected, even if they are supposed to be bigger
than in distributions of event properties.

3.3.2.2. Unfolding of single particle properties (factor method)

Since the full detector matrix is not known in the case of single particles, the
unfolding is done by the simplest of all unfolding procedures, that is the

63



Unfolding procedures

application of correction factors. Here the jth bin content of the corrected
distribution is given by

corr __
£ —Cjoj

The correction factors are again calculated by using a simulation model.
Their estimates are given by

C.=- (3.6)

For the calculation of the width of this expression and of the width of the
corrected distribution see section 3.5.2.1. The factor method can be applied if off-
diagonal elements of a generalized detector matrix are relatively small. To
guarantee this crucial requirement, the width of the bins for single particle
distributions is set to be bigger than the resolution of the detector.
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3.4. Tests of the simulation

We mentioned before that a very important ingredient of our analysis is a
simulation that reproduces the data "very well". We will now take a critical look on
this assumption by using the very sensitive "eye glasses" of high statistics. If it turns
out that all tests are fulfilled, our understanding of hadronic events has reached an
optimum and the analysis is simply a test of an optimal model. Because we know
that our understanding is not perfect, even if it is really not too bad, we expect
that some of the tests will fail. That means that the basic assumption of our
analysis is violated, and we should expect a bias of the kind of example 3.4. If a
bias appears in the measurement, a corresponding systematic error has to be
given. This error is called "model bias”, its estimation is introduced in section

3531

Two kinds of tests are done. The first one is a very sensitive test. Here a very
high statistic is used to check the whole simulation, that means the QCD-part as
well as the detector simulation. The deviation of the data from the full simulation
is expressed in percent of the data and in units of the calculated statistical error. In
addition a *-value is computed for each of the distributions. The second test is
not as sensitive as the first one, but here it is possible to test the consistency of the
corrected data. If one of these tests fail, the basic assumption of a very good
simulation was not satisfied, and the calculation of a model bias is necessary.

3.4.1. Accuracy of the full simulation

If the QCD-model and the detector simulation would be perfect, the
deviations between the full simulation and the data should be purely statistical,
and the statistical widths should have the same size as these deviations. Because
of that we look at the behavior of the difference

dat sim

A= i

=/
o) (o)’
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Tests of the simulation

Here r/ is the data value in the fth bin of a given distribution, and r™ is

the corresponding value of the full simulation. If the deviations are purely
statistical, these values hardly exceed 3. If the simulation is perfect, the sum

=24
j=1

is a sum of squares of n random variables which are N/0,1) distributed. (n-1) of
them are independent if bin correlations are neglected!®, and consequently this
sum should be yx’ distributed with (n-1) degrees of freedom in very good
approximation!!. The mean value of this distribution is (n-1), while the variance
deviation is 2/n-1). With this method the hypothesis of a perfect simulation can be
tested. We know the yx’ distribution, and we know a region where the values
should lie with a given probability, and can therefore exclude this hypothesis if the
value of the test quantity 1 exceeds some upper limit. The exact values of these
upper limits can be found in [Br,87]. For a first impression the deviation from the
mean value should not exceed more than two standard deviations, because every
x* distribution with m degrees of freedom can be approximated by a N\m,Z2m)
distribution. The accuracy of this approximation increases with increasing m.

The quantities given in the following tables are calculated with ALEPH 92
data and the simulation HVFLO3. Beneath every symbol of the distribution and
the number n of bins the value of the test quantity 1 can be seen.

slalp| clit| M| m| o|nM| m| m
24 | 17| 21| 24| 22| 22| 18| 20| 23| 18| 22
157.7| 558.8 | 489 | 1652 | 1181 | 304.0| 436.0| 311.8| 152.0| 160.1 | 192.7

B_| B, [-wG)|| x, |y |pr(S)|p™(S)| v, | p"(T)]|p(T)

20 17 14 46 21 25 19 21 25 19

1954 | 2280/ 2659 | |10310°| 6.7.1¢° | 5.9:10° | 21.7.10° | 8.3-10° | 3.6-10° | 25.8.10°

Table 3.3: Test quantities of the full simulation

10 In every distribution one bin can be expressed as a linear combination of all the others.
I For details about % dsitributions c.f. [Ea,71], [Bo,91].
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These numbers are really dramatic in the case of single particle distributions.
One should remember, that this is mainly because the x* test with a statistics as
high as for the single particle distributions is very sensitive. In fact most parts of the
data are described well (that means better than one percent), as can be seen in the
following table. It quotes the differences A; and the deviations between data and
simulation in percent of the data value (symbol: A‘i‘.’ ).

S A P C 1-T M
A, A A, A" A, A% A, A” A, A* A, | A
-10.0 -6.1 -12.9 -4.1 -0.6 -0.1 -7.0 -6.3 -3.8 -5.6 -12.3 | -25.2
2.1 0.9 -0.9 -0.3 3.2 1.2 -1.1 -04 -6.0 -4.3 -7.4 -9.4
0.0 0.0 0.1 0.0 -0.5 -0.3 0.5 0.2 -2.7 -1.5 -0.4 -0.4
2.3 1.3 0.7 0.3 2.0 1.3 3.8 1.6 0.5 0.2 0.8 0.6
0.1 0.0 0.1 0.0 -1.4 -1.1 14 0.7 -0.3 -0.2 2.7 1.9
0.6 0.4 0.1 0.1 2.8 2.4 1.2 0.7 1.8 1.0 4.1 1.7
-0.2 -0.2 2.4 14 -0.3 -0.3 1.6 1.0 2.4 1.5 3.3 1.5
-0.4 -0.3 5.2 4.5 -0.6 -0.7 0.3 0.2 0.9 0.6 2.0 1.0
2.2 15 6.8 6.3 0.3 0.3 -0.4 -0.4 1.6 0.8 3.1 1.7
-0.3 -0.2 7.7 10.8 0.1 0.1 -0.4 -0.3 2.7 1.6 0.7 0.3
-2.2 -1.4 8.3 16.1 -1.1 -0.9 0.8 0.8 0.9 0.4 -1.1 -0.6
1.8 14 5.5 14.7 -0.2 -0.2 0.7 0.7 0.7 0.4 -1.5 -0.9
0.9 0.8 6.2 21.2 -1.4 -1.6 -0.7 -0.7 2.5 1.9 -1.2 -0.9
-0.3 -0.2 5.0 21.3 -0.3 -0.3 -2.4 -2.5 0.7 0.6 2.7 -2.3
-04 -0.3 7.0 28.5 2.9 -3.5 -0.5 -0.6 -0.3 -0.3 -1.1 -1.0
0.3 0.3 5.8 33.6 -1.4 -1.8 -1.7 -2.2 -1.9 -2.2 -1.6 -1.7
0.6 0.7 2.5 26.1 -2.2 -3.6 -3.7 -4.9 -0.8 -1.0 4.4 -5.7
-04 -0.6 -1.9 -3.9 -2.8 -3.9 -3.5 -34 -2.1 -3.1
1.6 2.4 0.2 0.6 -1.5 -2.2 -0.7 -0.8 -2.2 -4.0
0.0 -0.1 0.6 2.5 -0.3 -0.5 0.6 1.2 0.2 0.3
1.7 2.7 -1.0 -11.8 3.4 8.1 3.8 20.2 -0.8 -2.6
3.3 7.3 4.6 16.5 0.3 8.7 0.5 3.3
3.3 13.9 4.8 26.5
2.4 39.5 2.1 24.2

Table 3.4: Comparison between simulation and data
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Because the single particle distributions with respect to S and 7T are very
similar, only the values for S are given. One can also see from the tables, that
there are regions where the accuracy of the simulation is not so good. The
calculation of a "model bias" is therefore essential.

m 0 A—/Ihz A_Zz M—dz B
A, | A A, | A A, | A A, | A A, | A A, | A
6.3 | -132 3.1 1.2 42| -44 66 | 1.6 89 | -30 3.0 | -99
124 -6.9 65| 20 6.1 | -3.1 43| -12 4| 05| -1006| -65
19| -10 551 29 39| -17 39| -15 1.7 | 08 371 1.3
03| 02 32| 1.9 01| 00 28| -14 36 | 19 4.1 14
01| 00 36 | 2.3 39| 20 25| -16 40| 24 32| 13
09 | 04 04| -03 12| 07 12| -10 22| 15 12| 06
05| 07 05| 03 11| 07 02| 02 25| 19 -1.0 | -06
05| 02 19 | .13 32| 23 13| 15 50| 43 15| -10
00| 00 20| -15 40 | 22 29| 40 14| 10 12| -08
08 | 06 24| -20 N Y 36 | 5.9 14| 11 16 | -1.3
58 | 4.1 55| -38 30| 1.7 43| 59 18| 12 16 | -15
6.7 | 7.5 47 | -39 05| 04 18 | 34 0.7 | 06 1.0 | -1
71 | 11.8 54| -54 09| 07 24| 57 28 | -29 39 | 47
80 | 196 49 | -59 12| -12 0.7 | 23 07| -09 1.7 | -2.3
48 | 184 53 77 0.0 | 00 2.6 | 106 08 | -12 09| 14
41| 243 56| -9.9 12| -7 0.9 | 4.1 23| -38 07 | 13
18 | 184 42| -93 13| 21 2.7 | 241 25| 4.9 09| 23
0.9 | 209 24| -67 351 -47 12 | 370 23| -36 16 | 65
-16 | -64 22| -4.3 28| -64 32 | 281
1.0 | -6.1 15| 46 04 | -13 0.7 | 237
0.8 | 37 05| 24
05| 37 09 | 53
10 | 117

Table 3.5: Comparison between simulation and data

68




Accuracy of the full simulation

B, —~In(y,) X Vs pi'(S) p(S)
A, | A" A, | A A, | A A, | A A, A* A | A
-10.5 ) -10.2 -2.2 -7.2 229.0 2.9 32.9 0.3 195.7 0.9 -286.8 -1.0
2.4 0.7 -6.6 -6.2 482.1 4.4 25.3 0.2 291.5 1.3 57.9 0.2
6.2 1.8 -6.1 -4.0 155.7 1.3 -20.4 -0.2 209.0 1.0 -32.6 -0.1
3.0 1.2 -2.4 -1.3 7.1 1.] -87.2 -0.7 -44.5 -0.2 -141.7 -0.8
0.3 0.2 -2.1 -0.9 -52.4 -0.4 -128.8 -1.0 -167.6 -1.1 -183.0 -1.3
-2.7 -1.6 2.8 1.1 -81.3 -0.7 -171.9 -1.2 -255.0 -1.9 -66.1 -0.6
-0.8 -0.6 2.1 0.8 -204.0 -1.9 -182.1 -1.2 -274.8 -2.3 107.5 1.3
-2.5 -2.0 4.8 1.7 -341.7 -3.3 -193.3 -1.3 -240.0 -2.3 212.7 3.3
-3.6 -3.6 4.8 1.7 -321.9 -2.2 -63.7 -0.4 -224.2 -2.5 326.6 6.4
-2.0 -2.3 0.0 0.0 -211.0 -1.5 62.2 0.4 -162.0 -2.0 435.8 10.5
-3.6 -5.3 -6.8 -8.5 -210.2 -1.7 180.4 1.3 -159.2 -1.7 631.3 14.9
-2.9 -5.2 -7.8 | -22.5 -151.7 -1.3 265.4 2.0 -65.5 -0.8 600.3 20.1
-2.4 -5.7 -1.5 -8.8 -127.9 -1.2 310.1 2.6 -70.4 -1.1 5199 238
-2.1 -7.1 0.8 8.8 -60.3 -0.6 213.9 2.1 -6.2 -0.1 442.0 27.1
-0.1 -0.6 -4.8 0.0 234.8 2.6 18.5 0.4 379.2 30.7
0.7 5.3 17.0 0.1 179.4 2.4 56.4 0.1 416.3 33.6
1.1 10.9 116.1 1.0 332 0.5 37.1 0.9 272.9 38.1
104.1 1.0 -53.7 -1.0 75.4 2.2 196.3 46.7
174.2 1.9 -185.4 -3.5 94.2 3.5 1344 46.0
168.7 2.0 -308.5 -94 132.1 5.0
147.8 1.9 -243.1 + -13.2 109.5 6.3
145.2 2.0 -109.9 | -13.4 122.6 10.6
173.0 2.5 110.1 13.9
154.4 1.8 79.9 13.0
166.5 2.2 60.9 19.9
162.8 2.4
153.5 2.3
75.0 1.3
73.2 1.4
527 | 1.2
4.3 0.1

Table 3.6: Comparison between simulation and data
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For event properties the absolute deviations between data and simulation
are smaller, and the statistical errors are bigger than for single particle properties.
This leads to a small contribution of systematic uncertainties to the deviation
between data and simulation in the first case, while in the latter case the main part
of this deviation comes from model imperfections. If one only looks at the A, he
can easily get the impression that the simulation is inappropriate. But the quality
of a model can be better judged if one looks at the percental deviations A”. Here
a good agreement in the percental range is observed. Indeed the mean value of
the absolute values of all A given in the three tables is 4.6, and some of the
distributions such as Sor x, are described much better. In some other distributions
a lack of understanding of hadronic events seems to be obvious. Examples are A,
mand p™.

Only the first 37 bins are shown for the momentum distribution x,. For the
calculation of the distributions the bin divisions that were given in chapter 4 and

the cuts that were introduced in section 3.5.1 were used.

Conclusion: The test of the full simulation shows that the simulation describes
the data in most of the interesting parts within less than one percent. The
usage of this simulation in the measurement therefore makes sense. Errors in
the measurements due to the remaining systematic uncertainties of the model
will be estimated by introducing a model bias.

We also saw that systematic errors are negligible compared to the
statistical errors in most part of the event properties, while they exceed the
statistical errors dramatically in the case of single particle distributions.
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3.4.2. A statistical test of unfolded event properties

In some works about unfolding methods one of the basic assumptions is that
the dependence of the detector matrix D from the underlying QCD part of the
simulation can be neglected. This QCD-model is a major ingredient for the
calculation of this matrix. It is worth noting that if this assumption is true, it is
possible to construct a very sensitive test for the quality of the unfolded
distributions.

Idea: The measured values in each of the bins and the elements of the detector
matrix D are in very good approximation normally distributed, even if the
elements of D are computed as a quotient of normally distributed random
variables. Because of this, the differences

d:=o0,~ zm:DﬂtiAxi

are normally distributed too (c.f appendix A, section 3). Here j is the index of one
bin of a given distribution, and (s,,...,1,) as well as (Ax,,...,Ax,) are m-tuples of
real numbers. The former will be a candidate for the unfolded distribution, while
the latter is the set of bin widths used for the distribution under observation.
If(t,,....t,) are the values of the true distribution, the mean values of these

differences are zero. This hypothesis can be tested by a * test.

We neglect correlations between the data values o, and the elements of the
detector matrix, even if they can appear, because the same model that was used
for the calculation of the detector matrix is used for correcting the data. The
correlations between the elements of D are neglected too. On the basis of these
approximations, and with the hypothesis that the mean values of all differences
vanish, these differences d, are independent and normally distributed random
variables with known widths and vanishing mean values. Consequently the
following random variables are in good approximation y’ distributed with 77 (more
exactly (n-1)) degrees of freedom. (c.f. [Bo,91]):

n 2 2
" {01' - Z Dj,.t,.Ax,} . |0~ Y. DtAx
Xewi= 2, ——

= ol + i(cﬁt,.Ax)zi - i
i=]
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Tests of the simulation

The second expression is applicable if the widths of the elements of the
detector matrix are negligible compared to the o, the widths of the data values o,.
o, are the widths of the elements of the detector matrix D,. (The calculation of the
latter is discussed in section 3.5.2.1). For a model independent detector matrix the
sensitivity of this test is demonstrated in appendix A, section 4. The following table
shows the values of the first test quantity for the event properties that are
measured together with an upper limit > of a 5% confidence level for the ¥’
distribution with n-I degrees of freedom (taken from [Br,87]). If the hypothesis is
correct, the test quantity should therefore lie beneath this value with a probability
of 95%. Again we used ALEPH data from 1992 and the simulation HVFLO3. The
statistics were s, :=1186173 and s,,:=571825.

distribution n - X

S 24 352 23.85

A 17 26.3 22.32

P 21 314 14.86

C 24 352 38.35

T 22 32.7 23.30
M 22 32.7 39.93
m 18 276 36.14
O 20 30.1 12.19
M; 23 339 34.09
M} 18 276 49.49
M? 22 32.7 80.42
B 20 30.1 34.21
B, 17 26.3 37.56
~In(y,) 14 224 59.89

Table 3.7: Test quantities for event properties

Table 3.7 indicate the quantities M?, M?, B, and -In(y,) as dangerous,
because the value of the test quantity is too high. If we remember the very high
sensitivity of this test, these deviations are not dramatic, even if they appear. We
should also remember that measurements are given with errors, and the test
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A statistical test of unfolded event properties

quantity can be better for other values inside this error bars. An optimization could
for example be done by a maximization of the x* probability inside this error bars.

If the detector matrix is model dependent, this test does not proof the
correctness of the unfolded data, but it is only a sort of check for consistency of
the unfolding procedure. In the case of entropy methods, a dependence of D from
the QCD part of the simulation leads to a dependence of the unfolded data from
this @QCD-model.

We saw that the elements of the correction matrix are dependent on the
simulation, even in the case of a vanishing model dependence of the detector
matrix D (c.f. section 3.3.1.3). This might indicate that indeed the dependence of
C is much stronger than that of D. In fact both matrices, the detector matrix D and
the correction matrix C seem to be dependent on the used QCD-model. If one
wants to use the above method, and one is not only interested in presenting some
ideas as we were here, he has to test the model independence of D in detail.
Because we do not use this assumption in any other part of this work!, we do not
go into more details here.

1 Except some discussions in appendix A.
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3.5. Measurement
3.5.1. Hadronic events and critical tracks

We are only interested in multi-hadronic events, that means, events where
the Z particle decays into a quark-antiquark pair which converts into observable
hadrons. Therefore all non-hadronic events must be excluded in a first step. In the
figure beneath, a histogram is given which reflects typical properties of hadronic
events, and which can therefore be used as a basis for cuts which reject leptonic
and yy events. Note that in this histogram both charged and neutral particles are
included, and the that cut-values can therefore not be taken directly. This
histogram is taken from [A4,94].
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The dashed lines show the preferred region of hadronic events above a
number of 10 particles and above an energy of 40 GeV.

A second point that has a negative influence on the measurement is the fact
that there exist "blind regions" in every detector. For example it is impossible to
detect a particle which propagates along the beam pipe. And it is also impossible
to reconstruct the track of a particle with very few hits in the 7PC with a
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satisfactory accuracy. Tracks that can not be measured, or can only be measured
with a bad accuracy are called ‘critical tracks", and are excluded from the analysis.
We are also not interested in particles which do not originate from the main
process. These are particles that are generated by the decays of other long-lived
particles, and do not directly characterize the hadronic event.
A track of a charged particle is accepted for the further analysis if the
following conditions are fulfilled.

Nppe 24, dy<2cm, z,<5cm

p,20.2GeV, 200<9<160°

Here N, is the number of hits in the TPC; this cut makes a good
reconstruction of a charged track possible, d, is the minimum distance of a track to
the beam axis (which is the zaxis by definition), z, is the zcoordinate at the point
which corresponds to d,. Both cuts eliminate particles which do not come from the
interaction point. p, is the transverse (that means perpendicular to the zaxis)
component of the particle's momentum and the cut rejects particles which lie in a
critical region of the detector, and ¥ is the angle between the momentum of the
particle and the zaxis. Only tracks of charged particles are taken into account.

An event is accepted if it passes the following cuts:

N >5, E,215GeV, 35 <0,<145

TRACKS —

Here N, is the number of accepted charged tracks, the corresponding
cut excludes leptonic events. E_, is the whole charged energy, the cut rejects yy
events. ¥ is the angle between the sphericity axis and the beam direction, this cut
ensures that the event is well contained in the detector.

Events which are believed to be 1T pairs are excluded in addition. For that
reason all the events which contain 5 or 6 charged particles are split into two
hemispheres with respect to the thrust axis. In each of the hemispheres the
invariant mass is calculated by the resulting four momentum, and the event is
rejected from the further analysis if both invariant masses are less than the T mass.
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All the event cuts were passed by

571825 hadronic events taken in
1992

and these were used for the further analysis.

3.5.2. ISR and cut corrections

After the correction for detector effects, an additional correction factor
analogous to (3.6) was introduced. Two things had to be corrected. We are
interested in the reaction e¢’e¢* — Z° — hadrons, and we should therefore correct
for a possible initial state radiation (/SE). The second effect is due to the rather
arbitrarily chosen event cuts.

The calculation of these correction factors was again done by the simulation
model HVFLO3. '"True" distributions ™ where calculated without any cuts,
without detector influences, and without initial state bremsstrahlung. Then the
corresponding "biased” distributions b where calculated by introducing all the
cuts behind the detector, and including ISR. The correction factors are

sim
t
N

J* sim
bj

and all unfolded distributions were corrected by

— corr
tj-—Cjtj
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ISR and cut corrections

3.5.2.1. Detector matrix and statistical widths

The principle of the following measurement is demonstrated in the next
example using the simple model introduced in example 3.1. The estimation of the
statistical widths is given in example 5.2.

Example 3.5: Correction matrix and correction factors

Idea: The elements of the correction matrix for event properties, the
correction factors for single particle properties and for the correction of ISR
as well as cut effects should be calculated. The corresponding widths should
be estimated by using linear error propagation

(i) Correction of event properties

Let us look at one of the distributions of event properties. We use a 2-
dimensional histogram where the "true-value" (this is the value without
detector influences) is drawn on the x-axis, while the "reconstructed value"
(that is the distribution with detector influences) is drawn on the y-axis as
starting point. The contents of this histogram are saved in a matrix H. Each
event enters once in this histogram, and the following formulas holds:

)

P(ay, nox)="%, P(Ay,) :—_%if{ﬁ
: i=}

|

The wvalues of both expressions are normal distributed in good
approximation. This is also true for the elements of the correction matrix

_ P(Axi/ij) P(A)’j/\AX,-) H,

—_ ~ J

T Ax, P(Ay,)Ax, "AxiH

The width of P(Ay,AAx;) is given by formula (3.4), the width of
P(Ay,) follows from example 7 in appendix A. The width of the element C;
is calculated by linear error propagation:
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x 1 (x0,) +(yo,)

x=H, y=)H, = (z-—F— = O0,= ;
X = GERTT) B )

2

The same principle leads to the width of the unfolded distribution:

j=1

=Y Cody, = A= \/i{(Aq,ojij)z+(c,jAojij)2}
J=1

(ii) Correction by correction factors

The correction of single particle distributions, initial state
bremsstrahlung and the effect of event cuts is corrected by introducing
correction factors. This factor in the fth bin is

n
C.=-L

j
J

j
where n; is used to sign the nominator while d; is the denominator of this

coefficient. The width of both are calculated in a way that is analogous to
formula (3.4), while the width of the factor is calculated by linear error

propagation:
2 2
An, n,Ad,
AC. = SR R s it}
! d; df

The correction is done by ¢, =C,0;, and the width of the corrected

value is again given by linear error propagation:

At = \/(choj)z +(c0,)
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Systematic errors

3.5.3. Systematic errors

Two kinds of systematic errors are calculated. The first one is the “mode/
bias”, which reflects the fact that the unfolding procedure is slightly model
dependent. The second type is the “cut-systematic” error. This second type is due
to the fact, that the results of the measurements change slightly if different cut
values (as introduced in section 3.5.1) are used.

3.5.3.1. Model Bias

In order to estimate the dependence of the corrected distribution on the
different QCD:-parts of the simulation, a simplified variant of the correction
procedure is used for different QCD models. The deviations in every bin are
observed, and the maximum is taken as the "mode/ bias"

In this analysis, the models JETSET 7.4 in the version of anisotropic and in
the version of isotropic decaying gluons, HERWIG 5.8 and ARIADNE 4.05 with
the parameter settings given in appendix A, section 5 were used. In a first step,
events were generated by each of the QCD-models without initial state radiation.
In a next step, the simplified detector simulation, and the same track and event
cuts as for real data were applied. This gave true distributions (without /SA) and
approximations of reconstructed distributions. On that basis, correction matrices,
correction coefficients and approximative unfolded distributions were calculated.
We used a statistics of s_:=2-10° for each of the models.

Simplified detector simulation: Because the full detector simulation leads to
calculations which are too time consuming, we use a simplified version for the
calculation of the model bias. The principle is to provide an algorithm which
rejects particles that can hardly be detected by ALEPH, and to smear the
momenta of the remaining particles according to the resolution of the detector.
For this resolution, the value of Ap =0.0008p” is used. In a first step all unstable
particles are rejected, because they decay before they can be detected. Unstable in
this context refers to all particles which decay via the strong or electromagnetic
interactions and to weakly decaying charm and bottom hadrons. In a next step,
the following cuts are introduced, to give a coarse approximation of the influences
of the beam pipe p, <0.2GeV, 9<20°. In a last step, all particles that were
produced by a decay outside the 7PC are rejected. Finally weak decays of strange
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particles are simulated for charged tracks with d, >2cm by rejecting them from
further analysis. Source of this simplified detector simulation: [GR,95]

3.5.3.2. Cut-systematic

The procedure for calculating cut-systematic errors is analogous to the
calculation of the model bias. Here not different QCD-models, but different values
of the cuts introduced in section 5.5.1 were used (N,,. 27, d, <lcm, p, 20.3GeV,
30°< 0 <150°, Npguexs 28, 45°< 0 <135°) one at a time. Again the deviations in
every bin were observed, and the maximum values taken as the cut-systematic.
This part of the analysis was done by Univ. Doz. Dr. G. Rudolph.

3.5.3.3. Remarks about the systematic errors

In most of the bins the systematic error is bigger than the statistical one. The
systematic error is typical in the order of a few percent, even if some regions exist,
where this error is bigger (for example in the first bin of the normalized particle
momentum). For event properties the statistical error is also typical in the size of a
few percent, while it is decreased to a few permille in the case of single particle
distributions. The dominant part of the systematic error is in most cases the model
bias. The main contribution to the model bias comes from the difference between
the corrected distributions calculated with the help of JETSET and HERWIG.
Because of all that, it will hardly be possible to reach any further improvement of
the measurement by only using higher statistics.

The systematic errors given in the tables of chapter 4 show a fluctuating
behavior due to the finite statistics used to calculate them. This is the reason for
the peaks appearing in the shape of "(model-data)/error" shown in section 7.3.
One possibility is to apply some smoothing criterion to suppress these unwanted
fluctuations. Because such a criterion would include arbitrariness into the
measurement, and because it turned out that the usage of such a criterion leads to
estimations of the model parameters which are in "one sigma agreement" with the
results shown in chapter 7, we gave the systematic errors without smoothing.
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Chapter 4.

Results I: Distributions of charged particles in
hadronic ALEPH events

4.1. Abstract

In this chapter the results of the first part of this work are given. Here g
always indicates the lower limit of a bin, while g, is the corresponding upper limit.
At is the error computed by a quadratic sum of systematic errors and statistical
widths. At is the statistical width, Az, the model bias and Ar, the cut-systematic.
The systematic error of the measurement Az, is again calculated by a quadratic

At = ,/Atj + At

In a first part all event properties that were measured in this work are listed.
The second part is devoted to single particle distributions.

sum

1 The indices "u" and "o" are abbreviations for the german words "unten" (for the lower border)
and "oben" (for the upper border).
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Event properties

4.2. Event properties

4.2.1. Sphericity

g g, t Ar At At At At
.0000 .0050 12.362 410 .082 402 .396 .068
.0050 .0100 23.328 248 109 223 213 .066
0100 .0150 20.227 158 100 122 14 043
.0150 0200 16.691 A25 .091 085 .075 041
.0200 .0250 13.410 103 081 .063 058 .024
.0250 .0300 10.788 .097 072 .065 .052 .039
.0300 .0350 8.870 135 .066 118 118 .010
.0350 .0400 7.408 081 .060 .054 .053 012
.0400 .0500 5.922 15 .038 109 101 041
.0500 .0600 4.508 .053 .033 041 .040 .010
.0600 .0800 3.258 .023 .020 012 .004 .011
0800 .1000 2.317 .023 017 016 .013 .009
.1000 1200 1.742 .040 015 .037 .036 .006
1200 .1600 1211 014 .009 011 .010 .003
1600 .2000 813 014 .007 012 .012 .004
.2000 .2500 563 013 .005 012 012 .001
.2500 .3000 397 010 .004 .009 .009 .003
.3000 .3500 .290 012 .004 011 .011 .002
3500 .4000 222 .004 .003 .003 .002 .002
4000 .5000 148 005 .002 .004 .004 .001
.5000 .6000 .086 .002 .001 .002 .002 .001
.6000 .7000 045 .002 .001 .001 .001 .001
.7000 .8000 012 001 .001 .001 .000 .000
.8000 .9000 001 .000 .000 .000 ' .000 .000
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4.2.2. Aplanarity

Aplanarity

g g ! At At At At Ar
.0000 .0025 78.493 2.382 .269 2.367 2.352 271
.0025 .0050 85.976 1.260 275 1.229 1.220 151
.0050 .0075 58231 497 231 440 433 081
.0075 .0100 39.489 362 192 .307 .302 052
.0100 .0150 24.016 222 106 196 191 .042
.0150 .0200 13.464 79 .080 .160 155 040
.0200 .0300 6.912 .098 041 .089 .087 018
.0300 .0400 3.285 044 028 .034 .019 028
.0400 .0600 1.438 024 013 .020 .019 .007
.0600 .0800 .590 016 .009 013 012 .005
.0800 .1000 291 011 .006 .009 .002 .009
.1000 1200 156 .008 005 .006 .006 .002
.1200 .1400 .089 .005 .003 .004 .003 .002
.1400 1600 .054 004 .003 .003 .003 .002
.1600 .2000 028 003 .001 .003 .002 .002
.2000 .2500 010 002 001 .001 .001 .001
.2500 .3000 .003 .001 .000 .001 .001 .000




Event properties

4.2.3. Planarity

g, g, t At At At , Ar, At
.0000 .0050 65.366 .618 163 596 585 117
.0050 .0100 32.635 168 124 13 .064 .093
.0100 0150 17.965 107 .094 .052 044 .027
0150 .0200 11.990 099 077 061 047 .039
.0200 .0250 8.655 076 065 .039 036 014
.0250 .0300 6.899 .088 058 .065 .054 .038
.0300 0350 5.522 .080 .052 .061 .056 .024
.0350 .0400 4.591 061 047 .040 016 .036
.0400 .0500 3.647 049 .030 .038 033 019
.0500 .0600 2.754 045 .026 .038 .036 012
.0600 .0800 2.003 021 .016 014 012 .006
.0800 .1000 1.369 037 013 .035 .035 .003
.1000 .1200 1.005 017 011 013 013 .002
.1200 .1600 .678 014 .006 012 012 .003
1600 .2000 427 012 .005 011 .008 .008
.2000 .2500 276 .006 .004 .005 .003 .003
.2500 .3000 A75 007 .003 .007 .006 .002
.3000 .3500 105 .003 .002 .002 .001 .002
.3500 4000 062 002 .002 .002 .001 .001
4000 4500 .026 001 .001 .000 .000 .000
4500 5000 .004 001 .000 .001 .001 .000




C-Parameter

4.2.4. C-Parameter

8, g, t At At At At At
.0000 .0400 401 .058 .005 .058 058 .005
.0400 .0800 2.490 .049 .011 048 .047 .008
.0800 .1200 3.701 091 .014 .090 .089 .012
.1200 .1600 3.323 064 .014 .063 .061 .014
.1600 .2000 2.613 .034 .012 .032 031 .008
.2000 .2400 2.065 022 011 .019 018 .006
.2400 .2800 1.666 019 .010 .017 .016 .005
.2800 .3200 1.368 013 .009 .009 .008 .003
.3200 .3600 1.142 010 .008 .006 .003 .005
.3600 .4000 981 014 .008 .012 012 .003
.4000 4400 842 012 .007 .009 .009 .002
4400 4800 732 015 .007 .014 .014 .001
.4800 .5200 .639 018 .006 017 017 .002
.5200 .5600 552 013 .006 011 .011 .004
.5600 .6000 490 010 .005 .009 .007 .005
.6000 .6400 432 013 .005 .012 012 .005
.6400 .6800 382 .008 .005 .006 .005 .003
.6800 .7200 350 .010 .004 .009 .008 .004
.7200 .7600 316 .009 .005 .007 .007 .003
.7600 .8000 274 .007 .006 .004 .003 .003
.8000 .8400 169 .009 .006 .006 .004 .005
.8400 .8800 .080 .006 .005 .004 .003 .002
.8800 .9200 .034 005 .005 .003 .002 .001
.9200 1.0000 .006 .003 .003 .001 .000 .001
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4.2.5. 1-Thrust

g, g, t At Ar At At At
.0000 .0050 1.017 180 .022 178 177 018
.0050 .0100 6.035 277 .054 272 263 .068
.0100 .0150 12.437 182 .077 165 147 .076
.0150 .0200 16.071 .268 .086 254 .250 041
.0200 0250 16.454 272 087 .257 .253 047
.0250 .0300 15.246 300 .084 288 .286 .037
.0300 .0350 13.380 161 .079 141 132 .050
.0350 .0400 11.582 144 .073 123 109 .057
.0400 .0500 9.346 076 .047 .059 .051 .031
.0500 .0600 7.159 124 041 17 112 035
.0600 .0800 5.088 .065 .025 .060 .059 012
.0800 .1000 3.427 025 .020 015 012 .009
.1000 1200 2.482 .024 .017 .017 .016 .006
1200 .1400 1.847 .046 .015 043 .043 .005
.1400 1600 1.390 035 .013 .033 .032 .005
.1600 .1800 1.072 019 011 .016 011 011
.1800 .2000 847 .024 .010 .022 .022 .004
.2000 .2500 566 015 .005 .014 .013 .006
.2500 .3000 .307 .005 .004 .004 .002 .003
.3000 .3500 25 003 .002 .002 .002 .001
.3500 .4000 .018 002 .001 .002 .002 .000
4000 4500 .001 .000 .000 .000 .000 .000
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4.2.6. Major
8, g, t At At At At At
.0200 .0400 252 .036 .006 .035 .035 .005
.0400 .0500 1.370 076 .018 .073 .072 015
.0500 .0600 2.842 040 .027 .030 .028 012
.0600 .0700 4.253 .061 .033 051 .049 .015
.0700 .0800 5.329 .081 .036 .072 .071 015
.0800 .1000 6.083 .060 .027 .054 .052 .014
.1000 1200 5.833 065 .026 .059 .059 .007
1200 .1400 4.855 056 .024 .050 .050 .004
.1400 .1600 3.991 055 .022 .050 .046 .020
1600 .2000 3.019 023 .013 019 018 .005
.2000 .2400 2.154 014 011 .007 .005 .005
.2400 .2800 1.595 024 .010 .022 .022 .003
.2800 .3200 1.195 018 .008 .016 .016 .004
.3200 .3600 .902 .016 .007 014 .013 .005
.3600 4000 .683 018 .006 .017 .017 .003
.4000 4400 513 014 .005 .013 012 .001
4400 4800 376 008 .004 .006 .003 .005
4800 5200 271 006 .004 .004 .003 .003
.5200 5600 184 005 .003 .004 .003 .002
.5600 .6000 106 .003 .002 .003 .002 .002
.6000 .6400 042 .003 .001 .003 .003 .001
.6400 .7000 005 .001 .000 .000 .000 .000
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4.2.7. Minor
g, g t At At At At At
.0000 .0200 78 .030 .005 .030 029 .006
.0200 .0400 3.237 153 .020 A51 149 .026
.0400 .0500 8.107 101 .044 .091 .087 .025
.0500 .0600 10451 .097 .049 .084 .083 .010
.0600 .0700 11.274 100 .051 .086 .085 .014
.0700 .0800 10.892 .066 .050 .044 .043 011
.0800 .1000 9.003 059 .031 .050 .048 015
.1000 1200 6.208 .063 .026 .057 .056 014
.1200 .1400 4.043 031 .021 .023 .023 .004
.1400 .1600 2.536 027 017 021 021 .004
.1600 .2000 1.299 .020 .009 018 .017 .005
.2000 .2400 526 011 .006 .009 .009 .002
.2400 .2800 221 .006 .004 .005 .005 .002
.2800 .3200 095 005 .002 .005 .003 .003
.3200 .3600 037 .003 .002 .003 .002 .002
.3600 4000 014 .002 .001 .002 .001 .001
.4000 4500 004 001 .000 .001 .001 .000
4500 .5000 001 .000 .000 .000 .000 .000
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4.2.8. Oblateness

Oblateness

g g t At At At At At
.0000 .0200 7.480 .056 030 .047 042 .020
.0200 .0400 10.798 072 035 .063 .056 .029
.0400 .0500 8.679 072 .045 057 .051 .024
.0500 .0600 7.107 064 041 .049 .044 .021
0600 .0700 5.816 .059 .037 .046 .039 .025
.0700 .0800 4.776 042 .033 .026 .022 .013
.0800 1000 3.775 .026 021 015 013 .008
.1000 1200 2.841 042 018 .038 .037 .008
1200 .1400 2.243 .023 016 .017 016 .005
.1400 1600 1.783 .023 014 .018 .018 .001
1600 .2000 1.315 .020 .009 018 015 .009
.2000 .2400 .901 014 .007 012 .006 011
.2400 .2800 .621 016 .006 015 012 .010
.2800 .3200 430 014 .005 013 .013 .005
.3200 .3600 292 .007 .004 .005 .003 .004
.3600 .4000 189 .005 .003 .004 .001 .003
4000 4400 17 .005 .002 .004 .003 .002
4400 4800 .064 .002 .002 .001 .001 .001
4800 .5200 027 .002 .001 002 .001 .001
.5200 .6000 004 .001 .000 .001 .001 .000
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4.2.9. Heavy jet mass normalized to the visible energy

g, g t At Ar Az, At Ar,
.0000 .0050 1.011 214 022 213 213 .015
0050 .0100 7.656 820 060 818 816 051
.0100 0150 15.902 .694 .085 689 682 097
0150 .0200 19.363 910 .093 .905 .901 .083
.0200 0250 18.735 436 .091 427 422 .060
0250 .0300 16.515 .368 .086 358 .349 .078
0300 .0350 14.073 347 .080 .337 331 065
.0350 .0400 11.891 208 073 A95 189 047
.0400 0500 9.422 286 047 282 .280 .033
.0500 .0600 7.013 276 .040 273 273 015
.0600 .0800 4.839 145 .024 143 143 .007
.0800 .1000 3.125 055 .019 .051 051 .007
.1000 .1200 2.138 .031 .015 027 .025 .011
1200 .1400 1.506 026 013 .022 019 012
.1400 1600 1.089 034 011 .032 .030 012
.1600 1800 .784 .016 .009 014 .007 012
.1800 .2000 .579 015 .008 .013 .009 .010
.2000 .2500 347 .007 .004 .006 .003 .006
.2500 .3000 148 007 .002 .007 .006 .003
.3000 .3500 055 .003 .001 .003 .003 .001
.3500 .4000 018 .001 .001 .000 .000 .000
4000 4500 006 .001 .000 .001 001 .000
4500 .5000 .002 .001 .000 .001 .001 .000
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Light jet mass normalized to the visible energy

4.2.10. Light jet mass normalized to the visible energy

g, g t At At Ar, At At
.0000 .0050 30.888 | 1.787 113 1.784 1.778 148
.0050 .0100 47.599 | 2.739 135 2.736 2.735 .054
.0100 .0150 38.540 | 1.220 124 1.214 1.213 049
.0150 .0200 25.948 .908 105 .902 .901 .046
.0200 .0250 16.777 576 .085 570 569 .034
.0250 .0300 11.127 505 .070 .500 .500 .022
.0300 .0350 7.606 431 .058 427 427 012
.0350 .0400 5.401 418 .049 415 415 .007
.0400 .0450 3.909 227 042 223 223 012
.0450 .0500 2.917 .205 .036 .202 .201 019
.0500 .0600 1.921 102 021 .099 .097 021
.0600 .0700 1.131 040 .016 .036 .034 012
.0700 .0800 662 033 012 .030 .030 .005
.0800 .0900 394 014 .009 .010 .010 .002
.0900 .1000 .242 016 .007 014 014 .002
1000 1200 12 011 .004 011 011 .001
1200 1400 028 .004 .002 .004 .004 .001
.1400 1600 003 001 .001 .001 .001 .000
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4.2.11. Mass difference normalized to the visible energy

g, g t At At Ar At At
.0000 .0050 31.263 297 116 274 245 123
.0050 .0100 27.042 363 107 347 .340 .070
.0100 0150 21.946 61 .097 128 108 .070
0150 .0200 17.456 .293 .088 280 272 065
.0200 .0250 13.863 185 .078 167 159 053
.0250 .0300 11.166 201 .071 188 184 .039
.0300 .0350 9.161 252 064 .244 242 .030
.0350 .0400 7.609 091 058 .070 .066 .024
.0400 .0500 5.970 107 .037 101 100 .010
.0500 .0600 4.413 .064 031 056 055 .009
.0600 .0800 3.036 041 .018 .036 .035 .009
.0800 .1000 1.969 .039 015 .036 .035 .009
.1000 .1200 1.347 .039 012 .037 035 013
.1200 .1400 965 .036 .010 .034 031 015
.1400 .1600 .707 025 .009 .024 .020 .013
1600 1800 S15 013 .007 011 .004 010
.1800 .2000 389 012 .006 010 .008 .007
.2000 .2500 238 010 .003 .009 .009 .003
.2500 .3000 104 005 .002 .005 .004 .002
.3000 .3500 041 002 .001 .002 .002 .000
.3500 .4000 015 001 .001 .000 .000 .000
4000 .5000 003 .001 .000 .001 .001 .000
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4.2.12. Total jet broadening

Total jet broadening

g, 8, t At At JAY At Ar,
.0000 .0200 .060 012 003 012 .011 003
.0200 .0400 2.505 133 018 132 128 .031
.0400 0600 8.211 20 .031 116 Ad15 018
.0600 .0800 9.512 .060 .033 051 .048 .014
.0800 .1000 7.426 102 .029 .098 .097 .016
.1000 1200 5.508 .052 .026 045 .044 .012
.1200 .1400 4.143 028 022 .016 .014 .008
.1400 .1600 3.171 .035 .019 .029 .028 .006
.1600 .1800 2.442 043 .017 .040 .039 .007
.1800 .2000 1.896 037 .015 .034 .033 .004
.2000 .2200 1.471 .039 .013 .036 .035 011
2200 .2400 1.135 027 011 .024 .024 004
.2400 .2600 872 .017 .010 .014 .009 .010
.2600 .2800 .644 015 .008 .012 .010 .007
.2800 .3000 480 .011 .007 .009 .009 .001
.3000 .3200 .303 011 .006 .010 .010 .002
.3200 .3400 159 .006 .004 .005 .004 .001
.3400 .3600 056 008 .002 .008 .008 .001
.3600 .3800 .009 .003 001 .003 .003 .000
.3800 4000 001 .001 .000 .001 .001 .000
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4.2.13. Wide jet broadening

g, g, t At At At At At
.0000 .0200 1.129 27 .012 127 125 .020
.0200 .0400 12.310 145 .037 140 137 .030
.0400 .0600 11.937 138 .036 134 129 .037
.0600 .0800 7.653 074 .030 .068 .065 .020
.0800 .1000 5.151 .040 .025 .032 .030 .010
.1000 1200 3.614 .073 .020 .070 .069 .008
.1200 .1400 2.606 046 .017 .043 042 .010
1400 .1600 1.869 .044 .014 041 .040 012
.1600 .1800 1.336 .025 012 .022 .013 .017
.1800 .2000 957 .027 .010 025 .021 .013
.2000 .2200 .643 .015 .008 .013 .008 .010
.2200 .2400 418 .014 .007 012 .011 .005
.2400 .2600 233 015 .005 .014 .014 .003
.2600 .2800 d11 008 .003 .008 .007 .003
.2800 .3000 .039 .003 .002 .003 .003 .001
.3000 .3200 012 .002 .001 .002 .002 .000
.3200 .3600 001 .000 .000 .000 .000 .000
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4.2.14. Jet resolution parameter

g g t At Ar At At Ar,
.0000 .0050 97.999 .747 A72 727 634 .356
.0050 .0100 29.354 .660 113 .651 623 186
.0100 .0150 14.963 135 083 107 087 064
0150 .0200 9.567 165 .066 152 150 .024
.0200 0250 6.961 125 .056 A12 105 .040
.0250 .0300 5.362 132 049 22 118 .032
.0300 .0350 4.320 065 .044 048 037 .030
.0350 .0400 3.533 .097 .039 .089 .083 .032
.0400 .0500 2.746 .081 025 .077 .072 .029
.0500 .0600 2.063 .069 021 .066 .060 026
.0600 .0800 1.425 056 012 .054 049 .023
.0800 1000 944 026 010 025 .020 015
1000 1200 .656 018 .008 016 011 011
1200 1400 474 015 .007 014 010 010
1400 1600 346 013 .006 011 .007 .008
1600 .1800 258 010 .005 .008 .005 .007
.1800 .2000 188 010 .004 .009 .009 .004
.2000 .2400 10 .005 .002 004 .004 002
.2400 .2800 042 .002 .001 .001 .001 .001
.2800 .3200 .006 .001 .001 .001 .001 .000
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Event properties

4.2.15. Negative logarithm of the resolution parameter

g, g, t At At Ar,, At At

1.1 1.5 .0084 0004 .0002 .0003 0002 .0002
1.5 2.2 0483 0015 0004 0014 0011 .0010
2.2 2.9 0921 .0028 .0005 .0028 0023 .0016
2.9 3.6 1306 .0030 .0006 .0029 0027 .0011
3.6 4.3 1623 0026 .0007 .0025 0025 0005
4.3 5.0 1969 0023 .0008 0021 .0019 .0009
5.0 5.7 2318 .0065 .0009 .0064 .0063 .0011
5.7 6.4 2442 0028 .0009 0027 .0023 0012
6.4 7.3 1729 .0031 .0007 .0030 0029 .0008
7.3 8.0 0721 .0006 .0005 .0003 .0002 .0003
8.0 8.7 .0200 .0015 .0003 .0015 .0014 .0002
8.7 9.4 .0034 .0007 .0001 .0007 .0007 .0001
9.4 10.3 .0004 0001 .0000 .0001 0001 .0000
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4.3. Single particle properties

Rapidity with respect to the sphericity-axis

4.3.1. Rapidity with respect to the sphericity-axis

g g, t At Ar Ar At At
.0000 .2500 6.5602 | .0596 0141 .0579 0529 0235
.2500 5000 6.5779 | .0875 0131 0865 | .0808 .0308
.5000 .7500 6.5785 | 1134 0124 127 | 1058 .0388
.7500 1.0000 6.5728 | .1250 0118 1244 1178 .0400

1.0000 1.2500 6.5580 | .1193 0112 1188 1131 0363
1.2500 1.5000 6.5098 | .0954 .0107 .0948 .0933 .0170
1.5000 1.7500 6.4225 | .0744 .0102 .0737 0734 .0062
1.7500 2.0000 6.2541 | .0676 .0097 0669 0665 .0080
2.0000 2.2500 6.0128 | .0287 | .0094 .0272 0264 | .0064
2.2500 2.5000 5.5739 | .0169 .0089 0143 0121 .0077
2.5000 2.7500 4.9393 | .0319 .0084 0308 | .0285 | .0117
2.7500 3.0000 4.1547 | .0739 .0076 0735 0729 | .0090
3.0000 3.2500 3.3258 | .0840 .0067 0837 | .0835 | .0053
3.2500 3.5000 2.4971 | .0628 .0057 0625 | .0623 .0048
3.5000 3.7500 1.7914 | .0225 .0048 .0220 0216 .0037
3.7500 4.0000 1.2165 | .0247 .0038 .0244 .0240 0042
4.0000 4.2500 7817 | 0176 .0030 0174 0172 0024
4.2500 4.5000 .4878 | .0138 .0023 0136 | .0135 | .0017
4.5000 5.0000 2325 | .0093 .0010 0093 .0092 .0005
5.0000 5.5000 .0738 | .0055 .0005 .0054 .0054 .0003
5.5000 6.0000 0212 | .0022 .0003 0022 0022 | .0002
6.0000 7.0000 0017 | .0003 .0001 .0003 .0003 .0001
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Single particle properties

4.3.2. In-momentum with respect to the sphericity-axis

g, g t At At At At At

.0000 .1000 48.2961 | .2756 .0454 2718 1680 2137
.1000 .2000 38.1415 | 4282 .0378 4265 4059 1308
.2000 .3000 28.2065 | 1519 .0312 .1487 1384 .0544
.3000 4000 20.4453 | .0697 0259 .0647 .0550 .0340
.4000 .5000 15.0471 | .0562 .0220 0517 0425 0296
.5000 .6000 11.2240 | .0376 .0189 .0325 0264 .0190
.6000 .7000 8.5220 | .0439 0165 .0406 .0359 .0190
.7000 .8000 6.6020 | .0394 .0146 .0366 0283 .0233
.8000 .9000 5.1800 | .0253 0130 .0216 0177 .0124
.9000 1.0000 4.1556 | .0248 0117 0218 .0169 0138
1.0000 1.2000 3.0453 | .0135 .0075 0113 .0102 .0048
1.2000 1.4000 2.0950 | .0138 .0062 .0124 .0113 .0049
1.4000 1.6000 14732 | .0120 .0052 .0108 .0067 .0085
1.6000 1.8000 1.0809 | .0086 .0044 .0073 .0068 .0026
1.8000 2.0000 .8036 | .0098 .0038 .0090 .0088 0021
2.0000 2.5000 5104 | .0055 .0021 0051 0047 .0019
2.5000 3.0000 2753 | .0031 .0015 .0027 .0021 .0017
3.0000 3.5000 1601 | .0030 .0011 .0028 .0023 .0015
3.5000 4.0000 .0970 | .0015 .0008 .0012 0011 .0006
4.0000 5.0000 .0493 | .0009 .0004 .0008 .0006 .0006
5.0000 6.0000 .0202 | .0005 .0003 .0004 .0004 .0002
6.0000 7.0000 .0088 | .0002 .0002 .0002 .0001 .0001
7.0000 8.0000 .0040 | .0002 .0001 .0002 .0002 .0001
8.0000 10.0000 0012 | .0001 .0000 .0001 | - .0001 .0000
10.0000 14.0000 .0001 | .0000 .0000 .0000 .0000 .0000

98




Out-momentum with respect to the sphericity-axis

4.3.3. Out-momentum with respect fo the sphericity-axis

8, g, t At At At At At
.0000 .1000 67.6599 | .2819 0507 2772 1664 2217
.1000 .2000 51.2991 | .5622 .0426 5605 5421 1426
.2000 .3000 34.3537 | .1814 0343 1781 1619 0742
.3000 .4000 21.3968 | .0777 0274 0727 .0640 .0347
4000 .5000 12.8622 | .0532 .0214 .0487 0391 .0291
.5000 .6000 7.7217 | .0373 .0169 .0333 0281 .0179
.6000 .7000 4.6900 | .0202 0133 0153 0130 .0080
.7000 .8000 2.8810 | .0151 .0105 .0108 0100 0043
.8000 .9000 1.8303 | .0144 .0085 .0116 .0089 .0075
.9000 1.0000 1.1981 | .0221 .0070 .0209 0201 .0059
1.0000 1.2000 .6731 | .0070 .0040 .0058 .0048 .0032
1.2000 1.4000 3265 | .0043 .0028 .0033 .0030 0015
1.4000 1.6000 1687 | .0030 .0020 .0023 .0015 .0017
1.6000 1.8000 .0922 | .0035 .0015 .0032 .0025 .0019
1.8000 2.0000 0525 | .0027 .0011 .0025 .0023 .0010
2.0000 2.5000 0223 | .0007 .0005 .0005 .0002 .0005
2.5000 3.0000 .0069 | .0004 .0003 .0003 .0003 .0002
3.0000 3.5000 0026 | .0003 .0002 .0002 .0002 .0001
3.5000 5.0000 .0004 | .0001 .0000 .0000 .0000 .0000
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Single particle properties

4.3.4. Negative logarithm of the normalized momentum

g, g t At At At At At
0.2 0.3 0447 .0016 .0011 .0012 .0009 .0007
0.3 0.4 0915 0024 .0017 .0018 .0017 .0005
0.4 0.5 .1483 .0026 .0021 .0016 .0013 .0009
0.5 0.6 2283 .0050 .0026 0043 .0040 .0017
0.6 0.7 3320 .0068 .0032 .0060 .0059 0010
0.7 0.8 4514 0102 .0037 .0095 .0095 .0009
0.8 0.9 5971 L0185 .0043 .0180 0179 .0020
0.9 1.0 .7699 0152 .0049 .0144 0143 0015
1.0 1.1 .9605 0111 .0054 .0097 .0095 0021
1.1 1.2 1.1693 0100 .0060 .0079 .0078 .0016
1.2 1.3 1.4127 0163 .0066 .0148 0145 .0029
1.3 1.4 1.6530 .0169 .0072 0153 .0150 .0031
1.4 1.5 1.9045 .0236 .0077 0223 0219 .0044
1.5 1.6 2.1989 0137 .0083 .0109 .0105 .0030
1.6 1.7 2.4727 0255 .0088 .0239 .0228 .0071
1.7 1.8 2.7568 .0306 .0093 .0292 0275 .0096
1.8 1.9 3.0433 .0261 .0097 .0242 0241 0027
1.9 2.0 3.3371 0201 .0102 0173 .0160 .0065
2.0 2.1 3.6529 0357 .0107 .0340 .0333 .0069
2.1 2.2 3.9125 0256 0111 0231 0221 .0065
2.2 2.3 4.2109 .0524 .0115 0511 .0509 .0051
2.3 2.4 4.5090 0280 0120 .0253 .0243 .0071
24 2.5 4.7471 .0364 0122 .0343 0335 .0072
2.5 2.6 4.9748 .0334 0125 .0309 .0299 .0080
2.6 2.7 5.2399 .0328 0129 .0302 0285 .0100
2.7 2.8 54311 .0311 0131 0282 0256 0117
2.8 2.9 5.6685 .0365 0134 0339 .0299 .0160
2.9 3.0 5.8628 0301 .0137 .0268 .0207 .0170
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Negative logarithm of the normalized momentum

3.0 3.1 6.0539 .0293 .0139 0258 .0188 0177
3.1 3.2 6.1244 .0329 .0140 .0298 0184 .0235
3.2 3.3 6.2687 .0360 0141 0331 0264 .0199
3.3 3.4 6.3769 0315 .0143 .0281 .0229 .0162
3.4 3.5 6.4744 .0352 0145 0321 .0301 0112
3.5 3.6 6.4548 0278 .0145 .0237 .0224 .0079
3.6 3.7 6.5032 0224 0145 .0170 .0163 .0048
3.7 3.8 6.4969 0411 .0146 .0385 0373 .0093
3.8 3.9 6.4360 .0309 .0145 0273 0213 .0170
3.9 4.0 6.3381 .0260 .0144 .0216 0205 .0070
4.0 4.1 6.1493 .0373 0141 .0346 .0313 0147
4.1 4.2 6.0619 0432 0141 .0409 .0403 .0071
4.2 4.3 5.8987 0356 .0139 .0327 0322 .0060
4.3 4.4 5.6985 .0354 .0137 .0326 .0289 0150
4.4 4.5 5.5540 0294 .0137 .0260 .0203 .0162
4.5 4.6 5.1274 0510 .0131 .0493 .0486 0085
4.6 4.7 4.7782 .0366 .0127 0343 0288 0187
4.7 4.8 4.6405 .0562 .0130 .0547 .0397 .0377
4.8 4.9 4.1903 0441 .0124 .0424 .0408 0113
4.9 5.0 3.7719 .0619 .0118 .0607 0377 0476
5.0 5.1 3.3580 0631 0112 0621 .0497 .0373
5.1 5.2 2.9515 0534 .0106 .0524 0337 0401
5.2 5.3 2.5649 2276 .0102 2274 0381 2242
5.3 54 2.1851 .6901 .0103 .6900 | .0370 .6890
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Single particle properties

4.3.5. Normalized particle momentum

g, g, t At At At At At
.0040 .0060 478.5686 | 47.9679 | 1.1014 | 47.9552 | 7.1858 | 474138
.0060 .0080 535.7911 | 6.5903 | 1.0374 6.5079 | 5.6662 | 3.2010
.0080 0100 513.0197 | 4.6930 | .9719 4.5911 | 33371 | 3.1531
.0100 .0120 478.5918 | 3.4482 | 9138 3.3247 | 3.1994 .9042
0120 .0140 440.2027 | 2.4166 | .8665 2.2557 | 2.0692 .8980
.0140 0160 403.1236 | 3.0990 | .8239 2.9875 | 2.9781 2365
0160 .0180 3644388 | 1.6687 | .7756 14774 | 12842 .7305
.0180 .0200 329.5144 | 1.3099 | .7297 1.0879 9857 4602
0200 0250 287.2253 | 13731 | 4518 12965 | 12425 .3700
0250 .0300 237.3210 8724 | 4047 7729 7422 2157
.0300 .0350 198.0686 | .9013 3642 .8244 7354 3727
.0350 .0400 168.6517 | .8421 3322 7738 5711 5221
0400 0450 1454144 | .8286 | .3065 7697 5514 5371
.0450 .0500 127.0139 .6198 .2850 5504 4087 3687
.0500 .0600 105.3603 5752 1863 5441 4581 .2936
.0600 .0700 83.4544 3954 | 1635 .3601 2958 .2053
.0700 .0800 68.1214 4001 1472 3721 3554 1101
.0800 .0900 56.2782 4376 | 1332 4168 4081 .0849
.0900 .1000 47.6084 .2902 1230 .2628 2534 .0698
1000 1100 40.3082 5303 1124 5183 5154 0543
1100 1200 34.4620 2306 | .1039 .2059 1972 .0593
1200 1300 29.8440 2726 | .0967 2549 2523 .0362
1300 1400 26.0677 2418 .0906 2242 2171 0558
.1400 1600 21.2600 J175 | 0573 1025 -.0920 0452
.1600 1800 16.6196 472 0508 1382 1330 .0373
1800 .2000 13.2121 A174 | 0455 1082 1057 .0233
.2000 .2250 10.3401 0851 0359 0772 .0722 .0272
2250 .2500 7.9204 1026 | 0313 .0977 .0973 .0086
2500 2750 6.1973 0553 .0278 .0478 .0470 .0088
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Normalized particle momentum

.2750 .3000 4.8886 .0607 .0248 0555 0539 0132
.3000 3250 3.8449 .0295 0219 .0198 .0196 .0027
.3250 .3500 3.0554 .0355 0194 0297 0275 0112
.3500 .3750 2.4761 .0385 .0176 .0342 .0338 .0053
3750 4000 1.9779 0415 0157 .0384 0374 .0087
.4000 4300 1.5496 .0430 .0126 0411 .0409 .0039
4300 4600 1.2117 .0391 0112 .0375 .0375 .0020
4600 4900 9375 0172 .0098 0141 .0137 .0034
4900 .5200 7318 0213 .0086 0195 .0194 .0022
.5200 5500 5672 .0110 .0077 .0078 .0077 .0015
.5500 .6000 4022 L0110 .0049 .0099 .0096 .0023
.6000 .6500 .2602 0046 .0040 .0023 .0020 0012
.6500 .7000 A721 .0056 .0033 .0045 .0043 .0014
.7000 .7500 .1064 .0038 .0025 .0028 .0027 .0010
.7500 .8000 0587 .0036 .0017 .0031 .0029 .0012
.8000 .9000 .0262 0011 .0008 .0008 .0007 .0004
.9000 1.0000 .0047 .0010 .0003 .0009 .0008 .0004
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Single particle properties

4.3.6. Rapidity with respect to the thrust-axis

g, g, ! At At Ar_ Ar, Ar
.0000 .2500 5.8321 | .0735 0121 0725 .0680 .0251
.2500 5000 6.4074 | .0815 0127 .0805 0754 0281
5000 .7500 6.6408 | .1051 0128 1043 0991 .0324
.7500 1.0000 6.7260 | .1180 .0124 1173 1082 0455

1.0000 1.2500 6.7448 | 1221 0117 215 1150 .0392
1.2500 1.5000 6.7030 | .0916 | .0110 .0909 .0883 .0215
1.5000 1.7500 6.5778 | .0684 0104 .0676 0674 0055
1.7500 2.0000 6.3893 | .0684 | .0099 0677 | 0676 .0024
2.0000 2.2500 6.1346 | .0280 .0095 .0264 .0255 .0066
2.2500 2.5000 5.7211 | .0188 0091 .0164 0069 0149
2.5000 2.7500 5.0905 | .0354 0085 .0343 0317 | 0132
2.7500 3.0000 4.3070 | .0869 .0078 .0866 0862 .0083
3.0000 3.2500 3.4274 | .0783 0068 .0781 .0780 .0035
3.2500 3.5000 2.5489 | .0636 | .0058 .0633 0629 .0068
3.5000 3.7500 1.7492 | .0300 .0047 0296 .0294 .0035
3.7500 4.0000 1.1072 | .0234 0036 0231 .0229 .0032
4.0000 4.2500 .6623 | .0183 .0027 0181 0178 .0031
4.2500 4.5000 .3662 | .0113 .0019 0111 .0109 0021
4.5000 5.0000 1403 | .0071 .0008 .0071 .0070 0010
5.0000 5.5000 .0286 | .0019 .0003 .0019 0018 .0004
5.5000 6.0000 .0039 | .0006 .0001 .0006 .0006 .0001
6.0000 7.0000 .0003 | .0005 .0000 .0005 .0005 .0000
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4.3.7. In-momentum with respect fo the thrust-axis

In-momentum with respect to the thrust-axis

g, g t At At Ar At Ar.
.0000 .1000 43.9759 | .3026 0428 .2995 2197 .2036
.1000 .2000 39.1145 | 4776 0382 4760 4580 1298
.2000 .3000 29.3200 | .1844 0316 1817 1718 0592
.3000 4000 21.2891 | .0836 0263 .0793 0723 0325
4000 .5000 15.4467 | .0444 .0220 .0385 0268 0276
.5000 .6000 11.4536 | .0514 0191 0477 .0353 0321
.6000 .7000 8.5950 | .0415 0166 .0380 .0296 0237
.7000 .8000 6.6393 | .0272 0147 .0228 .0206 .0099
.8000 .9000 5.1976 | .0251 0131 0214 .0072 .0201
.9000 1.0000 4.1253 | .0204 0117 .0168 0124 0112
1.0000 1.2000 3.0460 | .0149 .0075 .0129 0123 .0039
1.2000 1.4000 2.0969 | .0209 .0062 .0200 0193 .0051
1.4000 1.6000 14911 | .0103 .0052 .0089 .0058 .0068
1.6000 1.8000 1.0880 | .0089 .0044 .0078 .0068 .0039
1.8000 2.0000 8185 | .0073 0038 .0063 0057 .0027
2.0000 2.5000 5231 | .0059 .0020 .0055 .0049 .0026
2.5000 3.0000 .2937 | .0033 0015 .0029 .0029 .0003
3.0000 3.5000 1730 | .0026 .0011 .0024 0023 .0006
3.5000 4.0000 1074 | .0015 .0009 .0012 .0005 0011
4.0000 5.0000 0587 | .0008 .0005 .0007 .0006 .0003
5.0000 6.0000 .0265 | .0005 .0003 .0004 .0003 .0002
6.0000 7.0000 0129 | .0004 .0002 .0003 .0002 .0002
7.0000 8.0000 .0065 | .0003 .0001 .0003 .0001 .0003
8.0000 10.0000 .0026 | .0001 .0001 .0001 .0001 .0000

10.0000 | 14.0000 .0004 | .0000 .0000 .0000 .0000 .0000
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Single particle properties

4.3.8. Out-momentum with respect to the thrust-axis

g, g, t At At Ar_ At At
.0000 .1000 66.3733 | .3211 .0510 3170 2224 2259
.1000 .2000 50.2130 | 5157 .0424 5139 5019 1102
.2000 .3000 33.6286 | .1726 .0338 1692 1611 0516
.3000 4000 21.2367 | .0909 .0267 .0868 0741 0452
4000 .5000 13.1352 | .0493 0211 0445 .0320 .0309
.5000 .6000 8.1300 | .0461 0168 0429 0213 0373
.6000 .7000 5.1234 | .0355 .0136 0328 .0260 .0201
.7000 .8000 3.3109 | .0229 0111 .0201 .0187 .0072
.8000 .9000 2.1748 | .0128 0091 0091 .0040 0081
.9000 1.0000 1.4769 | .0179 .0076 0162 0133 .0093

1.0000 1.2000 .8756 | .0069 .0044 .0053 .0037 .0038
1.2000 1.4000 4529 | .0057 .0032 .0047 .0036 .0030
1.4000 1.6000 2484 | .0048 .0024 0041 .0031 .0027
1.6000 1.8000 1407 | .0049 .0018 0045 .0040 0021
1.8000 2.0000 0849 | .0031 .0014 .0027 .0023 .0014
2.0000 2.5000 .0387 | .0010 .0006 .0007 .0007 .0002
2.5000 3.0000 0139 | .0011 .0004 .0011 .0010 .0004
3.0000 3.5000 .0049 | .0004 .0002 .0003 .0002 .0002
3.5000 5.0000 0011 | .0001 .0001 .0000 .0000 .0000
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Chapter 5.

Statistical methods for model tuning

5.1. Abstract

The major goal of the second part of this work is the tuning of some QCD-
models to experimental data. We use a fitting procedure based on a "maximum
likelihood estimation” of the free model parameters. This chapter will introduce the
main ideas behind this fitting procedure. Due to limited computational power we
always use (linear) parametrizations of the model predictions. If the statistical
fluctuations of the coefficients of these parametrizations can not be neglected, they
have to be included into the estimation procedure. This is quite a tricky topic,
especially if correlations between this coefficients play a role. First ideas in this
direction are presented.

This chapter will only deal with statistical errors. This is a good base for
discussing statistical methods. Nevertheless systematic uncertainties have big
influences on the results. The inclusion of systematic errors in the estimation of
parameters is a part of the next chapter.

5.2. Maximum likelihood estimation

Estimation in the statistical sense means that one tries to make quantitative
statements about the properties of a set of given objects by using informations
about the same properties of a subset. A typical example of an often estimated

109



Maximum likelihood estimation

quantity is the number of votes a given party will get during an election. Here the
number of votes this party gets in a subset of all citizens is known and a "projected
result" is computed. Another example is the average number of charged particles
in an ALEPH-event. Here one knows the number of charged particles in a finite
number of events. Because we are using only a subset (that means only a part of
the whole information) the estimation will be imperfect, and it is quite important to
give a proper error. The principle should be illustrated in more detail by the
following example!:

Example 5.1: Statistics at the fishpond

Problem: The number of fish in a pond (N) is to be calculated. The quantity
of fish and the size of the pond does not facilitate an ordinary counting.

Idea: First let us catch a number of fish (M). After a clear (but undangerous)
marking they are put back fo their natural surrounding. As soon as a perfect
mixture of the marked and unmarked fish is reached, n of them will again be
caughf. Now we have a subset where we could count the number of
marked candidates (m).

If nearly all of these fish of the second catch are marked, it looks
obvious, that most of the fish in the pond are marked, and N should be close
to M. If only a few of them are marked, then it seems very probable, that N is
very much higher than M. This example demonstrates how one could derive
quantitative results from these qualitative argumentation.

The probability of picking m marked and n-m unmarked things out of a
set of M marked and N-M unmarked candidates at once is given by the
hypergeometrical probability distribution (c.f. [Br,87]). That means in our
case that the probability of catching m marked fish at the end of the

1 Found in: [Bo,93]

2 A possible ban of the marked fish due to their irregular appearence and a resulting imperfect
mixture of marked and unmarked fish is a first candidate of a systematic error. If the mixing is
not perfect, the second set of fish will not be representative for the whole pond. Another example
of a systematic uncertainity is whether there are (unknown) outlets to the pond.
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Out-momentum with respect to the thrust-axis

discussed procedure (under the condition that there are /Nfish in the pond)

is:
L)
P(m/N)= 7 ]\’Il 7
n
Using Bayes' Formula it is possible to end up with a formula for the

probability for /V under the condition that m marked fish have been found in
the second catch:

P(N/m) =—§£(-g-)2P(m/N) (5.1)

The favourized Mvalue is the one (if it is only one) where the
maximum of the probability above is reached (“maximum likelihood"). This
formula is also the key for marking a confidence region, that means a region
in which NVlies with the probability oo (the confidence level).

The absolute probability for ending up with a number m of marked fish
P(m) is a fixed factor and plays no role in the rest of the analysis. The
remaining problem is to fix the probability P(N). Due to the lack of
information about this probability3, normally one P(N)=const. uses. If we
combine all fixed factors in one constant A which is given by the constraint

=3

> P(N/m)=1

N=M
equation (5.1) becomes

2222

n—m n

The values M:=250, n:=150, m:=22 results in an estimate of N =1704
for the number of fish in the pond. The shape of the probability distribution

3 We only know M < N <  and conclude that the propability outside this region is zero.
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and the most obvious example of a o:=0.95 confidence region [1208,2592]
is given in the first figure on this next page. We used Stirling's formula (c.f.
[Br,87]) for the calculation of the factorial functions appearing in the
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5.3. One-dimensional parametrization
5.3.1. Motivation for parametrizations

Since QCD-models are implemented as Monte Carlo generators, they
provide predictions for measurable quantities only as histograms and not in closed

forms. For given parameter values, the bin contents of these histograms are
random variables, which are in very good approximation normally distributed with
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a known width. For other values of the model parameters, the program has to be
executed again, therefore an iterative approach to the maximum of a probability
needs a lot of computing time. That is why we are using parametrizations of the
full model predictions. The easiest parametrization is the linear one. This linear
parametrization is applicable if there is some former knowledge about the values
of the parameters of interest. It corresponds to an expansion of the model
predictions into a Taylor series and keeping only the terms up to the linear one.
The better the former knowledge (that means the expansion point) is, the better
this approximation will be. Thanks to previous work we have clear ideas of such
expansion points, and a linear approximation thus makes sense.

5.3.2. Parametrization of a one-dimensional linear distribution

In the following example, a simple model for illustrating and testing the
parametrization of a linear function in one variable will be introduced.

Example 5.2: Generation of a linear distribution

Idea: Normally a computer provides a random number generator which
generates equally distributed random numbers y between O an 1. A common
method for generating other distributions will now be introduced, and this
method will be used for generating the linear distribution

p(x):= alx =) +b , abxeR, xe[x,,x,]

TR

(The denominator is due to the fact that r"p(x)dx =1.) If the following
constraints are fulfilled, p(x) is positive in [xu ,xo] (as it should be)

v >x -2 ifa>0 and x<x-Lifa<0  (52)
a a

The first possibility is to introduce a discretization (a division in several
bins) and use the method introduced in example 3.2 to handle the discrete
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One-dimensional parametrization

problem. Thanks to the very simple form of the distribution of interest,
another more elegant way is possible and, will be used. Let us call the
equally distributed variable yand try to find a function f(y) such that these
function values are linearly distributed. By making a substitution

1 1 7)) eet
lzjdy ) '[ ii—abc--: J af )
o IO g dx fo) &

dx;]gp(x)dx

we can find the differential equation for the inverse of the unknown function
f

df(x) _dy _
_E~=w-M)

This equation can be solved by separation of the variables under the
conditions f™'(x,)=y, =1and f(x,) =y, =0. That will lead to:

=2 +[b~a X=X,
y:(%( $)+b-ax] )=f"1(x)

and after inverting

==L sintan (- 2) [ - 22 2o - o]

The sign in front of the square root is due to the condition

Ex— _ '_1__ 0.6} %/‘
Wlypry  PE) os} ! |
]

in the case of (2). In the o4 pd 1

diagram to the right, one can %03_ {

see the thrown distribution at a }/ }

statistic of 5:=1000 compared 02 3

to the given distribution with ol I//L

a:=3, b=-2, x3:=2, x:=3 @
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Parametrization of a one-dimensional linear distribution

and x,:=6. The statistical errors are calculated as discussed in example 3.2.
If s grows, the error bars decrease, and the estimated values for the discrete
distribution converge to the unbiased values (as marked by the bars)

Armed with this procedure for generating linear distributions it is possible to
demonstrate the parametrization in the linear and one-dimensional case. Again
the formula of Bayes and the principle of maximum likelihood are the keys to the
estimation of a good parametrization.

If we neglect bin correlations, n of the n+1 bins of a given histogram are
independent. We will only look at those n independent bins for the moment. The
linear function y(x):=k(x-x)+d, k,d,x,€R, x€[x,x,] should be fitted to the
estimates of these bin contents p;, j=1,...,n% Here the formula of Bayes is

P(k.dff....,) = — L) PP D, k)=

P(p,.....p

h

exp| —— Ap;

= P(k.d/p) =)

In the second step we use the fact that bin contents are normally distributed
in good approximation and that bin correlations can be neglected. Under these
conditions, P(p/k,d) is the probability of finding bin contents in small regions Ap;
around p;. The (absolute) maximum of this function is the same as the minimum
of the negative "logarithmic likelihood function”

xj~—-x0)+d] i

O,

=:const + S(k,d)

—ln(P(k,d/'B)) =const.+—;—g1 ﬁj_—[k(

. . .. n+l
4 One is given by the condition 2:-: s, =S.

3> Note that new symbols k and d instead of the products of a and b with the normalization constant
were used.
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One-dimensional parametrization

S(k,d) is the basis of the further

estimation process. It is called estimation

functioné. The minimum of this function can be found by computing the solution

of the following system of linear equations (& ,d ):

| _o |
ok k=k , add:i
The result is:
]';:CE:I—B&2 JZAéz"'B&l
AC-B*’ AC - B
with:
2
v, (x,- x,) ., (x,-x,) "
A= ——, B:= L2, =Y —
=t G =1 O =1 0;
o, (x, - x,)p, " 5,
E_’l::z ! 62 J) &‘q:: 18‘!2"

Because these solutions are linear combinations of independent random
variables (bin correlations are neglected) which are normally distributed, they are
also normally distributed with the following widths (c.f. appendix A, section 3)

J 'xO)

i)

" B——C(x

-3

j=1

y A—B(xj—xo)2
iAC—szcj

=3

’ d
j=1

|

Both estimates are unbiased, and the width can therefore be taken as a
measure of the distance of the estimates k and d from kand d. We will use the

following simple example to check the results:

6 The symbol S comes from the german word "Schérzfunktion” for estimation function.
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Parametrization of a one-dimensional linear distribution

Example 5.3: Parametrization of a one dimensional linear distribution

Idea: The linear distribution of example (3.2) is fixed by a:=3, b:=— 2 (or
k =0.1818, d =— 0.1212), then the corresponding histogram with (n+1)=6
using s:= 500 bins is generated. On that basis the estimation of k and d is
done as described above. By repeating the whole procedure s,,,:= 50000

times, a distribution of the results is computed which can be compared with
the estimated widths.

The diagram below shows the 5 bins which are used for the estimation
of kand d. In this example the estimation procedure ends up with k = 0.1630
and d=-0.0792. The widths
are o, =0.0181 and
e 6, =0.0181 respectively.

2 Since we only have
el 1 estimates p, of the distribution
7 ~ | wvalues p,, it is only possible to

¢ calculate estimates for their

Pl 1 errors by using formula 3.4.

-
-

L /,Y ] That is the reason why also the
errors 6; and o; are random
s 35 P s 5 55 s variables. The widths of the

quantities in this example are approximately

A% _0.03, 2% =005
(0} ()

k a

If the procedure is repeated 50000 times, the following distributions of
the estimated values are seen. The distributed variables are calculated using
the estimates for the widths, while the shapes of solid lines are calculated
with the exact values (k_q corresponds to k and d_q to d). This is the first
reason for the deviations of the histogram from the predicted solid line
shape. Other reasons are the small, but existing bin correlations. This
deviation is ignored in the parametrization procedure (that means the bin
correlations and the random variable behavior of the widths are neglected in
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spite of their influence on the result) because they are very small, as
expected.

25 T d T T v T T 12

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 v -0.25 -0.2 -0.15 -0.1 -0.05 0
k q d_q

If correlations are known, they could be taken into account by
including them in the probability function that is used in Bayes theorem for
constructing the estimation function. But this step complicates the
parametrization process, and it is not worth doing it.

The second (and even more important) reason for neglecting these bin
correlations is that they do not appear in later calculations in this work.
Different bins will then mean different points in the space of model
parameters, and the model predictions will be calculated independently at
each of those points.

5.3.3. Statistical test of the linear parametrization

Normally we do not know if the linear parametrization is good enough or
not. That is why we construct a quantity which is (in good approximation) -
distributed with a known degree of freedom if the linear approximation is
appropriated. If this quantity lies in the preferred region of the corresponding
distribution (for example less than 2n), we accept the linear parametrization,
otherwise we have to use a higher order parametrization. If there are no bin-
correlations, the quantity

8 For details about X2 -distributions see e.g. [B0,91], [Ea,71]
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Statistical test of the linear parametrization

[k(xj —xo)+d] ’

n 5,—
n= =

Jj=l

.

]

is y’-distributed with n degrees of freedom (like every sum of n squared and

independent M0,1) random variables).

0.16

4
-

0.14+ i
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0.12F '

0.1 \

0.081

-

0.061

0.04

0.02

0 . L
0 2 4 6 14

AY
AY
. ]
Ky
S ]
X Hﬂnﬁrﬁmmm.m
8 10 12 16 18

20

The diagram left shows the

distribution of the quantity n for the 5
bins from example 5.5. The deviation

from the dashed line (the -
distribution with 5 degrees of
freedom) is again due to bin-
correlations.

By taking bin-correlations into
account, and if the exact values of &
and d are known, it is possible to
construct a quantity which is exactly

x’-distributed with 5 degrees of freedom (c.f. appendix B, section 2). In our case
the main deviation comes from the fact, that only approximations k and d are
known, and so one has to deal with a biased test quantity:

0.

The distribution of this new
quantity is biased to a x’-
distribution with a smaller degree
of freedom. This is not surprising,
because the estimates k and d
correspond to a minimum of
exactly this new test quantity. The
distribution of the new test quantity
is shown in the figure right, it uses
the conditions from example 5.3.

The dashed line is the x*-

0.

25

0.2

i5

0.1

0.05
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distribution with n=5, and the solid line the %*-distribution with n-2=3 degrees of
freedom.

5.3.4. Handling of nonlinear dependence (linear range)

If the test of the linearization fails, one can go to higher order
parametrizations or restrict the region in which the linear approximation is trusted.
Due to the less demand on computing time we choose the second option and
define a /inear range. For this purpose we compute the QCD model prediction at
the expansion point with very high statistics. This quantity is used to define the
value of the parametrization at the expansion point. Then, model predictions are
calculated with smaller statistics at two larger and two smaller values of the
parameter under consideration. This is sufficient to compute a first order and a
second order parametrization. (That means a linear and a quadratic one.) If the
linear parametrization passes the y’-test, it will be taken, and the linear range is
the region in which the parametrization is done. If this test fails, the quadratic part
of the second order parametrization is used to calculate an estimate of the error of
the linear approximation, and the linear range is then the region in which this
quadratic part does not exceed n{c,). Here (o) is the average statistical error
next to the expansion point, and n can be arbitrarily chosen as e.g. n=2.

The next example introduces and illustrates the parametrization and the
computation of the linear range.

Example 5.4: Linear range

Idea: After choosing a nonlinear distribution (an exponential distribution)
and generating a discretized version of this distribution, an expansion point
is defined, and the first and second order parametrizations are done. Based
on those parametrizations, the linear range is calculated and a corresponding
graph is plotted.
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Handling of nonlinear dependence (linear range)

(i) Generation of an exponential distribution
In a way that is analogous to example 5.2, we generate an exponential

distributed random variable x by defining an appropriate function of an
equally distributed random variable 7. This is done by solving the differential

equation

under the conditions 3(0)=0 and #(e)=1. The solution is
x
() = 1—exp| =%
5(x) exp[ J

and by the substitution y:=1-3 we end up with the familiar formula

x=—Llny

As was the case also before, n+1 bins are defined, but only n are taken
into account for the parametrization, in order to have independent model
predictions at each point.

(ii) Parametrization
The linear parametrization I(x):=k(x - x,)+d at fixed d:=d, = m(x,) is

found analogous to section 532 (m(x,) is the model prediction at the

expansion point.)

The estimation function for the quadratic parametrization with a fixed
prediction at the expansion point g(x):=a(x-x,)" +b(x—x,)+c (c=¢, =
=m(x,)) is:
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2
¥, —{a(xj —-xo)2 +b(xj —x0)+co]

S(a,b):= %i S

J=1 J

The minimum can again be found by solving the system of linear equations

3 _o 3 _,
daly B3
We get
a:w%_z and E:é_é_z____g%.
AC-B AC-B
with:
4 3 2
Am n (x]—xo) B n (xj—xo) Cim n (x]—xo)
j=t 0.3 j=1 Gj J=t 63

Because the solutions are again linear combinations of normally
distributed and independent random variables (in good approximation), the
estimation of their widths could be done by using the formula derived in
appendix A, section 3 ("linear error propagation"). Because we will not need
these widths in the further analysis, we skip this point.

(i) Computation and illustration of the linear range

The borders of the linear range can be calculated by the following

formula (u corresponds to the upper, and /to the lower border):

’|< n(cs> =X,

]a(x - xo)
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For the production of the following picture L:=2, n:=2 and s:=1-10°
were chosen. All 6 bins that
are shown in this diagram  osf
are used in the
computations. The dashed — o4r \,
line marks the resulting \

linear range. The solid lines ¥ \

represent the linear and \\

quadratic parametrizations, ~ *¥ N

and the dashdotted line | \\

show the exponential | E AN T ]
o , N
distribution. S o ‘ 1 i ; ﬁs

5.3.5. Real parametrisations
5.3.5.1. Graphical impressions from JETSET

The purpose of this section is to give some graphical impressions of the
behavior of JETSET in the version of an anisotropic gluon decay. By looking at
the sensitivity?,

pl 0%,y

Sens, , .= [———=—
b.d,i 0 D
Xp.d 9 i

those regions of the observed distributions which give one of the strongest
constraints to the JETSET-parameters were chosen. The following pictures provide
the possibility of getting a feeling about the JETSET behavior in the region that
will be of interest in the tuning of this model. The dashed lines are the linear
approximation and the linear range (n=1), while the solid lines are the quadratic
approximation.

° This quantity measures the percental change of the bincontent (b-th bin, d-th distribution) from
its value at the expansion point due to a change of the i-th parameter by one percent of its value
at the expansion point.
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" ;i i PR i " : i 4 " " n x . \ n N
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Parameter: su/du " Parameter: b,
Parametrization: <omega> Parametrization: —In{x » ), A
12, = 14.19,%2,, =3.44,sens = 1.56 %2, = 4.16,%2,, =0.24,sens = 0.63

Conclusion: From the previous pictures we learn that the dependencies are
smooth, and that even the linear parametrization gives a good approximation
of the model predictions relatively large regions. This statement also holds for
the regions that we used for tuning the JETSET variant with isotropic decaying
gluons, and for ARIADNE. The regions used for HERWIG fits appear as more
non-linear, but since we are only looking at the linear range this is not a big
problem. We also see, that the Y’ -test provides a very sensitive possibility for
testing parametrizations.
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5.3.5.2. Quantitative examples

The quality of the "low degree approximation" is in this section demonstrated
by some numbers. For that purpose we looked at the event properties, and
calculated average and maximum test quantities for the linear and the quadratic
parametrizationsl®. The values are given in the following table. The JETSET
variant with anisotropic decaying gluons was used again.

distribution | (x%) | X | (Xoa) | Xoams
S 55 189.3 24 16.1

A 7.0 161.5 23 12.1

P 45 1480 22 132

C 46 110.1 2.1 158
1-T 64 1580 26 22.7
M 56 85.93 2.3 14.4

m 7.8 63.94 25 245
@) 42 60.5 2.1 17.7
M? 6.3 160.5 26 203
B, 6.3 2183 24 13.1
B, 6.6 1782 24 217
~In(y,) 42 784 22 138

Table 5.1: Test quantities for the parametrization

The test quantity for the linearization should approximately correspond to 3
because one parameter is fitted to four independent values. For the same reason
the test quantity of the quadratic parametrization should be "in the range" of 2.

Conclusion: Even if there are values of the test quantity that clearly exclude a
linear and sometimes even the quadratic parametrization, we see from the

10 Average in this context means an average over all bins of a given distribution and over all
parameters. The maximum value is the highest occuring value in all bins of a given distribution
and in all parameters.
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Real parametrisations

table above that on average the quadratic approximation fits the whole range
that is used for tuning the parameters. We can also see that the linear
approximation does not generally fit the whole region of interest, and that a
restriction to a linear range is needed, if one wants to deal with this first degree

approximation.

An analogous statement is also true for the other distributions and multiplicities.

Remark: It is also possible to provide parametrizations in higher order (in one
dimension or for the case of many dimensions) and to use them in a parameter fit.
The crucial point is that correlations between the coefficients of the
parametrization normally can not be neglected and has to be introduced into the
analysis. To avoid confusion, this topic will be dealt with in appendix B, section 3
because in the main part of this work only linear approximations are being used.
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Multidimensional parameter fitting

5.4. Multidimensional parameter fitting

5.4.1. Overview

Our first example of a multi parameter fit was the performing of a linear
parametrization by estimating the parameters kand d (c.f. section 5.3.2). Because
the function used was linear in these parameters, we ended up with a system of
two linear equations. Here, the same method is used to provide the possibility of
performing a fit using such a linear parametrization of the @CD model predictions
even in more than two dimensions. This method could also be applied for
parametrisations in higher order (and for one or more dimensions).

If we are using higher order approximations or if we can not neglect
statistical fluctuations of the coefficients in the parametrization, the fitting no longer
corresponds to the solving of a system of linear equations. That is why a method
for performing a nonlinear fit has to be discussed.

5.4.2. Linear parameter fitting
5.4.2.1. The general way

If we have a linear model function m,(p):=k, -(p-p°)+d, with known
constants k,;, (i =1,...,n) and d,19, that parametrizes the content of a given bin b
as a function of n model parameters p, and we have also measurements and error
bars for the normal distributed bin contents p,, then we can proceed analogous to
section 5.3.2to construct a probability for the parameter values. We will get:

P(5/5) = Nexp|-5(5)]. s(p)::li[-@;@f 5.4

25 O,

10 In the model tuning, a parametrisation m, (p, ):= k,; ( pi— p‘.o) +d,; will be calculated along
every parameter axis, and the value d, will be calculated as the mean value of the d, ;:

dy:= Z:l:} d”v"/n
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Linear parameter fitting

(N is the normalization constant of the probability distribution.) Because of
the linear model function, the estimation function is parabolic, and its minimum
(the maximum of the probability) is unique. It can be found by solving the
following system of linear equations for p™"

min <0\ o k, ik (P -
Mp™-p')=5, M, =Y b, -—2 ? =

b Gb

Its solution can be found by inverting the matrix M: p™" = p° +M'5. We
obtain the following expression by an expansion of the estimation function at this

P(p/5)= N exp| =3 (p- ) Mp- )]

minimum

because the first derivative cancels at this minimum, all higher derivatives are zero,
and the constant factor exp[—S (p‘“‘i“ )] has been absorbed in the new normalization
constant (N:= N exp[—-S(ﬁ"‘i“)]).

That means that the probability of a set of parameters p being the correct
one, under the condition that we measured the quantities p, correspond to a
normal distribution with

ol:=C,, Py = 0_0_ (fori#j), C=M"

Here o, are the widths of the parameter estimates, p, are the correlation
coefficients, and C is the covariance matrix.

5.4.2.2. Fixing of some parameters

In the following we sometimes need to fix parameters to values off the
expansion point. If the m (m<n) parameters ( Pjseees pfm) are fixed to the values

( prpf ) the fitting of the remaining ( Posens pvn_m) corresponds to a changing
of the constant d, in every bin
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Multidimensional parameter fitting

d, > di=d,+ ¥k, (pf-p?)
i=1

Using these new constants, the values of the remaining n-m parameters can
be calculated as described above.

5.4.3. Nonlinear parameter fitting

For a general estimation function $(5), we could use the formulae derived
above only if the higher order contributions to the Taylor expansion around the
minimum

S(7) = S(5™)+ 3 (p, - ) 25 233 (5 - ™) p, - 1) o
i=l ap, pepmin 23559 apiapj A

can be neglected, that means, that the estimation function looks like a parabola in
the "close surrounding" of its minimum!2, or equivalently, the model predictions
are linear. Because we made sure, that this is true in our case, we can use the
formulae derived above, using

¥
apiapj l—’=i~)min

The following example is a non-QCD illustration and a summary of this rather
formal part

12 If the estimation function is not a parabola, more than one minima are possible. In general one
has to use additional informations to detect the right one in this case.

130



Nonlinear parameter fitting

Example 5.5: Multi parameter fit

Idea: A given model function (the cross-section Z — hadrons at the Z
resonance) is together with a choice of the free parameters used to generate
a histogram. On that basis the method for performing a nonlinear fit that was
developed before should be used fo estimate these parameters and calculate

their errors.

(i) Choice of the model function

We use the cross-section Z — hadrons at the Zpeak as the basis of this
example, because it provides a good playground for testing the formulae that
we derived above, and illustrates the principle that is used in a very
prominent work ([Al,89], [A1,90]). This cross section is near the Z-
resonance dominated by the exchange of a Z-particle. (The contribution that
is due to an exchange of a photon and the interference term can be
neglected.) It can be described by the following function:

127 sTT,

, si=E?
M; (s—M2) +(sT,/M,)’

cm

o,(s)=u

Here u:=3.893-10°GeV’nb is the factor for going from natural units
(h=c=1) to used ones. The fermionic widths are described by s :=sin’>9,,
according to:

'\/5 3.2 2
I'fzaGFMz(vf%-af)NC, N,.:=

I, fe {e,v}
3, fe{u.d,c,s,b}

G,:=1.1664-107° GeV™ is the Fermi constant, N, is the number of color

degrees of freedom and v, and a, the vector- and axial-vector couplings
respectively. They are given by: '
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Multidimensional parameter fitting

The couplings of the higher generations are defined analogous. Now
the contributing widths can be calculated (the top-quark does not contribute
at LEP energies):

T =2T, +3T,, T,=T,+3T +N,T,

We end up with a function consisting of three model parameters:
p,:=sin’ ¥, (the Weinberg angle), p,:= M, (the mass of the Z-boson) and
p,:= N, (the number of light neutrino species) for the description of each bin
content.

(ii) Generation of the "experimental” cross-section

After the choice of a division of the whole energy range into bins, we
use the method from example 32 to generate the "experimental
distribution. We used s:=10* and the following values for the parameters,
that are motivated by values obtained from the experiment:

p,:=0.232, p,:=91.182, p,:=3
(iii) Fit of the parameters

The minimum of the estimation function was found by using an
iterative approximation algorithm. It yielded:

p,=0.259+£0.022, p,=91.200£0.015, p, =2.907£0.117
which is consistent with our chosen parameter values. The solid line in the

following diagram represents our choice while the dashed line is the result
that was fitted to the "experimental values".

132



Introductory remark
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Figure 5.1: Estimation of model parameters

5.5. Fitting with fluctuations in the parametrization

5.5.1. Introductory remark

In the parameter fitting procedure above we have always used (linear)
parametrizations of the model predictions without taking their statistical
fluctuations into account. This section outlines a procedure which includes such
parametrization fluctuations. We do not actually use this method in our parameter
tuning procedure, because (as a later test will strongly indicate) the used statistics
is high enough to neglect this unwanted complication. In spite of this, this
technique could play a role if one wants to go to higher order parametrizations
(c.f. appendix B, section 3), because if one deals which more than one parameter,
the number of coefficients in the parametrization grows fast with the degree of the
parametrization, so that the number of points in the parameter space that is used
for the parametrization must be very high, and one could not deal with a very
high statistics at each point. As we will see, this method also provides a possibility
for taking the correlations between the coefficients of the parametrization into
account.

Because this handling of parametrization fluctuations could also play a role
in future algorithms for parameter fitting, we describe it in detail, even if it is not a
crucial ingredient for our analysis.
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Fitting with fluctuations in the parametrization

We use a polynomial parametrization of degree /N in one dimension to
demonstrate the inclusion of statistical fluctuations of the parametrization. This will
be introduced in the following section. The one dimensional parametrization will
be used to demonstrate the procedure from example 53 The case of a
polynomial in more than one dimension and a linear parametrization of model
predictions is also discussed below.

5.5.2. One dimensional parametrization by a polynomial

Every bin content p,(p) is parametrized by a polynomial of degree N, :
Ny
m(p)=D a,,p"
n=0

If we know normally distributed estimates 7,(p, ) for the model prediction at
parameter values (p,,...,p,), M>N+1, and the corresponding widths ™ (the
index "mod” is used to avoid confusion with the later used widths for the
experimental values p,), it is possible to estimate the coefficients a,, by using the
following estimation function:

2
— 1 ( m) AE a 11 ::1
‘Spol(a,,):——_ 2 { b\ zn-—o bont

2 m=1 19

m

We assumed, that the correlations between the estimates 7,(p,) can be
neglected. The minimum y of the function introduced above corresponds to the
solution of the following system of linear equations:

M i j M o
Mpola-min . wpol Mpol — pmpm pol __
b =Y i 2 Yo =
m=] Gm

(i,j=0,1,...,N) Because the solutions of this system of linear equations are
linear combinations of normally distributed and independent random variables,
they are as well normally distributed, and similar to section 5.4.2.1 the covariance
matrix is given by the inverse of the matrix of second derivatives of the estimation
function calculated for 3, =a™.
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Including the coefficients widths

For the case where the widths and correlations of the coefficients a,, are
negligible, one would perform the fit by using the estimation function

5.5.3. Including the coefficients widths

We temporarily disregard the correlations between the coefficients. If one
wants to include the widths, the most obvious ansatz would probably be

(5.5)

Here o, , is the width of the n-th coefficient of the parametrization in the b-th
bin, and we used the linear error propagation formula derived in appendix A,
section 3 to replace the incomplete widths of the nominators by the correct ones.
Nevertheless, this is an ad hoc ansatz, and it must not surprise if it leads into
troubles. The first problematic point is that large parameter values correspond to
big statistical errors of the nominator (that means a big denominator), which can
cause the fit to "run away" to meaningless values (c.f. section 6.5.53). The second
point is that we can not hope, that for example the errors calculated by the matrix
of second derivatives can be justified by the arguments given above, because we
"demolished" the estimation function by an ad hoc ansatz.

A possible way out of this dilemma can be found, by going back to the roots,
and by remembering how the estimation function was built in section 5.5.2. For
this reason let us write down the probability for the random variable

Ny
db::: 5[: - zab,npg

n=0

using fixed values for the parameter p:= p°. The probability (under the condition
p:= p°), that this random variable obtains a value belonging to a small interval
Ad, around d, is
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Fitting with fluctuations in the parametrization

2
1 1l d
P(db/po) = mo_ exp["é{#} :\Adb =
d, d

— 1 l (b-b - z,l,v:oab,npé')
Frlers () | 2ol

2

Ad,

and according to Bayes theorem we get

— N, 2
(pb "z,, 0%, npg)
exp| ——
2 o, +z _O(Gb npo)

(Po/d)xg\/cb+2 ' (o2,00)

From this probability we conclude that the following expression is a
candidate for a estimation function using the widths of the parametrization
coefficients

2 (-_b_zN—boa”"p )2
par Zlog(Gb +2 (Gbn ) ) Eb:GZ'*“Zn:o(O'b,np )

Correlations between the coefficients of the parametrization are up to now
not included in this function. It can be achieved by a decoupling of random
variables as discussed in appendix Band illustrated in example 5.3.

In the tuning of QCD models we have more than one parameters, and we
always use a linear parametrization )

ﬁ) = Zab,jpj +b,
j=0
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Including the coefficients widths

All coefficients g, ; are independent in our case, and correlations play no
role. Because of that, the estimation function (5.6) gets the form

(5;, —(Z:zoab,jpj +b,,))2

3 (o)
°b+zj=o GCs.;Pj

B
Sul )5 Ytogl01+ 3 (00,0 )+ 3

Here o2:= (o) +(c?)’; 6™ is the width of the model prediction in the &-
th bin, o, is the width of the coefficient b, .

Observations:

e In the case of vanishing widths of coefficients, the given formula corresponds
to the estimation function that was used before up to an irrelevant additive

constant.

» The critical behavior for large parameter values is weakened by the logarithmic
term.

e New minima can appear due to the rising of the logarithmic term, as is shown
in the next example. So one should always check, that he "sits" in the right
minimum.

To close and summarize this rather formal chapter, | want to go through the
following quite extended example.
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Fitting with fluctuations in the parametrization

Example 5.6: Estimation with a fluctuating parametrization

Idea: After the choice of a model distribution, a polynomial parametrization
is performed. With this parametrization and by including widths as well as
correlations of its coefficients we perform an estimation of the parameter and
a calculation of the resulting error.

(i) Choice of the model distribution
The used model function in one variable x and with one free parametero is:

p(x;(oc,B)):z Ne“"“[l - cos(Bx)] , P:=4a

The normalization constant can be evaluated using the condition

fp(XQ(a,B))dx =1. The result is

N= 1 [e"w" {acos(BxO ) —Bsin(Bx, )} —e {acos(Bxu ) —Bsin(Bx, )}]

—(x2+B2

The correlations between the coefficients of the parametrizations are
very high in this example.
That allows us to get a clear

0.18

0.16+
impression of the influence of
) 0.14
these correlations on the i
. - 0.12F
estimation process. g
T3

The estimation of the
bin contents are calculated as
discussed in example 3.2 after
the choice of the x-borders
x,:=0, x,:=10 and a division

of the resulting region into 10
bins.

rho(x)

o.1r

0.081

0.06+

0.04f

e
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Including the coefficients widths

For a:=0,,=0.3 and s:=5-10° the results are shown at the diagram
above. Here the solid line is the shape of the model function, while the bars
represent the discretized model function.

(ii) Parametrization

Remark: In the rest of this example, we will use only 6 bins to save
computation time.

Every bin content is parametrized as a function of o in the region
0.01 <0 £0.6 by using the polynomial ansatz that was introduced in section
5.5.2 In a first step 3 different values for o (the borders of the region of
observation and the center of this region) are used to perform a linear
parametrization as described in section 5.3.2. The model prediction is
estimated at three other points of the chosen parameter region after this
step13, and together with the previous points, the result has been exposed to
the y? test, using the test quantity (5.3).

If the result of this test is positive (that means x*><u+2.5¢
=n,, +2.5,2n,, , where n,, is the number of degrees of freedom), the
parametrization is accepted. If the test fails, the degree of the parametrization
is increased, and the whole procedure repeated.

We discuss two different cases. In the first one, the chosen statistics for
the "experimental" distribution is s),:=1-10%, and that for generating the
model predictions is (at each point) s ,:=1-10°. In this case the
"experimental" errors are much bigger than the widths of the simulation, and
their contribution to the estimation of the model parameter can be neglected.
Big widths of the simulated bin contents are preferred in the second case,
and we used s),,:=1-10° together with s} ;:=5-10". The resulting degrees of
the parametrizations are shown in the following table.

bin number 1 2 3 4 5 6
high model statistic 2 3 3 4 4
low model statistic 2 2 3 2 3 2

13 The values of ¢ are place in the middle of the largest free region. If there were equal values, we
began from the left.
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Fitting with fluctuations in the parametrization

To get a feeling about the very high correlations appearing in this
example, their values for bin 6 are listed below. Similar results appeared in
the other bins.

1.0000 -0.9997 0.9989 -0.9974 0.9955

1.000 —0.9997 0.9989 —0.9975

(p,) = 1.000  —0.9997 0.9989
1.000  —0.9997

1.000

(iii) Estimation and graphical representation

The estimation functions of the first case (high model statistics) are
drawn in the next diagram. The dashdotted line (coarse parabola) represents
the estimation function without consideration of parametrization fluctuations
(similar to (5.3)). The
shape near the
minimum is the same as
for the non-logarithmic
part of the new

60
501

30
20 estimation function

b (including widths as well

as correlations of the

of o -
parametrization  similar

to (5.4)14) shown by the
dotted line as expected.
N A A The full new estimation
0.05 01 015 02 025 0.2 035 04 045 05 055 funCﬁOn Similar tO (54)
corresponds to the solid line, and the dashed line is the prediction of the new
estimation function without consideration of any correlations.
The full new estimation function increases with the parameter values
and new local minima appear. The results of the estimation can be seen in
the following table:

-10f

=201

-30

14 For the details of inclusion of the correlations see appendix B. The principle is to write down the
correlated random variables as a linear combination of uncorrelated (decoupled) ones, and use
derived in appendix A, section 3.
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Including the coefficients widths

without widths or correlations 0.3060+0.0101
with widths 0.1580+0.0339
with widths and correlations 0.3060+0.0101

The results in the
case of neglected widths
and correlations are the
same as those for the

inclusive estimation, as
we expected.

The second case
(low model statistics) is
illustrated by the picture
right. The results of the
estimation are shown in

the neXt table It Shows —40 0.2)5 Oi1 O.;S 0j2 0.l25 03 0.;35 0f4 0.115 0i5 0,:55
significant  differences @
between the results.

without widths or correlations 0.3020+ 0.0005
with widths 0.1110+0.0339
with widths and correlations 0.3020 + 0.0029

Even if the estimation without taking the widths or correlations into
account are as good as the result of the full estimation, the calculated error is
much too small, and the old estimation function should be replaced by the
new version.

Conclusion: /t is possible to use polynomial parametrizations in fitting
procedures even if the correlations and widths of their. coefficients can
not be ignored. One should however regard, that also correlations could
have significant influences on the results of fits.

Remark: The correlations in the paramefrization were quite strong in the last
example, and therefore their influence on the result very prominent. We are only
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Fitting with fluctuations in the parametrization

dealing with linear parametrisations, and all the coefficients will be calculated
independently, and have therefore no correlations. We can therefore forget about
contributions from correlations of the parametrization. But if one wants to go to
parametrizations with a higher degree, these correlations appear and have to be

taken into account.
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Chapter 6.

LinFit - An algorithm for model tuning

6.1. Overview

Starting from the results of the last chapter we introduce and test an
algorithm for model tuning based on a linear parametrization of given model
predictions. The main difference to the earlier discussions of parameter fitting is
the appearance of systematic errors. While it seems possible to include systematic
errors of the measurements in the estimation function, the deviations between
measured data and model predictions cause a very serious problem. The
consequences are systematic differences of the fitted parameters when fitting them
to different sets of distributions. These differences can in general not be explained
by the errors computed from the matrix of second derivatives. This problem is
mainly excluded by restricting the fitting procedure to bins for which the model
predictions are in good agreement with the data. The remaining uncertainties are
given as systematic errors of the model parameters.

6.2. Introduction of LinFit

LinFit consists of the following modules:
1. Choice of an expansion point

2. Parametrization of the Monte Carlo predictions and calculation of the
linear range
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Fixing of the linear range

3. Restriction to a "fitable region”
4. Estimation of the model parameters and calculation of their errors

5. Concluding tests

These modules will now be discussed in more detail The linear
parametrization is done by parametrizing the model predictions by independent
linear fits along each of the parameter axes. The results from section 5.5.2 are
used for this reason. This simplification only holds if the expansion point is as
narrow as possible to the estimated set of parameters. To guarantee this crucial
point, we used results from earlier attempts to find the optimal parameter values
for setting the expansion point. In addition to the default values of the parameters
the main input to this point came from [A1,92] and [Ru,95].

If the expansion point is "too far away" from the fitting result, higher order
terms of the parametrization will be necessary. To define the meaning of "too far
away" the minimum of the linear ranges of a given parameter among all bins is
used. If one of the estimated parameters exceeds a region defined by this minimal
linear range, the whole set of estimates is rejected, and the fitting procedure is
repeated with another expansion point!l. Instead of attempting to include higher
order terms, the linear procedure is iterated, because this is less time consuming.
Otherwise, if all the parameters lie in this "linear region”, the concluding test is
passed with a positive result and the estimated parameters are trusted.

6.3. Fixing of the linear range

In section 5.3.4 a linear range was introduced, but the factor 1 was not fixed.
Some graphical impressions were given that led to the obvious choice n:=1. In
this linear region, the deviation of the linear parametrization from the full model
prediction is believed to be less than the mean statistical error of the model
prediction, and therefore without big influence on the result of the estimation
procedure. But these were only graphical impressions, that can or can not be

1 The choice of a new expansion point is a very critical problem because there is no criterion that
distinguishes a good expansion point from a bad one. Normally the result of the preceding fit is
used as the new expansion point, even if the linear range is exceeded.

144



n in the case of a one-parameter fit

verified by using the estimation function?. Because of this point of uncertainty
some tests are performed in the following in order to calculate an acceptable

choice for n.

6.3.1. nin the case of a one-parameter fit

The JETSET parameters O, and A (one at a time) were put at the ends of
different minimal linear ranges (defined by decreasing values of n) and model
predictions for these parameter settings were calculated3. The distribution of
—-ln(x,,) was used to perform fits for 9, and the distribution of ~In(y,) was used
for fits of A. These distributions were also used to define the linear regions. For
the "data distribution" s,,:= 6-10° and for the "simulation" s, :=5-10’ at the points
along the parameter axes and s° :=2-10° at the expansion point (A =0.29GeV,
Q, =1.4GeV) was used. These values were chosen in order to have a situation as
close as possible to the real parameter tuning scenario. In the fit all parameters
shown in table 6.3 (except of O, and A respectively) were fixed at the expansion
point (which is also shown in table 6.3), and all other parameters were fixed at
their default value, or at the value given in appendix B, section 4. The fits were
done with and without inclusion of the statistical errors of the coefficients in the
parametrization.

If the fit reproduces the given test values of 9, and A, the corresponding
value of n is a good choice for the definition of a linear range (for the fit of one

parameter).
The following symbols are used:

g, the parameter error calculated by the matrix of second derivatives of the

estimation function
A, the distance between the given value and the result of the fit (A := p™ — p™9);

note, that this distance is negative if the fitted value is too small.

2 Because we know for example that a statistical test of a parametrization is much more sensitive
than a graphical one we could argue that the estimation function will be much more sensitive to
insufficient parametrizations than we initially expected.

3 We used the JETSET version with isotropic decaying gluons.
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Fixing of the linear range

p™*  the parameter setting
n )
pmo g, A, p™ g, A,
1.5 1.7842 | 0.0090 ) -0.0074| | 0.2448 | 0.0016 | -0.0048
1.0 1.7137 | 0.0090| 0.0085 || 0.2550 | 0.0016 | -0.0028
05 1.6218 | 0.0090| 0.0133 02682 | 0.0016 | -0.0034
01 1.4992 | 0.0090| 0.0010 || 0.2858 | 0.0016 | 0.0020

Table 6.1; Fits without inclusion of fluctuations in the parametrization

n 0, A

pmo g, A, pm g, A,
15 1.7842 | 0.0111 | -0.0066| | 0.2448 | 0.0020 | -0.0052
1.0 1.7137 | 0.0108 | 0.0091 0.2550 | 0.0019 | -0.0028
0.5 16218 0.0105| 0.0134 | | 0.2682 | 0.0018 | -0.0034
0.1 14992 | 0.0101 | 0.0010| | 02858 0.0017 | 0.0020

Table 6.2: Fits with inclusion of fluctuations in the parametrization

The errors calculated by the estimation function that take fluctuations in the
parametrization into account are somewhat larger than the errors calculated
without, as was well expected. The method former leads to good agreement
between the test values and the results of the fit (A ,S2¢, if n<1), while the latter
seems to produce parameter errors which are somewhat too small.

We did only use statistical errors to perform the calculations mentioned
above. In the case of real model tuning, the systematic errors of the measurement
are added quadratically to the statistical widths (c.f. section 6.4.4), and the
contribution of the widths in the parametrization should be even smaller than in
the example above. This is a good reason to believe that in our case it is also
possible to work with the simpler model function. A time consuming iterative
search for a minimum of the estimation function can therefore be replaced by a
faster solution of a system of linear equations.

Conclusion: The fits performed in this section seem to confirm the choice of
n:=1 for the definition of the linear region in the case of one free parameter.
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n in the case of many parameters

The estimation function (5.6) leads to slightly bigger errors than the estimation
function (5.4) without statistical errors of the parametrization.

6.3.2. nin the case of many parameters

The same procedure as in the last section will be repeated for the case of the
10 parameters used in later JETSET :
fits. Even if the results of the last
section allowed us to argue that for v g
a definition of a linear range along | ..
the parameter axes a value n:=1 o5~ .
leads to trustable results, the
contribution of mixed terms in a
Taylor expansion in more than one
dimensions could (and will) cause
some troubles. The figures on this

page should give an impression of y B x

this point.

The figure above shows the function f(x):=0.2x—0.4y. This function differs
from the second function g(x):=0.2x—0.4y—0.25xy shown below by the mixed
term that has no influence on a parametrization along the parameter axes.
Therefore even if the behavior
along the parameter axes is really
linear, the model function can be
quite nonlinear off these axes. If we
want to deal with the linear ansatz
in this more-dimensional case, we
have to make a tighter restriction
than we have done in one

dimension. That means we have to
use a smaller number for n.

y 2 -2 . In our fitting procedure both
functions would be treated in the same way (by the parametrization #x)) and so
we have to be very careful to get right results. For this reason the same set of
distributions was used as in the final model tuning procedure (see chapter 7)
together with different values of n to perform fits to test distributions generated

147



Fixing of the linear range

with JETSET (with isotropic gluon decay). The results of the estimation are
compared with the parameter values used in the generation of the test
distributions. If the difference is less than 2.5 times the calculated error for all of
the parameters, the corresponding value of n is considered as a good candidate
for the definition of the linear region in the model tuning procedure.

In the next table the results are summarized. The factors given in this table
show the distance between the fitted and the nominal value in units of the error. A
factor of 3 means, that this distance is three times the size of the calculated error.
The statistical widths of the parametrization are included in the estimation
function.

n 15 1.0 0.5 0.1 0.05 0.01
A -1.1 02 3.8 4.2 24 22
0, 3.2 2.3 2.9 -1.9 -1.6 -0.4
o 59 4.0 0.1 3.7 -0.3 -1.7
B 3.2 24 -0.8 4.1 04 1.8
03 =1 4.7 3.6 0.8 0.6 2.0 -0.2
p= -0.1 -0.2 0.6 -0.4 0.5 0.0
s/u 4.1 4.7 2.2 0.0 -0.6 -1.2
qq9/q 3.4 4.0 -1.8 0.0 0.0 0.7
su/du 9.1 8.6 45 04 12 14
b, 4.6 36 15 14 1.0 -1.9

Table 6.3: Exploring the linear region

Columns with bold faced numbers represent fits where the differences A, are
less than 2.5 times the error. Note, that the deviations depend on the type of
parameter; the worst case occurs for su/du.

These values for n initially seem much too small. But we did only use
statistical widths for performing this test. We will discussed in section 6.4.4, that an
inclusion of systematic errors of the measurement in the estimation function is
possible. In this case, the statistical widths of the measurement will be replaced by
a quadratic sum of these widths and the corresponding systematic errors. Because
of that, systematic deviations in the parametrization are negligible if they are small
compared to this quadratic sum, which is bigger than the error used in the
previous example. Consequently the n-value that is used in the real
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n in the case of many parameters

parametrization is surely allowed to be higher than the value that was calculated in
this example. From this point of view even the results for n<0.5 also seem
acceptable.

Because of the similarity of the models JETSET and ARIADNE, this check
should also be representative for these models, and n:=0.1 should be a proper
value for defining the linear region. HERWIG is quite different and uses other
parameters. Therefore a similar test series was performed for HERWIG 5.8. The
results are given in the following table.

n 1.5 1.0 0.5 0.1 0.05 0.01

A -5.7 -3.3 0.3 -4.0 0.0 -1.0
RMASS(15) -1.1 -1.1 2.3 -3.1 4.7 2.7
CLMAX 7.2 3.8 0.6 1.4 -1.5 2.5
CLSMR -5.1 -3.2 -2.6 -0.3 -0.7 -1.3
PWT(3) -1.3 02 -1.0 0.4 -1.8 0.7

Table 6.4: Exploring the linear region

This check that was done only with statistical widths indicates that it could be
necessary to restrict the linear region to a region which is defined by n:=0.01. This
value is that small, that an iterative search for a proper expansion point will hardly
work. The "eye glasses" of the very large statistics that was used can decide
between the full model prediction and a linear parametrization up to this very
small region. Since we have also systematic errors, this eye glasses are not that
sharp, and it makes sense to use n:=0.5.

Conclusion: The given series shows, that the used Monte Carlo statistics is very
appropriate to decide between a correct and an incorrect parametrization. If
the full errors would only be of the size of the statistical widths, a usage of a
linear parametrization would hardly make sense, because the linear regions
that we want to restrict on would be too small. Because we have fo include the
systematic errors of the measurements in the estimation function, we are able
to use a linear approximation, and fix the linear regions for JETSET and
ARIADNE with n:=0.1, and the linear region for HERWIG with n:=0.5.
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Handling of systematic errors

6.4. Handling of systematic errors

6.4.1. Model parameters in the case of imperfect models

Previously we always dealt with perfect and fitable models. That means it
existed one (and only one) set of model parameters which lead to agreement
between model predictions and experimental data in the case of vanishing errors.
Consequently the final goal of the fitting procedure was to find estimates for these
optimal model parameters.

If systematic deviations between model and data appear, no such set of
optimal parameters exists. Unfortunately a definition of a reasonable
generalization of the optimal model parameters is not unique. The most obvious
way to define a preferred choice of parameters is to introduce a distance between
model and data in the case of vanishing errors (marked by superscript zeros). This
can be done by

D(p):= Y {p2 -7 (p)}

The preferred model parameters are then defined as the absolute minimum
of this function. If the sum is done over different sets of bins, we obtain different
distance functions and therefore in general different sets of preferred model
parameters. A commonly acceptable choice of the set of bins is needed in order to
get comparable results. (A a commonly accepted definition of a distance measure
is also needed.)

6.4.2. Types of systematic errors

Two types of systematic errors appear. The first is due to the deviation
between the model of interest and the real distributions. The second is because of
the systematic errors of the measurement. For the second type of errors estimates
of the absolute values are known, while there is no prior knowledge about the
model deviations. Thus we try to include all the knowledge about the systematic
errors of the measurement in the estimation function, and restrict the tuning to the
largest set of bins that can be explained by the model. This set of bins is called the
"fitable region” (c.f. section 6.4.5).
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Treatment of exactly known systematic errors

One needs to be careful with the setting of n in the definition of the linear
region, for otherwise another systematic error due to an imperfect parametrization
will appear. Because we are using very small values for n as motivated by the
considerations contained in the last section, these contributions should not be

noticeable.

6.4.3. Treatment of exactly known systematic errors

In the construction of the estimation function we always used the assumption
that the mean value of the quantities d,:=p, —,(p°) is zero? (c.f. section 5.3.2).
This is only true if there is (at least) one set of parameters p° that results in mean
values for the model predictions 7, ( p°) that are equal to the mean values of the
data p,. If there are systematic deviations, this basic assumption is not satisfied.
Under this circumstances, the mean value of the difference d, will be different
from zero, and if we want to use the same argumentation as in previous sections,
the generalized difference

B‘zﬁz{ﬁb “mb(ﬁo)}—eb

has to be used. Here ¢, is the difference between the mean of the measured data-
value and the mean value of the model prediction in bin b derived at a preferred
set of optimal model parameters in the sense of section 6.4.1. Now, the straight
forward generalization of the estimation function to the case of systematic errors

can be given as

. 2
(5, - (P sb
X\S L

From this formula we can see that systematic errors are negligible if the
condition 6, >> ¢, holds. In section 6.3.2 we calculated a value n that was used in
the definition of the linear range by taking only the statistical widths into account.
Because it seems possible to include the systematic errors of the measurement in

the estimation function (c.f. the next section), a comparison to the whole error

4 Apart from the assumption that the data and the model predictions are normally distributed.
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Handling of systematic errors

should be done, and a somewhat bigger value of n would also lead to satisfactory
results.

Unfortunately usually we cannot know the exact values (with the right signs)
of the systematic errors, and so this formula can not be used for parameter

estimation.

6.4.4. Treatment of approximately known systematic errors

Because estimations of the systematic errors of the measurements are
known, they should be included in the fit according to the general idea that an
optimal amount of information should be used. The formula derived above is not
usable, because the signs of the errors are not known. Instead of this, a quite
obvious method will be introduced and tested which is also used in the literature.
The idea is to add the systematic errors to the statistical widths and use this
(quadratic) sum:

S, (P):= EW (6.1)

T2
b 0, t§,

That means one wants to "de-weight”the contribution of all the bins that are
known to be uncertain. This procedure seems to be the most natural one, and
does indeed lead to satisfactory results, as is shown by the following example.
Beside this successful test, it is easy to see, that this ansatz follows the right
direction. Systematic errors that are not included lead to an average increase of
the numerators of the estimation function, while this (quadratic) summation
decreases the terms in increasing the denominators. Therefore one could expect
that an overall good approximation to the correct estimation function is
constructed.

The following example shows, that one could calculate rather senseless
results if big systematic errors are neglected, while the results (of this example) are
quite satisfactory if one is using the summation ansatz.
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Treatment of approximately known systematic errors

Example 6.1: Estimation with systematic measurement errors

Idea: We want fo demonstrate, that a neglection of systematic errors can
cause senseless results while the summation-ansatz leads to satisfactory
predictions.

Principle: "Data distributions” are simulated by HERWIG while JETSET
provides the "model predictions™. On this basis very good estimates of the
systematic deviations are knowrf. Including this systematic errors by the
summation ansatz (with quadratic and linear addition), the estimation
function is tested by a fit of several JETSET-parameters to "THERWIG-data”.

In the following table the results of some fits are shown. The fits were
done using the distributions given in table 6.5. The systematic errors are in
the range of a few percentage points.

sys§

Par. p without €; quadratic sum linear sum
£ A € A € A

r r p P P r

A 0.30 0.0009| 0.0347| | 0.0035| -0.0042| | 0.0044 | -0.0026
o, 1.40 0.0111| 0.7664| | 0.0492 | 0.0784 | | 0.0642 | 0.1262
o
b

0.36 0.0005-0.0324| | 0.0023 | 0.0021 | | 0.0027 | 0.0009
0.90 0.0040-0.0576| | 0.0150 | -0.0412| | 0.0191 | -0.0479

Table 6.4: Fitting results

Here ¢, is the error that was calculated by the matrix of second
derivatives, and A :=p™ - p° Bold numbers were used if ]AP'>2.5£,,.
Because there exist cases where estimates based on a linear sum of the
errors ©,, =0, +|¢,| are worse than estimations based on the quadratic sum
0,, =+/0; +€; (even if the calculated errors were large enough) this second

5 For the values of the model parameter used c.f. appendix B, section 4. JETSET is used in the
version of isotropic decaying gluons.

6 Imperfections due to the limited statistic are small.
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Handling of systematic errors

one is used. The test quantities for the distributions used in this example are

given in the next table.

distribution bins without | quadr. sum
£ sum

S 23 701.7 20.5 13.8

A 16 1245.9 16.1 12.7

1-T 21 1634.8 17.8 142

m 18 1524.5 16.2 12.7

~In(y,) 14 1480.4 12.0 9.2

x,, (x<0.02) 8 2734 6.4 53

X, (x>0.02) 38 6916.5 42.5 34.8

p(S) 25 2773.7 21.8 16.6

p(S) 19 2251.1 16.8 13.7
Xles [y 182 | [18801.9/182 170.2/182 | 133.1/182

Table 6.5: Test quantities with and without contribution of systematic errors

From the previous table we observe that it seems possible to bring the
value of the test quantity into the confidence region, if a (quadratic) sum of
statistical and systematic errors is used.

Conclusion: /f systematic errors appear, they have to be included in the
estimation procedure, if the results need fo be trusted. The ansatz of
using a quadratic sum of statistical width and systematic error seems to
be a good candidate for including these systematic uncertainties.

6.4.5. Restriction to a fitable set of bins

In the last section we arrived at a possible way for taking the systematic
errors of measurements into account. The remaining question is how to handle
systematic discrepancies between the real distributions and the model under
consideration. First of all an example should be introduced that illustrates the
problems that appear if one tries to ignore these systematic model inaccuracies.
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Restriction to a fitable set of bins

Even if the systematic errors of the measurements are included in the estimation
function, systematic influences from model deviations and imperfect

parametrizations remain.
Example 6.2: Straightforward fits with imperfect models

Problem: Big systematic deviations appear in the estimates of the model
parameters if the formulas derived in the last chapter are used in the case of
systematic deviations between models and data. In other words: Fits to
different (sets of] distributions lead to sets of systematically deviating
parameters.

Principle: The QCD-model JETSET is used because it is well known, that
this model describes for example the distribution of S, while it fails to
describe the distributions of p* and p" (together with other distributions).
Fits of some model parameters are done both in the well described and also
in the problematic areas. We use real ALEPH data and include systematic

errors of the measurement in the estimation function.

From earlier fits earlier we know that for example the sphericity S'is a
quantity that can be described very well by JETSET together with (parts of)
other distributions (for values of a global fit c.f. chapter 7). We denote this by
saying that the whole S-distribution is a fifable range. A fit of the parameters
A, Q,, o and Bled to the following results. (The other parameters are fixed
to the values given in appendix B, section 4))

p’ p” €,
030 | 03058 | 00136
140 | 13118 | 02150
036 | 03958 | 0049
090 | 10188 | 01004

oo D>

Table 6.6: Fitto S(M=6.6, n,, = 23)
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Handling of systematic errors

p p° p" g, p p° p™ €,
A 030 | 03408 | 0.0057 A 030 | 05173 | 0.008
O, 140 | 12782 | 03631 O, 140 | 20102 | 03178
o 036 | 02956 | 0.0070 o 036 | 02808 | 00044
b 090 | 12028 | 00613 b 090 | 16079 | 0.0699

Table 6.7: Fitto p" (=211, n,, = 25) Table 6.8: Fitto p/* (n=17.1, n,,, =19)

Even if the test quantities 1 are in the preferred region, the fits resulted
in incompatible values. This discrepancy is dramatic for A. The deviation
between the p,-fits is 12.5 times the sum of their errors, so that these errors
are of little usage (and 17, I times the quadratic sum).

Remark: Here we disregard the linear ranges. Especially the p™-fit is far
outside the linear region, so the cause of this big deviation is a composition
of imperfect model and the imperfect parametrization of this imperfect
model. If one tries to make a fit to all three distributions, the result is:

p p° p” e

A 030 | 03376 | 0.0032
O, 140 | 1.9688 | 01572
c 036 | 03610 | 0.0022
b 090 | 09567 | 0.029

Table 6.9: Fit to

%))

, (M=4L1) p" (N=279.3) and p™ (N =570.8)

Now the test quantities indicate well that something is not as it should
be, and the obvious assumption is to trust the Sdistribution most.

Conclusion: The parameter errors calculated by the matrix of second
derivatives cannot be frusted if systematic deviations between the
paramelrization of the model and the measured distributions appear.
Thus fits to different distributions will in general result in estimations for
the parameters which deviate systematically (more than would be
expected from the calculated errors).
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Restriction to a fitable set of bins

The result of the last example offers little surprise. If these additional
deviations between measurements and model predictions exist, they should be
included in the estimation function. If this is not done, it is the same as if they are
considered as negligible. In the example above, this is definitely wrong. But if
wrong information is included in the estimation process, who would be surprised if
the result is wrong, too?

The derived formulae can be used in two possible scenarios. The first is to
restrict the fit to regions where these systematic deviations can be neglected. In this
case we work on solid ground, because all the assumptions are fulfilled. The
second possibility is to include this wrong information, and to calculate additional
resulting systematic errors.

In this work an approximation to the first scenario is used. One point is that
this scenario is the more honest one, because it points out that the models are able
to describe parts of the distributions, while they fail to describe every details of
hadronic events. In addition the calculation of the systematic errors from imperfect
descriptions cause some rather serious technical problems.

We can for example calculate a systematic error for each of the parameters
by making a loop over all possible sets of distributions and by comparing the
results. This is not trivial because if we take all possible sets of distributions we
should in principle perform a loop over all different combination of bins which
require a lot of computing time. Even if we restrict ourselves to all possible
combinations of different distributions, their total number is still too large to go
through the full loop.

To avoid this problem one could argue, that the main deviation will come
from the fits to single distributions. If more than one distribution is used in the fit,
the result will always be a compromise between fits to single distributions.
Therefore it should be possible to calculate the maximum deviation by looping
over all distributions, and by performing a fit to each of them (if this is possible, i.e.
if the number of bins is bigger then the number of free parameters) and calculate a
systematic error by comparing the result of these fits. Even in this case serious
problems remain. The size of the calculated errors will differ if different numbers of
parameters are used in the fits. In addition, it will not be possible to perform all
these fits by using only one linear parametrization, because the results will in
general lie outside the linear range. That means if we try to perform such a
calculation of systematic errors of the model parameters, we have the choice to
use higher order parametrisations, or to calculate unserious results.
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Handling of systematic errors

Because of all these difficulties arising in the calculation of systematic
parameter errors, we restrict the analysis to a "fitable region”. A fitable region is a
set of bins where all the assumptions introduced while deriving the formulas that
were used in the fitting procedure are fulfilled. Especially the deviation between
data and model predictions should not be much bigger than the given errors. The
remaining problem is to find a good approximation of this fitable region. In this
work we use two possibilities to choose a candidate for a the fitable region. Both
are based on major deviations from optimal values of test quantities computed in
global fits, and both lead to very similar sets of bins. Nevertheless both are
approximations, and the need for a systematic error of the fitted parameters due
to these approximations is given. Even if they exist, the systematic errors of the
parameters due to an imperfect candidate of the fitable region will be much
smaller than for the previous discussed case, and therefore a calculation makes
sense even if only the linear parametrization is used.

A fit to all bins of a given set of distributions was done to get a first candidate
for a fitable region. All bins where the deviation between data and the model
prediction exceeds 2.3 times the error of the measurement were rejected’. Then, a
fit is done using all remaining bins, and the results are taken as the "best fit
parameter values” ("s-fit"). A second candidate is obtained by performing a series
of fits. Starting from the same global fit as in the first case, only the bin with the
worst (that means biggest) contribution to the test quantity is rejected, and the
whole procedure is repeated with all remaining bins. The iteration is stopped as
soon as the worst contribution mentioned above is less than (2.3)* (or again the
deviation between model and data exceeds 2.3 times the expected error). All the
bins that pass this series of fits without rejection define the second candidate for an
approximately fitable region, and the differences between the parameter values
fitted to this second set of bins and the parameters derived from the first set are
taken as a systematic errors.

7 The value 2.3 is taken, because it leads to a test quantity of N/ng =1, if all ng, bins used in the
fit are taken into account.
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6.5. Additional Tests of LinFit
6.5.1. Principle

All the tests in this section are done with the QCDmodel JETSET 7.4 in the
version of isotropic decaying gluons. Analogous results are expected for the other
variant of JETSET, and for ARIADNE, because of their similarities. The fitting of
HERWIG was not tested separately. A set of parameter values p° was chosen to
generate test distributions with a statistics s, . Because of that, "experimental"
distributions were known together with the corresponding wvalues of the
parameters of the optimal model. The interesting question dealt with the
conditions under which LinFitis able to reproduce these data within the calculated
errors.

A test of this type can not be a proof of the correctness of the algorithm, but
it is an impressive check. Even if it is impossible to make a proof of the correctness
using only a few examples, these examples are able to exclude false assumptions,
as for example the naive ansatz for including the parametrization width in the
estimation function (5.5)

6.5.2. Test at high simulation statistics

High simulation statistics means that this statistics is high compared to the
data statistics. For example in the case of our measurements the statistics of the
simulation was s, :=5-10° (and therefore s%,:=2-10° in the expansion point)
while it was s, := 571825 for the data. The former is available at every point in the
parameter space (except the expansion point) that is taken into account, and used
to do the parametrization. Because of that one could expect, that the widths of the
parametrization can be neglected, and the simple estimation function (5.4) is
enough. This expectation is to be tested here.

To avoid complications due to improper parametrisations, the set of
parameters p° that is used to generate the test distributions is used as the
expansion point. To get a situation that is similar to the real analysis, the following
statistics were used?®:

8 In fact, the data errors also have a contribution from the correction procedure.
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Additional Tests of LinFit

sda,:=6-105, )

:=5-10°

sim *

(= 5%,:=2-10°)

sim*

We especially point out that we only use statistical widths here, and that in
the real estimation process also systematic errors appear. The next section
illustrates the fact, that a usage of the simplified estimation function (5.4) leads to

satisfactory results even in the case of vanishing systematic errors.

6.5.2.1. Fit under measurement conditions

In this section we perform a check to see if the simplified estimation function
(5.4) can be used to fit the models in the case of our analysis, or if the widths of
the parametrization have to be taken into account. For that reason, all parameters
that were used in the model tuning of JETSET were tuned to the same set of
distributions as in the model tuning to real data. In the following tables we
compare the results of both estimation procedures.

distribution | n,, Coon | X distribution | n,, X | Xom
S 23 21.0 | 162 XX 8 9.3 7.2

A 16 || 215 | 166 x 8 48 3.7
1-T 21 155 | 119 ¢ 6 9.1 7.0

m 18 150 | 116 (f,) 7 1.6 12
~In(y,) 4 || 231 | 178 (%) Ji 0.0 0.0

x,<0.02 8 185 | 14.7 ~in(x}) 2| 251 | 193
x,>0.02 | 38 || 497 | 385 (z7) 7 0.3 02
p(S) 19 166 | 135 (z(1385)") I 0.1 0.1
p(S) 25| 329 | 265 (Q) 7 0.0 0.0
~inx*") 28 || 421 | 323 (2(1530)°) 1 1.1 0.9

X1 81| 171 | 132 -l )<008 | 77 || 164 | 126

X1 9 114 | 88 -z )>007 | 78 || 134 | 103

' 8 122 | 94 -n(x*?)<0.018 | & 9.9 7.6
(k™) 7 0.2 0.1 -n(x??)>007 | 18 6.0 46

sum 339| | 393.9 | 30589

Table 6.10: Test quantities for the first fit under measurement conditions
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Test at high simulation statistics

The last table was split up into two parts in order to save space. Even if the
test quantities are bigger if parametrization errors are ignored, they fall into a
region as expected and can therefore be used to establish the quality of the fit. In
the table 6.11 the tuned parameter values are given together with the set of
parameters p°. In this fit, we fixed the following parameters: a:=0.4, ¢_:=-0.04,
g,:=-0.0035, P’/':=0.65, P ,,»=0.2 and 1':=0.25. These values are used in
the generation of test distributions.

Par. p° with par without par
g, A » €, A »
A 0.30 | | 00010 -0.0003| | 0.0008 | -0.0004
0, 1.40 | | 0.009 | -0.0036| | 0.0086 | -0.0038
Y, 0.30 | | 0.0005| -0.0007| | 0.0004 | -0.0007
Py 0.55 | | 0.oo10| 0.0008) | 0.0009 | 0.0008
P 0.50 | | 0.0009| 0.0013 | | 0.0008| 0.0013

q9/9 0.10 | | 0.0003 | -0.0003| | 0.0003 | -0.0003
(su)/(du) | 060 || 0.0051| 0.0000)| | 0.0045| 0.0000
o 0.36 | | 0.0005| 0.0004 || 0.0005 | 0.0004
0.90 | | 0.0039| 0.0015| | 0.0036 | 0.0014
06 || oooso| 00044 || 0.0044 | 0.0044

Table 6.11: Estimated parameter values

A first indication that shows that both of them produce good estimates is the
fact, that none of the linear ranges was exceeded, even if we used n=0.01. In
table 6.11, "with par" means that the errors of the parametrization are included in
the estimation, while they are neglected in the column "without par". €, is the
error that is calculated by the second derivatives of the estimation function, and
A ;= p™ — p° is (again) the deviation of the fitted value from the nominal value.

In none of the presented estimations, the fitted value differs by more than
two sigmas from the nominal value p°, even in the case of the simple estimation
function. If we include the systematic errors in this function, the error of the
parametrization relative to the error of the measurement decreases again, and the

accuracy of the approximation by the simple estimation function should increase.
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Additional Tests of LinFit

Remark about correlations and choice of distributions: It is clear, that every
available piece of information should be used in a fit. Therefore one should expect
all the available distributions in the table above. We do not use all of these
distributions, because some of them are highly correlated, and we did not include
correlations between bins of different distributions in the estimation function.

What will happen if correlated distributions are included? This can be seen
most impressively in the case of identical (and therefore maximally correlated)
distributions. If we include a distribution twice, it is the same as if we reduce the
error used in the estimation function by a factor of 1/+/2. In other words: If we use
correlated distributions in the fit, we possibly underestimate the parameter errors.

Since the distributions used in this fit led to a good estimation of the nominal
parameter values, the correlations for this set of distributions should indeed be
negligible. The same can be said about the correlation between bins. This should
also be true for single particle distributions because they were also used in the
previous fit.

Conclusion: Both estimation functions produce satisfactory estimates in the
case that we are using for the measurement, and we can therefore use the
simpler one, especially because an inclusion of the systematic errors of the
measurements will make the difference between the predictions even smaller.
It seems also to be a good approximation if we neglect bin correlations and
correlations between different distributions for the set of distributions used in
this section.
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6.5.3. Test at high data statistics

This test is done in a way that is similar to the previous section. The
following values were used to increase the widths of the parametrization:

Si=2-10% 5, :=2.5-10* (=5 :=1-10°)

The fit results are given in the following tables. The distributions of table
6.13, together with the multiplicities of table 6.10 were use to perform these fits.
We also tried a fit by using the naive generalization of the estimation function
(5.5), but this estimation failed totally. (For example one value was gq/q = 56.7).

Par. p° without par with par

EP AP 8[’ AP
A 0.30 | | 0.0005|-0.0019| | 0.0023| -0.0021
0, 1.40 | | 0.0033| -0.0025| | 0.0185| -0.0023
Y, 0.30 | | 0.0002| 0.0015| | o.0010| 0.0016
P 0.55 | | 0.0005| 0.0029| | 0.0024] 0.0032
P 0.50 | | 0.0005| 0.0018| | 0.0022| 0.0017
Ry 0.65 || 00017 -0.0040| | 0.0085| -0.0054

Phw | 020 1| ooo03| -00004| | 0.0013] -0.0004
qq/49 0.10 | | 0.0001|-0.0004| | 0.0006| -0.0004
(su)/(du) | 0.60 || 00024 -0.0024| | 0.0118| -0.0030
c 0.36 || 0.0003| 0.0006|| 0.0013| 00008

a 040 | | 0.0017| 0.0033]| 0.0083| 0.0027
b 0.90 | | 0.0020|-0.0090| | 0.0101| -0.0107
€ -0.04 | | 0.0003 0.0006| | 0.0013| 0.0008
& - 0.0000| 0.0000| | 0.0002| 0.0000
b 0.6 || 0.0025] 0.0176| | 0.0123] 0.0195
n 0.25 | | 0.0008|-0.0071| | 0.0043| -0.0073

Table 6.12: Some fitting results
All deviations bigger the three sigmas are typed in bold letters in the table

above. We can see, that the simple estimation is invalid in the case of non-
negligible parametrization widths, and that the estimation function (5.6) seems to
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be a good candidate for a generalization. For all three estimation procedures, the
values of the test quantities are provided in the following table. Only the test
quantities for the distributions were listed in order to save space, while the test
quantities of the multiplicities were included in the final summation. In the case of
neglecting the parametrization errors, the values of the test quantity are much too
big, and clearly indicate, that something did not work. It is remarkable that the test
quantities for the naive generalization (5.5) are not too bad, even if the estimation
failed.

Name Bins Kishout var Xaive Xowith var

S 23 452.9 13.6 204
A 16 202.9 9.5 9.7
1-T 21 7152 14.8 33.1
Xp, (x<0.02) 8 103.4 9.1 55
Xp» (x>0.02) 38 696.2 30.2 33.9
p(S) 19 304.4 145 176
- ln(x;‘i ) (x <0.018) 16 568.3 13.6 26.6
—ln(x;‘i ) (x >0.045) 23 475.1 13.1 21.9
—In{x*") 28 663.9 13.9 32.0
~In(x¥), (x<0.018) | 1z 234.4 9.4 114
“In(xX), (x>0.00) | 18 3285 | 116 154
~In(x"?), (x<0.018) | & 49.7 24 24
~In(x?), (x>0.070) | 18 653.9 9.0 30.8

YL 258 | |5634.0/258 | 177.5/258 | 269.9/258

Table 6.13: Test quantities for all three estimation procedures

Conclusion: If the widths of the parametrization are not negligible, the
estimation function (5.6) remains as a candidate for a generalized estimation
function. The simple estimation function (5.4) and the obvious generalization
(5.5) fail.
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Chapter 7.

Results II: Tuned models
and comparison between models and data

7.1. Abstract

In section 1.2, all model parameters that were calculated with the fitting
algorithm LinFitare presented together with the values of the expansion point and
the default values. In addition a factor that marks the distance between this
expansion point and the result of the fit in units of a linear range defined with
n:=0.1for JETSET and ARIADNE, and n:=0.5for HERWIG is given.

Some of the model parameters were set to values that differed from their
default values. These non-default values are discussed in chapter 2, and they are
also listed here to give a better overview. The test quantities for all distributions
used in the fit are given both for the "maximum fitable region" defined by one
global fit and for the whole distributions. The latter strongly indicate distributions
where the models describe the data well, and regions, where the description fais.

Section 1.3 shows some graphical impressions. Here the models are
compared with the measurement in a graphical way. In this section details about
the quality of the models or about the problems they have in describing the data
can be seen.
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Model parameters and test quantities
7.2. Model parameters and test quantities

7.2.1. JETSET 7.4 with anisotropic gluon decay

Even if the linear range with n=0.1 is exceeded in some cases, the average
value of the deviation of the fit result in units of the linear range is 0. 72 which we
take as a sign, that the result can be trusted. The deviation between fitted values
and the expansion point in units of the linear range is denoted by
fir _ pO

Iin,= p
A A

lin

where A, is the width of the linear range. Ap, is the distance from the expansion
point to the lower (left) end of the parametrized range, while Ap, is the same for
the upper (right) end. Ap™:= p/ - p/ is the deviation between the estimations
found in the fits to the different candidates for a fitable range (s marks the
candidate found by a single fit, and i is used for the candidate found by iteration).

name pdejaull Ap[ po Apr D fit Ap fit Ap™” flin
A 029Gev | 0050 | 0291 | 0050 || 0299 | 0.003 | -0.011| 107
0, 1.0GeV | 0400 | 1.520 | 0400 || 1.560 | 0.050 | 0.018| 055
G 036Gev | 0050 | 0370 | o050 || 0381 | 0.002 | 0.010| 166
a 0.3 0.400 0.400 fixed
b 0.58Gev? | 0150 | 0805 | 0150 || 0.808 | 0.014 | 0.004 | 017
€, 0.05 0.040 0.040 fixed
€, 0.005 0.004 0.004 fixed
P 0.5 0150 | 0558 | 0150 || 0534 | 0019 | 0.049 | 121
P 0.6 0150 | 0466 | 0150 || 0.473 | 0.021 | 0.086 | 026
P 0.75 0.650 0.650 fixed
Pl 0.0 0.200 0.200 fixed
n 0.4 0.275 0.275 fixed
Y, 0.3 0050 | 0287 | 0os0 || 0292 | o004 | 0.012| 0M
99/9 0.1 0.030 | 0107 | 0.030 0.106 | 0.002 | 0.003 | 0.28
(su)/(du) 0.3 0300 | 0679 | 0300 || 0659 | 0.042 | -0.063| 044
b, 1.0 0400 | 0564 | 0400 || 0.622 | 0.029 | -0.011| 084

Table 7.1: Results from LinFit
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JETSET 7.4 with anisotropic gluon decay

In addition we used PX|,_,:P5  _:PE,_ =531and PS°=P% .. The
test quantities corresponding to the parameter values above are listed in the next
table. n,, does only include the n7;* bins of the fitable region defined by a single
global fit, while 1, includes all »”™ bins of a given distribution. The former values
are given only for the distributions used in the fit, while the latter were calculated

for other interesting distributions as well.

bins

distribution o RO Ny N distribution n Nau
) 23 1 21 23.66 13.1 P 21 36.6
A 16 g9 113.0 29.8 C 24 32.2
1-T 21 | 19 26.5 17.9 M 22 39.8
m 18 | 14 101.9 24.2 O 20 158.8
~In(,) 14 | 13 17.0 92 M? 21 15.9
x, <0.02 8 3 210.6 104 B, 17 12,1
x,> 0.02 38 | 30 124.9 303 B, 17 184
p,"“’(S) 19 5 882.2 16.4 —ln(xp) 52 556.2
P (S) 25 | 12 311.8 16.8 p™(T) 19 964.8
“in(x, ). K° 28 | 28 257 257 p"(T) 25 164.7
Xg,M 18 | 14 62.8 14.9 Vr 21 53.0
X, 91 9 7.2 7.2 (k%) 1 0.5
x,,p° 8| 7 7.4 4.0 p.(T).K° 25 90.5
(K‘*) 1 1 01 01 X, D™ 15 21.5
x K 8| 7 12.1 65 (A) 1 0.1
S 8| 3 47.8 3.6 p,(T),A 25 60.4
xp,u)" 6 4 41.0 2.7 —ln(x,,),n*(x<0.018) 16 116.5
{(£,) 1] 1 02 12 ~In(x,).n*(x>0.07) | | 23 3.6
(£,) 1] o0 17.4
“in(x,),A 22| 20 34.8 12.2
(=) G 56
((1385)") 1 1 0.1 0.1
(@) T 05 05
(2(1530)°) 1 1 0.9 09
-in(x,) K*(x<0.018)| | 71 | 11 4.0 4.0
~In(x,).K*(x>0.07) | | 18 | 17 26.2 204
~In(x,).(p, p)(x <0.018) 6 6 1.1 1.1
-In(x,).(p. F)(x >0.07) 18 | 18 17.1 17.1
sum 349 275 289.1 = T]ﬁ,/n?,’“ =1.05

Table 7.2: Test quantities corresponding to best fit parameters found by LinFit
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In the next two tables, bins that were used in both fits are marked by an "x".
All the bins removed from the candidate for a "fitable region" as defined by a
single global fit are signed by an "S”. The bins which are rejected by the iterative

sequence of fits are signed by an /",

1 2 3 4 51 6 7 8 9 11011 (12|13 |14
S x| §| x| x| x| x| x| x|x| x| 8| x| x| x
A X X I | S]] 51| % X I 1818518515151 1
1-T x | x |8SI| x | x| x| x| x| 8| x| x| x| I]x
m X | X | x | X I | x | x | x| X I | §51]| 51| S]] S,/
—in(y,) x | x | x| x| x| x| x| x| x| 8| x| x| x| x
x, <0.02 x | SI| SI|S1|S1|S1| I | x
x,>0.02 X | x| x| x| x| x| x| 8| x| x| x| x| x|x
X | x | x| X | x| x x | 51| S]] X
p™(S) SI| 1 |S8SI| x |SI|SI| x| x |8I|SI|SI1|S1|S1S]1
p;"(S) SI|S1|S1|S1| x |S1|S1|811851|81|81|81|S51| S
~In(x, ). K° X | x| x | x| x| x| x| x| x| x| x| x]|x/|x
Xg,M S| x| x| x I | x | x| x| x| X I | x| &§| x
X, M X | X | x | x | x| x| x| x| x
x,.p" X | x | X | x| x| x| X S
{£) X
x,, K™ X | x | x| x| S| x| x| [
%@ x| 81 8| S| S| x| 1|81
X, ©° X | x| x| x |S§IS]
<f2> X
() S,1
~In(x,). A X | ST ST x | x | x | x| x| x| x| x| x| x|x
(=) S
(=(1385)") x
(@) X
(2(1530)°) %
-In(x, ) K5 (x<0018) | bl s o [ x| x| x| x| x| x
=il ) K x>0.07) 1 Ll s s [ x| ox | x| x| x| x| x| x | x| x
~In(x, ).(p, P)(x < 0.018) % % x 5 % %
(e )PP >00D ] | x| ox | x| x Ix [ x [ x | x [ x| x| x| x|x

Table 7.3: Accepted bins in the "fitable range" (first part)
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JETSET 7.4 with anisotropic gluon decay

15116117118 119 120 |21 |22 123 24125262728

X | x | x| x| x| x| x| x| x S

I | x A

X | x | x| x| x| x| x 1-T

I | X X X m
—-ln(y3)
xp<0.02

X | x| x| §|SI| x |81 §| & | x | x | x| x| X x, >0.02

SI1|S1|S1|S1| I p(S)

X | x | x| x| x| x| x| x| x| x| x p(S)

X | X | x| x| x| x| x| x| x| x| x| x| x| x ~In(x,).K°

X | x | §1| S,/ XgsM
Xg, M
x,,p°
(")
x,, K™
x,,9°
x,,0°
(£2)
{fo)

X | x | x| x| x| x| x| x ~In(x,).A
()
(z(1385)*)
(@)
(z(1530)°)

~In(x,), K*(x <0.018)
S| x % % ~In(x,), K*(x>0.07)
~In(x, ),(p, F)(x < 0.018)
% % X I —-ln(xp) (p,P)x>0.07)

Table 7.4: Accepted bins in the "fitable range" (second part)
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Model parameters and test quantities

7.2.2. JETSET 7.4 with isotropic gluon decay

The average value of the deviation of the fit result in units of the linear range
is 1.17 which we take as a sign that the result can be trusted. Again we calculated

it O

tin. _ | P
i 3

lin

where A, is the width of the linear range. Ap, is the distance from the expansion
point to the lower (left) end of the parametrized range, while Ap, is the same for
the upper (right) end. Ap™:= p — p/ is the deviation between the estimations
found in the fits to the different candidates for a fitable range (s marks the
candidate found by a single fit, and i is used for the candidate found by iteration).

name pdefaull Ap, po Ap, D fir Ap I Ap™ flin
A 029Gev | 0050 | 0315 | 0050 || 0324 | 0.003 | -0.009| 1.06
0, 1.0Gev | 0400 | 1482 | 0400 || 1.487| 0.040 | -0.020| 006
c 0.36GeV | 0040 | 0364 | o040 || 0373 | 0.002 | 0.009 | 136
a 0.3 0.400 0.400 fixed
b 0.58Gev™ | 0100 | 0895 | 0100 || 0931 | 0014 | -0007| 217
€, 0.05 0.040 0.040 fixed
€, 0.005 0.004 0.004 fixed
P 05 0100 | 0519 | 0100 || 0564 | 0.015| 0.006 | 239
P 0.6 0100 | 0511 | 0100 || 0474 | 0.018 | 0.028 | 188
Py 0.75 0.650 0.650 fixed
P 0.0 0.200 0.200 fixed
n 04 0.250 0.250 fixed
Y, 0.3 0050 | 0288 | 0050 || 0.292 | 0004 | 0.005| 054
949/q 01 0025 | 0108 | 0025 || 0109 0002 | 0001 | 023
(su)/(du) 0.3 0200 | 0686 | 0200 || 0652 | 0.035| -0.005| 092
b, 1.0 0300 | 0528 | 0300 || 0592 0.027 | 0002 | 115

Table 7.5: Results from LinFit

In addition we used P> ,_,:P% _:P=,_ =531and P5’=P% . The

test quantities corresponding to the parameter values above are listed in the next
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JETSET 7.4 with isotropic gluon decay

table. n,, does only include the n} bins of the fitable region defined by a single
global fit, while n_, includes all n”"“ bins of a given distribution. The former values
are given ony for the distributins used in the fit, while the latter were calculated for

other interesting distributions as well.

distribution n"" nf;'}"s Nay Mg distribution n"" Nau
S 23 | 22 120 9.0 P 21 31.0
A 16 | 14 51.4 36.5 C 24 43.1
1-T 21 | 18 61.2 23.9 M 22 41.8
m 18 | 16 41.3 233 0 20 1259
~1n(y,) 14 | 14 154 154 M 21 30.8
X, <0.02 8 3 185 9.2 B, 17 17.9
x, > 0.02 38 | 31 86.5 27.2 B, 17 36.7
p*(S) 9] 5 676.9 19.2 ~In(x,) 52 485.1
p"(S) 25| 13 217.1 11.5 p(T) 19 771.5
~In(x,).K° 28 | 27 26.2 21.0 p"(T) 25 1398
Xg,M 18 | 15 50.0 21.5 Vr 21 54.3
Xp, M 9| 9 6.3 6.3 (k") 1 05
x,,p° 8| 8 53 53 p(T),K° 25 94.8
(k™) 1| 1 01 0.1 x,,D™ 15 224
x, K® 8| 7 12.3 6.8 (A) I 0.0
xp,(po 8 | 3 52.1 35 p.(T),A 25 75.3
x,,,co 6 4 47.3 3.3 —ln(x,,),n*(x<0.018) 16 107.7
(£,) 1] 1 01 0.1 —in(x, ) (x>0.07) | | 23 3.9
(5) 110 16.5
—In(x,),A 22 | 20 385 11.3
(=) 1[0 5.0
(z(1385)*) 1 1 0.1 01
(@) 1] 1 0.6 0.6
(2(1530)") 1 1 0.9 0.9
-in(x, ) K*(x<0.018) | | 11 | 11 3.7 3.7
~In(x,), K*(x>0.07) 18| 18 24.6 24.6
=1n(x,).(p. P)(x <0.018) 6 6 2.8 2.8
=in{x, ) (p.p)x>0.01) | | 18 | 17 18.1 10.9
sum 349 | 286 297.9 = M [nl = 1.04

Table 7.6: Test quantities corresponding to best fit parameters found by LinFif
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Model parameters and test quantities

In the next two tables, bins that were used in both fits are marked by an "x".
All the bins removed from the candidate for a "fitable region" as defined by a
single global fit are signed by an "S”. The bins which are rejected by the iterative

sequence of fits are signed by an /",

1 2 3141516 7 8 9 (10111 12113} 14
S x| S x| x| x| x| x| x| x| x| x| x| x| x
A x | x| x| x| x| x| x| x| 71| 1|8 x|SI| I
1-T X | SIS x | x | x | x| x |8/ x| x| x| x| x
m X X X X X X X X X X I | S11 [ |8/
~In(y,) x | x| x| x| x| x| x| x| x| x| x| x| x| x
x, <0.02 x | 8§11 81|81|81|81| I | x
x,>0.02 X | x| x| x| x| x| x| 8| x| x| x| x| x| x
X | x| x| x| x| x| x |S8I| S]] x
p(S) SI| I| 1| x |81|8I| I | x|81|8I|S1|S81|S1|S8]/
P (S) SI| 81181181 x | 81|81/ 81|81|S1|S1| S| S| x
~In(x, ), K° X | x| x| x| x| x| x| x| x| x| x| x| x| x
XM S| x| x| x ] | x| x| x| x| x| x| x| x| x
Xg, M X | x| x| x| x| x| x| x| x
x,.p" X X X X X X X X
(k) X
x,, K X | x| x| x| 8] x| x| x
Xy x| 8§ 8| 8| S| x| x |81
x,,0° X | x| x | x | S| S1
<fz> X
() S,/
~In(x, ), A X | ST ST x | x | x| x| x| x| x| x| x| x|x
(=) S1
(z(1385)") %
(@) X
(=(1530)°) «
~In(x, KM <0.018) | oy b | [ x| x| x| x| x| x| x
=l K2 x>0.07) | s Loy | [ [ x| x| ox | x| x| x| x | x| x| x
~in(x, )(p.F)(x<0.018) | % % % | x %
“n(x (P PIE>00D | s | w | ox | x | x | x | x| x| x| x| x| x| x| x

Table 7.7: Accepted bins in the "fitable range" (first part)
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JETSET 7.4 with isotropic gluon decay

15116 17 118119120 |21 [ 22 |23 124 | 25|26 |27 |28
X | x | x| x| x| x| x| x| x S
X X A
X X X X X X X 1-T
X | X | x| x m
~In(y;)
x, <0.02
X | x| x| x| S| x| 8|8 S| x| x| x| x| x x,>0.02
SI|S1|85/1|S1|S1] p(S)
X | x | x| x| x| x| x| x| x| x| x P (S)
x Ix I x| x| x| xIx|x|x|8| x| x|x]|x] -k
X | x | §1] 851 Xp>M
xXg,M
x,.p°
)
x,, K"
x,,0°
x,,0°
(£2)
(fo)
X | x | x| x| x| x| x| x ~In(x,). A
&)
(=(1385)°)
(o)
(2(1530)")
~In(x, ), K*(x <0.018)
<« | x | x| x ~In{x, ), K*(x > 0.07)
~In{x, ),(p, 5)(x < 0.018)
X % X S,/ -ln(x,, ),(p, P)(x>0.07)

Table 7.8: Accepted bins in the "fitable range" (second part)
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Model parameters and test quantities

7.2.3. ARIADNE 4.05

The average value of the deviation of the fit result in units of the linear range
is 0. 78which we take as a sign that the result can be trusted. Again we caluculated

Sir 0
pP_—pP

Iin,: p
f A

lin

where A, is the width of the linear range. Ap, is the distance from the expanion
point to the lower (left) end of the parametrized range, while Ap, is the same for
the upper (right) end. Ap™:=p/* - p/ is the deviation between the estimations
found in the fits to the different candidates for a fitable range (s marks the
candidate found by a single fit, and i is used for the candidate found by iteration).

name pdefuuh Ap, po Ap, D fit Ap fir Ap™ fIin
A 022GeV | 0050 | 0228 | 0050 || 0241 | 0.002 | -0.009| 1.80
" 060GeV | 0000 | 0749 | 0300 || 0.754 | 0.024 | -0.065| 019
c 0.36GeV | 0.060 | 0359 | 0060 || 0362 | 0003 | 0011 | 051
a 0.3 0.400 0.400 fixed
b 0.58GeV? | 0150 | 0831 | 0150 || 0861 | 0016 | 0.036 | 1.73
€, 0.05 0.040 0.040 fixed
g, 0.005 0.004 0.004 fixed
R 05 | o100 o566 | 0100 || 0540 0.018 | 0.034 | 1.49
p 0.6 0100 | 0468 | 0100 || 0464 | 0.019 | 0.060 | 0.20
P 0.75 0.650 0.650 fixed
P 0.0 0.200 0.200 fixed
n 04 0.286 0.286 fixed
Y, 0.3 0050 | 0286 | o050 || 0287 | ooo4| 0012 020
99/9 0.1 0040 | 0114 | 0040 || 0113 | 0.002 | 0.003 | 0.19
(su)/(du) 0.3 0300 | 0658 | 0300 || 0636 0.041 | -0.029| 052
b, 1.0 0400 | 0515 | 0400 || 0581 | 0.027 | -0.012| 098

Table 7.9: Results from Linfit

In addition we used P _:PY' _:P* =531 and PE'=P% . The

test quantities corresponding to the parameter values above are listed in the next
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ARIADNE 4.05

table. 1, does only include the n%* bins of the fitable region defined by a single
global fit, while 1, includes all n*™ bins of a given distribution. The former values
are given ony for the distributins used in the fit, while the latter were calculated for

other interesting distributions as well.

distribution n"" |y Nan Np distribution n"" Nan
S 23 | 20 44.1 16.5 P 21 29.8
A 16 | 16 23.0 23.0 C 24 19.9
1-T 21 | 21 14.8 14.8 M 22 48.0
m 18| 18 30.1 30.1 O 20 91.8
“n(y,) 14 | 14 9.8 9.8 7R 21 226
x, <0.02 8 2 242.9 9.0 B, 17 181
x,>0.02 38 | 29 88.1 31.4 B, 17 6.2
p(S) 9] 5 489.7 12.4 ~In(x,) 52 605.8
p"(S) 25 | 13 292.6 182 p™(T) 19 533.9
“n(x,),K° 28 | 28 204 204 p™(T) 25 182.9
Xg,M 18| 15 53.5 16.2 Yr 21 491
X, 9] & 9.0 45 (k%) 1 0.5
x,,0° 8| 7 7.7 3.5 p.(T),K° 25 77.3
(k™) 17 0.0 0.0 x,, D™ 15| 234
X, K7 8| 7 12.8 6.3 (A) 1 0.1
x,,9° 8 | 3 482 4.0 p,(T),A 25 64.8
x,,,w‘) 6 4 387 2.3 —1n(x,,),1t*(x<0.018) 16 1285
{£,) 1|1 02 0.2 ~In(x,),n¥(x>0.07) | | 23 58
() 1] o0 17.3
-ln(xp),A 22 1 20 42.0 17.6
(=) 1 0 3.9
(2(1385)") 1 1 0.1 01
(@) 7|1 02 02
(2(1530)°) 1 1 1.5 1.5
-In(x,),k*(x<0.018)| | 11 | 11 85 85
~In(x,).K*(x>0.07 | | 18 | 17 234 183
~1n(x,),(p, p)(x <0.018) 6 6 1.1 1.1
-in{x, ) (p.p)x>0.00 | | 18 | 17 16.9 108
sum 349 | 286 280.1 =Ny / n;',"‘ =0.98

Table 7.10: Test quantities corresponding to best fit parameters found by LinFit
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Model parameters and test quantities

In the next two tables, bins that were used in both fits are marked by an "x".
All the bins removed from the candidate for a "fitable region" as defined by a
single global fit are signed by an “S”. The bins which are rejected by the iterative

sequence of fits are signed by an /",

1 2 3 4 5 6 7 8 9 [ 10111 |12 | 13| 14
S X | §| |8/ x | x | x | x| x| x| x| x| x| x
A X | x| x| x| x| x| x| x| I|I|x]|x]x/]x
1-T X [ x | x | x { x| x| x| x{x|{x|x|x|I]|x
m X | X | X | x| x | x| x| x| X / / / I | x
~1n(y,) X | x | x| x| x| x| x| x| x| I|x]|x]| x| x
x, <0.02 x | 81| 81|81|81|81| 1| S
x, >0.02 X | x| 8] S| x| x| x| S| x| x| x| x| x| x
X | X | X | x | x | X | X | X S| x
p(S) SI| 1|81l x |8I|SI| x| x |81|S1|S81|S1|S1|S81
p"(S) SI|SI|S81|S1| x |S1|81]81181|S81|S1]S|S81| x
~ln(x, ). K° X | x | x| x| x| x| x| x| x| x| x]|x]|x]|x
XgsM S| x| x| x| x| x| x| x| x| x| x|x|x/|x
X, M X | x | x| & x| x| x| x| x
x,p° X | X | X | x | x | x| X S
(k™) X
X, K" X | x| x| x| 8| x| x| x
X9 x | S| S| S| S| x| 1|81
x,, 0’ X | x | x| x |SI|S1
(£,) X
(fo) S,1
~In(x,). A X | SIS x | x | x | x| x| x| x| x| x| x| x
() S
(z(1385)") x
(@) X
(=(1530)°) %
(k<008 [ ] | o | [ x [ x I x x| x | x| x
)l kre>00) | | x| | x [ x [ x I x [ x [x [ x| x | x | x| x
-n(x, (P PXx<0.08) | o | 5 | x| % | x | x
“i(x ) P>0.0D ] % | x | x [ x | x | x | x I x| x| x| x| x]x]x

Table 7.11: Accepted bins in the "fitable range" (first part)
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ARIADNE 4.05

15116 |17 [ 18119 120 |21 |22 123 |24 252627 |28
X X X X | x | x X | x | X S
X | x A
X X X X | X X | x 1-T
X | x | x | % m
~In(y,)
x,<0.02
X | x| x| SIS x| S| S| S| x| x| x| x|Xx x, >0.02
S1| 51| S51| S| X p(S)
X | x | x| x| x| x| x| x| x| x| x P/ (S)
x | x I x| x| x| x| x| x| x|x]x]|x]|x/] x|  -h)k
x | x | §I| S,/ Xg>M
Xg, M
x,,p°
(K]
x,, K™
x,,0°
x,,0°
{£2)
(£)
X | x | x| x| x| x| x| x -In(x,), A
(=)
(=(1385)")
(@)
(=(1530)°)
~In{x,), K*(x <0.018)
Sl x| x| x ~In(x,), K*(x>0.07)
~In(x,),(p, F)(x < 0.018)
x | x | x| &I ~n(x, ),(p, B)(x > 0.07)

Table 7.12: Accepted bins in the "fitable range" (second part)
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Model parameters and test quantities

7.2.4. HERWIG 5.8

The average value of the deviation of the fit result in units of the linear range
(n:=0.5) is 0.53 which we take as a sign that the result can be trusted. Again we

caluculated
P fir p()

Iin,=
;e A

lin

where A, is the width of the linear range. Ap, is the distance from the expanion
point to the lower (left) end of the parametrized range, while Ap, is the same for
the upper (right) end. Ap™:=p/ - p/" is the deviation between the estimations
found in the fits to the different candidates for a fitable range (s marks the
candidate found by a single fit, and i is used for the candidate found by iteration).

name pdefault ApI pO AP, p fit Ap fit Apsys flin

LAMQCD 018GeV | 002 | 015 | 002 0.151 | 0.001 | 0.007 | 014

RMASS(13) | o.756ev | oo0 | 065 | 020 0.684 | 0.006 | -0.023| 127

CLMAX 3.35GeV | 030 | 365 | 030 3.703 | 0.018 | -0.066| 055

CLSMR 0.0 020 | 070 | 020 0.704 | 0039 | -0.126| 006

PWT(3) 1.0 020 | 080 | 020 0.830 | 0.014 | 0.069 | 061

Table 7.13: Results from LinFit

The test quantities corresponding to the parameter values above are listed in
the next table. 1, does only include the n}™ bins of the fitable region defined by a
single global fit, while 1, includes all n”™ bins of a given distribution. The former
values are given ony for the distributins used in the fit, while the latter were

calculated for other interesting distributions as well.
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HERWIG 5.8

distribution bins ”;';n * MNau T i distribution n Nan
S 23] 13 152.9 27.8 P 21 133.5
A 16 | 11 114.1 17.8 C 24 67.5
1T 21| 10 209.6 181 M 22 212.9
m 18| 10 251.0 156 [9) 20 83.7
~In(y,) 14 | 13 26.4 21.5 M 21 454
x, <0.02 8| 5 91.2 154 B, 17 157.4
x, >0.02 38 | 13 540.1 34.4 B, 17 65.0
4 (S) 19 | 10 251.6 156 ~in(x,) 52 710.8
"(S) 25| 13 169.4 23.9 p2(T) 19 4176
~In(x, ), k° 28 | 20 106.4 20.1 p"(T) 25 148.2
Xg,M 18| 16 41.4 234 Vr 21 31.1
x,.p° g 7 84 3.1 (k°) 1 0.0
(k) 1| 1 0.0 0.0 Xz, M’ 9 29.8
x,, K g1 6 31.3 10.1 p,(T),K° 25 726.6
x,,0° 8| 4 51.4 7.6 x,, D™ 15 41.9
x,,0° 6 | 4 24.1 9.5 (A) 1 62.4
(£, 1] 1 0.0 0.0 —~In(x,).A 22 1790.2
=in(x, ) K*(x<0.08) [ | 17 | 6 58.2 16.0 (=) I 3824
~In xp) k*(x>00n ]| 18| 10 89.0 22.6 p,(T),A 25 461.5
~ln(x, )} (pP)x<0.018) | | 6 | 6 3.9 3.9 (2(1385)") 1 1283
—m(x,,),(p.pxno.m) 18] 13 141.8 3.7 (@) 1 15194
(8(1530)") 1 1819.4
~In(x,),n*(x<0.018)| | 16 40.1
~Infx,),n*(x>0.07) | | 23 180
sum 313 | 192 3102 =1, /ni =162

Table 7.14: Test quantities corresponding to best fit parameters found by LinFit
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Model parameters and test quantities

In the next two tables, bins that were used in both fits are marked by an "x".
All the bins removed from the candidate for a "fitable region" as defined by a
single global fit are signed by an "S” The bins which are rejected by the iterative

sequence of fits are signed by an /"

1 2 3 4 5 6 8 9 |10 11 |12 | 13| 14
S SI| x |81 81| x| §]| 8| S| x| S|SI| x| x |81
A I | ST S]] I | x | 8§51 5] x | x | X | X | x| x
1-T SI| S| x | 81181181 x| x| S| x| x| x|8Il S
m SI| S1| x | §11 85,1 51|51 x S| S| x X X X
~In(y;) I I x| x| 8| x| x| x| x| x| x|x|x]| x| x
x, <0.02 x | S| S]| x | x | x| I |81
x, >0.02 SI|S1181181181181] 1| x| x| x|8I|81|81]S81
S/ x |S]I| x| x| §|85I| §|S/]| 5,1
p" () SI| x | x | x| x| x| x| x| x| x|8I|8I|SI|S&I
p/(S) SI| x | x| x| 8| S| x| x| 1| 1|8l x|x]| &
~In(x, ), K° X | x| x| x| x| x| 8| 8|8/| §| x| x| x| x
XM SI| x| I | x| x| x| x| x| x| x |8 x| x| x
%0’ X X | X X X | X | X S
{£) X
x,, K" X | x | x | x | SI| S| x | x
% X | x | 8181181 x | x |81
%y, ©° X | x | §]] x | x | §1
b ) K008 L grl syl s 7 8si| 18] 1] x | x | x
=) K500 | oo |y | | x| x| x| x| x| x| x S| 51| S1| 8]
~In(x,).(p. B)(x<0.018) x % % x x %
ol )00 |l [ x [ x [ x [ x [ x [ x [ x| x| x| x]|s

Table 7.15: Accepted bins in the "fitable range" (first part)
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HERWIG 5.8

15116 | 17 [ 18119 120 |21 |22 1231242526 |27 |28

X | x | x| x| x| x| I|S8I] x )

X X A

X | x | x| x | §I| 51| S5,/ 1-T

X | x | x | x m
~In(y,)
x, <0.02

S| 811818181 x | x| x| x |81 x|8I]8I] x x, >0.02

S1|S1| 51| S1| I p(S)

X | S| x| x |81 81| SI|S1|S1|S81| x p;'(S)

X | x | x| x| x| x| x| 1]18181|S8SI|SI| x| x ~In(x, ). k°

X X X X XgsM
x,,p’
()
xp,K°°
x,,0°
x,,0°

~In(x, ), K*(x <0.018)
SIl s8Il s S ~In(x,), K*(x>0.07)
~n(x,).(p.F)(x<0.018)
S| siI|8I|S1 —~In{x,).(p, p)(x >0.07)

Table 7.16: Accepted bins in the "fitable range" {second part)
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7.3. Graphical comparison between tuned models and
experimental data

The aim of this section is to compare the predictions of the tuned models
with the measured distributions listed in chapter 4. All the figures below are
devided into two parts. The first part shows the shape of the measured distribution
together with the prediction of the tuned models (calculated with a statistics of
s, =2-10°%), while the second part shows the deviation between the models and
the data in units of the error of the measurement. The symbol E, is used for the
"visible energy" in an event, that means the sum of the energies of all charged
particles f the final state.
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Graphical comparison between tuned models and experimental data

7.3.2. Single particle properties
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Concluding remarks

7.4. Concluding remarks

A test quantity based on the whole set of distributions listed in section 7.2
leads to the following numbers:

Model n Nan Nan/

JS 7.4 azani 714 4469.2 6.26
JS 7.4 aziso 714 3737.3 523
Ariadne 4.05 714 3449.0 4.853
Herwig 5.8 713 11455.3 16.07

In this sense, ARIADNE'is the best model, followed by JETSET with isotropic
gluon decay, JETSET with anisotropic gluon decay and HERWIG. The large value
of the HERWIG test quantity is mainly due to the strange baryon sector (c.f. table
7.12). Also for event properties, HERWIG has problems to describe the data, while
the other models are in better agreement with the data (c.f. table 7.2, 7.6, 7.10
and 7.12).

It is worth noting, that the JETSET version with isotropic decaying gluons is
in better agreement with the measured event properties, than the version with
anisotropic gluon decay (c.f. tables 7.2 and 7.6). All the models have problems

out

with the description of p’ and p!". Especially the distributions of p/* show
dramatic deviations from the data in the region above 1GelV/ up to 15 times the
error of the measurement. The distribution of the normalized particle momentum
is underestimated in the region of very low momenta (x, <0.014). The description
of ( f0> seems to be impossible. Apart from this problem, multiplicities of identified
hadrons are in good agreement with the model predictions of JETSET and

ARIADNE.

An interesting quantity, that is not directly used in the fit, is the mean
charged multiplicity. This quantity is for example measured in [A2,95] as
(n,)=20.91£0.22. By integrating any single particle distribution, the following
values are obtained:

188



Model (n,) N
JS 7.4 azani 20.53 2.98
JS 7.4 aziso 20.59 212
Herwig 5.8 20.75 0.53
Ariadne 4.05 20.54 283

In the table above, also the test quantity

is given. One can see, that all the models describe the charged multiplicity
within two sigmas although systematically below the data. The description of
HERWIG is the best.

The next tables contain the correlation coefficients obtained from the matrix
of second derivatives of the estimation functions used for parameter tuning.
Because of the similarity of the models JETSET and ARIADNE only the
correlation coefficients for JETSET with anisotropic decaying gluons and for
HERWIG are given.

Al Qo | © b | P | P& | v, | 99/9 |swdu| b,

A 020|-060| 048] 002 | -001| 0.08| 025|-015| -0.15
) 012 -042| 019 036 | 025| 026 | -023| -0.13
O
b

-0.30) 0351 026 | 0.19] 0.08|-0.03| 0.00
032 | -0.05|-0.01|-010| 0.18| 0.01

P -011| 028) 043 -022| -0.14
P 022 0.02|-0.05| 0.01
Y 0.30 | -0.61| -0.03
94/9 -0.60| -0.51
su/du -0.01
b,
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LAMQCD | RMASS(13 | CLMAX CLSMR PWT(3)
LAMQCD 025 -0.48 042 025
RMASS(13 0.25 -0.06 0.39
CLMAX 0.03 017
CLSMRE -0.10
PWT(3)

These tables show that correlations are in general not negligible. Because of
that, one is forced to use multi parameter fitting procedures if estimations of the
parameter values are to be calculated. Only if correlations can be neglected, an

independent estimation of parameters is possible.

To conclude, a comparison between fitted and default distributions should
be given to show the improvement of the description due to the fitting procedure.
For that reason the model predictions for four representative distributions are
calculated using the estimated set of best-fit parameters and the default values for
the model parameters respectively. We used the model JETSET 7.4 in the version

of anisotropic gluon decay.
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Summary

In the first part of this work, we studied some characteristics of charged
particles of hadronic final states in ALEPH events, while some methods for tuning
models with free parameters to experimental data were discussed in detail in the
second part. The main ingredient in the first part was a good simulation for the
QCD process as well as for the detector effects. After we performed some tests to
make sure that the available simulation is indeed good enough, standard methods
for unfolding of detector effects and to correct for ISR and cut-influences were
used to perform the measurement.

The main results of this measurement are shown in the tables of chapter 4.
They lead to the following conclusions:

¢ In most of the bins the systematic error is bigger than the statistical one.

¢ The systematic error is typical in the order of a few percent, even if some
regions exist, where this error is bigger.

+ For event properties the statistical error is also typical in the size of a few
percent, while it is decreased to a few permille in the case of single particle
distributions.

e The dominant part of the systematic error is in most cases the model bias. The
main contribution to the model bias comes from the difference between the
corrected distributions calculated with the help of JETSET and HERWIG.

Detailed discussions of methods for model tuning were presented in the
second part of this work. Starting point for all of them was the maximum
likelihood principle. These methods together with linear parametrizations of the
model predictions were the basis of an algorithm that we used for the estimation
of the model parameters. We called this algorithm "LinFit". In order to minimize
the contribution of systematic deviations beteween model predictions and
experimental data to results of the fitting procedure, a restriction to a so-called
"fitable region" was introduced.

In addition a new method to include fluctuations of parametrization
coefficient in the estimation process was developed.
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The main results of the parameter tuning are:

ARIADNE is the best model, followed by JETSET with isotropic gluon decay,
JETSET with anisotropic gluon decay and AHERWIG, because it leads to the
best overall description.

The JETSET version with isotropic decaying gluons is in better agreement with
the measured event properties, than the version with anisotropic gluon decay.
All the models have problems with the description of p* and p;". Especially
the distributions of p/ show dramatic deviations from the data in the region
above I1GelV/up to 15times the error of the measurement.

The distribution of the normalized particle momentum is underestimated in the
region of very low momenta (x, <0.014).

The description of (f,) seems to be impossible using the spin counting
simplification introduced in section 2.3.2.4.

Apart from this (f,)-problem, multiplicities of identified hadrons are in good
agreement with the model predictions of JETSET and ARIADNE.

All the models describe the charged multiplicity within two sigmas although
systematically below the data. The description of HERWIG is the best.
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Appendix A.

Remarks concerning part |

1. Remarks about the choice of bins

In the predecessor of this work [Al,92] unfolding was done even for event
properties by the factor method explained in 3.3.2.2. This method should be a
good approximation if the off-diagonal elements of the detector matrix are small
compared to the diagonal elements. In some works (for example [01,90]), the
separation into bins is chosen such that more than 60% of the bin contents remain
"in a given bin", while the rest is smeared over the other bins by detector
influences to force this special form of the detector matrix, .

Here an analysis is performed, that provides such a bin separation for most
of the distributions observed in the main part of this work. For that reason, a
starting bin-width is set to be ¥, (which is a arbitrary choice) of the full range of
the distribution. If less than 40% of the contents of this bin is smeared into others,
the width is kept, and the next bin is calculated in a similar way. If more than 40%
are smeared into other bins, the width is increased by J;, of the full range, and this
new width is checked by the 40% criterion.

The results are shown in the following table. The numbers beneath the
symbols of the distributions mark the number of resulting bins. If this number is
big, one can expect that the detector is able to measure the corresponding
quantity with a high accuracy, and a neglection of off-diagonal elements of the
detector matrix makes sense. If only a few bins are observed, the smearing of the
detector is big, and a matrix unfolding has to be done.
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The first and the last number in the columns of bin borders mark the whole
observed range. The analysis is based on the simulation HVFLO4, it uses a

statistics of s :=30000.

sim *

sl a|l Pl cliT| M| m| Oo| | M| M| v
17| 131516121914 |13|7 ]| 4] 6|6
000 | .000 | .000 |\ .000\ .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000
018 | 005} .013 | .025 | .010 | .018 | .010 | .015 | .010 | .003 | .010 | .009
035 | .010 | .025 | .050 | .020 | .035 | .020 | .030 | .021 | .008 | .035 | .021
053 | 015 | .038 | .075 | .032 | .053 | .030 | .047 | .046 | .024 | .084 | .046
070 | .020 | .050 | .105 | .048 | .070 | .040 | .068 | .090 | .120 | .161 | .097
088 | .028 | .066 | .145 | .070 | .088 | .051 | .093 | .163 289 | 219
08 036 | .083 | 192 | .099 | 105 | .065 | 122 | .294 400 | .350
35 | ;47 | 107 | 250 | 130 | 124 | .081 | .159 | .400
66 | 063 | 135 | 320 | 172 | 175 | 102 | 211
207 092 ¢ 164 | 392 | 220 .147 | 128 | .270
247 V118 | 204 Y 475 | 262 | 205 | 162 | .329
289 | 168 | 250 | 562 | 325 | 242 | 206 | .408
359 + 194 | 304 | 665 | 400 | 285 | .261 | 483
429 | 200 | 362 | .752 334 | 327 | .600
.507 427 | 822 392 | 400
588 500 | 875 448
695 1.00 .511
.700 577

.635

.700

Table Al: Bin borders according to the 40% criterion

The jet masses and the resolution parameter are smeared most by the

detector according to this analysis. One should therefore check at least for these
distributions if the unfolding by correction factors leads to satisfactory values. We
will do this by comparing the factor-unfolded by the matrix-unfolded values. For
every distribution the histogram H (c.f. example 3.5) forms the basis of this
analysis. In the next figure, this histogram is shown for the "C-Parameter".
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A slice was cut out of the histogram H for two special cases. These cases that
are shown in the next figures illustrate the 40% smearing quite well.
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([0.097,0.219]).

The figure on the left side shows the smearing of the 5th C-Parameters bin
([0.105,0.145]), while the picture right shows the smearing in the 5th y, bin

In the next table, a comparison between an unfolding with factors and an
unfolding with matrices is shown. Since [A1,92] uses correction factors, even if the
bin widths are smaller than in the previous table, one could expect errors due to
neglecting the off-diagonal elements.

S |A|P |C|IT|M |m|O M M} M |B |B |
19| 09| 08| 06| 01| 24| 08| 27| 01| .04| 142 .04| 17| .00
69| 34| 56| 30| 01| 07| 10| 07| .02| 22| 30| 15| 32| A4
24| 09| 60| .03| 54| 145| 1.18| .73| 13| 23| 1.30| .58 | .22 | .50
bS5 11| 62| 29| 62| 34| .75| 10| 27| 10| 87| .09| .03| .51
36| 16| 100| 16| .01| 42| 06| .79| .97| 13| 1.08| .03| 18| .56
1| 21| 96| 07| 35| 11| 41| 105 10| .02| 12| .13| 33| .10
13| 03| 29| 21| 57| 01| .05| 23| .00| 16| 15| 59| 21| .19
25| 50| 32| 14| 24| 16| 01| 29| 74| 21| 230 20| 12| .01
32| 08| 11| 35| 03| 29| 37| 05| 27| 56| 35| 01| 46| .02
26| 40| 08| 22| 30| 32| 20| .09| 19| 60| .11| 10| .17| .13
8l| 70| 27| 35| 29| 41| 63| 35| 11| 58| 12| 06| 55| .27
72| 13| 09| 29| 19| 08| 50| .02| 35| 11| .07| 13| .24 | .01
05| 56| 29| 03| 81| .08| 57| 14| 13| 38| .78| 1.01| 16| .36
20| 11| 22| 48| 10| 32| 90| .02| .70| 53| .05| 06| 28| .70
12| 38| 35| 45| 15| 17| 07| 18| 12| 102| M| .62| 26| .56
02| 41| 08| 12| 64| 11| 38| 56| 40| 14| 68| 10| 26| A
06| 07| 17| 83| 11| 88| .09| 27| 22| 128 69| .14| 33| 22
17 30| 54| 40| .09| 01| 12| 95| 94| 17| .12 59
51 33| 60| 27| .32 04| 22 54| 46 .70
22 48| 1.71| 23| .61 01| 26 18| .08 1.63
12 31| 83| 111| .11 .90 45

.56 b52| 24| 25 16 17|

67 26 22

.69 02

Table A2: Comparison between factor and matrix method
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The bin widths used in this work (and for the calculation of the values in the
table above) are very similar to the bin widths used in [Al,92]. The same
conditions as in the measurement are used. All the calculations are done with
1992 data. The table above shows the deviations between the matrix-corrected
and the factor-corrected values in units of the error of the measurement. We can
see from the table above, that the deviations lie mainly below one sigma. This is
indeed a sign, that the usage of the simple factor method makes sense. This is
especially true because we are using a higher statistics, and therefore the errors
are smaller than in [A1,92].

2. Comparison between event properties for the 1992
and 1993 runs

Generally simulation models become better every year, and also the
reconstruction of particle tracks changes with time. Because of that, a different
simulation is available for each year. We saw, that a change in the simulation will
in general lead to a change of the measured distributions. In the following tables
the differences between the corrected 92- and 93data are given in units of the
statistical error.

(tigz_t'%)

i

@) (o)

The measurement is based on s,:=571825 and s, :=1186173 for 1992 as

well as s,,:=375696 and s, :=1185262 for 1993 "The table shows some

sim *

deviations which cannot be explained as purely statistical fluctuation.

In table A4 the same deviation is given in units of the total measurement
error, i.e. the quadratic sum of the statistical error, the cut-systematic and the
model bias. No further deviations can be observed in units of this error, and the
measurements are compatible in that sense!.

! Note, that the model bias is the same for both years, and therefore fully correlated.
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S| A| P| C|IT| M| m| O|M|\M}| M| B | B, | v
18| -3.31| -1.59| -3.36| -1.07| -99| -97| -1.04| -2.34| -9.91| -2.84| -41|-1.82| -2.41
-1.80| 1.76| 27| -4.33| -315| -56|-265| -31|-706| -3.86| -2.14| -65|-1.60| 2.18
102 123| .01|-215|-284| .38| -81| 1.23|-576| 1.92| .05|-2.06| -02| 1.56
65| -13| .30| 33| -94| -86| -50| .33|-291| 406| 1.03| -87| 92| -.67
-1.08| 75| -94| 1.09| -59|-1.50| -08| .95| 21| 301| 20| 1.32| .17| .12
52| -12| 52| 159| -14|-1.05| -40|-1.27| 1.29| 3.09| 123\ 71| .71| .00
72| 52| 18| 68| 39| -02| 129| -78| 201| 211| 44| -17| 94| .25
121\ 17| -15| .78| .13| -42| -08|-1.29| 1.89| 1.72| .99| .87| 48| .62
89| -103| 1.32| -68| .91| 159| 1.49| .01| 1.87| 1.49| 1.40| .15| -25| .34
25| -31| 27| 118| 1.25| 61| .57| -16| 1.95| 226| 66| 24| .73| .27
-93| 71| 48| 133 99| -89| 106| 27| 193| 214| 39| 74| .02| -49
126 17| 46| 113| 12| 72| .06| 1L01| 1L00| 1.62| .06 | 34| .69| .43
1.83| -66| .13| .88| .99| -21| .51| .67| 148] .&4| 29| .70| -62| -35
08| 15| .52\ 22| 127| 110| 67| 86| 42| 34| .59| -18| -96| .11
-45| 42| -46| 72| 0| 31| -42| 55| 58| 138| .92| 81| -54| .22
18| 41| 46| -11| 28| 96| 114| -21| 52| .58| -44| -63| 34| .15
43| -29| -05| -54| -33| 30| -12| -31| 92| -08| .19| -41| .17| .81
37 84| 1.26| 33| .70| -38| 70| 94| 04| 50| 120 .03
1.26 124\ 53| 27| -47 45| -17 14| .24 -31
-29 111 .15| -.07| -59 08| -37 -59| .62 -25
-.65 -22| 1.06| 1.25| .36 .07 .06

1.26 68| .63| .19 -05 37

1.20 47 1.23

54 -.09

Table A3: Differences between corrected distributions from 92and 93 in units of the

statistical error
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S|A|P|C|lITIM| m| O | M |M|M|B|B |y
01| -10| -67| -35| -18| 06| -05| -18| -35| -92| -68| -02| -10| -52
-1.19| 37| .05|-152| -7%6| -05| 13| -04| -76| -28| -47| -04| -35| L4
27| 14| 00| -35|-122| 08| -18| 40| -84| 25| .02| -54| .00| 137
15| 2| 29| 11| -27| -68| -37| 35| -33| 67| 44| -12| 48| -51
222\ .07|-119| 61| -15| -46| -03| .61| .04| .64| .12| 40| .12| .06
12| -02| 38| 142| -06| -17| -08| -62| 39| .65| 92| 35| 29| .00
15| 09| -17| .82| .16| .00| .17| -22| 66| 40| .18| -15| 49| .11
38| 07| -15| 93| 12| -10| -01| -42| 95| 29| 8| 71| 21| .42
36| -84| 117 -81| 61| .76| 38| .00| .53| 38| .53| .09| -08| .25
08| -18| 22| 91| 99| .53| 30| -05| 48| 52| 25| 14| 47| .16
36| 36| 27| 7| 84| -62| 69| 07| 36| 48| .10| 37| .01| -27
72| 14| 45| 70| 10| 43| 02| 27| 22| 53| 02| 20| 54| .23
83| -71| 09| 42| 49| -11| 20| 18| 44| 26| 11| 30| -44| -23
07| 12| 39| 14| 59| 43| 33| 54| 12| 18| 24| -08| -62| .07
33| 23| -27| 48| 37| 15| -17| 28| 27| 62| 45| 48| -45| .15
15| 26| 26| -06| .14| .73| 58| -10| 21| 21| -24| -20| .16| .11
26| -25| -06| -23| -19| 11| -07| -20| 53| -04| .15| -17| 10| .63
17 82| 78| 18| 30| -33| -s6| 37| 03| 25| 31 .02
76 123| 42| 10| -23 29| -11 12| .08 -.34
-28 125 14| -03| -29 03| -25 50| 47 -24
-58 14| 65| 54| .16 .06 .04

85 62| 66| .15 .02 13

1.12 48 45

45 -11

Table A4: Differences between corrected distributions from 92 and 93 in units of the whole

error
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3. Remark about normally distributed random variables

In this section we prove a fact that is important to several parts of this work.
This also serves as an example that shows the handling of probability distributions.

Example Al: Distribution of a linear combination of independent and
normally distributed random variables

Fact: If X, je {1 N } are normally distributed and independent random
variables, that means if their probability density is given by

]

L 1{x;, -1 ’
Xyseunn Xy )i= exp| ——| ~+—2< | |, x.,un,eR, o.eR*
p( 1 N) ]J;Imc P!: 2( py ) jl Xl i

then each linear combination Y:= n+z §;X;, n,§; eR Iis again normally

distributed, and the mean value and w1dz‘h are given by:

N
:n+z;§j“ja 0= le( jcyj)2
=

The proof is done in two steps. In the first step, the calculation of this
density is explicitly done for the case N=2. The second step is a
generalization by induction with respect to V.

Step 1:

The probability density of a random variable ¥:=n+& X, +&,X, can
be calculated as:

1= Idxl Idxzp(xlb(x )>2~n+§1X|+§2X2 J{Ig l jdx,P X p(ﬁ:_%:g_*ﬁ)}dyz =

= [p(»,)dy, =
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_______L______l_m ___l_ X~y i __l_ )’—ﬂ‘&xl'@zuz i -
::p(yz)_21t0'162 I&z'.'[odx}exp[ 2( s, )}expl: 2( ok, ) =:(*)

It follows that:

[Xl — K, )2 +()"n"&;1xx -&1, )2 _ (&lxl)z +(E>2x2)2 (E.qxl -—K)2 +(y_[n+&1x1 '*'ézxz]}~

O, .8, - (gxxl)z(gzxz)z \/(gl‘xl)z + (&2’52 )2
with:
= [y —N- &2“2](&1”1)2 + glul(gzuz)z
(&;1“1)2 +(§2”2)2
1 1 y—[ﬂ+§,x1+52xz] 2
= (%)= exp| > 2
omy(Ep) +(Ea,) | 2 [ Vex) +(&x) ]

Now the proof for N =2 is done, and we continue with

Step 2:

The starting point for the proof by induction is the assumption, that the proof
for the case Y,:= n+2j_v=1§ ;X; is already done, and concluding from this,

we prove that this assumption does also hold for ¥,,,:= n+27: €,X;. This
can be seen as follows:

Y=Y, +&y,, Xy, again is a sum of two normally distributed and
independent random variables, and we can write down their mean value
and width, using the result of step 1:

N+1

Wy, =HUy + Evallya =M+ z&juj

j=1
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N+1

o} w U?'N +(&.~N+10N+1)2 = Z(E;CJ')

j=1

2

4. Remarks concerning a model independent detector
matrix

The *-test of section 3.4.2 can be used to check directly the correctness of
the unfolded data if the detector matrix D (c.f. section 3.3.1.1) is (in good
approximation) independent of the QCD-part of the simulation. The sensitivity of
this test will be illustrated in the next example.

Example AZ: Statistical test of unfolded data in the case of a QCD model-
independent detector matrix

Idea: The increase of the sensitivity of the Y -test introduced in section 3.4.2
with an increasing statistics will be demonstrated using the matrix unfolding
procedure from section 3.3.1.3, .

The test quantities with and without inclusion of the statistical widths of
the parametrization are given in the following table in the context of the
simple detector model that was introduced in example 3.1. The tests are
applied to the "data" distribution ¢,,,, to the "incorrect simulation” ¢, and to
the result obtained by an unfolding with this "incorrect simulation” ¢, ,. (For
details see example 3.1.) The second and third of these distributions are
clearly excluded by this test, while the correct distribution passes it. The high
sensitivity of this test, which is given by the big values of the test quantity,
reflects the fact that it is applicable even in cases where the simulation does
not fail as dramatic as in the case of this simple model.
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S-"'m sdﬂ' Xis (tmal ) Xi.v (tmat ) Xi: (tdal ) st (tdlll ) Xi: (t.tim ) X:‘ (t.n'm )

10000 1000 16.24 17.25 6.61 7.54 43.59 46.20

50000 5000 69.88 75.99 8.89 9.80 240.18 | 252.60
100000 | 10000 127.28 | 138.19 11.70 12.99 479.50 | 504.25
500000 | 50000 502.62 | 546.14 13.07 1589 | 2032.07 | 2132.80
1000000 | 100000 | 1071.91 | 1164.47 7.29 854 4289.13 | 4503.45
1500000 | 150000 | 1519.56 | 165025 | 21.53 2553 | 6067.65 | 6367.23
2000000 | 200000 | 20580.18 | 225893 | 16.67 2020 | 8157.90 | 8559.11

With n=13 the hypothesis of a vanishing mean value (and thus the
hypothesis of a correct simulation) can be excluded with a probability of
95% (99%) if the value of the test quantity exceeds 22.4 (27.7) (c.f. [Br,79]).

©

If an additional information is given, this test can be expanded to a full
unfolding procedure. The maximum of the x*> probability is not unique without
this information, and therefore we can not apply the methods of parameter
estimation introduced in chapter 5. Many so-called ‘oscillatory solutions” have the
same or even a higher probability as the true distribution in this case. One
preferred maximum is taken by introducing new information. This point is
illustrated by the next example.

Example A3: Maximum likelihood and minimum curvature

Idea: The y* -test that was discussed in the last example will be expanded to
a "pseudo unfolding algorithm”. For that reason the principle of "minimum
curvature” is introduced. On that basis the unfolding of a distribution is equal
to the solution of a minimization problem that is restricted by one condition.

f signs the unknown true distribution (the unfolded distribution).
Analogous to section 3.4.2 the y*-distributed quantity
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S0

+¥ (o, tAx)

Jiti

Xo(F):= Z{
i=1 cj

f=1

is constructed. In addition the following measure of the "overall curvature" of 7

k(f):= mz_i[z Axi—l(ti-H - ti) - Axi(ti ” ti—l):]2

Axi—lei(Axi——l + Axx)

is introduced. It is motivated by the definition of second derivatives. In the
case of bins with equally widths this expression becomes simpler in this form

k(7):= "'i( i 2 +t.+1)

The most probable value of %, is n-2. Consequently every vector 7
which accounts for the condition ¥’ (f)=n-2 should be a favorite
candidate for the unfolded distribution. The one which minimizes k(7) is
taken from this set of vectors. This conditioned minimum is found by

iteration.
A vector 7, which satisfies the condition x> (7,)-(n—2)=0 is the
starting point. To find such a vector, a maximum of the y*-probability

exp| -2 ((2,)"
P(x2)= [2%1“(}’21)

is calculated using standard minimization methods. The next step is to
calculate an normalized and orthogonal basis B:={E,,...,En_,} in the vector
space that is perpendicular to V2 (7,), using the standard basis of R" and
an orthogonalization algorithm ("Schmidt'sches Orthogonalisierungsver-
fahren" c.f. [Br,87]). Now the direction




in this space is evaluated, in which the slope of the function 4 reaches its
minimum. For this reason, the solution of the system of equations

aav(f) a - o S n-2 -
= W{Vk(to){Zkibi +1- > ben,l}} =0

J i=l

has to be found.

p Vk(z,) b,
With A, =,/1—Zi::’7@ we observe that A, ='€7Z%‘S—)T:—LP”""‘=:§1’ A

and

thus

Now it is possible to make a small step € in the direction of the
minimum value of the slope of k without changing the value of %2 . The
latter has to be checked, because we cannot really make infinitesimal steps. If
the y?, is in a given tolerance region, this new vector 7, is accepted as a
starting point for the next iteration step. If the check fails, the correction of 7,
is done parallel to Vy?(f,), or if this is not possible, the ¢-value is
decreased. In this example we used s;,:=5-10° and s,,:=5-10* and got the

following unfolded distribution:

0.256
| o
0.2k ° 5]
[¢]
— o
0.15
o  ——
[
0.1 E
o
o]
0.05 l l -
o]
°
0 ) f L L s A s
[¢] 1 2 3 4 5 6 7 8
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The nominal values of the true distribution is given in form of bars.
Even if the result seems to be better than the oscillating "distributions" given
by matrix inversion (c.f. example 3.3), a bias through a straight line can be
seen.

The main problems appear in the calculation of error bars. Even if it seemed
possible to get better results by using the ad hoc principle of "minimal curvature",
it is not possible to calculate the bias introduced by such an ad hoc ansatz. If a
proper estimation of errors is regarded, one has to use well understood algorithms
based on first principles. Otherwise one could hardly say more than he believes,
that the calculated results are "not too bad". A very interesting idea that starts from
first principle is given by "enfropy methods" (for example see [Sc,94])
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5. Values of fitted parameters that were used to calculate
the model bias

Results from simplified corrections of distributions, using different QCD
models are compared to calculate an estimate for the model bias. The parameter
values which are different from the default values are given in the following table.
For a detailed explanation of the parameters see [JS,93], [AR,92] and [HE,92].

JS 7.4 (aniso) JS 7.4 (iso) ARIADNE 4.05 HERWIG 5.8

Par. p° Par. p° Par. p° Par. p°

PARJ(I) | 0094 PARJ(1) | 0.095 PARA(1) | 0218 QCDLAM | 0.172

PARJ(Z) | 0259 PARJ(Z) | 0289 PARA(3) | 0580 | | RMASS(13) | 0.727

PARJ(3) | 0.566 PARJ(3) | 0.571 PARA(5) | 0.580 CLMAX 3.700

PARJ(11) | 0.538 PARJ(11) | 0.533 MSTA(1) 1 vPCcUT 1.000

PARJ(12) | 0.499 PARJ(12) | 0.543 MSTAZ)

PARJ(13) | 0.600 PARJ(13) | 0.600 MSTA(3)

PARJ(14) | 0.096 PARJ(14) | 0.09%6 MSTA(S)

PARJ(15) | 0.032 PARJ(15) | 0.032 MSTA20)

Q I~ P~ [~

PARJ(16) | 0.096 PARJ(16) | 0.096 MSTA(30)

PARJ(17) | 0.160 PARJ(17) | 0.160

PARJ(Z1) | 0373 PARJ(21) | 0.363

PARJ(26) | 0.400 PARJ(26) | 0.400

PARJ(41) | 0.500 PARJ(41) | 0.400

PARJ(42) | 1.008 PARJ(42) | 1.030

PARJ(54) | -0.050 PARJ(54) | -0.050

PARJ(55) | -0.0045| | PARJ(55) | -0.0045

PARJ(81) | 0.297 PARJ(S81) | 0.324

PARJ(E2) | 1.330 PARJ(82) | 1.300

MSTJ(11) 3 MSTH(11) 3
MSTUH41) 1 MSTU41) 1
MSTJ(46) 0
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Appendix B.

Remarks concerning part Il

1. Sources of the distributions used in LinFit

In addition to the distributions that was presented in preceding parts of this
thesis, the following measured distributions and multiplicities are used in the
tuning procedure:

(i) Baryon data

distribution bins source experiment

—in(x#7) x<0.018 6 [A1,94] ALEPH

~In(x*?), x>0.070 18 [A1,94] ALEPH

(A) 1 [A2,94] ALEPH

~In(x?) 22 [A2,94] ALEPH

p(T) 30 [A2,94] ALEPH

(27) 1 [A395] | ALEPH

(2(1530)°) 1 [A3,95] ALEPH

(x(1385)") 1 [A3,95] ALEPH

(Q) 1 [A3,95] ALEPH
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(ii) Meson data

distribution bins source experiment
—In(x™), x<0.018 16 [A1,94] ALEPH
—in(x™), x>0.045 23 [A1,94] ALEPH
(K°) 1 [A2,94] ALEPH
—In(x*") 28 [A2,94] ALEPH
p (T) 30 [A2,94] ALEPH
~In(x¥), x<0.018 11 [A1,94] ALEPH
—In(x*"), x>0.070 18 [A1,94] ALEPH
X 8 [A1,95] ALEPH
(k™) I [D1,94] DELPH]
X 18 [A3,94] ALEPH
Xz 9 [A3,94] ALEPH
x; 8 [A1,95] ALEPH
xp° 8 [A1,95] ALEPH
Xy 6 [A1,95] ALEPH
(fo), 0.05<x,<0.6 1 [D1,94] DELPHI
(f,), 0.05<x,<10 1 [D1,94] DELPHI
x2" 15 [A1,93] ALEPH
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2. Decoupling of normally distributed random variables

Idea: The following decoupling procedure, allows for a construction of a -
distributed random variable, and for the generalization of the linear error
propagation from example Al, to the case of correlated random variables.

The distribution of n normally distributed random variables is given by:

o= 9| 5 (3-R) € (2=

1
V2r)" det(C) )

Here C is the covariance matrix, which is a quadratic and symmetric matrix.
Because of these characteristics, even the inverse of C is symmetric, and it is
possible to find a matrix U that diagonalizes this inverse of C:
UC "'U" =diag(),,...,\,). The substitution X = U(X - i) allows for a calculation of
the probability density of this new set of random variables:

p(@:(JéE)"lde«c)eXp[“xTc s [ ;(?H

With ¢,:= \/;_»— and UC "'U” =C"'

Therefore the new random variables x:= 2:-:1 U,x; are normally distributed

and independent, and their mean values are |1,:= Z . Uu,.

This decoupling will now be illustrated in constructing a %x* distributed
quantity out of a set of normally distributed but correlated random variables. The
covariance matrix of the normally distributed bin contents p,-, which is also the

covariance matrix of the differences x;:=p, - {k(x,. ~x,)+d } is:
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These differences were decoupled by the method developed above, and the test
quantity was constructed

n=3(3)

i=l 0.i

which is %* distributed with n (= 5) degrees of freedom. Similar to the procedure
in example 5.3, this distribution is compared to the generated distribution of the
test quantity. The agreement with the y* is indeed better than in this example
which ignored correlations.

0.16 . T
7[’?
0.14} \
0.12} R
oa} x

efa_uc
o
2
>+

Figure B1: Test quantity for the decoupled random variable
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3. Higher order parametrization in higher dimensions

We always used linear parametrisations for the model predictions in the
parameter tuning described in the main part of this thesis. Because of this we
always had to be very careful to stay inside a linear region. This was possible in
our case, because some former knowledge about the parameter values was
available. It also turned out, that some kind of successive approximation to an
optimal expansion point of the linear parametrization worked. But what is the
right proceeding in the case of absence of such information? Is it possible to use
higher order parametrizations, or does the limited computing power that is
available today restrict us to linear approximations?

The main problem in using higher order parametrisations is the number of
their coefficients. For each of them, at least two points in the parameter space
should be calculated to fix this parametrization. And for each of these points, a
statistics as high as possible should be used, to avoid contributions to the errors
from insufficient parametrization accuracy. All in all the demands of computing
resources are generally much too high to perform simultaneous fits for many
parameters.

The following example demonstrate a very simple kind of generalization of
the parametrization to higher orders. This is primarily thought as a summary of the
methods that were derived in chapter 5, and as an illustration of their usage in
more complicated cases of parameter estimations. It is definitely not a try to give a
generalization usable in any possible case, even if it lead to results much better
than the estimations based upon a linear parametrization.

Example B1: Higher order fit in more than one dimension

Idea: The model function for the hadronic cross-section of an electron-
positron annihilation at the Z-peak given in 5.5 will be used to illustrate a
simple generalization of the parametrization to higher orders. The conditions
of this example are chosen in a way that leads to non-negligible
contributions of the parametrization fluctuations to the estimations function.
The estimation is done with the simple estimation function (5.4), and with
the generalization (5.6), which is used here in a nontrivial way, because the
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full covariance matrix of the parametrization coefficients has to be taken into
account. The resulfs of both estimation processes will be compared.

(i) Preparation of the surrounding

We use the hadronic cross section in the range of E,, €[88,96]GeV,
and devide this region into 13 bins with equally widths. After the generation
of a discrete test distribution in a way that is analogous to example 3.2, and
by using s:=5-10° and the parameter values sin’%, = p, =0.232,
N, =:p,=3 and M, = p, =91.182, a linear parametrization that is similar to
the one used in LinFit is calculated. The region taken into account was
p,=0.2%£0.15, p,=3+2 and p, =91+1.5. Here the center values
correspond to the expansion point, and we used four points on every
parameter axis off the center point to do the calculation. These points are
located at the ends of the parameter intervals, and on the half way between
these ends and the center. We used s:=10* in every point.

The expansion point is slightly apart from the chosen set of parameters,
because we want to demonstrate, that even the simple choice of a higher
order parametrization that we use in this example leads to better agreement
between estimations and the nominal parameter values, than the linearized
version. The results of the estimation based on a linear parametrization are:

p,:=0.3240£0.0092, p,:=1.8880£0.1560, p,:=91.2729%0.0247

These estimates are clearly not compatible with the nominal values,
and we conclude, that the usage of the expansion point given above leads to
systematic errors in the results of the fits.

(if) Parametrization by a higher order polynomial

The model prediction m,(p) of a given bin content p, is parametrized
by the following polynomial in 7 dimensions and with a degree of d

d

m(pk= Ve pipk =3 a X, ()

ipesmiy =1 n=1
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The second way of writing this polynomial is a sum over all ntuples
(i,,...,1,) of powers which fulfills the condition i,+---+i, =d. The bin index is
left out in this case to avoid too dense notations. We will use this second
expression in the realization of the parametrization. If estimates for the model
predictions 7(p,) and the corresponding widths o, are known in M>N
points of the region in the parameter space that one wants to parametrize,
the coefficients of this parametrization can be estimated in a way analogous
to section 5.4.2.1 in every bin of the distribution of interest. The minimum of

the estimation function

S,m,(a):=-;-i{"-—“‘“’mj ! “")}

j=1 O

is found by solving the following system of linear equations:

polzmin __ = pol
M g™ = 3P,

pol _
Mkl -

u x(p)x(p,) ., &mlp)%(p,)
z o’ » ~Z o’
j=1 j J=1 i

(k,l1=0,1,...,N), and the covariance matrix of the coefficients is again given
by the inverse of M.

(i) A simple higher order parametrization

It is definitely not the best way to simply increase the degree of the
polynomial if a test of the linear parametrization fails, because in general not
all the new terms will contribute to a better parametrization. To get a better
understanding for @ minimal parametrization, we introduce fits along the
parameter axes again, and increase the degree of the- one-dimensional
polynomial used to parametrize the behavior of the model predictions along
these parameter axes, until a % test quantity lies in a preferred region. In the
next pictures the degrees of these one dimensional parametrizations define
an upper limit for the powers that are used in the parametrization of the
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model function. The approximation of the parametrization along the p,-axis
are given for the 4-th and for the 6-th bin.
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The parametrization along the different axes were accepted if the
distance between the test quantity 1 and their mean value was less than
three times the standard deviation of 1. This condition led to the following

degrees of the polynomial parametrizations in the 73 bins:

bin 1 2 3 4 5 6 71 8 9|\ 10| 11| 12| 13
d m 2 2 2 2 2 2 2 2 2 2 1
- 1 1 p) 1 1 1 1 1 1 1 1 1 1
- 3 2 4 3 4 3 3 2 2 2 2 2

Here d, signs the degree of the polynomial that passed the n-
condition in the /th bin. A main problem can be seen in the parametrization
of bin 6. Even if the n-condition is fulfilled, the parametrizations of this bin
obviously requires a higher degree. If one uses a higher statistics in every
point of the parameter space (for example s:=2.5-10° was used to produce
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the following pictures), this can be seen as well. Because of the higher
sensitivity of the statistical test in this latter case, the following degree of the
parametrization in these two bins are needed to pass the test.

45

40
40,

89 895 80 90.5 91 91.5 92 925 el 89 8905 %0 20.5 o1 015 92 025 93
chi2 = 15.93, Degrea = 4 chi2 = 10.31, Dagree « 5

That means, that an incorrect parametrization could be used even if the
test quantity lies in the preferred region, because the statistics used in every
point is not high enough.

After these one dimensional parametrizations were done, the number
of coefficients Nwas calculated, and the model predictions for 3N additional
points were generated. The points were taken at random out of the observed
region in the parameter space. After this step, the parametrization was done
as discussed in (i).

(iv) Estimation of the parameters

Up to now we calculated a parametrization of the given model
predictions, which we do not expect to be perfect, but is still better than the
linear parametrization. The estimation of the parameters was now done with
the simple estimation function (5.4) and with the new one (5.6). Here, the
calculation of the width of a linear combination of normally distributed
random variables will be discussed in the case of non-negligible correlations.
We use this to calculate the width of

N N
m,(p)= . a,X,(p) =Y T\,
n=1 n=1

Here the symbols X, (p):=A, for the real coefficients and q,:=Y, for
the normally distributed random variables are used. We calculate the matrix
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U that diagonalizes the inverse of the given covariance matrix, as discussed
in section 2 of this appendix, and construct the uncorrelated random

variables
Zi = 2 j=1 UU YJ
By take the inverse of the equation above, every linear combination of
correlated random variables can be expressed as a linear combination of

uncorrelated variables by substitution, and consequently the linear error
propagation of example Al can be applied.

The estimations led to the following results:

p,:=0.2381£0.0016 (3.7),, p,:=3.0995%£0.0147(6.8),, p,:=91.182910.0022 (0.4),

p,:=0.240710.0038 2.3), p,:=3.088210.0345/2.6), p,:=91.1829%0.0051 (0.2),

The results in the first line are computed with the simple estimation
function (5.4), while the results in the second line are based on the
generalization (5.6) The values in brackets are the absolute values of
distances between these estimations and the nominal values. Even if the
parametrization was not optimal, it led to satisfactory results, and not only to
results that are better than the estimates based on a linear parametrization
(there the distances were (10.0), (7.1), (53.7)). The estimation with the simple
estimation function gave good estimations, but the errors calculated from it
are too small, as should be expected.

Remark: We must observe the starting point, that is used in the iterative
approximation to the minimum of the estimation function as a point where
complications might arise. Especially the generalization is highly non-linear, and
has therefore in general more than one local minimum. A first test to see if the
right minimum is reached can again be done by a %’ test.

If a proper degree of the polynomial is known, the generalized estimation
function can be used to realize this parametrization even if the statistics in every
point of the parameter space is not very high. For example it should be possible to
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use a slightly generalized algorithm to realize a higher order parametrization. The
fit along the axes, as discussed in the previous example should be done with high
statistics at every point, in order to avoid false parametrizations as far as possible.
But the 3NV additional points in parameter space can also be calculated by using a
lower statistics, because their widths should be included in the estimation function.
Therefore the last example and this remark can be used as a starting point for the
generation of higher order parametrizations in future parameter fitting procedures.
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4. Parameter values used in example 6.1

To demonstrate the inclusion of systematical errors in the estimation
function, the following parameter settings were used. Values that are not given in
this table, and that are not set to certain values in chapter 2, are fixed at their
default values.

JSS 7.4 (iso) HERWIG 5.8
Par. p° Par. p°
A 030 || Qcpiam | 015
0 140 || RMASS(13)| 0.70
° 0.36 cIMAX | 3.50
P 0.55 CLSMR | 0.50
P 0.50 PWT(3) | 1.00

949/9 0.10 pwr(7) | 100
(su)/(du) | 060
0.30
0.90
0.60

S| o R

-
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