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Preface 

The following chapters describe most parts of the work that I carried out at 
the high energy physics group in Innsbruck. This group is a collaborator of the 
ALEPH experiment at LEP/CERN, which was established with the aim of studying 
the annihilation of electron-positron pairs into photons or Zparticles by observing 
the characteristics of the resulting final states. 

We were especially interested in so-called hadronic final states which are 
built by decays of these intermediate particles into a quark-antiquark pair, plus a 
succeeding conversion of these colored objects into colorless hadrons. 

The analysis is restricted to the contributions of charged particles to hadronic 
final states. A detailed look is taken on quantities that describe the appearance of 
the whole set of charged particles in these final states, and to observables that 
describe some of the kinematical details of their constituents. Charged particles 
have the advantage that their momenta can be measured to a very high level of 
accuracy. As a consequence, systematic errors in our data should be less than for 
example in the data of neutral particles, and our measurements should be able to 
give very restrictive conditions to the tuning of models as performed in the second 
part of this work. Before the measurement is done, some detailed introduction 
into the used methodology is given. The methods, the obtained results and some 
discussions about the surrounding are given in part I of this thesis, and in 
appendix A 

In the second part, the QCD-related models from chapter 2 (JETSET 7.4 in 
the variant of isotropic and for anisotropic decaying gluons, ARIADNE 4. 05 and 
HERWIG 5.8) are tuned to gain optimal agreement with the observed 
experimental data. For this purpose, an algorithm for tuning models based on the 
"maximum likelihood principle" and linear parametrizations of the model 
predictions - LinFit - is used, after it is tested in some detail. The main problem in 
this tuning of the models is due to the inclusion of systematic -errors in the tuning 
algorithm. The inclusion of systematic deviations between measured data and the 
predictions of a given model in particular can cause serious problems. As a 
consequence, the fit is restricted to a so-called "fitable region". 

This work is a continuation and an extension of [Al,92]. The main 
improvements are with respect to the higher statistics of input data (571800 events 
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taken in the year 1992), the inclusion of other observables and the consideration 
of more model parameters. The main message of this work is the comparison 
between the tuned models and the measured data, carried out both in a graphical 
and a numeric way. These comparisons could give a guide for the regions in 
which the models "cry out for" improvement. 

The work is split in an introduction (consisting of two chapters), two main 
parts and two appendices. Both main parts start with introductory chapters and 
conclude with the measurements results. In the appendices some additional 
information and explanations are given that are not directly related to our 
analysis, but are worth noting. 

The aim of my work at the high energy physics group at the University of 
Innsbruck was not only to carry out the measurements in the best way possible, 
but also to go through the final part of preparing myself for becoming a teacher at 
high school. Because of that I tried to include some examples to illustrate all the 
topics discussed and to get used to some kind of graphical explanation. It was 
always very important for me to have some pictorial impressions about things to 
be understood. They often led the way to ideas that made an explanation and an 
understanding of difficult topics possible. 

It is my opinion that a illustrative example often says "more than thousand 
words", and therefore it is really important for me to get used to some kind of 
technique that could open a door to the art of illustrative explanation. I tried to 
find such a technique by applying detailed examples, and hope, that these 
attempts will be beneficial for future explanations to future students, even if they 
somewhat increased the size of this thesis. 

While the major contributions to this thesis are derived from studies and 
theoretical work that I carried out as a doctoral student during the past three 
years, I did want to accompiish an extra goal with this final report, that seemed 
especially important to myself. Current regulations do allow Austrian students to 
publish in English instead of German, however this practice is by no means 
common at this time, although I personally feel that it is highly desirable and 
appropriate for scientific work on the Ph.D. level. When I set out to implement this 
goal I helt some hope that readers who have a more firm command of the English 
language than I do have at this time, would be willing to apply a bit of extra 
tolerance in cases where slight grammatical imperfections might have remained. 

A.H. 
Innsbruck, July 22, 1996 
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Chapter 1. 

An Introduction to the ALEPH 
experiment 

1.1. Overview 

The aim of this introductory chapter is to give a brief description of the 
ALEPH experiment and its supporting infrastructure. The main source for this 
summary is [AL,94). More details can be found in [A4,94], [AL,90] and [AL,95). 

Figure 1.1: The LEP storage ring 
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Overview 

ALEPH ("_g detector for LEP llli.Ysics") is one of the four experiments at the 
LEP storage ring. LEP (the "large glectron J20Sitron storage ring") is situated at 
CERN(the European Laboratory for Particle Physics) in a circular tunnel of 85km 

diameter, whose depth below ground ranges from SO to lSOm due to the rise and 
fall of the terrain. A coarse impression is given in the figure above (taken from 
[AL,94]). The first stage setup of the machine is able to accelerate, store and 
collide electrons and positrons with a beam energy of up to SSGe V. At later stages 
an increase of the c.m. energy up to 200GeV is planned. The following figure 
shows a cut-away view of the whole ALEPH detector. It is a composition of 
several independent subdetectors (1 to 8 to be explained later). The detector as a 
whole is sensitive to almost every known elementary particle. 

Figure 1.2: The ALEPH detector 

1 . . . Mini vertex detector 
2 ... Inner .track chamber 

3 ... Time projection chamber 
4 . . . Electromagnetic calorimeter 
5 ... Superconducting magnetic coil 
6 ... Hadron calorimeter 
7 ... Muon detection chambers Figure 1.3: The ALEPH symbol 

8 ... Luminosity monitors 
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Tracking subdetectors 

1.2. The ALEPH subdetectors 

1.2.1. Tracking subdetectors 

1.2.1.1. VDET(mini~ertex detector) 

This subdetector consists of two layers of silicon wafers that are arranged 
around the beam pipe in two barrels at radii of 6.3and 11.0cm. Each wafer has a 
lOOµm strip readout both parallel and perpendicular to the beam direction. The 
extent along the beam pipe is ± 1 Ocm with respect to the interaction point where 
electrons and positrons collide. Particles passing through one of the wafers deposit 
ionization energy, and can therefore be detected by averaging the charge­
weighted positions of adjacent strips that have at least three times the mean noise 
charge. The accuracy of the measured points is about 12µm. 

VDET hits are used for extrapolating a track that was found by the ITC 

and/or the TPC in the direction of the interaction point. By using VDET together 
with the other tracking subdetectors, the spatial coordinates of a given charged 
particles helix can be measured within about 30µm accuracy. 

1.2.1.2. ITC (inner .tracking ~hamber) 

The ITC is a cylindrical multiwire drift chamber, which measures up to eight 
r<j> coordinates in the radial region between 160 and 260mm. The drift chamber is 
filled with gas (a mixture of 91 % Ar and 9% CH4 ). A charged particle that is 
passing through the chamber ionizes this gas along its track and produces pairs of 
charged particles. The negative electrons are accelerated to the wires. On their 
way they collide with other molecules of the gas and produce pairs of charged 
particles again. The resulting avalanche of particles is large enough to be 
measured as a electric pulse. The time between the beam crossing and rising slope 
of the pulse in one of the wires is measured. From this quantity the distance 
between the point where the avalanche started and the wire can be calculated 
with an accuracy of about 1 OOµm. The coordinate along the beam direction is 
determined by the difference in arrival time of the signals at each end of the wires. 
This has a resolution of about 3cm, and is not used for the standard tracking, but 
allows the implementation of a three-dimensional first-level track trigger. 
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The ALEPH subdetectors 

1.2.1.3. TPC (time 12rojection ~hamber) 

This part of ALEPH provides most of the information about charged particle 
tracks, and is therefore essential for our analysis. It is shown in the following 
picture, which was taken from [AL,90]. 

Figure 1.3: TPC overall view 

The TPC is 4. 7m long and extends to a radius of l.Bm measured from the 
beam pipe. It has magnetic (1.ST) and electric (llSV/cm) fields that are parallel to 
the beam axis. The electric drift field points from each end plate to the central 
membrane. As in the ITC, a charged particle ionizes the gas (a non-flammable 
mixture of 91 % Ar and 9% CH4 at atmospheric pressure) along its track through 
the chamber. The electrons produced in this ionization drift with a velocity of 
5.2cm/µs towards one of the end plates, where they induce ionization avalanches 
in a plane of wire chambers (so-called "sectors"). The ionization density dE/dx can 
be measured and used for particle identification. Each end plate consists of 18 
sectors. 

The TPC measures up to 21 three-dimensional points per track. The z­
coordinate is obtained from the drift time and the known drift velOcity with about 
BOOµm accuracy. The r<j> coordinate is calculated by interpolating signals induced 
on cathode pads that are located on the sectors; here the accuracy is about 
180µ,m. The rcoordinate is given by the radial position of the pads involved in the 
measurement. The trajectory of a charged particle inside the TPC is a helix, and 
its projection onto the endplates is an arc of a circle. A measurement of the sagitta 
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Calorimeters 

of this arc yields the curvature radius which is proportional to the component of 
the momentum perpendicular to the magnetic field. Because of that, a 
measurement of this transverse component of charged particle momenta is 
possible by using the TPC The measurement can be improved by using 
information from the ITC and the VDET to obtain a total accuracy of 
cr( 1/ p .l) = o. 6·10-3 Ge v-1

• 

A problem is the possible presence of positive ions in the drift volume. They 
are produced near the sense wires of the sectors; if they reach the drift region, 
they can alter the drift field and cause track distortions. To overcome related 
problems, the ALEPH TPC has a "gating wire grid" situated between the cathode 
grid at the end plates and the drift region. Normally the gate is closed, that means, 
the potentials VG ± L\ VG are placed on alternate wires of the grid. In the ALEPH 

TPCthe values VG= -67V and L\VG = 40V are used, and the resulting dipole fields 
are sufficient to block the passage of positive ions. The "open" state of the gate is 
reached by applying the same potential VG to each of the wires in the grid. This 
produces only a parallel addition to the drift field. About 3µs before every bunch 
crossing, the gate is opened in order to allow electrons to drift into the 
amplification region of the sections. Only if the first-level trigger is positive, the 
gate is held open for the maximum drift time of the electrons, which is 45µs. 

A laser system is used to provide information on the distortion of particle 
tracks and to measure the vector of the drift velocity in the TPC Thirty straight 
ionization tracks are created in the TPC by firing two ultraviolet lasers. The 
measured curvature of these tracks is used to correct the sagitta of particle tracks. 
The drift velocity is determined from the polar angles and the measured drift 
times. 

1.2 .2. Calorimeters 

1.2.2.1. ECAL (glectromagnetic calorimeter) 

The ECAL consists of a barrel region which is located ·inside the magnetic 
coil surrounding the TPC, and two end-caps. Each of these building blocks is 
divided into 12 modules, each of them is covering an angle of 30~ The modules 
are built as sandwiches of 45 lead/wire chamber layers. The lead sheets cause 
electrons, positrons and photons to produce identical showers of particles. The 
total thickness of the modules is 22 radiation lengths. The energy and position of 
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Trigger System 

each shower is read out via small cathode pads, that are arranged in towers 
pointing to the interaction point. There are 74000 such towers corresponding to a 
granularity of 0.9°x0.9~ Such a fine granularity in solid angle allows for the 
distinction of narrowly separated showers. In addition, signals are also available 
from the wire chambers, providing redundancy in the energy measurement and a 
low-noise trigger. 

ECAL can be used to identify electrons, positrons and photons. The energy 
of photons is measured with an accuracy of about 18%/ ~ E( Ge V) . The efficiency 
of identifying electrons and positrons is close to 100%. 

1.2.2.2. HCAL (hadron calorimeter) and MUON(muon detector) 

The main mechanical support of the ALEPH detector is a large iron 
structure, which serves both as the passive part of the HCAL and as the return 
yoke of the magnet. The magnet iron is instrumented with 23 layers of streamer 
tubes that are separated by Scm thick iron slabs. For the barrel region, the total 
thickness of iron, which forces hadrons to build showers, is 1.2m, corresponding to 
716 interaction lengths for a hadron passing in a direction perpendicular to these 
slabs. The energy of the neutral hadrons can be measured with an accuracy of 
about 84%/ ~ E( Ge V) . 

Although hadrons also interact with the ECAL, it is only in the HCAL where 
they are fully absorbed by producing showers. HCAL is also a part of the muon 
identification system. Two layers of streamer tubes are installed outside the iron, 
these layers form the muon chambers. They do not contribute to the measurement 
of hadronic shower energy, but are used as tracking devices. Each layer reads out 
two orthogonal coordinates. 

1.3. Trigger System 

The ALEPH trigger system is designed to reduce the background (e.g. signals 
due to beam-gas interactions) to a low level, and to accept all genuine e-e+ 

interactions for disk storage processing and later physics analysis. It is based on 
three levels: 
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Calorimeters 

• The Level-1 trigger initiates the event processing if basic conditions 
such as !TC-ECAL coincidence, or !TC-HCAL coincidence are fulfilled. 

• The Level-2 trigger checks for the presence of charged particle 
trajectories that originate from the vertex. 

• The Level-3 trigger is applied after data is read out from the detector 
hardware modules. It is performed entirely in software. 

1.4. Superconducting coil 

The ALEPH magnet consists of a superconducting magnet that is cooled by 
liquid Helium, and an iron yoke. A current of SOOOA creates a magnetic field of 
1.ST Its orientation is parallel to the beam pipe. The absolute curvatures of the 
tracks of charged particles in this magnetic field give their momenta, the signs of 
the curvatures give the signs of the particles charges. 

1.5. Luminosity monitors 

The luminosity L: = Rf er has to be known in order to calculate the cross 
section er of a given reaction from the measurable rate R of the same process. L is 
a number given by the characteristics of the storage ring. The principle of 
measuring this quantity is to look at a reaction which is well understood. Usually 
one looks at Bhabha reactions (elastic scattering of electrons and positrons) which 
can be measured at small angles with respect to the beam axis. 

For example the time-integrated luminosity was about 22.4pb-1 in the year 
1992. This number corresponds to 687680 collected hadronic events; we used the 
hadronic cross section at the Z-peak including initial state radiation ahad = 30. ?nb 

to compute this number. 
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Hadronic ALEPH events 

1. 6. Hadronic ALEPH events 

Hadronic events contain on average about 21 charged particles and a similar 
number of neutrals. They result from the creation of a qq pair by the incoming 
electron and positron via an intermediate photon or z0

• This conversion of a high 

energetic pair of quarks to a set of hadrons 
is a very complicated process which is 
(hopefully) described by QCD. Hopefully 
means, that we are at the moment not able 
to calculate details of the reaction 
e- e+ ~hadrons from first principles, and 
the question if the standard model 
describes this process in every detail has 
not yet an answer. Up to now, "only" 
models that deal with parts of the full 
solution of this problem, and try to fill the 
remaining gaps by phenomenological ansatzes are available. 

The pictures on this page show two views of the ALEPH detector with the 
tracks of the charged particles in a "two jet event". The straight lines correspond to 

charged particles with large 
momenta, while the strongly 
curved tracks correspond to 
particles with very low momentum. 
In most of the hadronic events the 
original quark and antiquark 
hadronize in two sets of particles 
which are called jets. Jet examples 
can be seen very clearly in the 
event illustrated on this page. 

Sometimes a very high 
energetic gluon is radiated by the 
quark or the antitjuark. Because 

this is also a colored object, it has to hadronize. The result can be a third jet, if the 
energy of the gluon is big enough, and if it is radiated at wide angle with respect 
to the momentum of the radiating particle. A very beautiful example of such a 
three jet event is given in the next figures. 
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Calorimeters 

In some cases even more than three jets may be observed. The figures in this 
section are taken from [AL,95]. 
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Chapter 2. 

An introduction to some QCD models 

2 .1. Abstract 

The QCD (Quantum Chromo .Qynamics) models that are referred to in this 
chapter lie at the heart of the further analysis, either as a tool for correcting the 
data or as the object of main interest in the model tuning section. For that reason 
an introductory chapter seems to be necessary. The main source of the following 
summary is [Ll,89]. A section on common ideas and principles is followed by 
some sections where each of the three models of interest (JETS ET 7. 4, ARIADNE 
4. OS and HERWIG 5.8) is introduced. In these sections all the parameters used for 
the tuning of the models are discussed in some detail. 

2.2. Common ideas 

2.2. l. Structure of an electron-positron annihilation 

The mainly produced particle at the electron positron annihilation at LEP is 
the 2-particle. 70% of these particles decay into hadronic final states ([PP, 94]). 
Today the description of this complicated reaction e-e+ ~ Z ~hadrons (or more 
exactly e-e+ ~ y* /z ~hadrons) is done by QFD (Quantum flavor .Qynamics or 
Electroweak Theory) together with QCDas far as results are calculable. Up to now 
it is not possible to calculate expressions for every detail of hadronic final states 
from first principles. Only parts of the reaction are described up to a given order in 
some expansion parameter, and the remaining gaps are filled by 
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phenomenological ansatzes. A schematically overview of the whole reaction is 

given in the following figure (from [Ll,89]) 

e• 

e· 

Ii) (ii) (iii) (iv) 

Figure 2.1: Visualization of an electron-positron annihilation event. 

The final state emerges after a series of sequential steps as follows 

(i) creation of the primary qqpair by the decay of a Z-particle or a virtual 

photon. 

(ii) QCDbremsstrahlung and gluon decays 

(iii) fragmentation of quarks and gluons into colorless hadrons 

(iv) decays 

In the first step a major contribution to the quantitative predictions comes 
from QFD. In addition to the generation of the y* / z 0 also a possible initial state 

bremsstrahlung has to be described. The decay of the y • / Z0 into_ a qq -pair and 
an eventually appearing radiation of one or more high energetic gluons already 

belongs to the area that is believed to be described by QCD, and that is 
responsible for the observed jet structure of the hadronic final states. Because of 

the relatively small value of the strong coupling (as ( M z) = 0.12) due to the very 
high center of momentum energy of the colliding particles, an expansion of the 
quantities of interest in a power series seems promising, and can be carried out up 
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Structure of an electron-positron annihilation 

to low orders by the methods of perturbative QCD (the expansion parameter is 
a, ( M z) / 7t). For the differential cross section full calculations up to 0( a; ) are 
available, for the total cross section the same is true even for 0( a~). 

In the second part, at lower Q2
, more gluons are created by QCD­

bremsstrahlung, and some of them decay into qq -pairs. Again it is believed, that a 
description can in principle be done by the methods of perturbative QCD. 

Because the coupling increases in this part, higher order contributions play a more 
important role. One possibility that allows for the inclusion of the leading 
contributions in all orders is the so called "leading logarithm ,gpproximation" 
(LIA). Here the leading terms in all orders are taken into account. This kind of 
approximation makes an iterative ansatz, the parton shower, possible, which is 
used in most of the models for describing this second part. This part ends at the 
point where the description based upon the LIA fails, that means where the 
contribution of next to leading or higher terms can not be neglected. 

In the third part illustrated by figure 2.1, colorless hadrons are built up from 
the colored partons (quarks and gluons). In principle even this part should be 
described by QCD, but because the mathematical methods fail completely in this 
highly complicated region, phenomenological QCD-inspired ansatzes are used to 
"jump over the gap". The idea behind these ansatzes are, together with different 
realizations of the parton shower, the main differences between the different 
models. 

The fourth part describes the decays of unstable particles under the strong, 
electromagnetic and weak interactions. This is essential for particles with a short 
lifetime, because their daughters or their daughters' daughters reach the sensitive 
parts of the detector, and these decay products, not the original particle, are seen 
in the event. In general an exponential decay law is used together with measured 
lifetimes and branching ratios to simulate this part of the reaction. The large 
branching fractions r( Z--::, cc, bb) jrhad of 17% and 22% respectively, makes a 
reliable simulation of charm and bottom hadrons very important. 
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JETSET (version 7.4) 

2.3. JETSET (version 7.4) 

(JETSET: The Lund Monte Carlo for Jet Fragmentation and e+ e- Physics) 

Characteristics: JETSET is a model based upon a coherent parton shower and 
the concept of string fragmentation. It turns out, that this model is able to fit most 
parts of the data really well (c.f. chapter 7). This bright advantage is darkened by 
the fact that the fragmentation part is a function of lots of model parameters, and 
so this part of the model is a kind of QCD-motivated parametrization rather than a 
model based on calculations from first principles. 

The most important of the model parameters are described below. 

2.3.1. Parton shower 

LLA plus some simplifications in kinematical variables serve as starting 
points. These simplifications lead to a limited predictive power for wide-angle 
parton emission. Consequently a parton shower is believed to give a good 
description of the substructure of jets, while it is too inaccurate to determine the 

global event topology. The figure left 
(taken from [Ll ,89]) illustrates how a 
parton shower is built up from a 
sequence of branchings. It is possible due 
to the usage of the LLA approximation, 
to formulate this sequence in an iterative 
way. Possible types of branchings are 
q -7 qg, g -7 gg and g -7 qq. 

Every branching is characterized by 
the quantities Q and z and an additional azimuth angle that gives the orientation 
of the plane in which the momenta of the daughters (the products of the 
branching) lie. This angle is assumed as equally distributed in the JETSET-version 

of ''isotropic decaying gluons''. In the default option, of ''anisotropic decaying 

gluons': some effects of gluon polarization plus interference with neighboring 
gluons are included. This second version correlates the production and the decay 
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Parton shower 

plane of gluons. While the branching g ~ gg tends to take place in the production 
plane of the gluon, a decay out of the plane is favored for g ~ qq. 

z describes the sharing of the four momentum between the daughters b and 
c in the reaction a ~ be. In all models Q has the dimension of a mass (in natural 
units) and is closely related to the virtual mass of the decaying particle a or to the 
transverse momentum of the daughters. The exact definition of this quantity marks 
one of the differences between the parton showers as used in different models. 
JETSET uses Q2

: = m~. The quantity Q represents the evolution parameter of the 
Parton Shower t: = In( Q2 

/ A2
). (The ''characteristic scale A of QCD" is described 

later.) In JETSET knowledge about the evolution parameter at the decay of a 

parton corresponds to a knowledge about the mass of the decaying particle. 
Even if the evolution parameter tis an analogy to time, it is really not the 

same. An ordering in t (or Q) does, in JETSET, mean an ordering with respect to 
the particle masses, and the same ordering does in general not hold in timel. tmax 

is the starting value of the evolution variable, and corresponds to the Q value of 
the very first parton in the shower. The decay probability is set to zero as soon as 
some lower limit t0 is reached. Because of the relations of the Q-value to the mass 
of the decaying particle, only particles with a mass above this lower limit are able 
to decay. The Q-value belonging to the minimal evolution parameter t0 is one of 
the free model parameters2. 

The probability that a branching a ~ be happens at a given value t of the 
evolution parameter in a small interval dt around t, and with a value of the four­
momentum sharing in a small interval dz around z is given by the A/tare/Ji Parisi 

equations 

The running coupling is in first order given by: 

( 2)- 127t 
as µ - ( 2) 

(33-2n1)ln ~2 

1 A similar statement is also true for the other models. 

2 C?o is the parameter PARJ(82). Default=l.OGeV "cut-off for the parton shower". 
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JETSET (version 7.4) 

Here µ denotes a typical energy scale, which is taken as an approximation of the 

transverse momentum squared of the branching (µ 2:=p1 :::Q2z(l-z)). The condition 

'2o > 2A avoids the divergence of as· (In JETSET'2o > 2.2A is used.) 

In the expression above n
1 

= 5 is the number of quark flavors contributing at 
LEP energies, and A is a model parameter that has to be fixed by tuning the 
model to the data3. Roughly speaking, A controls the rate of gluon emission. The 
Altarelli-Parisi splitting kernels are 

(l-z(l-z)) 2 

Pg--->cc(z)=NF z(l-z) ' 

With this input, the probability for a parton branching in an interval dt 
around t decay "after" a value t of the evolution parameter where it is known to be 
undecayed can be computed as follows: 

The first factor describes the probability that the branching did not happen 
between t and t decay, while the second factor represents the probability that the 
decay happens in this interval dt The values of the evolution parameter are 
generated according to this distribution starting at the maximum value tmax. After 
this step the masses of the decaying particles are known. The values of z are 
generated by the distributions given by the Altarelli-Parisi splitting kernels. 
Following the generation of an azimuth angle according to the used option of 
isotropic or non-isotropic gluon decay, each of the. branchings .is fixed. The flavor 
of the quarks is restricted by the phase space. 

At the branching of the two initial partons an algorithm is used to match on 
to the first order three-jet matrix elements. 

3 A is the parameter PARJ(81). Default=0.29GeV "characteristic scale ofQCD" 
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Fragmentation 

So far the parton shower is termed as ''conventional shower''. In this state it 
is still possible that "late" branchings result in partons with large emission angles. 
Studies beyond the leading-log level show that this is not correct. It turns out that 
destructive interference effects are large in the region of non-ordered emission 
angles. As an approximation, these so-called ''coherence effects" can be taken into 
account in parton shower programs by requiring a strict ordering in terms of 
decreasing emission angles. Models that provide such an ordering are called 
''coherent models''. 

2.3.2. Fragmentation 

2.3.2.1. Fragmentation into mesons 

The key to every fragmentation algorithm is again an ansatz that can be used 
in an iterative way. In addition to an initial quark qi' a mechanism that allows for 
the production of new quark-antiquark pairs q2q2 is used. In the case of JETSET 
this mechanism is called string fragmentation mechanism (it will be discussed 
later). The new antiquark q2 and the old quark q1 build up a meson q1?fi, and the 
new quark q2 is ready to take the position of the initial quark q1• The proportion of 
the three quark flavors used in the fragmentation is given by uu:dd:ss = l:l:y", the 
production of flavors with higher mass is restricted to the parton shower process4. 
The program accounts for the multiplets given in the following table. L is the 
orbital angular momentum, S the spin of the quark-antiquark system and J the 
resulting angular momentum of the meson. 

s L J name 

0 0 0 pseudo scalar meson multiplet 

0 1 1 first axial vector meson multiplet 

1 0 1 vector meson multiplet 

1 1 0 scalar meson multiplet 

1 1 1 second axial vector meson multiplet 

1 1 2 tensor meson multiplet 

Table 1.1: Meson multiplets in JETSET 

4 Ys is the parameter PARJ(2). Default=0.3 "s quark suppression" 
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JETSET (version 7.4) 

First of all a decision has to be made on whether the spin of the qq -system is 
0 or 1. There are three parameters that account for different possibilities with 
S = 1: systems built up form u- and d-quarks5, systems which contain an s-quark or 
are built of from s-quarks only6, and systems which contain c- and b-quarks 7. 

The default values for these parameters are motivated by qq -systems with 
L=O. Their proportions are estimated by looking at the spin part only. The 
number of states for 5=1 is three times the number of states for 5=0, and 
therefore a system with 5=1 should appear with a probability of 3/(1+3) = 0. 75. 
In contrast to this ''spin counting argument': mesons with 5= 1 are heavier and 
should therefore be suppressed by phase space. This difference in mass due to a 
spin excitation should appear mostly at mesons which are built up from very light 
quarks. The heavier the constituents, the smaller the mass contribution of the spin 
excitation. This explains the decreasing values of the default values for decreasing 
quark masses. 

After the value of 5 is fixed, L will be assigned. If 5=0 two multiplets are 
possible; the multiplet of pseudo scalar mesons, and the first multiplet of axial 
vector mesons. There is one model parameter to regulate the probability for 
ending up with a meson belonging to the latter8 . For 5=1, four multiplets are 
possible. There are three model parameters which determine the probabilities for 
obtaining with mesons belonging to one of these four multiplets (9,10,11). 

The probabilities for producing mesons that belong to one of the multiplets 
included in JET5ETare therefore: 

Pf==o~J=o = { 1- PARJ(i)}{l- PARJ (14)} 

P}=~~ 1= 1 = { 1- PARJ (i)} PARJ(14) 

P}=~AJ=I = PARJ (i){ 1- PARJ(15)- PARJ (16)- PARJ (17)} 

5 P,,~; 1 is the parameter PARJ( 11). Default=0.5 "S=l probability for a light meson" 

6 P/=1 
is the parameter PARJ( 12). Default=0.6 "S=l probability for strange mesons" 

7 ~~b=I is the parameter PARJ( 13). Default=O. 75 "S=l probability for higher mesons" 

8 P{=~o is the parameter PARJ( 14). Default=O.O 

9 P}=~~J=O is the parameter PARJ( 15). Default=O.O 

10 P}=~~J=I is the parameter PARJ( 16). Default=O.O 

11 P{=~~J=Z is the parameter PARJ(17). Default=O.O 
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Pz:i~ 1=0 = PARJ (i)PARJ (15) 

Pz:i~ 1= 1 = PARJ(i)PARJ(16) 

Pz:i~ 1=2 = PARJ(i)PARJ(17) 

Fragmentation 

The index i is used as an abbreviation to stand for 11 if the meson is a light 
one, 12 if it is an s-meson and 13 if it is a higher meson. It should be noted that 
the probabilities for the value of the angular momentum J(described by PARJ(14) 
to PARJ(l 7)) are assumed to be independent of flavor in JETSET. 

For the flavor-diagonal meson states uu, dd and ss mixing into physical 
mesons is included. The r}' particles can be suppressed by the factor 11' 12. 

2.3.2.2. Fragmentation into baryons 

The parameter MSTJ(12) allows for a choice of the mechanism for the 
production of baryons. We use MSTJ(12)=3 (the diquark mechanism), with the 
possibility of the diquark to be split according to the popcorn scheme. Additionally 
the production of first rank baryons is suppressed by a given factor13 . We leave the 
parameters concerning the popcorn mechanism on their default values, because 
the data we used for tuning JETSETturned out to be insensitive to this parameter. 

Baryon production can be achieved by assuming that any flavor represents 
either a quark or an anti-diquark in a color triplet state. Three parameters are 
included to cover this phenomenon. The first one is the probability that a qqqq is 
produced instead of a qq 14. The second one is to suppress the production of 
qqqq containing s-(anti)quarks15. Only the ground state baryons with L=O are 
taken into account. The third parameter decides whether the baryon belongs to 
the J=l/2octet or the J=3/2decuplet16. 

12 11' is the parameter PARJ(26). Default=0.4 "Extra r}' suppression" 

13 ~is the parameter PARJ( 19). Default=J.O "leading baryon suppression" 

14 qq / q is the parameter PARJ( I). Default=O. J "diquark-antidiquark suppression" 

15 (su)/(du) is the parameter PARJ(3). Default=0.4 "extra strange diquark suppression" 
16 (sl)/(sO) is the parameter PARJ(4). Default=0.05 "spin I diquark suppression" 
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JETSET (version 7.4) 

2.3.2.3. String fragmentation 

Until now we have only mentioned that some mechanism for creating qq -
pairs is required in the fragmentation procedure, but the idea behind this 
mechanism has not been explained. In JETSET the so-called string fragmentation 

mechanism is used. This algorithm is very complicated if gluons are radiated from 
the initial qq -system. A restriction to the case of a pure qq -system makes the 
discussion rather easy, and because even this simplest case shows the main part of 
the principle behind string fragmentation, it will be used as a "playground" for the 
following explanations. 

The quark and the antiquark interact via a color field, which can be 
represented by a I-dimensional string between them. Consequently the effect of 
the corresponding string forces can be described by a potential which increases 
linearly with increasing separation of the quark and the antiquark. This increase of 
the potential with an increasing distance is the reason for the confinement of 
quarks into hadrons. 

If the quark and the antiquark separate, and the distance between them 
grows, the energy in the color field between them increases too. If this energy 
exceeds some threshold the possibility for creating a new quark-antiquark pair 
q' q' is given. After a production of this type we can observe two color neutral 
systems: qq' and q'q (a remaining string, and a meson) in spite of the initial one 
qq which no longer interact. If the mass of the remaining string exceeds some 
threshold17, a further production of qq -pairs is possible. If not, the fragmentation 
is stopped. 

The assumption is made, that the probability for creating the pair q'q' is 
proportional to 

l_,q q l_,q 

[ 
m

2 

] [ m2] [ p2 ] exp - 7 =exp - cr2 exp -7 

Here m is the rest mass of the produced quark, and p 1-.q is the transverse 
momentum of the new quark and antiquark. From this follows, that heavy quarks 
are suppressed, and the densities for ml/ and P1-.q factorize. There is a restriction of 
heavy quark production to the parton shower and these heavy quarks are actually 

17 PARJ(33) (Default=0.8GeV) and quark masses are used to define the remaining energy below 
which the fragmentation of ajet system is stopped and two final hadrons are formed. 
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Fragmentation 

not produced by the string fragmentation mechanism. The width cr of this 
distribution is again a parameter that can be used for tuning JETSETto the datais. 

The longitudinal momentum of the hadron has to be calculated next. In 
JETSET the distribution of the variable z is given. z(E + pJ is the fraction of 
E +PL of the quark (or the antiquark) that goes to the new hadron. In JETSETthis 
distribution is given by the ''Lund symmetric fragmentation function'~· 

() (I-zt [ bm
2

] f z oc z exp ---: , ml = mz +Pl 

The parameters a and b (they are assumed as flavor independent) determine 
the shape of the fragmentation function19. Here an increase in b leads to a 
distribution that favors higher values of z and therefore leads to a harder hadron 
spectrum, where mis the mass of the new hadron. 

Since the Lund fragmentation function produces a spectrum for B mesons 
somewhat harder than observed in real data, the Peterson et al fragmentation 

function (or Si.AC-formula) is used in the case of c- and b-quarks20. 

J(z) oc 1 z 

z(1 -_!__SL) 
z I-z 

Here cQ, Q E {c,b} are two parameters that allow for the tuning of JETSET 
to c- and b-data21. 

18 cr is the parameter PARJ(21). Default=0.35GeV "transverse momentum width in 
fragmentation 11 

19 a is the parameter PARJ(41). Default=0.5 ''First parameter.in the Lund string fragmentation 
function", b is the parameter PARJ(42). Default=0.9 GeV-2 "Second parameter in the Lund 
string fragmentation function 11 

20 Different methods exist for changing the fragmentation function. The parameter MSTJ( 11) is 
used to switch between this possibilities. We are using MSTJ(l 1)=3, that is the "hybrid 
scheme", where light flavors are treated with the Lund fragmentation function where heavier are 
described by the Peterson et.al. formula. 

21 cc is the minus the parameter PARJ(54); default of PARJ(54)=-0.05; cb is minus the parameter 
PARJ(55); default of PARJ(55)=-0.005. 
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2.3.2.4. Remarks 

Not all of the parameters available in JETSET have been used to tune the 
model. The parameters of the heavy flavor (c,b) sector have been fixed before the 
actual fitting using recent data, since they are almost independent of other 
parameters. The following assumptions were used: 

(i) PARJ(17}:PARJ(16):PARJ(15) = 5:3:1 ("Spin counting") 
(ii) PARJ(14)=PARJ(16) 

This assumption leaves only one free parameter, which we choose as 
PARJ(l 7). We fix it to the value of 0.2 to allow for a description of the ratio 
r(b ~ s·· )jr(b ~ B) as taken from [A4,95]. The parameter a is fixed at the value 
0. 4 because it was observed that this restriction of the model parameter does not 
decrease the quality of the model. In addition ~~b= 1 : = 0. 65 is used as a compromise 
in the description of D*/D (taken from [Al,93)) and B*/B production rates (taken 
from [A4,95]). Ee:= 0.04 is used to get an appropriate description of the 
x£:=2E/E-+ distribution of the D* in the region xE>0.5, and Eh:=0.004 

e e 

reproduces the mean value (x£) of B-mesons. 11':=0.275 is used to describe the 
rate of 11' -particles. (All quoted values were taken from [Ru,95)) 
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2.4. ARIADNE (version 4.05) 

(ARIADNE A Monte Carlo for QCD Cascades in the Color Dipole Formulation) 

Characteristics: ARIADNE is a coherent QCD model, which uses the concept of 
radiating color dipoles. The fragmentation part is the same as in JETSET, i.e. the 
color string fragmentation. Again we have lots of parameters, and again we can 
observe a good agreement between model predictions and the data. 

The QCD cascade is realized by color dipoles (for example the primary qq 
pair which was created in the e-e+ annihilation), these are able to do the following 
reactions: 

If a gluon is emitted, the system decays into two independent parts, which 
are assumed as independent. For example the reaction qq ~ qq g ends with the 
two dipoles qg and qg. These new dipoles can also radiate gluons and therefore 
the way to an iterative sequence of branchings is open. Expressions are known 
that are analogous to the Altarelli-Parisi splitting kernels for the reactions 
mentioned above. On that basis a parton shower analogous to JETSET's can be 
generated. The expressions for the individual emissions are based on first order 
QCD. 

In contrast to JETSET, Q2
: = Pi is used in ARIADNE as ordering variable, 

and the two parameters that fix the behavior of the parton shower are "the 

characteristic scale of QCD" A and the transversal momentum pr;in at which the 
cascade stops. A decrease in the evolution variable does therefore mean a 
decrease in transverse momenta, and angular ordering is automatically included in 
the description. 
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2.5. HERWIG (version 5.8) 

(HERWIG: Hadron Emission Reaction With Interfering Gluons) 

Characteristics: HERWIG is a model based on a coherent parton shower that is 
analogous to the one used in JETSET, but that uses a different evolution variable. 
The fragmentation part of this model is based on the principle of "cluster decays''. 

HERWIG does not reproduce the data as well as either JETSET or ARIADNE In 
this work we are using HERWIG version 5 8 A really nasty feature of this model is 
the incomplete and partly incorrect table of particle decay modes. Better 
agreement with published values are expected for version 59, which is 
unfortunately not available while writing this thesis. 

2 .5 .1. Parton shower 

The parton shower is done in the same way as discussed in the JETSET 
section, but here the evolution variable 

Qz E2r. r. ·- PbPc 
= a\.:)bc• \.:)be·-££ 

b c 

is used, where pb and Pc are the four momenta of the daughters in the reaction 
a~ be. For the case E;,c >>PL = m;,c, that means for the case where the parton 
masses can be neglected, the ~be in this evolution variable can be approximated 
well by ~be = 1 - cos 1'.} b,c, and a cascade with decreasing values of the evolution 
variable corresponds to a series of decreasing angles between the momenta of the 
daughters. Therefore, angular ordering is included in the parton shower, and 
HERWIG is a coherent QCD model. 

Again the shower is stopped as soon as the value of the evolution parameter 
drops beneath a given limit 22. 

22 Mg is the parameter RMASS(f 3). Default=0.75GeV "Gluon effective mass". The condition 

Mg > 4A - 0.1 must be fulfilled to avoid divergences in the parton shower. 

A is the parameter QCDLAM. Default=0.18GeV 
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2.5.2. Fragmentation 

2.5.2.1. The cluster concept 

Fragmentation 

In a first step all the double-colored gluons are split up into single-colored 
quarks and antiquarks. 

The ''effective gluon mass" is constrained to a value that is bigger than twice 
the mass of the lightest quark (2x0.32GeV), in order to allow for the splitting 
procedure mentioned above. After splitting, every parton is a single-colored 
object. Now a definition of a distance between two particles is made, and every 
quark is combined with its closest antiquark with the corresponding anti-color. 
Together they form a colorless ''cluster''. A condition according to the mass of this 
cluster is introduced as: 

(Here M 0 is the mass of the cluster, m,
11 

and mq
2 

are the rest masses of the 
constituents, and Mrnax as well as n are model parameters that allow for a tuning of 
HERWIG to the data (23, 24).) 

Mrnax defines an upper limit for the mass of the clusters. If this condition is 
not fulfilled, the cluster is split up into two clusters with masses less than M 0 • A 
new quark-antiquark pair qih is generated in order to realize this decay of the 
cluster (ql'q2 ), a , and the clusters (ql'qJ and (q3 ,qJ are formed. The flavor of 
the new quark q3 is equally distributed over u, d and s. The masses of the new 
clusters are computed as M 1.2 := M0 Rf2 • Here R1,2 are two values of a random 
variable which is equally distributed between 0 and 1, and ~ again is one of the 
HERW!G-parameters25. The directions of the momenta of the decay products are 
set to be parallel to the direction of the momenta of the primary components q1 

and q2 , and their absolute values are computed from energy-momentum 
conservation. 

23 M max is the parameter CLMAX. Default=3.35Ge V "maximum cluster mass parameter" 

24 n is the parameter CLPOW. Default=2 "power in Maximum cluster mass parameter" 
25 ~ is the parameter PSPLT. Default= I "split cluster spectrum parameter" 
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2.5.2.2. Cluster decay into hadrons 

HERWJ G includes two possibilities that allow for a transition from a cluster to 
hadrons. They are called one-body mechanism and the two-body mechanism 
respectively. The decision between them is made by looking at the quark content 
and the mass of the decaying cluster. The following conditions are used: 

Here Mc is the mass of the cluster ( q I' qJ , and m1 (a, b) is the mass of the 
lightest hadron with quark content ab. Let us for example consider a cs cluster. In 
this case the conditions above correspond to: 

Mc> m1(c,u) + m1(u,s) = mD0 + mK+ = l.86GeV + 0.50GeV = 2.36GeV 

Mc> m1(c,d) + m1(d,s) = mD+ + mK0 = l.87GeV + 0.50GeV = 2.37GeV 

If both of them are fulfilled, the cluster decays according to the two-body 

mechanism. For that reason one quark or diquark flavor q3 is taken by chance 

from the set { u,d,s,c,t,b,uu,ud,us ,ds,dd ,ss}. By default, all the elements of this 

set have the same probability, but it is possible to change these settings by 

changing the values of the parameters PWT(l}- PWT(7) (26, 27). Now a decay of 

the cluster into two hadrons 

is forced if the mass condition 

is fulfilled. This condition suppresses the contribution of quarks with big mass. In 
the default version the momenta of the decaying particle are generated isotropic 

26 PWT( l)-PWT(6) measures the probability, that the flavor of the new quark q3 is u, ... ,t. 

27 PWT(7) is the diquark-probability. 
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in the center of momentum system of the decaying cluster. If this condition is not 
fulfilled, the cluster "decays" via the one-particle mechanism, that means it is 
replaced by the lightest hadron with the same quark content. The three 
momentum is by definition the same as the three momentum of the decaying 
cluster. A possible overflow in energy is distributed over the surrounding clusters 
by chance. 

2.5.2.3. Remarks 

There exists a possibility of influencing the behavior of hadrons containing 
so-called "perturbative quarks''. These are quarks generated in the primary 
reaction or during the parton shower, but not in the decay of gluons. The idea 
behind this is, that these quarks should "remember" their original direction even if 
they are confined in a cluster. In the default version, the cluster decays isotropic in 
its center of momentum system ( CLDIR=OJ, while the option CLDIR= 1 allows for 
a consideration of perturbative quarks directions. Every decay product (hadron) 
which contains a perturbative quark inherits the direction of its momentum from 
this perturbative constituent. After this step, a smearing of the direction of 
momenta can be carried out according to an exponential distribution in 
{I - cos t}} . Here t} is the angle between the direction of the perturbative 
constituent and the direction of the final hadron. The mean value µ of this 
distribution is a parameter of HERWIG 28. This modification leads to an 
improvement in the description of the distribution of charged particle momenta. 

28 µis the parameter CLSMR. Default=O.O "width of Gaussian angle smearing" 

37 



38 



PART I: 

Measurement of charged particles distributions 
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Chapter 3. 

Distributions and Methods 

3.1. Abstract 

Based on ALEPH data recorded in the year 1992 distributions of event 
properties and single particle properties of charged particles are measured. The 
main tool of the measuring procedure is the simulation model HVFL03, which 
consists of the QCD generator JETSET on one hand and the detector simulation 
program GALEPH on the other. The distributions introduced here provide a 
major part of the input information for the parameter tuning in part II of this 
thesis. 

Initially all the event and single particle properties will be explained. An 
unfolding procedure will be discussed in some detail. This unfolding procedure is 
used to correct the observed data from detector influences. The last part of this 
chapter describes the restriction to hadronic events and to reliable tracks of 
charged particles, and therefore opens the way to the measurement. 

3 .2. Measured quantities 

Each event can be described by the set of four momeRta P;: = ( E;, P;) of its 
final state particles. Because we are only interested in properties of charged 
particles, the index i numbers the set of charged particles in a given event. The 
following definitions are taken from [JS,93], [Al.92]. 
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3.2.1. Event properties 

3.2.1.1. Sphericity 

Starting from the three real eigenvalues A1, A2 , A3 ( A1 :2: A2 :2: A3 , \ + A2 + A3 : = 1) 

of the ''sphericity-tensor" 

LP,aP; 
5a~:= i.l.vJ , a,~ E {1,2,3} 

I 

the quantities sphericity S:= ~ (A2 +A3), aplanarity A:=%A3 and planarity P:= A2 -A3 

= ~(S-2A) are defined. 
3 

The value of S lies between 0 and 1 and is a measure of the shape of the 
event. Small values correspond to events in which the directions of the particle 
momenta are roughly parallel to a given axis (defined by the eigenvector 
corresponding to the biggest of the eigenvalues, also called the ''spericity axis''}, 

while events which large values of S are isotropic. The former type of events is 
called "2-jet event'~ 

The value of A lies between 0 and 0.5 and is a measure of the momentum 
flow out of the so-called "event plane" as defined by the eigenvectors 
corresponding to the largest and the middle eigenvalue. 

In an analogous way the ''generalized sphericity tensor"is defined: 

With the definition r:= I the C-parameter C:= 3(A1A2 +A1A3 +A2AJ can be 
calculated using the Eigenvalues of this generalized tensor. 

3.2.1.2. Thrust 

The quantity measured is 1- T, with 
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Tis called "thrust''. The direction which corresponds to this maximum value 
is called "thrust-axis': and we use the symbol t . The value of 1- T lies between 0 

and 0.5, where the 2-jet events correspond to values close to 0, while isotropic 
events correspond to values around 0. 5. If the maximum Tis calculated from the 
set of momentum vectors perpendicular to the thrust-axis it is called ''.major'~value 

M 

M:= max 
jiij=l,iH=O 

The corresponding direction defines the ''.major-axis''. A third axis, the minor 
axis, is defined perpendicular to the thrust and major ones, and a ''.minor"-value is 
calculated just as thrust and major. The value of the "oblateness" is defined as 
0:= M -m. The closer 0 is to zero, the more symmetric is the corresponding event 
with respect to the thrust-axis. Large values of Ocorrespond to planar events. 

3.2.1.3. Jet masses 

Events are split into two hemispheres by any separation criterion to define 
the jet masses. The four momenta in these two hemispheres define the following 
quantities, called the masses of the hemispheres: 

Here S± is the symbol for the two hemispheres. If the plane which separates 
the two hemispheres is constructed in a way that lead to a maximum of m~ + m:, 
the bigger mass is called ''heavy jet mass" M; while the other_ one is the "light jet 

mass" M;. Sometimes the ''.mass difference" MJ:= M;- M1
2 is also of interest. 

Since the calculation of these jet masses is very time consuming, one has to 
restrict the analysis to some approximations or these complicated definitions have 
to be replaced by simpler ones. In our analysis we choose the latter and define 
''simplified jet masses"by dividing the full space into two hemispheres with respect 
to the thrust-axes. We define the ''simplified heavy jet mass" M; as the maximum 
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of the corresponding masses, and the ''simplified light jet mass" M1
2 as the 

minimum. In the remaining chapters we will always leave out the word simplified 
to be as short as possible, but use the bars in the symbols. In fact not the simplified 
jet masses, but these masses devided by the "visible energy", that is the sum of the 
energies of all charged particles in a hadronic final state is measured. 

3.2.1.4. Jet broadenings 1 

Again a separation of the full space into two hemispheres is made by a plane 
that is perpendicular to the thrust axis. In both hemispheres S± the following 
quantity is calculated: 

The sum in the numerator includes the momenta in the hemisphere signed 
by the + or the - symbol, while in the denominator the sum is done over all 
momenta of the event. These quantities define the ''total jet broadening" 

B,:= B+ + B_ and the "wide jet broadening" B.:= max(B.,BJ. Both of them are close 
to zero for 2-jet events. 

3.2.1.5. Jet resolution parameter y 3 

As mentioned before, the particles in the final state of an e-e+ -annihilation 
event appear in jets. This property is quantified by so-called cluster algorithms. In 
this work the ''Durham cluster algorithm" is used. For each pair of four momenta 
(pk'pJ a value of the ''resolution variable" 

2 min( E;, E1
2 )(1- cos8k1) 

Yk1:= ------=-2---­
Evis 

can be computed. In this formula we used 

1 Source: [01,93) 
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The pair with the smallest value of this variable is replaced by a new pseudo 
particle. The four momentum of this pseudo particle is the sum of the four 
momenta of its constituents. y

3 
is the smallest value of Yu when only three pseudo 

particles are left. 

3.2.2. Single particle properties 

3.2.2.1. The normalized particle momentum 

We normalize the particle momentum by the momentum of the initial 
electron: 

3.2.2.2. In-momenta 

The ''event plane" is defined in two ways. In the first way it is based on the 
eigenvectors corresponding to the first (that is the biggest) and the second 
eigenvalue of the sphericity tensor. In the second way it is defined by the thrust 
axis and the analogous axis defined by the major value. The ''in-momentum" is 
then the component of the momentum that corresponds to this plane and that is 
perpendicular to the sphericity axis or the thrust axis respectively. 

That means, that the in-momentum is the component of the momentum in 
the direction corresponding to the second eigenvalue or in the direction 
corresponding to the major respectively. 

in 1- -1 PJ. := n2·P 

3.2.2.3. Out-momenta 

As in the case of in-momenta, the event plane is defined with the sphericity 
or the thrust axis. The ''out-momenta" are the components of the particle 
momenta that are perpendicular to this event plane. That means that the out­
momentum is the component of the momentum in the direction corresponding to 
the smallest eigenvalue of the sphericity tensor or in the direction that is defined 
by the minor respectively. 
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3.2.2.4. Rapidities 

After the definition of an ''event axis" by the thrust or the spericity axis, the 
rapidity of a particle corresponding to this axis is defined as: 

y:= _!..ln(E + p, J 
2 E-p, 

Here p1 is the longitudinal component of the momentum, that is the 
component in the direction of the event axis; E is the energy of the particle. The 
computation of this quantity requires knowledge of the mass of the particle under 
observation. Because this is not known in general, normally the 7t mass is 
assumed. 
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3 .3. Unfolding procedures 

3.3.1. Treatment of event properties 

3.3.1.1. Introduction and definitions 

The true distribution t(x) of a given quantity xE[x.,xJ is in general not the 
same as the distribution o(y) of the same quantity observed by the detector. Even 
if the quantity is the same, we use the symbol y ( E [Yu, y

0
]) for the measured value 

possibly biased by the detector to avoid confusion in the following discussions. 
The restricted resolution of the detector as well as secondary reactions and decays 
are reasons for this bias. Both distributions are connected by the following 
formula: 

x,, 

o(y) = J D(y,x)t(x)dx (3.1) 

All detector influences are absorbed in the ''detector function" 

D:[ x,, ,x,,] x [Y,,, yJ-7 R +. The probability that a value of the quantity of interest which 
lies in a "very small"2 interval of width ~ around x is measured in a "very small" 
interval of width ily around y is given by D(y,x )ily. 

The calculation of this detector function (in fact we calculate a discrete 
version, not the full detector function) is normally done by using a simulation 
which consists of a QCD model and a detector simulation. The former fills the 
phase space, while the latter deforms this filling. If one of these constituents of the 
full simulation is wrong, systematic deviations from the exact detector function can 
not be excluded. Because of this, we have to introduce the assumption that the 
simulation that was used for the calculation of the detector function provides a 
good description of the data. 

The measurement is carried out on the basis of the following discretization: 

2 "very small" means that the function D can be approximated by a constant in this interval. 
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and on the basis of the discretized versions of the distributions and the detector 
function which become column vectors t and i5 and the detector matrix D (the 
response matrix) respectively: 

1 
YJ X; 

Dj;b..y/= t.tu. J J D(y,x)t(x)dxdy 
I I 

(3.2) 
YJ-1 X;-1 

It follows from the relation (3.2) that the elements of the detector matrix will 
in general depend on the true distribution t( x), if the width of the bins is that large 
that neither t(x) nor D(y,x) can be approximated by a constant within the bins 
[ x,_,, x

1
]. For that reason the bin widths used in our analysis are small in regions 

where the slope of t(x) has large absolute values, while larger bins are allowed in 
regions where t(x) has a more constant behavior. 

Now the discretization of (3.1) can be done: 

Y1 x,, m r1 x. m 

o/iy
1 
= J J D(y,x)t(x)dxdy = L J J D(y,x)t(x)dxdy = LD/1y/1Llx1 (3.3) 

Y1-1Xu i=l J'1-1%;-1 i=I 

Because it is highly improbable that a complete event is lost, the probability 
of detecting an event property is ones. That means: 

J D(y,x)dy = 1 
m 

or °ID/iy1 =1 
J=I 

Conclusion: The discretized versions of the true and the observed distributions 
are connected via a system of linear equations. The matrix appearing in this 
system of linear equations describes the influences of the detector. If this 
matrix and the observed distributions are known with a very high accuracy, 

3 In the case of single particle properties the possibility of annihilation and creation mechanisms 
has to be taken into account. Because of that new particles will be added, or some of the particles 
that penetrate the detector will not leave it, and the detection probability for single particles will 
in general fall below one. 
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the measurement corresponds to the solution of this system of linear 
equationst. 

Before the algorithm for measuring event properties is applied to ALEPH 
data, it will be tested in a very simple model surrounding. This simple model is 
introduced and illustrated in the following example. 

Example 3.1: A simple model scenario 

Idea: Before the algorithms discussed below are applied to data, they should 
be explained and illustrated in detail For that reason, a detector function 
together with two "true distributions" and the corresponding ''observed 
distributions" biased by the ''detector" are given. The first of them play the 
role of the data (dat), while the second provide an illustration of the 
simulation (sim). A dependence of the detector matrix from the model as it 
would eventually appear is not included in this simple model 

---------~--------------------------------------------------------------------------------------

Numerical values: x,, = Y. = 0, x
0 
= y

0 
= 8, m = 12, n = 13. All bins have the same 

width .. 

''data distribution" (t_ dat): 

µ, = 1.5, cr, = 1.5, a, = 3.5, µ1 = 4.5, cr2 = 0.35, a1 = 0.8, 

''simulated distribution" (t_ sim): 

4 In fact the accuracy will in general not be sufficiently large. The problems that arise from this 
point are discussed in the next section. 
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Treatment of event properties 

3.3.1.2. Behavior at finite statistics 

Naive thinking might suggest, that since the observed distribution and the 
detector function are known, the true distribution can be calculated by inverting 
the detector matrix and multiplying this inverse with the vector that represents the 
observed distribution. Serious problems arise because of the finite number of 
events we are able to use in the analysis (called the ''finite statistics''· To 
demonstrate these problems, the model surrounding is provided with finite 
statistics in the next example. This example also demonstrates the way to calculate 
estimates for bin contents in the case of finite statistics and the widths of these 
quantities. 

Example 3.2: The model scenario at finite statistics 

Idea: Since we have to use finite statistics in the measurement we do only 
have estimates for the bin contents, and we are able to calculate estimates 
for their widths. The estimation procedure will be introduced here. 

These statistical inaccuracies lead to serious difficulties. To get some 
deeper understanding of this topic, the model scenario should be generated 
with finite statistics. 

(i) Generation of a discrete distribution 

Starting point is the discrete probability distribution (p
1

, ••• , p.) of a given 
random variable x with 

!..Pk= 1, pk:= Pk~k 
t=l 

Here pk is the probability for the case that a value of the random 
variable x lies in the k-th bin. On this basis a separation of the interval ]0,1] 
into subintervals is made: 

k=2, ... ,n 
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The width of the k-th interval is given by the probability pk. Normally 
every programming language used in natural sciences provides a random 
number generator which produces random numbers equally distributed in 
the interval ]o, 1]. If a value of this equally distributed variable lies in the 
interval /* , a counter that registers the entries in the k-th bin is increased by 
unity. The values of these counters are then distributed according to the 
given discrete probability. 

(ii) Estimation of the bin contents and their widths 

The bin contents Bk of the discrete distribution generated in section (i) 

are distributed by a polynomial distributiorP. (The bar marks that this is the 
bin content of a given sample, and it is in general different in another 
sample.) If samples are generated with s independent throws (s marks the 
used ''statistics'', the mean values and the covariance matrix can be 
calculated (c.f. [Ea,71]). For example we have 

E( BJ= sp* (mean value), V (BJ=: cr2 (BJ= sp* ( 1- pJ (variance) 

Because of this expression for the mean value, the normalized bin contents 

are unbiased estimates for the values of the discrete probability distributions 
p * (that means E (pk ) = pk ) , and the standard deviation can be taken as a 
measure of the distance from pk to p*6. Because of v(ax)=a2V(X), a ER, 

and because Xis any random variable we have 

5 The polynomial distribution is also called "multinomial distribution" (c.f. [Br,87]). 
6 The standard deviation marks the mean of the difference of a given value of a random variable 

from its mean value. Only if this mean value is identical with the quantity of interest (that means 
if the estimator is unbiased), it is also a measure of the deviation of any output of the random 
variable from this quantity of interest. 
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and we end up with 

(3.4) 

We neglect the width of this width due to the statistical fluctuation of 
the Bk and take the formula above as an expression for the standard 
deviation. 

(iii) Simulation of detector influences 

Every content of the i-th bin of the true distribution is "scattered" into 
the k-th bin of the observed distribution with a probability DJ:l.yk. To 
generate the observed distribution, the algorithm introduced in (ii) is 
repeated with 

(iv) Graphical illustration 

The "simulated distribution" is generated with s,,,,,:= 4000, and the "data 
distribution" is generated with sda

1
:= 1000. The following figure illustrates the 

results. The fact that the normalized bin contents lie inside the error bars (as 
defined by the standard deviation) with a probability smaller than one can 
be seen from these graphs in particular. 
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Figure 3.3: Distributions at finite statistics 

In fact the estimates pk for high values of s are in good approximation 
distributed by a normal distribution (c.f. generalized theorem of Moivre and 
Laplace [Fi,62]). The true value therefore lies in the region marked by the 
error bars with a 68% probability. From the expression for the standard 
deviation (3.4) it is clear that one has to provide a factor 4 in s to end up 
with 50% of the error bars. This fact can also be seen in the figure above. 

0 

Equation (3.3) is a system of linear equations, and it seems to be clear that a 
solution can be found using standard methods. This is true in principle, but since 
we only have estimates for the coefficients of this system of linear equations, we 
will also get estimates for the solutions. The crucial point will be the size of the 
widths of the solutions. It turns out, that in general the errors of the solutions will 
be that large, that the result is quite meaningless7. The following example 
illustrates this fact. 

7 An example of a meaningless result is the estimate of a probabilitiy with an error bigger than 
one. 
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Example 3.3: Error propagation in systems of linear equations 

Idea: Jn some steps of the solution of a system of linear equations some 
critical mathematical operations, such as the subtraction of nearly equal 
numbers can appear. These critical operations can lead to big relative errors 
in the results. To characterize this critical behavior, normally a number that is 
called condition is used. This condition is introduced in the following 
example, and a characterization of the systems of linear equations appearing 
in our analysis is carried out 8 . 

Starting point is the following system of linear equations 

AX=b 

In the case of the measurements of event properties, the matrix A will 
be the detector matrix. In the cases that are interesting for this work, the 
matrix A is quadratic and invertable. Because of this the following 
discussions are also restricted to this special type of matrices. 

In a first step the errors of the matrix coefficients should be zero, only 
the inhomogenous part b should be biased. This is the same case that can 
be found in the example "Unfolding of a distribution of a discrete variable" in 
[Bl,84]. To begin let us define the length of a vector and the generalized 
"length" of a matrix: 

llxll:=~~x;2 
and llAll:= ~~Ai 

The definition of the condition of the matrix A comes next: 

The inequality (c.f. [Sc,93]) 

8 For details c.f. [Sc,93] or any textbook of numerical mathematics. 
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holds. This formula makes only predictions about lengths of vectors, but it 
should be enough to give a first impression about the error propagation 
behavior. The condition is in this first case of an unbiased matrix A an 
amplification factor for the relative errors. In the example found in [Bl,84], 
the condition is K( A) = 162, thus the relative errors of the solutions can be a 
hundred times larger than the relative errors of b. 

If not only b is biased, but also the coefficients of the matrix A, the 
following generalization of the expression above can be used (c.f. [Sc,93]): 

Note that this expression makes only sense if 1 > K(A)ll~ll. 

If this is not the case, the result of the inversion process should not be 
trusted. If this condition is fulfilled, the expression above leads to an upper 
limit that is in general pessimistic. The next figure illustrates this behavior in a 
rather drastic way. 
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Figure 3.4: Solution of a well conditioned and of a badly conditioned syst~m of linear 
equations 

Again the simple model set up with sd
01
:=5000 and s,;"':=50000 is used to 

obtain this illustration. The change in the condition is produced by a change 
of the width ad in the detector function. A small width corresponds to a 

56 



Treatment of event properties 

rather diagonal detector matrix, and therefore to an unproblematic system of 
equations, while a larger width leads to the difficulties mentioned above. The 
next table shows more of the details. The following abbreviations are used: 

(Jd K(A) II Mt/ K(A)llMll rel II Mt, llAfllrel 

0.35 3.34 0.0338 0.1129 0.0427 0.29 

1 343.23 0.0721 39.160 0.0432 -

Table 3.1: Matrix conditions in the simple model 

Now the interesting question is about the behavior of the detector 
matrices used in our analysis. To calculate these conditions, we used the bins 
given in chapter 4. The statistics were sd

0
,:=571825 and ssim:=1186173. The 

results are shown in the following table. 

quantity K(A) II Mt/ K(A)llMll rel II Mt, K( A )jjMll rel llMllrel 

s 77.40 0.0073 0.56 0.0045 0.35 2.11 

A 53.68 0.0071 0.38 0.0029 0.15 0.87 
p 26.08 0.0091 0.24 0.0027 0.07 0.40 

c 35.71 0.1012 3.61 0.0043 0.15 -
T 90.55 0.0161 1.46 0.0048 0.43 -

M 19.27 0.0140 0.27 0.0049 0.09 0.50 

m 23.88 0.0343 0.82 0.0038 0.09 5.00 

0 17.44 0.0129 0.23 0.0042 0.07 0.38 
-2 

191.26 0.0165 3.15 0.0043 0.82 Mh -
-2 

2281.2 0.0372 84-9.38 0.0026 5.93 M, -
-2 

190.90 0.0164 3.13 0.0036 0.69 M,, -
B 5.42 0.1185 0.64 0.0036 0.02 1.86 

B.., 6.96 0.0460 0.32 0.0030 0.02 0.50 

Y1 150.74 0.0186 2.80 0.0019 0.29 -

Table 3.2: Conditions of relevant detector matrices 

0 
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Conclusion: Even if the upper limit as calculated by the condition of the 
detector matrix is pessimistic, the given results clearly indicate that results 
calculated by inversion of the detector matrix should be mistrusted. If 
satisfactory results are required, we have to use other methods. If we want to 
end up with smaller errors we have to provide additional information to the 
measurement. 

This additional information will be achieved by using of a simulation model. 
The better the model used for the measurement is, the better the results will be. 
The discussion of the inclusion for a given model into the analysis is described in 
the next section. 
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3.3.1.3. Unfolding of event properties (matrix method) 

The detector matrix D that was introduced in the last section is calculated by 
a Monte Carlo simulation. Finite statistics will in general lead to estimates for the 
normalized bin contents with errors that are too big for an accurate inversion of 
the detector matrix. This section introduces a method that allows for an unfolding 
without any inversion. This big advantage is reached by adding information in 
form of a simulation model that represents the current "state of the art". If this 
model describes nature exactly, the analysis is exact too. Because this is not quite 
the case it will be necessary to introduce an estimation of the error due to the 
imperfections of this model. 

Let o/.).Yj =: P(LiyJ be the probability for the case that a given event property 
is measured in an interval Li y j , and t/ix; =: P( Lixi) the probability for the case that 
the true value of this quantity lies in the interval Lixi. D

1
iLiy

1 
=: P( Liyj LixJ is the 

probability, that this quantity of interest is measured in the interval Liyj under the 
condition that its' true value lies in Lixi. We can now rewrite formula (3.3) and 
identify the ''Satz ueber die vol!standige Wahrscheinlichkeit" (c.f. [Bo,91]): 

P(LiyJ= IP(LiyjLixJP(LixJ 
i=1 

Because this is true, the expression 

P(LixJ= IP(LixJLiyJP(LiyJ ~ t;Lix; = IC:iLixioiLiyi 
j=I j=I 

also holds, and the correction can be done by: 

Here C:jLixi =: P(LixJ LiyJ is the probability that the true value lies in the 
interval Lixi under the condition that it is measured in Liy

1
• Thus we know the 

correction matrix C if we are able to compute the conditioned probabilities 
P(LixJLiyJ The key to this calculation will be the Bayes theorem (c.f. [Bo,91], 
[Br,87]): 
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Unfolding procedures 

P(&;/ ilyJP(ilyJ = P(ilyj /&JP(&;)= P(ilyj "&J <::} cu= ~1; t; 
J 

Even in the case of a detector matrix that is independent from the model 
predictions, this equation shows a linear dependence of the correction matrix from 
the model distribution. The key for calculating the elements of the correction 
matrix is given by: 

(3.5} 

The sometimes very drastic influences of the model predictions on the 
unfolding procedure should be illustrated (in a pessimistic but nevertheless 
interesting way) by the following example. 

Example 3. 4: Matrix correction in the model scenario 

Idea: In the model scenado we provided a ''model" that is somewhat 
different from the ''data'~ Now we play the following ''game'~ What happens 

if we use this false model to ''correct" the observed distribution with the 
method introduced above? 

In the figure right, the result of this "game" is illustrated. The bars 
represent the given true 
distribution ( dat). A correction o.2:x---~--~--~--~ 

matrix that was calculated with 
this true distribution reproduces 
the distribution as it should be. 
The crosses show the different 
(and false) "model". The circles 

illustrate the result of the 
unfolding procedure using this 
false model. A large bias is the 
consequence, and indeed the 
result is not very satisfactory. 

0.2 

0.1 

0.1 

0.0 

x 

x 0 0 x 
0 

0 

x 
0 

4 
x 

~1 

o Figure 3.5: - ... t_dat, o ... t_corr, x ... t_sim 
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Treatment of event properties 

We explained how to calculate the elements of the correction matrix. Not 
only estimates for this elements have to be calculated, but also their widths, and 
the widths of the corrected distribution. This topic will be dealt with in section 
3.52.1 where the calculation of errors is introduced. 

Conclusion: It is possible to reproduce the true distribution, if a good 
simulation is available. The crucial assumption is therefore, that the model 
reproduces the data "very well'~ Additional tests should be done to check the 
quality of the models. Because even the best of the available models does not 
reproduce data in every detail, an estimation of systematic errors due to this 
imperfections of the simulation models has to be calculated. 

Before some tests of the model accuracy are done and a method for the 
estimation of systematic errors is introduced, the discussion about the unfolding 
procedures should be finished by a section that deals with the single particle 
distributions. 
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Unfolding procedures 

3.3.2. Treatment of single particle properties 

There are two important differences between the unfolding of event 
properties and the unfolding of single particle properties. The first difference is due 
to the calculation of the statistical error. In the case of event properties we used 
the fact that each event is generated under the same conditions and that all events 
are independent. That means: different entries are independent in the case of 
event properties. On that basis we applied the rules of statistics. In the case of 
single particle properties this basic assumption does no longer hold. Entries are 
correlated in general, and we have to use different methods. 

The second and even more important difference is that a detector matrix is 
not available. This is due to the facts that single particles can be annihilated or 
they can be produced in the detector, and to some technical details in ALPHA9. 

3.3.2.1. Calculation of the statistical error 

One possibility is to forget about the correlation mentioned above. In this 
case one would expect a statistical error that is much smaller than the error that is 
calculated for event properties, because on average each event contributes 
roughly 21 charged particles, and so the statistics used for single particle 
distributions should be 21 times higher than the statistics used for event properties. 
This calculation can be used for a first approximation. 

If one wants to calculate more accurate values for the widths, he has to take 
the correlations into account. These correlations are due to the fact that a 
hadronic event is not isotropic, but is arranged in jets. If one knows for example 
the direction of movement of a given particle in a given jet, he also knows that all 
the directions of movements of the other constituents of this jet are very similar. 
The direction of one particle restricts the direction of many others. They are no 
longer independent and thus correlated. These correlations are especially 
important for the true distributions. Bins of observed distributions are less 
correlated because the smearing of the detector decreases the effect. 

9 It turned out to be impossible to relate true properties of single particles to observed properties in 
a unique way. For details see [Ap,95] 
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Treatment of single particle properties 

For example the rapidity of a particle is essentially a measure of the angle 
between the direction of movement of this particle and the thrust axis. If the 
directions of movement are highly correlated, one could argue, that the rapidities 
are highly correlated too. Indeed discrepancies between the widths calculated with 
and without including correlations can be observed here. 

If one wants to include correlations in the calculation of the widths, one can 
again use the fact that events are independent, even if single particle contributions 
are correlated. For each event the full histogram of the single particle distribution 
is calculated, and on that basis the width in each of the bins can be calculated by 
the following formula. 

2 1 n j _2 n ln;2 ln; 

{( ) ( )2} 
<Jb,v =-=-1 .L.{tb,v - tb.J =-=-1 - L/b,1• - - L/b,1• 

n 1=1 n n 1=1 n 1=1 

Here n is the number of events, t~,v is the bin content of the b-th bin of the v­

th distribution in the f th event. We are interested in the mean value 

of a given bin content. The width of this mean value is given by 

This can be seen by error propagation. The off-diagonal elements of the 
covariance matrix are again neglected, even if they are supposed to be bigger 
than in distributions of event properties. 

3.3.2.2. Unfolding of single particle properties (factor method) 

Since the full detector matrix is not known in the case of single particles, the 
unfolding is done by the simplest of all unfolding procedures, that is the 
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Unfolding procedures 

application of correction factors. Here the jth bin content of the corrected 
distribution is given by 

tcorr = C.o. 
1 1 1 

The correction factors are again calculated by using a simulation model. 
Their estimates are given by 

tsim 

C•- I 

;·- osim 
I 

(3.6) 

For the calculation of the width of this expression and of the width of the 
corrected distribution see section 3.52.1. The factor method can be applied if off­
diagonal elements of a generalized detector matrix are relatively small. To 
guarantee this crucial requirement, the width of the bins for single particle 
distributions is set to be bigger than the resolution of the detector. 
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Accuracy of the full simulation 

3.4. Tests of the simulation 

We mentioned before that a very important ingredient of our analysis is a 
simulation that reproduces the data "very well". We will now take a critical look on 
this assumption by using the very sensitive "eye glasses" of high statistics. If it turns 
out that all tests are fulfilled, our understanding of hadronic events has reached an 
optimum and the analysis is simply a test of an optimal model. Because we know 
that our understanding is not perfect, even if it is really not too bad, we expect 
that some of the tests will fail. That means that the basic assumption of our 
analysis is violated, and we should expect a bias of the kind of example 3.4. If a 
bias appears in the measurement, a corresponding systematic error has to be 
given. This error is called ''model bias': its estimation is introduced in section 
3.5.3.1. 

Two kinds of tests are done. The first one is a very sensitive test. Here a very 
high statistic is used to check the whole simulation, that means the QCD-part as 
well as the detector simulation. The deviation of the data from the full simulation 
is expressed in percent of the data and in units of the calculated statistical error. In 
addition a x2 -value is computed for each of the distributions. The second test is 
not as sensitive as the first one, but here it is possible to test the consistency of the 
corrected data. If one of these tests fail, the basic assumption of a very good 
simulation was not satisfied, and the calculation of a model bias is necessary. 

3.4.1. Accuracy of the full simulation 

If the QCD-model and the detector simulation would be perfect, the 
deviations between the full simulation and the data should be purely statistical, 
and the statistical widths should have the same size as these deviations. Because 
of that we look at the behavior of the difference 
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Tes ts of the simulation 

Here rfar is the data value in the jth bin of a given distribution, and rtm is 
the corresponding value of the full simulation. If the deviations are purely 
statistical, these values hardly exceed 3. If the simulation is perfect, the sum 

n 

n:= L,ti2
j 

j=I 

is a sum of squares of n random variables which are N(0,1) distributed. (n-1) of 
them are independent if bin correlations are neglected10, and consequently this 
sum should be x2 distributed with (n-1) degrees of freedom in very good 
approximationl1. The mean value of this distribution is (n-1), while the variance 
deviation is 2(n-1). With this method the hypothesis of a perfect simulation can be 
tested. We know the x2 distribution, and we know a region where the values 
should lie with a given probability, and can therefore exclude this hypothesis if the 
value of the test quantity Tl exceeds some upper limit. The exact values of these 
upper limits can be found in [Br,87]. For a first impression the deviation from the 
mean value should not exceed more than two standard deviations, because every 
x2 distribution with m degrees of freedom can be approximated by a N(m,2m) 

distribution. The accuracy of this approximation increases with increasing m. 
The quantities given in the following tables are calculated with ALEPH 92 

data and the simulation HVFL03 Beneath every symbol of the distribution and 
the number n of bins the value of the test quantity Tl can be seen. 

s A p c 1-T M m 0 -2 
M1i 

-2 
M, 

24 17 21 24 22 22 18 20 23 18 
157.7 558.8 48.9 165.2 118.1 304.0 436.0 311.8 152.0 160.1 

B, B.., -In( v,) xn Y~ p;n(s) p;ur(S) Yr p;n(T) 

20 17 14 46 21 25 19 21 25 
195.4 228.0 265.9 10.3·105 6. 7 · la5 5.9· 105 

21. 7·105 8.3· 105 3.6· 105 

Table 3.3: Test quantities of the full simulation 

10 In every distribution one bin can be expressed as a linear combination of all the others. 
11 For details about X2 dsitributions c.f. [Ea,71], [Bo,91]. 
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Accuracy of the full simulation 

These numbers are really dramatic in the case of single particle distributions. 
One should remember, that this is mainly because the x2 test with a statistics as 
high as for the single particle distributions is very sensitive. In fact most parts of the 
data are described well (that means better than one percent), as can be seen in the 
following table. It quotes the differences L'.l j and the deviations between data and 
simulation in percent of the data value (symbol: L'.l~). 

s A p c 1-T M 

Ll; Ll% Ll; Ll% 
i Ll Ll% Ll. Ll% Ll. Ll% Ll i 

-10.0 -6.1 -12.9 -4.1 -0.6 -0.1 -7.0 -6.3 -3.8 -5.6 -12.3 

2.1 0.9 -0.9 -0.3 3.2 1.2 -1.1 -0.4 -6.0 -4.3 -7.4 

0.0 0.0 0.1 0.0 -0.5 -0.3 0.5 0.2 -2.7 -1.5 -0.4 

2.3 1.3 0.7 0.3 2.0 1.3 3.8 1.6 0.5 0.2 0.8 

0.1 0.0 0.1 0.0 -1.4 -1.1 1.4 0.7 -0.3 -0.2 2.7 

0.6 0.4 0.1 0.1 2.8 2.4 1.2 0.7 1.8 1.0 4.1 

-0.2 -0.2 2.4 1.4 -0.3 -0.3 1.6 1.0 2.4 1.5 3.3 

-0.4 -0.3 5.2 4.5 -0.6 -0.7 0.3 0.2 0.9 0.6 2.0 

2.2 1.5 6.8 6.3 0.3 0.3 -0.4 -0.4 1.6 0.8 3.1 

-0.3 -0.2 7.7 10.8 0.1 0.1 -0.4 -0.3 2.7 1.6 0.7 

-2.2 -1.4 8.3 16.1 -1.1 -0.9 0.8 0.8 0.9 0.4 -1.1 

1.8 1.4 5.5 14.7 -0.2 -0.2 0.7 0.7 0.7 0.4 -1.5 

0.9 0.8 6.2 21.2 -1.4 -1.6 -0.7 -0.7 2.5 1.9 -1.2 

-0.3 -0.2 5.0 21.3 -0.3 -0.3 -2.4 -2.5 0.7 0.6 -2.7 

-0.4 -0.3 7.0 28.5 -2.9 -3.5 -0.5 -0.6 -0.3 -0.3 -1.1 

0.3 0.3 5.8 33.6 -1.4 -1.8 -1.7 -2.2 -1.9 -2.2 -1.6 

0.6 0.7 2.5 26.1 -2.2 -3.6 -3.7 -4.9 -0.8 -1.0 -4.4 

-0.4 -0.6 -1.9 -3.9 -2.8 -3.9 -3.5 -3.4 -2.1 

1.6 2.4 0.2 0.6 -1.5 -2.2 -0.7 -0.8 -2.2 

0.0 -0.1 0.6 2.5 -0.3 -0.5 0.6 1.2 0.2 

1.7 2.7 -1.0 -11.8 3.4 8.1 3.8 20.2 -0.8 

3.3 7.3 4.6 16.5 0.3 8.7 0.5 

3.3 13.9 4.8 26.5 

2.4 39.5 2.1 24.2 

Table 3.4: Comparison between simulation and data 
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-25.2 

-9.4 

-0.4 

0.6 

1.9 

1.7 

1.5 

1.0 

1.7 

0.3 

-0.6 

-0.9 

-0.9 

-2.3 

-1.0 

-1.7 

-5.7 

-3.1 

-4.0 

0.3 

-2.6 

3.3 



Tests of the simulation 

Because the single particle distributions with respect to S and T are very 
similar, only the values for Sare given. One can also see from the tables, that 
there are regions where the accuracy of the simulation is not so good. The 
calculation of a "model bias" is therefore essential. 

m 0 
-2 
M, 

-2 
M, 

-2 
M,, B, 

L). i 
L).% 

i L). i 
L).% 

i 
L). L).% 

i L). i L).~ L). i 
L).% 

i L). i 

-6.3 -13.2 3.I I.2 -4.2 -4.4 6.6 I.6 -8.9 -3.0 -3.0 

-I2.4 -6.9 6.5 2.0 -6.I -3.I -4.3 -I.2 -I.4 -0.5 -10.06 

-I.9 -I.O 5.5 2.9 -3.9 -I.7 -3.9 -I.5 I.7 0.8 3.7 

0.3 0.2 3.2 I.9 -0.I 0.0 -2.8 -I.4 3.6 I.9 4.I 

-0.I 0.0 3.6 2.3 3.9 2.0 -2.5 -I.6 4.0 2.4 3.2 

0.9 0.4 -0.4 -0.3 I.2 0.7 -I.2 -I.O 2.2 I.5 I.2 

0.5 0.7 0.5 0.3 I.I 0.7 0.2 0.2 2.5 I.9 -I.O 

0.5 0.2 -I.9 -I.3 3.2 2.3 I.3 I.5 5.I 4.3 -I.5 

0.0 0.0 -2.0 -I.5 4.0 2.2 2.9 4.0 I.4 I.O -I.2 

0.8 0.6 -2.4 -2.0 I.I 0.7 3.6 5.9 I.4 I.I -I.6 

5.8 4.I -5.5 -3.8 3.0 I.7 4.3 5.9 I.8 I.2 -I.6 

6.7 7.5 -4.7 -3.9 0.5 0.4 I.8 3.4 0.7 0.6 -I.O 

7. I 11.8 -5.4 -5.4 0.9 0.7 2.4 5.7 -2.8 -2.9 -3.9 

8.0 I9.6 -4.9 -5.9 -I.2 -I.2 0.7 2.3 -0.7 -0.9 -I.7 

4.8 I8.4 -5.3 -7.7 0.0 0.0 2.6 10.6 -0.8 -I.2 0.9 

4.I 24.3 -5.6 -9.9 -I.2 -I.7 0.9 4.I -2.3 -3.8 0.7 

I.8 I8.4 -4.2 -9.3 -I.3 -2.I 2.7 24.I -2.5 -4.9 0.9 

0.9 20.9 -2.4 -6.7 -3.5 -4.7 I.2 37.0 -2.3 -3.6 I.6 

-I.6 -6.4 -2.2 -4.3 -2.8 -6.4 3.2 

-I.O -6.I -I.5 -4.6 -0.4 -I.3 0.7 

0.8 3.7 0.5 2.4 

0.5 3.7 0.9 5.3 

I.O 11.7 

Table 3.5: Comparison between simulation and data 
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Accuracy of the full simulation 

B ... -ln(y,) xn Y~ p;n(s) p;JUl(s) 
A; A% 

i A. A~ A; A~ A; A~ A; A~ A A% 

-10.5 -10.2 -2.2 -7.2 229.0 2.9 32.9 0.3 195.7 0.9 -286.8 -1.0 

2.4 0.7 -6.6 -6.2 482.I 4.4 25.3 0.2 291.5 1.3 57.9 0.2 

6.2 1.8 -6.I -4.0 155.7 1.3 -20.4 -0.2 209.0 1.0 -32.6 -0.I 

3.0 1.2 -2.4 -1.3 7.1 I.I -87.2 -0.7 -44.5 -0.2 -141.7 -0.8 

0.3 0.2 -2.I -0.9 -52.4 -0.4 -128.8 -1.0 -167.6 -I.I -183.0 -I.3 

-2.7 -I.6 2.8 I.I -81.3 -0.7 -17I.9 -I.2 -255.0 -I.9 -66.I -0.6 

-0.8 -0.6 2.I 0.8 -204.0 -1.9 -182.I -1.2 -274.8 -2.3 I07.5 I.3 

-2.5 -2.0 4.8 I.7 -34I.7 -3.3 -193.3 -1.3 -240.0 -2.3 212.7 3.3 

-3.6 -3.6 4.8 I.7 -321.9 -2.2 -63.7 -0.4 -224.2 -2.5 326.6 6.4 

-2.0 -2.3 0.0 0.0 -211.0 -1.5 62.2 0.4 -162.0 -2.0 435.8 10.5 

-3.6 -5.3 -6.8 -8.5 -210.2 -1.7 I80.4 1.3 -159.2 -I.7 631.3 I4.9 

-2.9 -5.2 -7.8 -22.5 -151.7 -1.3 265.4 2.0 -65.5 -0.8 600.3 20.I 

-2.4 -5.7 -I.5 -8.8 -I27.9 -I.2 310.I 2.6 -70.4 -I.I 519.9 23.8 

-2.I -7.I 0.8 8.8 -60.3 -0.6 213.9 2.1 -6.2 -0.I 442.0 27.I 

-0. I -0.6 -4.8 0.0 234.8 2.6 I8.5 0.4 379.2 30.7 

0.7 5.3 17.0 O.I 179.4 2.4 56.4 O.I 4I6.3 33.6 

I.I 10.9 I 16.I I.O 33.2 0.5 37.I 0.9 272.9 38.I 

104.I I.O -53.7 -I.O 75.4 2.2 196.3 46.7 

I74.2 1.9 -I85.4 -3.5 94.2 3.5 134.4 46.0 

I68.7 2.0 -308.5 -9.4 I32.I 5.0 

I47.8 I.9 -243.I -I3.2 109.5 6.3 

I45.2 2.0 -109.9 -13.4 I22.6 10.6 

I73.0 2.5 I JO.I 13.9 

I54.4 1.8 79.9 13.0 

I66.5 2.2 60.9 19.9 

162.8 2.4 

153.5 2.3 

75.0 1.3 

73.2 1.4 

52.7 I.2 

4.3 0.1 

Table 3.6: Comparison between simulation and data 
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Tests of the simulation 

For event properties the absolute deviations between data and simulation 
are smaller, and the statistical errors are bigger than for single particle properties. 
This leads to a small contribution of systematic uncertainties to the deviation 
between data and simulation in the first case, while in the latter case the main part 
of this deviation comes from model imperfections. If one only looks at the ~ j, he 
can easily get the impression that the simulation is inappropriate. But the quality 
of a model can be better judged if one looks at the percental deviations ~ ~ . Here 
a good agreement in the percental range is observed. Indeed the mean value of 
the absolute values of all ~~ given in the three tables is 4. 6, and some of the 
distributions such as Sor x" are described much better. In some other distributions 
a lack of understanding of hadronic events seems to be obvious. Examples are A, 
mand p;'u1

• 

Only the first 31 bins are shown for the momentum distribution x". For the 
calculation of the distributions the bin divisions that were given in chapter 4 and 
the cuts that were introduced in section 3.5.1 were used. 

Conclusion: The test of the full simulation shows that the simulation describes 
the data in most of the interesting parts within less than one percent. The 
usage of this simulation in the measurement therefore makes sense. Errors in 
the measurements due to the remaining systematic uncertainties of the model 
will be estimated by introducing a model bias. 

We also saw that systematic errors are negligible compared to the 
statistical errors in most part of the event properties, while they exceed the 
statistical errors dramatically in the case of single particle distributions. 
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A statistical test of unfolded event properties 

3.4.2. A statistical test of unfolded event properties 

In some works about unfolding methods one of the basic assumptions is that 
the dependence of the detector matrix D from the underlying QCD part of the 
simulation can be neglected. This QCD-model is a major ingredient for the 
calculation of this matrix. It is worth noting that if this assumption is true, it is 
possible to construct a very sensitive test for the quality of the unfolded 
distributions. 

Idea: The measured values in each of the bins and the elements of the detector 
matrix D are in veJY good approximation normally distributed, even if the 
elements of D are computed as a quotient of normally distributed random 
variables. Because of this, the differences 

m 

dj:= oj - LDi;Ll.x; 
i=l 

are normally distributed too (c.f. appendix A, section 3). Here j is the index of one 
bin of a given distribution, and (t,, ... ,tJ as well as (Ax" ... ,AxJ are m-tuples of 
real numbers. The former will be a candidate for the unfolded distribution, while 
the latter is the set of bin widths used for the distribution under observation. 

If (t" ... ,t,J are the values of the true distribution, the mean values of these 
differences are zero. This hypothesis can be tested by a x2 test. 

We neglect correlations between the data values oj and the elements of the 
detector matrix, even if they can appear, because the same model that was used 
for the calculation of the detector matrix is used for correcting the data. The 
correlations between the elements of D are neglected too. On the basis of these 
approximations, and with the hypothesis that the mean values of all differences 
vanish, these differences dj are independent and normally distributed random 
variables with known widths and vanishing mean values. Consequently the 
following random variables are in good approximation x2 distributed with n (more 
exactly (n-1)) degrees of freedom. (c.f. [Bo,91]): 
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Tests of the simulation 

The second expression is applicable if the widths of the elements of the 
detector matrix are negligible compared to the cr j, the widths of the data values oj • 

cr .. are the widths of the elements of the detector matrix D . (The calculation of the 
fl fl 

latter is discussed in section 3.5.2.1). For a model independent detector matrix the 
sensitivity of this test is demonstrated in appendix A, section 4. The following table 
shows the values of the first test quantity for the event properties that are 
measured together with an upper limit x~ of a 5% confidence level for the x2 

distribution with n-1 degrees of freedom (taken from [Br,87)). If the hypothesis is 
correct, the test quantity should therefore lie beneath this value with a probability 
of 95%. Again we used ALEPH data from 1992 and the simulation HVFL03. The 

statistics were ssim: = 1186173 and s&,,: = 571825. 

distribution n x: .. x2 
s 24 35.2 23.85 

A 17 26.3 22.32 
p 21 31.4 14.86 

c 24 35.2 38.35 

T 22 32.7 23.30 

M 22 32.7 39.93 

m 18 27.6 36.14 

0 20 30.1 12.19 
-2 M,, 23 33.9 34.09 
M2 

I 18 27.6 49.49 
-2 M,, 22 32.7 80.42 

B, 20 30.1 34.21 

BU> 17 26.3 37.56 

-ln(y1 ) 14 22.4 59.89 

Table 3.7: Test quantities for event properties 

Table 3. 7 indicate the quantities M,2, Mj, Bw and -ln(y3) as dangerous, 
because the value of the test quantity is too high. If we remember the very high 
sensitivity of this test, these deviations are not dramatic, even if they appear. We 
should also remember that measurements are given with errors, and the test 
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A statistical test of unfolded event properties 

quantity can be better for other values inside this error bars. An optimization could 
for example be done by a maximization of the x2 probability inside this error bars. 

If the detector matrix is model dependent, this test does not proof the 
correctness of the unfolded data, but it is only a sort of check for consistency of 
the unfolding procedure. In the case of entropy methods, a dependence of D from 
the QCD part of the simulation leads to a dependence of the unfolded data from 
this QCD-model. 

We saw that the elements of· the correction matrix are dependent on the 
simulation, even in the case of a vanishing model dependence of the detector 
matrix D (c.f. section 3.3.1.3). This might indicate that indeed the dependence of 
C is much stronger than that of D. In fact both matrices, the detector matrix D and 
the correction matrix C seem to be dependent on the used QCD-model. If one 
wants to use the above method, and one is not only interested in presenting some 
ideas as we were here, he has to test the model independence of D in detail. 
Because we do not use this assumption in any other part of this workl, we do not 
go into more details here. 

I Except some discussions in appendix A. 
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Measurement 

3.5. Measurement 

3.5.1. Hadronic events and critical tracks 

We are only interested in multi-hadronic events, that means, events where 
the Z particle decays into a quark-antiquark pair which converts into observable 
hadrons. Therefore all non-hadronic events must be excluded in a first step. In the 
figure beneath, a histogram is given which reflects typical properties of hadronic 
events, and which can therefore be used as a basis for cuts which reject leptonic 
and yy events. Note that in this histogram both charged and neutral particles are 
included, and the that cut-values can therefore not be taken directly. This 
histogram is taken from [A4,94]. 
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The dashed lines show the preferred region of hadronic events above a 
number of 10 particles and above an energy of 40 Ge V. 

A second point that has a negative influence on the measurement is the fact 
that there exist "blind regions" in every detector. For example it is impossible to 
detect a particle which propagates along the beam pipe. And it is also impossible 
to reconstruct the track of a particle with very few hits in the TPC with a 
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Hadronic events and critical tracks 

satisfactory accuracy. Tracks that can not be measured, or can only be measured 
with a bad accuracy are called ''critical tracks': and are excluded from the analysis. 

We are also not interested in particles which do not originate from the main 
process. These are particles that are generated by the decays of other long-lived 
particles, and do not directly characterize the hadronic event. 

A track of a charged particle is accepted for the further analysis if the 
following conditions are fulfilled. 

NTPC~ 4, d0 :::; 2cm, z0 :::; 5cm 

p
1 
~ 0.2GeV, 20°:::; t}:::; 160° 

Here N TPc is the number of hits in the TPC; this cut makes a good 
reconstruction of a charged track possible, d0 is the minimum distance of a track to 
the beam axis (which is the z-axis by definition), Zo is the zcoordinate at the point 
which corresponds to d0 • Both cuts eliminate particles which do not come from the 
interaction point. p

1 
is the transverse (that means perpendicular to the z-axis) 

component of the particle's momentum and the cut rejects particles which lie in a 
critical region of the detector, and t} is the angle between the momentum of the 
particle and the z-axis. Only tracks of charged particles are taken into account. 

An event is accepted if it passes the following cuts: 

Here N TRAcKs is the number of accepted charged tracks, the corresponding 
cut excludes leptonic events. Ech is the whole charged energy, the cut rejects yy 

events. t} s is the angle between the sphericity axis and the beam direction, this cut 
ensures that the event is well contained in the detector. 

Events which are believed to be 'ti pairs are excluded in addition. For that 
reason all the events which contain 5 or 6 charged particles are split into two 
hemispheres with respect to the thrust axis. In each of the hemispheres the 
invariant mass is calculated by the resulting four momentum, and the event is 
rejected from the further analysis if both invariant masses are less than the 't mass. 
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Measurement 

All the event cuts were passed by 

571825 hadronic events taken in 
1992 

and these were used for the further analysis. 

3.5.2. ISR and cut corrections 

After the correction for detector effects, an additional correction factor 
analogous to (3.6) was introduced. Two things had to be corrected. We are 
interested in the reaction e-e + ~ z0 ~ hadrons, and we should therefore correct 
for a possible initial state radiation (JSR). The second effect is due to the rather 
arbitrarily chosen event cuts. 

The calculation of these correction factors was again done by the simulation 
model HVFL03. "True" distributions ttm where calculated without any cuts, 
without detector influences, and without initial state bremsstrahlung. Then the 
corresponding "biased" distributions ht where calculated by introducing all the 
cuts behind the detector, and including ISR. The correction factors are 

_ tsim 
C·=_1_ 

r bsim 
J 

and all unfolded distributions were corrected by 

t. = C.{orr 
J J J 
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JSR and cut corrections 

3.5.2.1. Detector matrix and statistical widths 

The principle of the following measurement is demonstrated in the next 
example using the simple model introduced in example 3.1. The estimation of the 
statistical widths is given in example 3.2. 

Example 3. 5: Correction matrix and correction factors 

Idea: The elements of the correction matrix for event properties, the 
correction factors for single particle properties and for the correction of JSR 
as well as cut effects should be calculated. The corresponding widths should 
be estimated by using linear error propagation 

(i) Correction of event properties 

Let us look at one of the distributions of event properties. We use a 2-
dimensional histogram where the "true-value" (this is the value without 
detector influences) is drawn on the x-axis, while the "reconstructed value" 
(that is the distribution with detector influences) is drawn on the y-axis as 
starting point. The contents of this histogram are saved in a matrix H. Each 
event enters once in this histogram, and the following formulas holds: 

The values of both expressions are normal distributed in good 
approximation. This is also true for the elements of the correction matrix 

C. = P(tu;/!iyJ = P(liY/'LlxJ = Hj; 

I) 11x; P(!iyJtu; - tu;f Hjk 

k=I 

The width of Pl!iyj A tu;) is given by formula (3.4), the width of 
Pl!iyj) follows from example 1 in appendix A. The width of the element Cii 

is calculated by linear error propagation: 
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m 

y:= LHjk 
~(xcrJ +(ycr} 

cr1; = b..y1 (x + y )2 
k=I 
l~j 

The same principle leads to the width of the unfolded distribution: 

t;:= i C;p/~Yj ~ !it('ar::: i {(!iC;pj!iyJ2 +( Cii!ioj!iyJ2} 
j=l j=I 

(ii} Correction by correction factors 

The correction of single particle distributions, initial state 
bremsstrahlung and the effect of event cuts is corrected by introducing 
correction factors. This factor in the jth bin is 

n. 
C·=-1 

j" d. 
) 

where nj is used to sign the nominator while dj is the denominator of this 
coefficient. The width of both are calculated in a way that is analogous to 
formula (3.4), while the width of the factor is calculated by linear error 
propagation: 

/iC. = 
) 

__ ) + -·-' _) 
(

t:.n. )
2 

(n.!id ·)
2 

dj dJ 

The correction is done by tj = Cpj, and the width of the corrected 
value is again given by linear error propagation: 

0 

78 



Systematic errors 

3.5.3. Systematic errors 

Two kinds of systematic errors are calculated. The first one is the ''model 

bias': which reflects the fact that the unfolding procedure is slightly model 
dependent. The second type is the ''cut-systematic" error. This second type is due 
to the fact, that the results of the measurements change slightly if different cut 
values (as introduced in section 3.5.1) are used. 

3.5.3.1. Model Bias 

In order to estimate the dependence of the corrected distribution on the 
different QCD-parts of the simulation, a simplified variant of the correction 
procedure is used for different QCD models. The deviations in every bin are 
observed, and the maximum is taken as the ''model bias''. 

In this analysis, the models JETSET 7 4 in the version of anisotropic and in 
the version of isotropic decaying gluons, HERWIG 58 and ARIADNE 4.05 with 
the parameter settings given in appendix A, section 5 were used. In a first step, 
events were generated by each of the QCD-models without initial state radiation. 
In a next step, the simplified detector simulation, and the same track and event 
cuts as for real data were applied. This gave true distributions (without JSR} and 
approximations of reconstructed distributions. On that basis, correction matrices, 
correction coefficients and approximative unfolded distributions were calculated. 
We used a statistics of s,,m:= 2· 10· for each of the models. 

Simplified detector simulation: Because the full detector simulation leads to 
calculations which are too time consuming, we use a simplified version for the 
calculation of the model bias. The principle is to provide an algorithm which 
rejects particles that can hardly be detected by ALEPH, and to smear the 
momenta of the remaining particles according to the resolution of the detector. 
For this resolution, the value of Llp = 0.0008p2 is used. In a first step all unstable 
particles are rejected, because they decay before they can be detected. Unstable in 
this context refers to all particles which decay via the strong or electromagnetic 
interactions and to weakly decaying charm and bottom hadrons. In a next step, 
the following cuts are introduced, to give a coarse approximation of the influences 
of the beam pipe p

1 
< 0. 2Ge V, t} < 20°. In a last step, all particles that were 

produced by a decay outside the TPC are rejected. Finally weak decays of strange 

79 



Measurement 

particles are simulated for charged tracks with d0 > 2cm by rejecting them from 
further analysis. Source of this simplified detector simulation: [GR,95] 

3.5.3.2. Cut-systematic 

The procedure for calculating cut-systematic errors is analogous to the 
calculation of the model bias. Here not different QCD-models, but different values 
of the cuts introduced in section 3.5.1 were used (NTPC 2:: 7, d0 S: lcm, p1 2::0.3GeV, 

30°::;; 1J ::;; 150°, N TRAcKs 2:: 8, 45°::;; 1J s ::;; 135°) one at a time. Again the deviations in 
every bin were observed, and the maximum values taken as the cut-systematic. 
This part of the analysis was done by Univ. Doz. Dr. G. Rudolph. 

3.5.3.3. Remarks about the systematic errors 

In most of the bins the systematic error is bigger than the statistical one. The 
systematic error is typical in the order of a few percent, even if some regions exist, 
where this error is bigger (for example in the first bin of the normalized particle 
momentum). For event properties the statistical error is also typical in the size of a 
few percent, while it is decreased to a few permille in the case of single particle 
distributions. The dominant part of the systematic error is in most cases the model 
bias. The main contribution to the model bias comes from the difference between 
the corrected distributions calculated with the help of JETSET and HERWIG. 

Because of all that, it will hardly be possible to reach any further improvement of 
the measurement by only using higher statistics. 

The systematic errors given in the tables of chapter 4 show a fluctuating 
behavior due to the finite statistics used to calculate them. This is the reason for 
the peaks appearing in the shape of "(model-data)/error" shown in section 7.3. 
One possibility is to apply some smoothing criterion to suppress these unwanted 
fluctuations. Because such a criterion would include arbitrariness into the 
measurement, and because it turned out that the usage of such a criterion leads to 
estimations of the model parameters which are in "one sigma agreement" with the 
results shown in chapter 7, we gave the systematic errors without smoothing. 
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Chapter 4. 

Results I: Distributions of charged particles in 
hadronic ALEPH events 

4 .1. Abstract 

In this chapter the results of the first part of this work are given. Here g,, 

always indicates the lower limit of a bin, while g
0 

is the corresponding upper limitl. 
b..t is the error computed by a quadratic sum of systematic errors and statistical 
widths. b..t,,

0 
is the statistical width, l:!,.tm the model bias and l:!,.t, the cut-systematic. 

The systematic error of the measurement M'Y, is again calculated by a quadratic 
sum 

b..t := ~ l:!,.t 2 + b..t 2 

J)'J m c 

In a first part all event properties that were measured in this work are listed. 
The second part is devoted to single particle distributions. 

1 The indices "u" and "o" are abbreviations for the german words "unten" (for the lower border) 
and "oben" (for the upper border). 
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Event properties 

4.2. Event properties 

4.2.1. Sphericity 

g,, g, t 

.0000 .0050 12.362 

.0050 .0100 23.328 

.0100 .0150 20.227 

.0150 .0200 16.691 

.0200 .0250 13.410 

.0250 .0300 10.788 

.0300 .0350 8.870 

.0350 .0400 7.408 

.0400 .0500 5.922 

.0500 .0600 4.508 

.0600 .0800 3.258 

.0800 .1000 2.317 

.1000 .1200 1.742 

.1200 .1600 1.211 

.1600 .2000 .813 

.2000 .2500 .563 

.2500 .3000 .397 

.3000 .3500 .290 

.3500 .4000 .222 

.4000 .5000 .148 

.5000 .6000 .086 

.6000 .7000 .045 

.7000 .8000 .012 

.8000 .9000 .001 

D..t D..t"" D..t D..( D..( 

.410 .082 .402 .396 .068 

.248 .109 .223 .213 .066 

.158 .JOO .122 .114 .043 

.125 .091 .085 .075 .041 

.103 .081 .063 .058 .024 

.097 .072 .065 .052 .039 

.135 .066 .118 .118 .010 

.081 .060 .054 .053 .012 

.115 .038 .109 .101 .041 

.053 .033 .041 .040 .010 

.023 .020 .012 .004 .011 

.023 .017 .016 .013 .009 

.040 .015 .037 .036 .006 

.014 .009 .011 .010 .003 

.014 .007 .012 .012 .004 

.013 .005 .012 .012 .001 

.010 .004 .009 .009 .003 

.012 .004 .011 .011 .002 

.004 .003 .003 .002 .002 

.005 .002 .004 .004 .001 

.002 .001 .002 .002 .001 

.002 .001 .001 .001 .001 

.001 .001 .001 .000 .000 

.000 .000 .000 .000 .000 
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Aplanarity 

4.2.2. Aplanarity 

g,, gn t /:J.t /:J.f,.n /:J.t n·< /:J.t m /:J.t 

.0000 .0025 78.493 2.382 .269 2.367 2.352 .271 

.0025 .0050 85.976 1.260 .275 1.229 1.220 .151 

.0050 .0075 58.231 .497 .231 .440 .433 .081 

.0075 .0100 39.489 .362 .192 .307 .302 .052 

.0100 .0150 24.016 .222 .106 .196 .191 .042 

.0150 .0200 13.464 .179 .080 .160 .155 .040 

.0200 .0300 6.912 .098 .041 .089 .087 .018 

.0300 .0400 3.285 .044 .028 .034 .019 .028 

.0400 .0600 1.438 .024 .013 .020 .019 .007 

.0600 .0800 .590 .016 .009 .013 .012 .005 

.0800 .1000 .291 .Oii .006 .009 .002 .009 

.1000 .1200 .156 .008 .005 .006 .006 .002 

.1200 .1400 .089 .005 .003 .004 .003 .002 

.1400 .1600 .054 .004 .003 .003 .003 .002 

.1600 .2000 .028 .003 .001 .003 .002 .002 

.2000 .2500 .010 .002 .001 .001 .001 .001 

.2500 .3000 .003 .001 .000 .001 .001 .000 
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4.2.3. Planarity 

g,, gn t C!..t C!..t ... C!..t,.., b..( tJ..fc 

.0000 .0050 65.366 .618 .163 .596 .585 .117 

.0050 .0100 32.635 .168 .124 .113 .064 .093 

.0100 .0150 17.965 .107 .094 .052 .044 .027 

.0150 .0200 11.990 .099 .077 .061 .047 .039 

.0200 .0250 8.655 .076 .065 .039 .036 .014 

.0250 .0300 6.899 .088 .058 .065 .054 .038 

.0300 .0350 5.522 .080 .052 .061 .056 .024 

.0350 .0400 4.591 .061 .047 .040 .016 .036 

.0400 .0500 3.647 .049 .030 .038 .033 .019 

.0500 .0600 2.754 .045 .026 .038 .036 .012 

.0600 .0800 2.003 .021 .016 .014 .012 .006 

.0800 .1000 1.369 .037 .013 .035 .035 .003 

.1000 .1200 1.005 .017 .011 .013 .013 .002 

.1200 .1600 .678 .014 .006 .012 .012 .003 

.1600 .2000 .427 .012 .005 .011 .008 .008 

.2000 .2500 .276 .006 .004 .005 .003 .003 

.2500 .3000 .175 .007 .003 .007 .006 .002 

.3000 .3500 .105 .003 .002 .002 .001 .002 

.3500 .4000 .062 .002 .002 .002 .001 .001 

.4000 .4500 .026 .001 .001 .000 .000 .000 

.4500 .5000 .004 .001 .000 .001 .001 .000 
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4.2.4. C-Parameter 

8,, 8. t lit lit ... lit"'' lit_ Ii( 

.0000 .0400 .401 .058 .005 .058 .058 .005 

.0400 .0800 2.490 .049 .011 .048 .047 .008 

.0800 .1200 3.701 .091 .014 .090 .089 .012 

.1200 .1600 3.323 .064 .014 .063 .061 .014 

.1600 .2000 2.613 .034 .012 .032 .031 .008 

.2000 .2400 2.065 .022 .011 .019 .018 .006 

.2400 .2800 1.666 .019 .010 .017 .016 .005 

.2800 .3200 1.368 .013 .009 .009 .008 .003 

.3200 .3600 1.142 .010 .008 .006 .003 .005 

.3600 .4000 .981 .014 .008 .012 .012 .003 

.4000 .4400 .842 .012 .007 .009 .009 .002 

.4400 .4800 .732 .015 .007 .014 .014 .001 

.4800 .5200 .639 .018 .006 .017 .017 .002 

.5200 .5600 .552 .013 .006 .011 .011 .004 

.5600 .6000 .490 .010 .005 .009 .007 .005 

.6000 .6400 .432 .013 .005 .012 .012 .005 

.6400 .6800 .382 .008 .005 .006 .005 .003 

.6800 .7200 .350 .010 .004 .009 .008 .004 

.7200 .7600 .316 .009 .005 .007 .007 .003 

.7600 .8000 .274 .007 .006 .004 .003 .003 

.8000 .8400 .169 .009 .006 .006 .004 .005 

.8400 .8800 .080 .006 .005 .004 .003 .002 

.8800 .9200 .034 .005 .005 .003 .002 .001 

.9200 1.0000 .006 .003 .003 .001 .000 .001 
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4.2.5. 1-Thrust 

g,, g, t flt tl.t,." /ltnJ /}..f m tl.( 

.0000 .0050 1.017 .180 .022 .178 .177 .018 

.0050 .0100 6.035 .277 .054 .272 .263 .068 

.0100 .0150 12.437 .182 .077 .165 .147 .076 

.0150 .0200 16.071 .268 .086 .254 .250 .041 

.0200 .0250 16.454 .272 .087 .257 .253 .047 

.0250 .0300 15.246 .300 .084 .288 .286 .037 

.0300 .0350 13.380 .161 .079 .141 .132 .050 

.0350 .0400 11.582 .144 .073 .123 .109 .057 

.0400 .0500 9.346 .076 .047 .059 .051 .031 

.0500 .0600 7.159 .124 .041 .117 .112 .035 

.0600 .0800 5.088 .065 .025 .060 .059 .012 

.0800 .1000 3.427 .025 .020 .015 .012 .009 

.1000 .1200 2.482 .024 .017 .017 .016 .006 

.1200 .1400 1.847 .046 .015 .043 .043 .005 

.1400 .1600 1.390 .035 .013 .033 .032 .005 

.1600 .1800 1.072 .019 .011 .016 .011 .011 

.1800 .2000 .847 .024 .010 .022 .022 .004 

.2000 .2500 .566 .015 .005 .014 .013 .006 

.2500 .3000 .307 .005 .004 .004 .002 .003 

.3000 .3500 .125 .003 .002 .002 .002 .001 

.3500 .4000 .018 .002 .001 .002 .002 .000 

.4000 .4500 .001 .000 .000 .000 .000 .000 
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4.2.6. Major 

g,, g,, t !:J.t 11(,, /::J.t n' /::J.t m !:J.t 

.0200 .0400 .252 .036 .006 .035 .035 .005 

.0400 .0500 1.370 .076 .018 .073 .072 .015 

.0500 .0600 2.842 .040 .027 .030 .028 .012 

.0600 .0700 4.253 .061 .033 .051 .049 .015 

.0700 .0800 5.329 .081 .036 .072 .071 .015 

.0800 .1000 6.083 .060 .027 .054 .052 .014 

.1000 .1200 5.833 .065 .026 .059 .059 .007 

.1200 .1400 4.855 .056 .024 .050 .050 .004 

.1400 .1600 3.991 .055 .022 .050 .046 .020 

.1600 .2000 3.019 .023 .013 .019 .018 .005 

.2000 .2400 2.154 .014 .011 .007 .005 .005 

.2400 .2800 1.595 .024 .010 .022 .022 .003 

.2800 .3200 1.195 .018 .008 .016 .016 .004 

.3200 .3600 .902 .016 .007 .014 .013 .005 

.3600 .4000 .683 .018 .006 .017 .017 .003 

.4000 .4400 .513 .014 .005 .013 .012 .001 

.4400 .4800 .376 .008 .004 .006 .003 .005 

.4800 .5200 .271 .006 .004 .004 .003 .003 

.5200 .5600 .184 .005 .003 .004 .003 .002 

.5600 .6000 .106 .003 .002 .003 .002 .002 

.6000 .6400 .042 .003 .001 .003 .003 .001 

.6400 .7000 .005 .001 .000 .000 .000 .000 
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4.2.7. Minor 

g,, g,, t l:l.t l:l.t"" /:l.tns l:l.(, M 

.0000 .0200 .178 .030 .005 .030 .029 .006 

.0200 .0400 3.237 .153 .020 .151 .149 .026 

.0400 .0500 8.107 .101 .044 .091 .087 .025 

.0500 .0600 10.451 .097 .049 .084 .083 .010 

.0600 .0700 11.274 .JOO .051 .086 .085 .014 

.0700 .0800 10.892 .066 .050 .044 .043 .Oii 

.0800 .1000 9.003 .059 .031 .050 .048 .015 

.1000 .1200 6.208 .063 .026 .057 .056 .014 

.1200 .1400 4.043 .031 .021 .023 .023 .004 

.1400 .1600 2.536 .027 .017 .021 .021 .004 

.1600 .2000 1.299 .020 .009 .018 .017 .005 

.2000 .2400 .526 .011 .006 .009 .009 .002 

.2400 .2800 .221 .006 .004 .005 .005 .002 

.2800 .3200 .095 .005 .002 .005 .003 .003 

.3200 .3600 .037 .003 .002 .003 .002 .002 

.3600 .4000 .014 .002 .001 .002 .001 .001 

.4000 .4500 .004 .001 .000 .001 .001 .000 

.4500 .5000 .001 .000 .000 .000 .000 .000 
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Oblateness 

4.2.8. Oblateness 

g,, gn t !::..t !::..t ... !::..t~, !::..t_ !::..t 

.0000 .0200 7.480 .056 .030 .047 .042 .020 

.0200 .0400 10.798 .072 .035 .063 .056 .029 

.0400 .0500 8.679 .072 .045 .057 .051 .024 

.0500 .0600 7.107 .064 .041 .049 .044 .021 

.0600 .0700 5.816 .059 .037 .046 .039 .025 

.0700 .0800 4.776 .042 .033 .026 .022 .013 

.0800 .1000 3.775 .026 .021 .015 .013 .008 

.1000 .1200 2.841 .042 .018 .038 .037 .008 

.1200 .1400 2.243 .023 .016 .017 .016 .005 

.1400 .1600 1.783 .023 .014 .018 .018 .001 

.1600 .2000 1.315 .020 .009 .018 .015 .009 

.2000 .2400 .901 .014 .007 .012 .006 .011 

.2400 .2800 .621 .016 .006 .015 .012 .010 

.2800 .3200 .430 .014 .005 .013 .013 .005 

.3200 .3600 .292 .007 .004 .005 .003 .004 

.3600 .4000 .189 .005 .003 .004 .001 .003 

.4000 .4400 .117 .005 .002 .004 .003 .002 

.4400 .4800 .064 .002 .002 .001 .001 .001 

.4800 .5200 .027 .002 .001 .002 .001 .001 

.5200 .6000 .004 .001 .000 .001 .001 .000 
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4.2.9. Heavy jet mass normalized to the visible energy 

g,, g,, t lit lit,,,, /itns Ii( /itr 

.0000 .0050 I.Oil .214 .022 .213 .213 .015 

.0050 .0100 7.656 .820 .060 .818 .816 .051 

.0100 .0150 15.902 .694 .085 .689 .682 .097 

.0150 .0200 19.363 .910 .093 .905 .901 .083 

.0200 .0250 18.735 .436 .091 .427 .422 .060 

.0250 .0300 16.515 .368 .086 .358 .349 .078 

.0300 .0350 14.073 .347 .080 .337 .331 .065 

.0350 .0400 11.891 .208 .073 .195 .189 .047 

.0400 .0500 9.422 .286 .047 .282 .280 .033 

.0500 .0600 7.013 .276 .040 .273 .273 .015 

.0600 .0800 4.839 .145 .024 .143 .143 .007 

.0800 .1000 3.125 .055 .019 .051 .051 .007 

.1000 .1200 2.138 .031 .015 .027 .025 .011 

.1200 .1400 1.506 .026 .013 .022 .019 .012 

.1400 .1600 1.089 .034 .011 .032 .030 .012 

.1600 .1800 .784 .016 .009 .014 .007 .012 

.1800 .2000 .579 .015 .008 .013 .009 .010 

.2000 .2500 .347 .007 .004 .006 .003 .006 

.2500 .3000 .148 .007 .002 .007 .006 .003 

.3000 .3500 .055 .003 .001 .003 .003 .001 

.3500 .4000 .018 .001 .001 .000 .000 .000 

.4000 .4500 .006 .001 .000 .001 .001 .000 

.4500 .5000 .002 .001 .000 .001 .001 .000 
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Light jet mass normalized to the visible energy 

4.2.10. Lightjet mass normalized to the visible energy 

g,, gn t !J.t !J.t<tn !J.t ,.,., !J.f m Mr 

.0000 .0050 30.888 1.787 .J13 1.784 1.778 .148 

.0050 .0100 47.599 2.739 .135 2.736 2.735 .054 

.0100 .0150 38.540 1.220 .124 1.214 1.213 .049 

.0150 .0200 25.948 .908 .105 .902 .901 .046 

.0200 .0250 16.777 .576 .085 .570 .569 .034 

.0250 .0300 11.127 .505 .070 .500 .500 .022 

.0300 .0350 7.606 .431 .058 .427 .427 .012 

.0350 .0400 5.401 .418 .049 .415 .415 .007 

.0400 .0450 3.909 .227 .042 .223 .223 .012 

.0450 .0500 2.917 .205 .036 .202 .201 .019 

.0500 .0600 1.921 .102 .021 .099 .097 .021 

.0600 .0700 1.131 .040 .016 .036 .034 .012 

.0700 .0800 .662 .033 .012 .030 .030 .005 

.0800 .0900 .394 .014 .009 .010 .010 .002 

.0900 .1000 .242 .016 .007 .014 .014 .002 

.1000 .1200 .112 .011 .004 .011 .Oll .001 

.1200 .1400 .028 .004 .002 .004 .004 .001 

.1400 .1600 .003 .001 .001 .001 .001 .000 
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Event properties 

4.2.11. Mass difference normalized to the visible energy 

g K t !it !it"" /itns /j.[m !it. 

.0000 .0050 31.263 .297 .116 .274 .245 .123 

.0050 .0100 27.042 .363 .107 .347 .340 .070 

.0100 .0150 21.946 .161 .097 .128 .108 .070 

.0150 .0200 17.456 .293 .088 .280 .272 .065 

.0200 .0250 13.863 .185 .078 .167 .159 .053 

.0250 .0300 11.166 .201 .071 .188 .184 .039 

.0300 .0350 9.161 .252 .064 .244 .242 .030 

.0350 .0400 7.609 .091 .058 .070 .066 .024 

.0400 .0500 5.970 .107 .037 .101 .JOO .010 

.0500 .0600 4.413 .064 .031 .056 .055 .009 

.0600 .0800 3.036 .041 .018 .036 .035 .009 

.0800 .1000 1.969 .039 .015 .036 .035 .009 

.1000 .1200 1.347 .039 .012 .037 .035 .013 

.1200 .1400 .965 .036 .010 .034 .031 .015 

.1400 .1600 .707 .025 .009 .024 .020 .013 

.1600 .1800 .515 .013 .007 .011 .004 .010 

.1800 .2000 .389 .012 .006 .010 .008 .007 

.2000 .2500 .238 .010 .003 .009 .009 .003 

.2500 .3000 .104 .005 .002 .005 .004 .002 

.3000 .3500 .041 .002 .001 .002 .002 .000 

.3500 .4000 .015 .001 .001 .000 .000 .000 

.4000 .5000 .003 .001 .000 .001 .001 .000 
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Total jet broadening 

4.2.12. Total jet broadening 

g,, gn t llt /lt,,
0 

llt,,., llt,. llt 

.0000 .0200 .060 .012 .003 .012 .011 .003 

.0200 .0400 2.505 .133 .018 .132 .128 .031 

.0400 .0600 8.211 .120 .031 .116 .115 .018 

.0600 .0800 9.512 .060 .033 .051 .048 .014 

.0800 .1000 7.426 .102 .029 .098 .097 .016 

.1000 .1200 5.508 .052 .026 .045 .044 .012 

.1200 .1400 4.143 .028 .022 .016 .014 .008 

.1400 .1600 3.171 .035 .019 .029 .028 .006 

.1600 .1800 2.442 .043 .017 .040 .039 .007 

.1800 .2000 1.896 .037 .015 .034 .033 .004 

.2000 .2200 1.471 .039 .013 .036 .035 .011 

.2200 .2400 1.135 .027 .011 .024 .024 .004 

.2400 .2600 .872 .017 .010 .014 .009 .010 

.2600 .2800 .644 .015 .008 .012 .010 .007 

.2800 .3000 .480 .011 .007 .009 .009 .001 

.3000 .3200 .303 .011 .006 .010 .010 .002 

.3200 .3400 .159 .006 .004 .005 .004 .001 

.3400 .3600 .056 .008 .002 .008 .008 .001 

.3600 .3800 .009 .003 .001 .003 .003 .000 

.3800 .4000 .001 .001 .000 .001 .001 .000 
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Event properties 

4.2.13. Ut'idejet broadening 

g., g, t !::.t /).("" !::.t,,., M .. !::.t. 

.0000 .0200 1.129 .127 .012 .127 .125 .020 

.0200 .0400 12.310 .145 .037 .140 .137 .030 

.0400 .0600 11.937 .138 .036 .134 .129 .037 

.0600 .0800 7.653 .074 .030 .068 .065 .020 

.0800 .1000 5.151 .040 .025 .032 .030 .010 

.1000 .1200 3.614 .073 .020 .070 .069 .008 

.1200 .1400 2.606 .046 .017 .043 .042 .010 

.1400 .1600 1.869 .044 .014 .041 .040 .012 

.1600 .1800 1.336 .025 .012 .022 .013 .017 

.1800 .2000 .957 .027 .010 .025 .021 .013 

.2000 .2200 .643 .015 .008 .013 .008 .010 

.2200 .2400 .418 .014 .007 .012 .011 .005 

.2400 .2600 .233 .015 .005 .014 .014 .003 

.2600 .2800 .111 .008 .003 .008 .007 .003 

.2800 .3000 .039 .003 .002 .003 .003 .001 

.3000 .3200 .012 .002 .001 .002 .002 .000 

.3200 .3600 .001 .000 .000 .000 .000 .000 
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Jet resolution parameter 

4.2.14. Jet resolution parameter 

g gn t /:J.t !J.t.,n !:it,..., !J.fm !J.tr 

.0000 .0050 97.999 .747 .172 .727 .634 .356 

.0050 .0100 29.354 .660 .113 .651 .623 .186 

.0100 .0150 14.963 .135 .083 .107 .087 .064 

.0150 .0200 9.567 .165 .066 .152 .150 .024 

.0200 .0250 6.961 .125 .056 .112 .105 .040 

.0250 .0300 5.362 .132 .049 .122 .118 .032 

.0300 .0350 4.320 .065 .044 .048 .037 .030 

.0350 .0400 3.533 .097 .039 .089 .083 .032 

.0400 .0500 2.746 .081 .025 .077 .072 .029 

.0500 .0600 2.063 .069 .021 .066 .060 .026 

.0600 .0800 1.425 .056 .012 .054 .049 .023 

.0800 .1000 .944 .026 .010 .025 .020 .015 

.1000 .1200 .656 .018 .008 .016 .011 .011 

.1200 .1400 .474 .015 .007 .014 .010 .010 

.1400 .1600 .346 .013 .006 .011 .007 .008 

.1600 .1800 .258 .010 .005 .008 .005 .007 

.1800 .2000 .188 .010 .004 .009 .009 .004 

.2000 .2400 .110 .005 .002 .004 .004 .002 

.2400 .2800 .042 .002 .001 .001 .001 .001 

.2800 .3200 .006 .001 .001 .001 .001 .000 
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Event properties 

4.2.15. Negative logarithm of the resolution parameter 

g,, gn t D.t D.t "" /).f ns M_ D.t 

1.1 1.5 .0084 .0004 .0002 .0003 .0002 .0002 

1.5 2.2 .0483 .0015 .0004 .0014 .0011 .0010 

2.2 2.9 .0921 .0028 .0005 .0028 .0023 .0016 

2.9 3.6 .1306 .0030 .0006 .0029 .0027 .0011 

3.6 4.3 .1623 .0026 .0007 .0025 .0025 .0005 

4.3 5.0 .1969 .0023 .0008 .0021 .0019 .0009 

5.0 5.7 .2318 .0065 .0009 .0064 .0063 .0011 

5.7 6.4 .2442 .0028 .0009 .0027 .0023 .0012 

6.4 7.3 .1729 .0031 .0007 .0030 .0029 .0008 

7.3 8.0 .0721 .0006 .0005 .0003 .0002 .0003 

8.0 8.7 .0200 .0015 .0003 .0015 .0014 .0002 

8.7 9.4 .0034 .0007 .0001 .0007 .0007 .0001 

9.4 10.3 .0004 .0001 .0000 .0001 .0001 .0000 
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Rapidity with respect to the sphericity-axis 

4.3. Single particle properties 

4.3.1. Rapidity with respect to the sphericity-axis 

g gn t lit /it.,n /itn< Ii( Ii( 

.0000 .2500 6.5602 .0596 .0141 .0579 .0529 .0235 

.2500 .5000 6.5779 .0875 .0131 .0865 .0808 .0308 

.5000 .7500 6.5785 .1134 .0124 .1127 .1058 .0388 

.7500 1.0000 6.5728 .1250 .0118 .1244 .1178 .0400 

1.0000 1.2500 6.5580 .1193 .0112 .1188 .1131 .0363 

1.2500 1.5000 6.5098 .0954 .0107 .0948 .0933 .0170 

1.5000 1.7500 6.4225 .0744 .0102 .0737 .0734 .0062 

1.7500 2.0000 6.2541 .0676 .0097 .0669 .0665 .0080 

2.0000 2.2500 6.0128 .0287 .0094 .0272 .0264 .0064 

2.2500 2.5000 5.5739 .0169 .0089 .0143 .0121 .0077 

2.5000 2.7500 4.9393 .0319 .0084 .0308 .0285 .0117 

2.7500 3.0000 4.1547 .0739 .0076 .0735 .0729 .0090 

3.0000 3.2500 3.3258 .0840 .0067 .0837 .0835 .0053 

3.2500 3.5000 2.4971 .0628 .0057 .0625 .0623 .0048 

3.5000 3.7500 1.7914 .0225 .0048 .0220 .0216 .0037 

3.7500 4.0000 1.2165 .0247 .0038 .0244 .0240 .0042 

4.0000 4.2500 .7817 .0176 .0030 .0174 .0172 .0024 

4.2500 4.5000 .4878 .0138 .0023 .0136 .0135 .0017 

4.5000 5.0000 .2325 .0093 .0010 .0093 .0092 .0005 

5.0000 5.5000 .0738 .0055 .0005 .0054 .0054 .0003 

5.5000 6.0000 .0212 .0022 .0003 .0022 .0022 .0002 

6.0000 7.0000 .0017 .0003 .0001 .0003 .0003 .0001 

97 



Single particle properties 

4.3.2. In-momentum with respect to the sphericity-axis 

g gn t /J.t lit"" /J.t ,. Ii( lit 

.0000 .1000 48.2961 .2756 .0454 .2718 .1680 .2137 

.1000 .2000 38.1415 .4282 .0378 .4265 .4059 .1308 

.2000 .3000 28.2065 .1519 .0312 .1487 .1384 .0544 

.3000 .4000 20.4453 .0697 .0259 .0647 .0550 .0340 

.4000 .5000 15.0471 .0562 .0220 .0517 .0425 .0296 

.5000 .6000 11.2240 .0376 .0189 .0325 .0264 .0190 

.6000 .7000 8.5220 .0439 .0165 .0406 .0359 .0190 

.7000 .8000 6.6020 .0394 .0146 .0366 .0283 .0233 

.8000 .9000 5.1800 .0253 .0130 .0216 .0177 .0124 

.9000 1.0000 4.1556 .0248 .0117 .0218 .0169 .0138 

1.0000 1.2000 3.0453 .0135 .0075 .0113 .0102 .0048 

1.2000 1.4000 2.0950 .0138 .0062 .0124 .0113 .0049 

1.4000 1.6000 1.4732 .0120 .0052 .0108 .0067 .0085 

1.6000 1.8000 1.0809 .0086 .0044 .0073 .0068 .0026 

1.8000 2.0000 .8036 .0098 .0038 .0090 .0088 .0021 

2.0000 2.5000 .5104 .0055 .0021 .0051 .0047 .0019 

2.5000 3.0000 .2753 .0031 .0015 .0027 .0021 .0017 

3.0000 3.5000 .1601 .0030 .0011 .0028 .0023 .0015 

3.5000 4.0000 .0970 .0015 .0008 .0012 .0011 .0006 

4.0000 5.0000 .0493 .0009 .0004 .0008 .0006 .0006 

5.0000 6.0000 .0202 .0005 .0003 .0004 .0004 .0002 

6.0000 7.0000 .0088 .0002 .0002 .0002 .0001 .0001 

7.0000 8.0000 .0040 .0002 .0001 .0002 .0002 .0001 

8.0000 10.0000 .0012 .0001 .0000 .0001 .0001 .0000 

10.0000 14.0000 .0001 .0000 .0000 .0000 .0000 .0000 
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Out-momentum with respect to the sphericity-a.xis 

4.3.3. Out-momentum with respect to the sphericity-axis 

g,, 8, t lit lit.,,, /),.f n• lit~ /itr 

.0000 .1000 67.6599 .2819 .0507 .2772 .1664 .2217 

.1000 .2000 51.2991 .5622 .0426 .5605 .5421 .1426 

.2000 .3000 34.3537 .1814 .0343 .1781 .1619 .0742 

.3000 .4000 21.3968 .0777 .0274 .0727 .0640 .0347 

.4000 .5000 12.8622 .0532 .0214 .0487 .0391 .0291 

.5000 .6000 7.7217 .0373 .0169 .0333 .0281 .0179 

.6000 .7000 4.6900 .0202 .0133 .0153 .0130 .0080 

.7000 .8000 2.8810 .0151 .0105 .0108 .0100 .0043 

.8000 .9000 1.8303 .0144 .0085 .0116 .0089 .0075 

.9000 1.0000 1.1981 .0221 .0070 .0209 .0201 .0059 

1.0000 1.2000 .6731 .0070 .0040 .0058 .0048 .0032 

1.2000 1.4000 .3265 .0043 .0028 .0033 .0030 .0015 

1.4000 1.6000 .1687 .0030 .0020 .0023 .0015 .0017 

1.6000 1.8000 .0922 .0035 .0015 .0032 .0025 .0019 

1.8000 2.0000 .0525 .0027 .0011 .0025 .0023 .0010 

2.0000 2.5000 .0223 .0007 .0005 .0005 .0002 .0005 

2.5000 3.0000 .0069 .0004 .0003 .0003 .0003 .0002 

3.0000 3.5000 .0026 .0003 .0002 .0002 .0002 .0001 

3.5000 5.0000 .0004 .0001 .0000 .0000 .0000 .0000 
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Single particle properties 

4.3.4. Negative logarithm of the normalized momentum 

g., g,, t !it !it.,,, 11(. 11( 11( 

0.2 0.3 .0447 .0016 .0011 .0012 .0009 .0007 

0.3 0.4 .0915 .0024 .0017 .0018 .0017 .0005 

0.4 0.5 .1483 .0026 .0021 .0016 .0013 .0009 

0.5 0.6 .2283 .0050 .0026 .0043 .0040 .0017 

0.6 0.7 .3320 .0068 .0032 .0060 .0059 .0010 

0.7 0.8 .4514 .0102 .0037 .0095 .0095 .0009 

0.8 0.9 .5971 .0185 .0043 .0180 .0179 .0020 

0.9 1.0 .7699 .0152 .0049 .0144 .0143 .0015 

1.0 1.1 .9605 .0111 .0054 .0097 .0095 .0021 

1.1 1.2 1.1693 .0100 .0060 .0079 .0078 .0016 

1.2 1.3 1.4127 .0163 .0066 .0148 .0145 .0029 

1.3 1.4 1.6530 .0169 .0072 .0153 .0150 .0031 

1.4 1.5 1.9045 .0236 .0077 .0223 .0219 .0044 

1.5 1.6 2.1989 .0137 .0083 .0109 .0105 .0030 

1.6 1.7 2.4727 .0255 .0088 .0239 .0228 .0071 

1.7 1.8 2.7568 .0306 .0093 .0292 .0275 .0096 

1.8 1.9 3.0433 .0261 .0097 .0242 .0241 .0027 

1.9 2.0 3.3371 .0201 .0102 .0173 .0160 .0065 

2.0 2.1 3.6529 .0357 .0107 .0340 .0333 .0069 

2.1 2.2 3.9125 .0256 .0111 .0231 .0221 .0065 

2.2 2.3 4.2109 .0524 .0115 .0511 .0509 .0051 

2.3 2.4 4.5090 .0280 .0120 .0253 .0243 .0071 

2.4 2.5 4.7471 .0364 .0122 .0343 .0335 .0072 

2.5 2.6 4.9748 .0334 .0125 .0309 .0299 .0080 

2.6 2.7 5.2399 .0328 .0129 .0302 .0285 .0100 

2.7 2.8 5.4311 .0311 .0131 .0282 .0256 .0117 

2.8 2.9 5.6685 .0365 .0134 .0339 .0299 .0160 

2.9 3.0 5.8628 .0301 .0137 .0268 .0207 .0170 
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Negative logarithm of the normalized momentum 

3.0 3.1 6.0539 .0293 .0139 .0258 .0188 .0177 

3.1 3.2 6.1244 .0329 .0140 .0298 .0184 .0235 

3.2 3.3 6.2687 .0360 .0141 .0331 .0264 .0199 

3.3 3.4 6.3769 .0315 .0143 .0281 .0229 .0162 

3.4 3.5 6.4744 .0352 .0145 .0321 .0301 .0112 

3.5 3.6 6.4548 .0278 .0145 .0237 .0224 .0079 

3.6 3.7 6.5032 .0224 .0145 .0170 .0163 .0048 

3.7 3.8 6.4969 .0411 .0146 .0385 .0373 .0093 

3.8 3.9 6.4360 .0309 .0145 .0273 .0213 .0170 

3.9 4.0 6.3381 .0260 .0144 .0216 .0205 .0070 

4.0 4.1 6.1493 .0373 .0141 .0346 .0313 .0147 

4.1 4.2 6.0619 .0432 .0141 .0409 .0403 .0071 

4.2 4.3 5.8987 .0356 .0139 .0327 .0322 .0060 

4.3 4.4 5.6985 .0354 .0137 .0326 .0289 .0150 

4.4 4.5 5.5540 .0294 .0137 .0260 .0203 .0162 

4.5 4.6 5.1274 .0510 .0131 .0493 .0486 .0085 

4.6 4.7 4.7782 .0366 .0127 .0343 .0288 .0187 

4.7 4.8 4.6405 .0562 .0130 .0547 .0397 .0377 

4.8 4.9 4.1903 .0441 .0124 .0424 .0408 .0113 

4.9 5.0 3.7719 .0619 .0118 .0607 .0377 .0476 

5.0 5.1 3.3580 .0631 .0112 .0621 .0497 .0373 

5.1 5.2 2.9515 .0534 .0106 .0524 .0337 .0401 

5.2 5.3 2.5649 .2276 .0102 .2274 .0381 .2242 

5.3 5.4 2.1851 .6901 .0103 .6900 .0370 .6890 
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Single particle properties 

4.3.5. Normalized particle momentum 

g,, g,. t /J.t !:::.t,,,. /:::.(n< /:::.fm /J.t. 

.0040 .0060 478.5686 47.9679 1.1014 47.9552 7.1858 47.4138 

.0060 .0080 535.7911 6.5903 1.0374 6.5079 5.6662 3.2010 

.0080 .0100 513.0197 4.6930 .9719 4.5911 3.3371 3.1531 

.0100 .0120 478.5918 3.4482 .9138 3.3247 3.1994 .9042 

.0120 .0140 440.2027 2.4166 .8665 2.2557 2.0692 .8980 

.0140 .0160 403.1236 3.0990 .8239 2.9875 2.9781 .2365 

.0160 .0180 364.4388 1.6687 .7756 1.4774 1.2842 .7305 

.0180 .0200 329.5144 1.3099 .7297 1.0879 .9857 .4602 

.0200 .0250 287.2253 1.3731 .4518 1.2965 1.2425 .3700 

.0250 .0300 237.3210 .8724 .4047 .7729 .7422 .2157 

.0300 .0350 198.0686 .9013 .3642 .8244 .7354 .3727 

.0350 .0400 168.6517 .8421 .3322 .7738 .5711 .5221 

.0400 .0450 145.4144 .8286 .3065 .7697 .5514 .5371 

.0450 .0500 127.0139 .6198 .2850 .5504 .4087 .3687 

.0500 .0600 105.3603 .5752 .1863 .5441 .4581 .2936 

.0600 .0700 83.4544 .3954 .1635 .3601 .2958 .2053 

.0700 .0800 68.1214 .4001 .1472 .3721 .3554 .1101 

.0800 .0900 56.2782 .4376 .1332 .4168 .4081 .0849 

.0900 .1000 47.6084 .2902 .1230 .2628 .2534 .0698 

.1000 .1100 40.3082 .5303 .1124 .5183 .5154 .0543 

.1100 .1200 34.4620 .2306 .1039 .2059 .1972 .0593 

.1200 .1300 29.8440 .2726 .0967 .2549 .2523 .0362 

.1300 .1400 26.0677 .2418 .0906 .2242 .2171 .0558 

.1400 .1600 21.2600 .1175 .0573 .1025 ·.0920 .0452 

.1600 .1800 16.6196 .1472 .0508 .1382 .1330 .0373 

.1800 .2000 13.2121 .1174 .0455 .1082 .1057 .0233 

.2000 .2250 10.3401 .0851 .0359 .0772 .0722 .0272 

.2250 .2500 7.9204 .1026 .0313 .0977 .0973 .0086 

.2500 .2750 6.1973 .0553 .0278 .0478 .0470 .0088 
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Normalized particle momentum 

.2750 .3000 4.8886 .0607 .0248 .0555 .0539 .0132 

.3000 .3250 3.8449 .0295 .0219 .0198 .0196 .0027 

.3250 .3500 3.0554 .0355 .0194 .0297 .0275 .0112 

.3500 .3750 2.4761 .0385 .0176 .0342 .0338 .0053 

.3750 .4000 1.9779 .0415 .0157 .0384 .0374 .0087 

.4000 .4300 1.5496 .0430 .0126 .0411 .0409 .0039 

.4300 .4600 1.2117 .0391 .0112 .0375 .0375 .0020 

.4600 .4900 .9375 .0172 .0098 .0141 .0137 .0034 

.4900 .5200 .7318 .0213 .0086 .0195 .0194 .0022 

.5200 .5500 .5672 .0110 .0077 .0078 .0077 .0015 

.5500 .6000 .4022 .0110 .0049 .0099 .0096 .0023 

.6000 .6500 .2602 .0046 .0040 .0023 .0020 .0012 

.6500 .7000 .1721 .0056 .0033 .0045 .0043 .0014 

.7000 .7500 .1064 .0038 .0025 .0028 .0027 .0010 

.7500 .8000 .0587 .0036 .0017 .0031 .0029 .0012 

.8000 .9000 .0262 .0011 .0008 .0008 .0007 .0004 

.9000 1.0000 .0047 .0010 .0003 .0009 .0008 .0004 
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Single particle properties 

4.3.6. Rapidity with respect to the thrust-axis 

g,, gn t lit lit"" /),,Jn /)..( /)..( 

.0000 .2500 5.8321 .0735 .0121 .0725 .0680 .0251 

.2500 .5000 6.4074 .0815 .0127 .0805 .0754 .0281 

.5000 .7500 6.6408 .1051 .0128 .1043 .0991 .0324 

.7500 1.0000 6.7260 .1180 .0124 .1173 .1082 .0455 

1.0000 1.2500 6.7448 .1221 .0117 .1215 .1150 .0392 

1.2500 1.5000 6.7030 .0916 .0110 .0909 .0883 .0215 

1.5000 1.7500 6.5778 .0684 .0104 .0676 .0674 .0055 

1.7500 2.0000 6.3893 .0684 .0099 .0677 .0676 .0024 

2.0000 2.2500 6.1346 .0280 .0095 .0264 .0255 .0066 

2.2500 2.5000 5.7211 .0188 .0091 .0164 .0069 .0149 

2.5000 2.7500 5.0905 .0354 .0085 .0343 .0317 .0132 

2.7500 3.0000 4.3070 .0869 .0078 .0866 .0862 .0083 

3.0000 3.2500 3.4274 .0783 .0068 .0781 .0780 .0035 

3.2500 3.5000 2.5489 .0636 .0058 .0633 .0629 .0068 

3.5000 3.7500 1.7492 .0300 .0047 .0296 .0294 .0035 

3.7500 4.0000 1.1072 .0234 .0036 .0231 .0229 .0032 

4.0000 4.2500 .6623 .0183 .0027 .0181 .0178 .0031 

4.2500 4.5000 .3662 .0113 .0019 .0111 .0109 .0021 

4.5000 5.0000 .1403 .0071 .0008 .0071 .0070 .0010 

5.0000 5.5000 .0286 .0019 .0003 .0019 .0018 .0004 

5.5000 6.0000 .0039 .0006 .0001 .0006 .0006 .0001 

6.0000 7.0000 .0003 .0005 .0000 .0005 .0005 .0000 
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Jn-momentum with respect to the thrust-axis 

4.3. 7. Jn-momentum with respect to the thrust-axis 

g,, g" t !it /:J.tdn /:J.tn /:J.tm !:J.( 

.0000 ./000 43.9759 .3026 .0428 .2995 .2197 .2036 

./000 .2000 39.1145 .4776 .0382 .4760 .4580 .1298 

.2000 .3000 29.3200 .1844 .0316 .1817 .1718 .0592 

.3000 .4000 21.2891 .0836 .0263 .0793 .0723 .0325 

.4000 .5000 15.4467 .0444 .0220 .0385 .0268 .0276 

.5000 .6000 11.4536 .0514 .0191 .0477 .0353 .0321 

.6000 .7000 8.5950 .0415 .0166 .0380 .0296 .0237 

.7000 .8000 6.6393 .0272 .0147 .0228 .0206 .0099 

.8000 .9000 5.1976 .0251 .013/ .0214 .0072 .0201 

.9000 /.0000 4.1253 .0204 .0//7 .0168 .0124 .0//2 

/.0000 /.2000 3.0460 .0149 .0075 .0129 .0123 .0039 

1.2000 /.4000 2.0969 .0209 .0062 .0200 .0193 .005/ 

1.4000 1.6000 1.4911 .0103 .0052 .0089 .0058 .0068 

/.6000 1.8000 1.0880 .0089 .0044 .0078 .0068 .0039 

/.8000 2.0000 .8185 .0073 .0038 .0063 .0057 .0027 

2.0000 2.5000 .5231 .0059 .0020 .0055 .0049 .0026 

2.5000 3.0000 .2937 .0033 .0015 .0029 .0029 .0003 

3.0000 3.5000 .1730 .0026 .00// .0024 .0023 .0006 

3.5000 4.0000 .1074 .0015 .0009 .0012 .0005 .00// 

4.0000 5.0000 .0587 .0008 .0005 .0007 .0006 .0003 

5.0000 6.0000 .0265 .0005 .0003 .0004 .0003 .0002 

6.0000 7.0000 .0129 .0004 .0002 .0003 .0002 .0002 

7.0000 8.0000 .0065 .0003 .000/ .0003 .000/ .0003 

8.0000 10.0000 .0026 .0001 .000/ .oao1 .000/ .0000 

/0.0000 14.0000 .0004 .0000 .0000 .0000 .0000 .0000 
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Single particle properties 

4.3.8. Out-momentum with respect to the thrust-axis 

g,, g,, t D..t D..t,,,, Mn, D..t_ b..( 

.0000 .1000 66.3733 .3211 .0510 .3170 .2224 .2259 

.1000 .2000 50.2130 .5157 .0424 .5139 .5019 .1102 

.2000 .3000 33.6286 .1726 .0338 .1692 .1611 .0516 

.3000 .4000 21.2367 .0909 .0267 .0868 .0741 .0452 

.4000 .5000 13.1352 .0493 .0211 .0445 .0320 .0309 

.5000 .6000 8.1300 .0461 .0168 .0429 .0213 .0373 

.6000 .7000 5.1234 .0355 .0136 .0328 .0260 .0201 

.7000 .8000 3.3109 .0229 .0111 .0201 .0187 .0072 

.8000 .9000 2.1748 .0128 .0091 .0091 .0040 .0081 

.9000 1.0000 1.4769 .0179 .0076 .0162 .0133 .0093 

1.0000 1.2000 .8756 .0069 .0044 .0053 .0037 .0038 

1.2000 1.4000 .4529 .0057 .0032 .0047 .0036 .0030 

1.4000 1.6000 .2484 .0048 .0024 .0041 .0031 .0027 

1.6000 1.8000 .1407 .0049 .0018 .0045 .0040 .0021 

1.8000 2.0000 .0849 .0031 .0014 .0027 .0023 .0014 

2.0000 2.5000 .0387 .0010 .0006 .0007 .0007 .0002 

2.5000 3.0000 .0139 .0011 .0004 .0011 .0010 .0004 

3.0000 3.5000 .0049 .0004 .0002 .0003 .0002 .0002 

3.5000 5.0000 .0011 .0001 .0001 .0000 .0000 .0000 
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Chapter 5. 

Statistical methods for model tuning 

5 .1. Abstract 

The major goal of the second part of this work is the tuning of some QCD­
models to experimental data. We use a fitting procedure based on a "maximum 
likelihood estimation" of the free model parameters. This chapter will introduce the 
main ideas behind this fitting procedure. Due to limited computational power we 
always use (linear) parametrizations of the model predictions. If the statistical 
fluctuations of the coefficients of these parametrizations can not be neglected, they 
have to be included into the estimation procedure. This is quite a tricky topic, 
especially if correlations between this coefficients play a role. First ideas in this 
direction are presented. 

This chapter will only deal with statistical errors. This is a good base for 
discussing statistical methods. Nevertheless systematic uncertainties have big 
influences on the results. The inclusion of systematic errors in the estimation of 
parameters is a part of the next chapter. 

5.2. Maximum likelihood estimation 

Estimation in the statistical sense means that one tries to make quantitative 
statements about the properties of a set of given objects by using informations 
about the same properties of a subset. A typical example of an often estimated 
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Maximum likelihood estimation 

quantity is the number of votes a given party will get during an election. Here the 
number of votes this party gets in a subset of all citizens is known and a "projected 
result" is computed. Another example is the average number of charged particles 
in an ALEPHevent. Here one knows the number of charged particles in a finite 
number of events. Because we are using only a subset (that means only a part of 
the whole information) the estimation will be imperfect, and it is quite important to 
give a proper error. The principle should be illustrated in more detail by the 
following examplel: 

Example 5.1: Statistics at the fishpond 

Problem: The number of fish in a pond (N) is to be calculated. The quantity 
of fish and the size of the pond does not facilitate an ordinary counting. 

Idea: First let us catch a number of fish (M). After a clear (but undangerous) 
marking they are put back to their natural surrounding. As soon as a perfect 
mixture of the marked and unmarked fish is reached, n of them will again be 
caughf!.. Now we have a subset where we could count the number of 
marked candidates (m). 

If nearly all of these fish of the second catch are marked, it looks 
obvious, that most of the fish in the pond are marked, and N should be close 
to M If only a few of them are marked, then it seems very probable, that N is 
very much higher than M This example demonstrates how one could derive 
quantitative results from these qualitative argumentation. 

The probability of picking m marked and n-m unmarked things out of a 
set of M marked and N-M unmarked candidates at once is given by the 
hypergeometrical probability distribution (c.f. [Br,87]). That means in our 
case that the probability of catching m marked fish at the end of the 

l Found in: [Bo,93) 

2 A possible ban of the marked fish due to their irregular appearence and a resulting imperfect 
mixture of marked and unmarked fish is a first candidate of a systematic error. If the mixing is 
not perfect, the second set of fish will not be representative for the whole pond. Another example 
of a systematic uncertainity is whether there are (unknown) outlets to the pond. 
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Out-momentum with respect to the thrust-axis 

discussed procedure (under the condition that there are N fish in the pond) 
is: 

Using Bayes' Formula it is possible to end up with a formula for the 
probability for N under the condition that m marked fish have been found in 
the second catch: 

P(N/m) = ~i:? P(m/ N) (5.1) 

The favourized Nvalue is the one (if it is only one) where the 
maximum of the probability above is reached ( "maximum likelihood''. This 
formula is also the key for marking a confidence region, that means a region 

in which Nlies with the probability a (the confidence /eve~. 
The absolute probability for ending up with a number m of marked fish 

P(m) is a fixed factor and plays no role in the rest of the analysis. The 
remaining problem is to fix the probability P( N). Due to the lack of 
information about this probability3, normally one P( N) = canst. uses. If we 
combine all fixed factors in one constant 'A which is given by the constraint 

-
"2..P(N/m)= 1 

N=M 

equation (5.1) becomes 

(N M)(N)-i P(N/m) =A n=m n 

The values M: = 250, n: = 150, m: = 22 results in an estimate of N = 1704 
for the number of fish in the pond. The shape of the probability distribution 

3 We only know M < N < oo and conclude that the propability outside this region is zero. 
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and the most obvious example of a a:= 0.95 confidence region [1208,2592] 

is given in the first figure on this next page. We used Stirling's formula (c.f. 
[Br,87]) for the calculation of the factorial functions appearing in the 
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binomial coefficients. After 
these considerations one 
could be quite sure, that 
more than 1200 but less than 
2600 fish are in the pond. 
Even if this is not sufficiently 
accurate, the principle of a 
measurement based on 
statistical considerations is 
illustrated quite well. 

In most cases one uses (motivated by the normal distribution) a 68%-

confidence level instead of the 
very strict level of 95% one. 
That gives the new confidence 
region [1414,2095], and the 
final result of the measurement 
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5.3. One-dimensional parametrization 

5.3.1. Motivation for parametrizations 

3500 4000 

Since QCD-models are implemented as Monte Carlo generators, they 
provide predictions for measurable quantities only as histograms and not in closed 
forms. For given parameter values, the bin contents of these histograms are 
random variables, which are in very good approximation normally distributed with 
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a known width. For other values of the model parameters, the program has to be 
executed again, therefore an iterative approach to the maximum of a probability 
needs a lot of computing time. That is why we are using parametrizations of the 
full model predictions. The easiest parametrization is the linear one. This linear 
parametrization is applicable if there is some former knowledge about the values 
of the parameters of interest. It corresponds to an expansion of the model 
predictions into a Taylor series and keeping only the terms up to the linear one. 
The better the former knowledge (that means the expansion point) is, the better 
this approximation will be. Thanks to previous work we have clear ideas of such 
expansion points, and a linear approximation thus makes sense. 

5.3.2. Parametrization of a one-dimensional linear distribution 

In the following example, a simple model for illustrating and testing the 
parametrization of a linear function in one variable will be introduced. 

Example 5.2: Generation of a linear distribution 

Idea: Normally a computer provides a random number generator which 
generates equally distributed random numbers y between 0 an 1. A common 
method for generating other distributions will now be introduced, and this 
method will be used for generating the linear distribution 

P(x)·.= a(x-x0 )+b , b R [ J a' 'Xo E ' x E Xu' XO 

~(x,;- x~) +[b-mo](x0 - xu) 

(The denominator is due to the fact that f 0 p( x )dx = 1 . ) If the following 
Xu 

constraints are fulfilled, p(x) is positive in [ xu ,x
0

] (as it should be) 

and x
0 
< x

0 
_ !!_ if a < 0 

a 
(5.2) 

The first possibility is to introduce a discretization (a division in several 
bins) and use the method introduced in example 3.2 to handle the discrete 
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One-dimensional parametrization 

problem. Thanks to the very simple form of the distribution of interest, 
another more elegant way is possible and, will be used. Let us call the 
equally distributed variable y and try to find a function l (y) such that these 
function values are linearly distributed. By making a substitution 

1 1(1)dy 1 1(1)dl-1(x) ,x0 

1 = J dy x== r J -dx= J dx= J p(x)dx 
0 !(_) J(O) dx J(O) dx x. 

we can find the differential equation for the inverse of the unknown function 
f. 

This equation can be solved by separation of the variables under the 

conditions l-1(xJ = y
0

=1 and l-1(xJ =Yu= 0. That will lead to: 

~(x2 -x;) +[b-aXo](x-xJ 
y= 2 =l-1(x) 

~(x,;-x;)+[b-~](x0 -xJ 

and after inverting 

The sign in front of the square root is due to the condition 

dx 1 
= 

dy r-ri(x) p(x) 

in the case of (2). In the 
diagram to the right, one can 
see the thrown distribution at a 
statistic of s: = 1000 compared 
to the given distribution with 
a:= 3, b:= - 2, x0 := 2, Xu:= 3 
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Parametrization of a one-dimensional linear distribution 

and x
0
:= 6. The statistical errors are calculated as discussed in example 3.2. 

Ifs grows, the error bars decrease, and the estimated values for the discrete 
distribution converge to the unbiased values (as marked by the bars) 

0 

Armed with this procedure for generating linear distributions it is possible to 
demonstrate the parametrization in the linear and one-dimensional case. Again 
the formula of Bayes and the principle of maximum likelihood are the keys to the 
estimation of a good parametrization. 

If we neglect bin correlations, n of the n + 1 bins of a given histogram are 
independent4. We will only look at those n independent bins for the moment. The 
linear function y(x):=k(x-x0 )+d, k,d,x0 eR, xe[xu,xo] should be fitted to the 
estimates of these bin contents pj, j = 1, ... ,n 5. Here the formula of Bayes is 

P( k ,d fp,, ... 'pJ = t' d ~ ) P(p,, ... 'PJk ,d) = 
p pl' .. .,pn 

In the second step we use the fact that bin contents are normally distributed 
in good approximation and that bin correlations can be neglected. Under these 
conditions, P(p/k,d) is the probability of finding bin contents in small regions Lipj 

around pj. The (absolute) maximum of this function is the same as the minimum 
of the negative ''logarithmic likelihood function" 

L
n+I 4 One is given by the condition . s,. = s. 
1=1 

5 Note that new symbols k and d instead of the products of a and b with the normalization constant 
were used. 
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One-dimensional parametrization 

S(k ,d) is the basis of the further estimation process. It is called estimation 
function6. The minimum of this function can be found by computing the solution 
of the following system of linear equations (k,d): 

The result is: 

with: 

as I = o, as I = o 
ak k=k ad d=d 

k = C~1-B~2 
AC-B2

' 

J = A~2 -B~1 
AC-B2 

n 1 
C:= Li-2 

j=I (J j 

. - L
n (x

1
. - x0 )p

1
. Ln -p 

.i:. ,!:..= _j 
':>!' - 2 ' ~1 • 2 

j=I (Jj j=l (Jj 

Because these solutions are linear combinations of independent random 
variables (bin correlations are neglected) which are normally distributed, they are 
also normally distributed with the following widths (c.f. appendix A, section 3) 

Both estimates are unbiased, and the width can therefore be taken as a 
measure of the distance of the estimates k and d from k and d We will use the 
following simple example to check the results: 

6 The symbol S comes from the german word "Schiitz;funktion" for estimation function. 
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0.6 

Parametrization of a one-dimensional linear distribution 

Example 5 3: Parametrization of a one dimensional linear distribution 

Idea: The linear distribution of example (3.2) is fixed by a:= 3, b: = - 2 (or 
k = 0.1818, d = - 0.1212 ), then the corresponding histogram with ( n + 1) = 6 
using s: = 500 bins is generated. On that basis the estimation of k and d is 
done as described above. By repeating the whole procedure sresr: = 50000 
times, a distribution of the results is computed which can be compared with 
the estimated widths. 

The diagram below shows the 5 bins which are used for the estimation 
of k and d. In this example the estimation procedure ends up with k = 0.1630 

and d = -0. 0792. The widths 

quantities in this example are approximately 

are crf = 0.0181 and 
crf = 0.0181 respectively. 

Since we only have 
estimates pj of the distribution 
values p j , it is only possible to 
calculate estimates for their 
errors by using formula 3.4. 
That is the reason why also the 
errors cr f and cr f are random 
variables. The widths of the 

If the procedure is repeated 50000 times, the following distributions of 
the estimated values are seen. The distributed variables are calculated using 
the estimates for the widths, while the shapes of solid lines are calculated 
with the exact values (k _ q corresponds to k and d _ q to d). This is the first 
reason for the deviations of the histogram from the predicted solid line 
shape. Other reasons are the small, but existing bin correlations. This 
deviation is ignored in the parametrization procedure (that means the bin 
correlations and the random variable behavior of the widths are neglected in 
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spite of their influence on the result) because they are very small, as 
expected. 

12,---~~~-~---.-~---,---, 

10 

15 

10 

0.12 0.16 0.18 0.2 0.22 0.24 0.26 -0.25 -0.2 -0.15 -0.1 -0.05 

k_q d_q 

If correlations are known, they could be taken into account by 
including them in the probability function that is used in Bayes theorem for 
constructing the estimation function. But this step complicates the 
parametrization process, and it is not worth doing it. 

The second (and even more important) reason for neglecting these bin 
correlations is that they do not appear in later calculations in this work. 
Different bins will then mean different points in the space of model 
parameters, and the model predictions will be calculated independently at 
each of those points. 

0 

5.3.3. Statistical test of the linear parametrization 

Normally we do not know if the linear parametrization is good enough or 
not. That is why we construct a quantity which is (in good approximation) x2 

-

distributed with a known degree of freedom if the linear approximation is 
appropriate8. If this quantity lies in the preferred region of the corresponding 
distribution (for example less than 2n), we accept the linear parametrization, 
otherwise we have to use a higher order parametrization. If there are no bin­
correlations, the quantity 

8 For details about X2 -distributions see e.g. [Bo,91], [Ea,71] 
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Statistical test of the linear parametrization 

is x2-distributed with n degrees of freedom (like every sum of n squared and 
independent N..0,1) random variables). 
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The diagram left shows the 
distribution of the quantity Tl for the 5 
bins from example 5.3. The deviation 
from the dashed line (the x2 

-

distribution with 5 degrees of 
freedom) is again due to bin­
correlations. 

By taking bin-correlations into 
account, and if the exact values of k 
and d are known, it is possible to 

4 8 10 12 14 16 18 20 construct a quantity which is exactly 
x2-distributed with 5 degrees of freedom (c.f. appendix B, section 2). In our case 
the main deviation comes from the fact, that only approximations k and d are 
known, and so one has to deal with a biased test quantity: 

(5.3) 

0.25 ,-----,---,---.,---,--.--.----,--,---..,..----, 

The distribution of this new 
quantity is biased to a x2 

-

distribution with a smaller degree 
0.2 

of freedom. This is not surprising, 
because the estimates k and d 0

·
15 

correspond to a minimum of 
exactly this new test quantity. The 0

·
1 

distribution of the new test quantity 
is shown in the figure right, it uses 0

·
05 

the conditions from example 5.3. 
The dashed line is the x2 

- 2 4 6 8 10 12 14 16 18 20 
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distribution with n=S, and the solid line the x2-distribution with n-2=3 degrees of 
freedom. 

5.3.4. Handling of nonlinear dependence (linear range) 

If the test of the linearization fails, one can go to higher order 
parametrizations or restrict the region in which the linear approximation is trusted. 
Due to the less demand on computing time we choose the second option and 
define a linear range. For this purpose we compute the QCD model prediction at 
the expansion point with very high statistics. This quantity is used to define the 
value of the parametrization at the expansion point. Then, model predictions are 
calculated with smaller statistics at two larger and two smaller values of the 
parameter under consideration. This is sufficient to compute a first order and a 
second order parametrization. (That means a linear and a quadratic one.) If the 
linear parametrization passes the x2 -test, it will be taken, and the linear range is 
the region in which the parametrization is done. If this test fails, the quadratic part 
of the second order parametrization is used to calculate an estimate of the error of 
the linear approximation, and the linear range is then the region in which this 

quadratic part does not exceed n( cr"). Here ( cr s) is the average statistical error 
next to the expansion point, and n can be arbitrarily chosen as e.g. n=2. 

The next example introduces and illustrates the parametrization and the 
computation of the linear range. 

Example 5. 4: Linear range 

Idea: After choosing a nonlinear distribution (an exponential distribution) 
and generating a discretized version of this distribution, an expansion point 
is defined, and the first and second order parametrizations are done. Based 
on those parametrizations, the linear range is calculated and a corresponding 
graph is plotted. 
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Handling of nonlinear dependence (linear range) 

(i) Generation of an exponential distribution 

In a way that is analogous to example 5.2, we generate an exponential 
distributed random variable x by defining an appropriate function of an 
equally distributed random variable y . This is done by solving the differential 
equation 

under the conditions Y( 0) = 0 and ji( oo) = 1. The solution is 

y(x) = 1-exp[- ~] 

and by the substitution y:= 1-y we end up with the familiar formula 

x = -Llny 

As was the case also before, n + 1 bins are defined, but only n are taken 
into account for the parametrization, in order to have independent model 
predictions at each point. 

(ii) Parametrization 

The linear parametrization l(x):= k(x-x0 ) + d at fixed d:= d0 = m(x0 ) is 
found analogous to section 5.3.2. (m(x0 ) is the model prediction at the 
expansion point.) 

- z 
k=­

N' 

The estimation function for the quadratic parametrization with a fixed 
prediction at the expansion point q( x): = a( x - x0 Y + b( x - x0 ) + c ( c: = c0 = 

= m(x0 )) is: 
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The minimum can again be found by solving the system of linear equations 

We get 

with: 

asl = o asl = o 
da a=~ ' db a=~ 

b=b b=b 

_ C~ 1 -B~2 a=----
AC-B2 

and b = A~2 -B~1 
AC-B2 

Because the solutions are again linear combinations of normally 
distributed and independent random variables (in good approximation), the 
estimation of their widths could be done by using the formula derived in 
appendix A, section 3 (11 linear error propagation11

). Because we will not need 
these widths in the further analysis, we skip this point. 

(i) Computation and illustration of the linear range 

The borders of the linear range can be calculated by the following 
formula (u corresponds to the upper, and /to the lower border): 

ja(x - x0 )
2
j $ n( cr,) => x,, = x0 ±~ nj:i') 
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For the production of the following picture L: = 2, n: = 2 and s: = 1 · 105 

were chosen. All 6bins that 
are shown in this diagram 
are used in the 
computations. The dashed o.4 

line marks the resulting 
linear range. The solid lines 
represent the linear and 
quadratic parametrizations, 
and the dashdotted line 
show the exponential 
distribution. 

0 

5.3.5. Real parametrisations 

0.3 

0.2 

0.1 

5.3.5.1. Graphical impressions from JETSET 

2 3 4 5 

x 

6 

The purpose of this section is to give some graphical impressions of the 
behavior of JETSET in the version of an anisotropic gluon decay. By looking at 
the sensitivity;, 

po dXbd 
sensb.d,i: = -o-' a 

xb,d P; 

those regions of the observed distributions which give one of the strongest 
constraints to the JETSET-parameters were chosen. The following pictures provide 
the possibility of getting a feeling about the JETS ET behavior in the region that 
will be of interest in the tuning of this model. The dashed lines are the linear 
approximation and the linear range (n=l}, while the solid lines are the quadratic 
approximation. 

9 This quantity measures the percental change of the bincontent (b-th bin, d-th distribution) from 
its value at the expansion point due to a change of the i-th parameter by one percent of its value 
at the expansion point. 
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Real parametrisations 
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Conclusion: From the previous pictures we learn that the dependencies are 
smooth, and that even the linear parametrization gives a good approximation 
of the model predictions relatively large regions. This statement also holds for 
the regions that we used for tuning the JETSET variant with isotropic decaying 
gluons, and for ARIADNE The regions used for HERWIG fits appear as more 
non-linear, but since we are only looking at the linear range this is not a big 
problem. We also see, that the x2 -test provides a very sensitive possibiUty for 
testing parametrizations. 
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5.3.5.2. Quantitative examples 

The quality of the "low degree approximation" is in this section demonstrated 
by some numbers. For that purpose we looked at the event properties, and 
calculated average and maximum test quantities for the linear and the quadratic 
parametrizations10. The values are given in the following table. The JETSET 
variant with anisotropic decaying gluons was used again. 

distribution (X~n) 2 
Xun,max (X~ua) 2 

Xqua,max 

s 5.5 189.3 2.4 16.1 

A 70 161.5 2.3 12.1 
p 4.5 148.0 2.2 13.2 

c 4.6 110.1 2.1 15.8 

1-T 6.4 158.0 2.6 22.7 

M 5.6 85.93 2.3 14.4 

m 78 63.94 2.5 24.5 

0 4.2 60.5 2.1 177 
M2 

h 6.3 160.5 2.6 20.3 

B,nt 6.3 218.3 2.4 13.1 

B.., 6.6 178.2 2.4 21.7 

-ln(yJ 4.2 78.4 2.2 13.8 

Table 5.1: Test quantities for the parametrization 

The test quantity for the linearization should approximately correspond to 3 
because one parameter is fitted to four independent values. For the same reason 
the test quantity of the quadratic parametrization should be "in the range" of 2 

Conclusion: Even if there are values of the test quantity that clearly exclude a 
linear and sometimes even the quadratic parametrization, we see from the 

10 Average in this context means an average over all bins of a given distribution and over all 
parameters. The maximum value is the highest occuring value in all bins of a given distribution 
and in all parameters. 
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Real parametrisations 

table above that on average the quadratic approximation fits the whole range 
that is used for tuning the parameters. We can also see that the linear 
approximation does not generally fit the whole region of interest, and that a 
restriction to a linear range is needed, if one wants to deal with this first degree 
approximation. 

An analogous statement is also true for the other distributions and multiplicities. 

Remark: It is also possible to provide parametrizations in higher order (in one 
dimension or for the case of many dimensions) and to use them in a parameter fit. 
The crucial point is that correlations between the coefficients of the 
parametrization normally can not be neglected and has to be introduced into the 
analysis. To avoid confusion, this topic will be dealt with in appendix B, section 3 
because in the main part of this work only linear approximations are being used. 
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Multidimensional parameter fitting 

5.4. Multidimensional parameter fitting 

5.4.1. Overview 

Our first example of a multi parameter fit was the performing of a linear 
parametrization by estimating the parameters k and d (c.f. section 5.3.2). Because 
the function used was linear in these parameters, we ended up with a system of 
two linear equations. Here, the same method is used to provide the possibility of 
performing a fit using such a linear parametrization of the QCD model predictions 
even in more than two dimensions. This method could also be applied for 
parametrisations in higher order (and for one or more dimensions). 

If we are using higher order approximations or if we can not neglect 
statistical fluctuations of the coefficients in the parametrization, the fitting no longer 
corresponds to the solving of a system of linear equations. That is why a method 
for performing a nonlinear fit has to be discussed. 

5.4.2. Linear parameter fitting 

5.4.2.1. The general way 

If we have a linear model function mb(p):=kb ·(p-p0 )+db with known 
constants kb.i, ( i = 1, ... ,n) and db 10, that parametrizes the content of a given bin b 
as a function of n model parameters p, and we have also measurements and error 
bars for the normal distributed bin contents pb, then we can proceed analogous to 
section 53.2to construct a probability for the parameter values. We will get: 

P(p/p) = N exp[-s(-p)], (5.4) 

10 In the model tuning, a parametrisation mb(p.):= kb. ·(p. - p 0 )+db. will be calculated along 
I ,I I l ,I 

every parameter axis, and the value db will be calculated as the mean value of the db.; : 

db:= L:.:1db,Jn 
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Linear parameter fitting 

(Nis the normalization constant of the probability distribution.) Because of 
the linear model function, the estimation function is parabolic, and its minimum 
(the maximum of the probability) is unique. It can be found by solving the 
following system of linear equations for pmi": 

Its solution can be found by inverting the matrix M: pmi" = p0 + M·1 y. We 
obtain the following expression by an expansion of the estimation function at this 
minimum 

because the first derivative cancels at this minimum, all higher derivatives are zero, 
and the constant factor exp[-s(pmi" )] has been absorbed in the new normalization 

constant ( N:= N exp(-s(pmi" )]). 

That means that the probability of a set of parameters p being the correct 
one, under the condition that we measured the quantities p, correspond to a 
normal distribution with 

c. 
1) (f . . ) p ij = -- or z t:. 1 , 

CJ/Jj 

Here cr; are the widths of the parameter estimates, pij are the correlation 
coefficients, and C is the covariance matrix. 

5.4.2.2. Fixing of some parameters 

In the following we sometimes need to fix parameters to values off the 
expansion point. If the m (m<n) parameters (p11 , ... , p1J are. fixed to the values 

( p~x , ... , p{~) the fitting of the remaining ( Pv, , ... , Pv.-m) corresponds to a changing 

of the constant db in every bin 
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Multidimensional parameter fitting 

db --7 "{4:= db+ ikb,f; (pt - µJi) 
i=l 

Using these new constants, the values of the remaining n-m parameters can 
be calculated as described above. 

5.4.3. Nonlinear parameter fitting 

For a general estimation function S(p), we could use the formulae derived 
above only if the higher order contributions to the Taylor expansion around the 
minimum 

can be neglected, that means, that the estimation function looks like a parabola in 
the "close surrounding" of its minimum12, or equivalently, the model predictions 
are linear. Because we made sure, that this is true in our case, we can use the 
formulae derived above, using 

The following example is a non-QCD illustration and a summary of this rather 
formal part 

12 If the estimation function is not a parabola, more than one minima are possible. In general one 
has to use additional informations to detect the right one in this case. 
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Nonlinear parameter fitting 

Example 55· Multi parameter fit 

Idea: A given model function (the cross-section Z --) hadrons at the Z 
resonance) is together with a choice of the free parameters used to generate 
a histogram. On that basis the method for performing a nonlinear fit that was 
developed before should be used to estimate these parameters and calculate 
their errors. 

(i) Choice of the model function 

We use the cross-section Z--) hadrons at the Zpeak as the basis of this 
example, because it provides a good playground for testing the formulae that 
we derived above, and illustrates the principle that is used in a very 
prominent work ([Al,89], [Al,90]). This cross section is near the Z­
resonance dominated by the exchange of a Z-particle. (The contribution that 
is due to an exchange of a photon and the interference term can be 
neglected.) It can be described by the following function: 

Here u:= 3.893·105 GeV2nb is the factor for going from natural units 
(ti = c = I ) to used ones. The fermionic widths are described by s ~: = sin 2 t} w 

according to: 

.Ji 3( 2 2) { l,fE{e,v} 
rJ =-GFMZ VJ +aJ NC, Ne:= { } 487t 3, f E u,d,c,s,b 

GF:= l.I664· 10-5 Gev-2 is the Fermi constant, Ne is the number of color 
degrees of freedom and vJ and· aJ the vector- and axial-vector couplings 
respectively. They are given by: · 
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Multidimensional parameter fitting 

The couplings of the higher generations are defined analogous. Now 
the contributing widths can be calculated (the top-quark does not contribute 
at LEPenergies): 

We end up with a function consisting of three model parameters: 
Pi:= sin 2 

t'}w (the Weinberg angle), p2 := M2 (the mass of the Z-boson) and 
p 3 := Nv (the number of light neutrino species) for the description of each bin 
content. 

(ii) Generation of the ''experimental" cross-section 

After the choice of a division of the whole energy range into bins, we 
use the method from example 3.2 to generate the "experimental" 
distribution. We used s:= 104 and the following values for the parameters, 
that are motivated by values obtained from the experiment: 

(iii) Fit of the parameters 

The minimum of the estimation function was found by using an 
iterative approximation algorithm. It yielded: 

Pi =0.259±0.022, p2 =91.200±0.015, Pi =2.907±0.117 

which is consistent with our chosen parameter values. The solid line in the 
following diagram represents our choice while the dashed line is the result 
that was fitted to the "experimental values". 
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Figure 5.1: Estimation of model parameters 

0 

5.5. Fitting with fluctuations in the parametrization 

5.5.1. Introductory remark 

In the parameter fitting procedure above we have always used (linear) 
parametrizations of the model predictions without taking their statistical 
fluctuations into account. This section outlines a procedure which includes such 
parametrization fluctuations. We do not actually use this method in our parameter 
tuning procedure, because (as a later test will strongly indicate) the used statistics 
is high enough to neglect this unwanted complication. In spite of this, this 
technique could play a role if one wants to go to higher order parametrizations 
(c.f. appendix B, section 3), because if one deals which more than one parameter, 
the number of coefficients in the parametrization grows fast with the degree of the 
parametrization, so that the number of points in the parameter space that is used 
for the parametrization must be very high, and one could not deal with a very 
high statistics at each point. As we will see, this method also provides a possibility 
for taking the correlations between the coefficients of the parametrization into 
account. 

Because this handling of parametrization fluctuations could also play a role 
in future algorithms for parameter fitting, we describe it in detail, even if it is not a 
crucial ingredient for our analysis. 
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Fitting with fluctuations in the parametrization 

We use a polynomial parametrization of degree Nin one dimension to 
demonstrate the inclusion of statistical fluctuations of the parametrization. This will 
be introduced in the following section. The one dimensional parametrization will 
be used to demonstrate the procedure from example 5.3. The case of a 
polynomial in more than one dimension and a linear parametrization of model 
predictions is also discussed below. 

5.5.2. One dimensional parametrization by a polynomial 

Every bin content pJp) is parametrized by a polynomial of degree Nb: 

Nb 

111i,(p):= Lab,nPn 
n=O 

If we know normally distributed estimates mb(pm) for the model prediction at 
parameter values (pl' ... ,pM), M>N+l, and the corresponding widths a~ (the 
index "mod" is used to avoid confusion with the later used widths for the 
experimental values pj ), it is possible to estimate the coefficients ab,n by using the 
following estimation function: 

S ( - )·= _!_ ~{n;,(pJ- L:~oab,nP; }
2 

pol ab . £..J mod 
2 m=I am 

We assumed, that the correlations between the estimates mb(pJ can be 
neglected. The minimum y of the function introduced above corresponds to the 
solution of the following system of linear equations: 

M i j 
M polamin = y-pol M.pol = ~ Pm Pm 

b l IJ £..i 2' 
m=I am 

(i,j = 0,1, ... ,N) Because the solutions of this system of linear equations are 
linear combinations of normally distributed and independent random variables, 
they are as well normally distributed, and similar to section 54.2.1 the covariance 
matrix is given by the inverse of the matrix of second derivatives of the estimation 
function calculated for ab = a::U" . 
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Including the coefficients widths 

For the case where the widths and correlations of the coefficients ab.n are 
negligible, one would perform the fit by using the estimation function 

5.5.3. Including the coefficients widths 

We temporarily disregard the correlations between the coefficients. If one 
wants to include the widths, the most obvious ansatz would probably be 

(5.5) 

Here cr:.,, is the width of the n-th coefficient of the parametrization in the b-th 

bin, and we used the linear error propagation formula derived in appendix A, 

section 3 to replace the incomplete widths of the nominators by the correct ones. 
Nevertheless, this is an ad hoc ansatz, and it must not surprise if it leads into 
troubles. The first problematic point is that large parameter values correspond to 
big statistical errors of the nominator (that means a big denominator), which can 
cause the fit to "run away" to meaningless values (c.f. section 6.5.3). The second 
point is that we can not hope, that for example the errors calculated by the matrix 
of second derivatives can be justified by the arguments given above, because we 
"demolished" the estimation function by an ad hoc ansatz. 

A possible way out of this dilemma can be found, by going back to the roots, 
and by remembering how the estimation function was built in section 53.2. For 
this reason let us write down the probability for the random variable 

Nh 

db:= Pb - Lab,nP~ 
n=O 

using fixed values for the parameter p: = p 0
• The probability (under the condition 

p: = p 0
), that this random variable obtains a value belonging to a small interval 

Mb around db is 
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Fitting with fluctuations in the parametrization 

and according to Bayes theorem we get 

From this probability we conclude that the following expression is a 
candidate for a estimation function using the widths of the parametrization 
coefficients 

(5.6} 

Correlations between the coefficients of the parametrization are up to now 
not included in this function. It can be achieved by a decoupling of random 
variables as discussed in appendix Band illustrated in example 53. 

In the tuning of QCD models we have more than one parameters, and we 
always use a linear parametrization 

n 

m,,(p) := L_ab.jPj +bb 
j=O 
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Including the coefficients widths 

All coefficients ab . are independent in our case, and correlations play no 
,} 

role. Because of that, the estimation function (5.6) gets the form 

Here cri: = ( cr:OO )2 + ( cr~ )2; cr:OO is the width of the model prediction in the b­

th bin, cr~ is the width of the coefficient bb. 

Observations: 

• In the case of vanishing widths of coefficients, the given formula corresponds 
to the estimation function that was used before up to an irrelevant additive 
constant. 

• The critical behavior for large parameter values is weakened by the logarithmic 
term. 

• New minima can appear due to the rising of the logarithmic term, as is shown 
in the next example. So one should always check, that he "sits" in the right 
minimum. 

To close and summarize this rather formal chapter, I want to go through the 
following quite extended example. 
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Fitting with fluctuations in the parametrization 

Example 5. 6: Estimation with a fluctuating parametrization 

Idea: After the choice of a model distribution, a polynomial parametrization 
is performed. With this parametrization and by including widths as well as 
correlations of its coefficients we perform an estimation of the parameter and 

a calculation of the resulting error. 

(i) Choice of the model distribution 

The used model function in one variable x and with one free parametera is: 

p(x;(a,p)):= Ne-w:[ 1- cos(px)], P:= 4a 

The normalization constant can be evaluated using the condition 
XO 

J p(x;(a,p))dx = 1. The result is 

The correlations between the coefficients of the parametrizations are 
very high in this example. 

o.1s~~------~----~--~ 

That allows us to get a clear 
impression of the influence of 
these correlations on the 
estimation process. 

The estimation of the 
bin contents are calculated as 
discussed in example 3.2 after 
the choice of the x-borders 
xu:= 0, x

0
:= IO and a division 

of the resulting region into 10 
bins. 

0.16 

0.14 

0.12 

- 0.1 x 
0 
€ 

0.08 

0.06 
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Including the coefficients widths 

For a:=a0 =0.3 and s:=5·103 the results are shown at the diagram 
above. Here the solid line is the shape of the model function, while the bars 
represent the discretized model function. 

(ii) Parametrization 

Remark: In the rest of this example, we will use only 6 bins to save 
computation time. 

Every bin content is parametrized as a function of a in the region 
0.01::;; a::;; 0.6 by using the polynomial ansa1z that was introduced in section 
5.5.2 In a first step 3 different values for a (the borders of the region of 
observation and the center of this region) are used to perform a linear 
parametrization as described in section 5.3.2. The model prediction is 
estimated at three other points of the chosen parameter region after this 
step13, and together with the previous points, the result has been exposed to 
the x2 test, using the test quantity (5.3). 

If the result of this test is positive (that means x2 < µ + 2.5cr 

= nvF + 2.5.J2nvF, where nvF is the number of degrees of freedom), the 
parametrization is accepted. If the test fails, the degree of the parametrization 
is increased, and the whole procedure repeated. 

We discuss two different cases. In the first one, the chosen statistics for 
the "experimental" distribution is s~a1 := 1·103

, and that for generating the 
model predictions is (at each point) s~0d:= 1·105

• In this case the 
"experimental" errors are much bigger than the widths of the simulation, and 
their contribution to the estimation of the model parameter can be neglected. 
Big widths of the simulated bin contents are preferred in the second case, 
and we used s~a1 := 1·106 together with s~0d:= 5·103

• The resulting degrees of 
the parametrizations are shown in the following table. 

bin number 1 2 3 4 5 6 

high model statistic 2 3 3 4 3 4 

low model statistic 2 2 3 2 3 2 

13 The values of a are place in the middle of the largest free region. If there were equal values, we 
began from the left. 
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Fitting with fluctuations in the parametrization 

To get a feeling about the very high correlations appearing in this 
example, their values for bin 6 are listed below. Similar results appeared in 
the other bins. 

1.0000 -0.9997 0.9989 -0.9974 0.9955 

1.000 -0.9997 0.9989 -0.9975 

(pJ= 1.000 -0.9997 0.9989 

1.000 -0.9997 

1.000 

(iii) Estimation and graphical representation 

The estimation functions of the first case (high model statistics) are 
drawn in the next diagram. The dashdotted line (coarse parabola) represents 
the estimation function without consideration of parametrization fluctuations 
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(similar to (5.3)). The 
shape near the 
minimum is the same as 
for the non-logarithmic 
part of the new 
estimation function 
(including widths as well 
as correlations of the 
parametrization similar 
to (5.4)14) shown by the 
dotted line as expected. 
The full new estimation 
function similar to (5.4) 

corresponds to the solid line, and the dashed line is the prediction of the new 
estimation function without consideration of any correlations. 

The full new estimation function increases with the parameter values 
and new local minima appear. The results of the estimation can be seen in 
the following table: 

14 For the details of inclusion of the correlations see appendix B. The principle is to write down the 
correlated random variables as a linear combination of uncorrelated (decoupled) ones, and use 
derived in appendix A, section 3. 
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without widths or correlations 

with widths 
with widths and correlations 

The results in the 
case of neglected widths 
and correlations are the 
same as those for the 
inclusive estimation, as 
we expected. 

50 
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-30 

Including the coefficients widths 

0.3060± 0.0101 

0.1580± 0.0339 

0.3060± 0.0101 

The second case 
(low model statistics) is 
illustrated by the picture 
right. The results of the 
estimation are shown in 
the next table. It shows 
significant differences 
between the results. 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 
a 

without widths or correlations 0.3020± 0.0005 
with widths 0.1110±0.0339 

with widths and correlations 0.3020±0.0029 

Even if the estimation without taking the widths or correlations into 
account are as good as the result of the full estimation, the calculated error is 
much too small, and the old estimation function should be replaced by the 
new version. 

Conclusion: It is possible to use polynomial parametrizations in fitting 
procedures even ii the correlations and widths of their. coefficients can 
not be ignored. One should however regard, that also correlations could 
have significant influences on the results of lits. 

0 

Remark: The correlations in the parametrization were quite strong in the last 
example, and therefore their influence on the result very prominent. We are only 
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Fitting with fluctuations in the parametrization 

dealing with linear parametrisations, and all the coefficients will be calculated 
independently, and have therefore no correlations. We can therefore forget about 
contributions from correlations of the parametrization. But if one wants to go to 
parametrizations with a higher degree, these correlations appear and have to be 
taken into account. 
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Chapter 6. 

LinFit - An algorithm for model tuning 

6.1. Overview 

Starting from the results of the last chapter we introduce and test an 
algorithm for model tuning based on a linear parametrization of given model 
predictions. The main difference to the earlier discussions of parameter fitting is 
the appearance of systematic errors. While it seems possible to include systematic 
errors of the measurements in the estimation function, the deviations between 
measured data and model predictions cause a very serious problem. The 
consequences are systematic differences of the fitted parameters when fitting them 
to different sets of distributions. These differences can in general not be explained 
by the errors computed from the matrix of second derivatives. This problem is 
mainly excluded by restricting the fitting procedure to bins for which the model 
predictions are in good agreement with the data. The remaining uncertainties are 
given as systematic errors of the model parameters. 

6.2. Introduction of LinFit 

LinFit consists of the following modules: 

1. Choice of an expansion point 
2. Parametrization of the Monte Carlo predictions and calculation of the 

linear range 
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Fixing of the linear range 

3. Restriction to a ''fitable region" 
4. Estimation of the model parameters and calculation of their errors 
5. Concluding tests 

These modules will now be discussed in more detail. The linear 
parametrization is done by parametrizing the model predictions by independent 
linear fits along each of the parameter axes. The results from section 5.3.2 are 
used for this reason. This simplification only holds if the expansion point is as 
narrow as possible to the estimated set of parameters. To guarantee this crucial 
point, we used results from earlier attempts to find the optimal parameter values 
for setting the expansion point. In addition to the default values of the parameters 
the main input to this point came from [Al,92] and [Ru,95]. 

If the expansion point is "too far away" from the fitting result, higher order 
terms of the parametrization will be necessary. To define the meaning of "too far 
away" the minimum of the linear ranges of a given parameter among all bins is 
used. If one of the estimated parameters exceeds a region defined by this minimal 
linear range, the whole set of estimates is rejected, and the fitting procedure is 
repeated with another expansion point1. Instead of attempting to include higher 
order terms, the linear procedure is iterated, because this is less time consuming. 
Otherwise, if all the parameters lie in this ''linear region'~ the concluding test is 
passed with a positive result and the estimated parameters are trusted. 

6.3. Fixing of the linear range 

In section 5.3.4 a linear range was introduced, but the factor n was not fixed. 
Some graphical impressions were given that led to the obvious choice n: = 1. In 
this linear region, the deviation of the linear parametrization from the full model 
prediction is believed to be less than the mean statistical error of the model 
prediction, and therefore without big influence on the result of the estimation 
procedure. But these were only graphical impressions, that can or can not be 

1 The choice of a new expansion point is a very critical problem because there is no criterion that 
distinguishes a good expansion point from a bad one. Normally the result of the preceding fit is 
used as the new expansion point, even if the linear range is exceeded. 
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n in the case of a one-parameter fit 

verified by using the estimation function2. Because of this point of uncertainty 
some tests are performed in the following in order to calculate an acceptable 
choice for n. 

6.3.1. n in the case of a one-parameter fit 

The JETS ET parameters Oo and A (one at a time) were put at the ends of 

different minimal linear ranges (defined by decreasing values of n) and model 

predictions for these parameter settings were calculated3. The distribution of 

- In( x P) was used to perform fits for Oo and the distribution of - ln(y3 ) was used 

for fits of A. These distributions were also used to define the linear regions. For 

the "data distribution" sd01 := 6· 105 and for the "simulation" ssim:= 5· l<Y at the points 

along the parameter axes and s~m:= 2· 106 at the expansion point (A= 0.29GeV, 

Oo = 1.4GeV) was used. These values were chosen in order to have a situation as 

close as possible to the real parameter tuning scenario. In the fit all parameters 

shown in table 6.3 (except of Oo and A respectively) were fixed at the expansion 

point (which is also shown in table 6.3), and all other parameters were fixed at 

their default value, or at the value given in appendix B, section 4. The fits were 

done with and without inclusion of the statistical errors of the coefficients in the 

parametrization. 

If the fit reproduces the given test values of Oo and A , the corresponding 

value of n is a good choice for the definition of a linear range (for the fit of one 

parameter). 

The following symbols are used: 

£ P the parameter error calculated by the matrix of second derivatives of the 

estimation function 
f).P the distance between the given value and the result of the fit (f).P:= pfi1 

- pmod); 

note, that this distance is negative if the fitted value is too small. 

2 Because we know for example that a statistical test of a parametrization is much more sensitive 
than a graphical one we could argue that the estimation function will be much more sensitive to 
insufficient parametrizations than we initially expected. 

3 We used the JETSETversion with isotropic decaying gluons. 
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Fixing of the linear range 

pmod the parameter setting 

n ~ A 

pmod £p ,1. p pmod £p ,1. p 

1.5 1.7842 0.0090 -0.0074 0.2448 0.0016 -0.0048 

1.0 1.7137 0.0090 0.0085 0.2550 0.0016 -0.0028 

0.5 1.6218 0.0090 0.0133 0.2682 0.0016 -0.0034 

0.1 1.4992 0.0090 0.0010 0.2858 0.0016 0.0020 

Table 6.1: Fits without inclusion of fluctuations in the parametrization 

n ~ A 
pmod £p ,1. p pmod £p ,1. p 

1.5 1.7842 0.0111 -0.0066 0.2448 0.0020 -0.0052 

1.0 1.7137 0.0108 0.0091 0.2550 0.0019 -0.0028 

0.5 1.6218 0.0105 0.0134 0.2682 0.0018 -0.0034 

0.1 1.4992 0.0101 0.0010 0.2858 0.0017 0.0020 

Table 6.2: Fits with inclusion of fluctuations in the parametrization 

The errors calculated by the estimation function that take fluctuations in the 
parametrization into account are somewhat larger than the errors calculated 
without, as was well expected. The method former leads to good agreement 
between the test values and the results of the fit ( ,1. P :::;; 2£ P if n :::;; 1), while the latter 
seems to produce parameter errors which are somewhat too small. 

We did only use statistical errors to perform the calculations mentioned 
above. In the case of real model tuning, the systematic errors of the measurement 
are added quadratically to the statistical widths (c.f. section 6.4.4), and the 
contribution of the widths in the parametrization should be even smaller than in 
the example above. This is a good reason to believe that in our case it is also 
possible to work with the simpler model function. A time con~uming iterative 
search for a minimum of the estimation function can therefore be replaced by a 
faster solution of a system of linear equations. 

Conclusion: The fits performed in this section seem to confirm the choice of 

n:=l for the definition of the linear region in the case of one free parameter. 
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n in the case of many parameters 

The estimation function (5.6) leads to slightly bigger errors than the estimation 
function (5.4) without statistical errors of the parametrization. 

6.3.2. n in the case of many parameters 

The same procedure as in the last section will be repeated for the case of the 
10 parameters used in later JETSET 

fits. Even if the results of the last 
section allowed us to argue that for 

2 

1.5 

a definition of a linear range along 
the parameter axes a value n:=l 
leads to trustable results, the 
contribution of mixed terms in a -0.

5 

Taylor expansion in more than one 
dimensions could (and will) cause 
some troubles. The figures on this 
page should give an impression of 
this point. 

2 

2 

-2 -2 

The figure above shows the function f(x):=0.2x-0.4y. This function differs 
from the second function g(x):=0.2x-0.4y-0.25.xy shown below by the mixed 
term that has no influence on a parametrization along the parameter axes. 

·'.l 
0.5 

-0.5 

-1 

Therefore even if the behavior 
along the parameter axes is really 
linear, the model function can be 
quite nonlinear off these axes. If we 
want to deal with the linear ansatz 
in this more-dimensional case, we 
have to make a tighter restriction 
than we have done in one 

2 dimension. That means we have to 
use a smaller number for n. 

-2 -2 In our fitting procedure both 
functions would be treated in the same way (by the parametrization f(x/J and so 
we have to be very careful to get right results. For this reason the same set of 
distributions was used as in the final model tuning procedure (see chapter 7) 
together with different values of n to perform fits to test distributions generated 
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Fixing of the linear range 

with JETSET (with isotropic gluon decay). The results of the estimation are 
compared with the parameter values used in the generation of the test 
distributions. If the difference is less than 2.5 times the calculated error for all of 
the parameters, the corresponding value of n is considered as a good candidate 
for the definition of the linear region in the model tuning procedure. 

In the next table the results are summarized. The factors given in this table 
show the distance between the fitted and the nominal value in units of the error. A 
factor of 3 means, that this distance is three times the size of the calculated error. 
The statistical widths of the parametrization are included in the estimation 
function. 

n 1.5 1.0 0.5 0.1 0.05 0.01 

A -1.1 0.2 -3.8 4.2 -2.4 2.2 

a -3.2 -2.3 -2.9 -1.9 -1.6 -0.4 

(J -5.9 -4.0 0.1 -3.7 -0.3 -1.7 

B 3.2 2.4 -0.8 4.1 0.4 1.8 
pS=I 

ud -4.7 3.6 -0.8 0.6 2.0 -0.2 
pS=I -0.1 -0.2 0.6 -0.4 0.5 0.0 

s/u -4.1 -4.7 -2.2 0.0 -0.6 -1.2 

qq/q -3.4 -4.0 -1.8 0.0 0.0 0.7 

su/du 9.1 8.6 4.5 0.4 1.2 1.4 

b, 4.6 3.6 1.5 1.4 -1.0 -1.9 

Table 6.3: Exploring the linear region 

Columns with bold faced numbers represent fits where the differences Ll P are 
less than 2.5 times the error. Note, that the deviations depend on the type of 
parameter; the worst case occurs for su/ du . 

These values for n initially seem much too small. But we did only use 
statistical widths for performing this test. We will discussed in section 6. 4. 4, that an 
inclusion of systematic errors of the measurement in the estimation function is 
possible. In this case, the statistical widths of the measurement will be replaced by 
a quadratic sum of these widths and the corresponding systematic errors. Because 
of that, systematic deviations in the parametrization are negligible if they are small 
compared to this quadratic sum, which is bigger than the error used in the 
previous example. Consequently the n-value that is used in the real 
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n in the case of many parameters 

parametrization is surely allowed to be higher than the value that was calculated in 
this example. From this point of view even the results for n ~ 0. 5 also seem 
acceptable. 

Because of the similarity of the models JETSET and ARIADNE, this check 
should also be representative for these models, and n:=0.1 should be a proper 
value for defining the linear region. HERWIG is quite different and uses other 
parameters. Therefore a similar test series was performed for HERWIG 5.8 The 
results are given in the following table. 

n 1.5 1.0 0.5 0.1 0.05 0.01 

A -5.7 -3.3 0.3 -4.0 0.0 -1.0 

RMASS(13) -1.1 -1.1 2.3 -3.1 4.7 -2.7 

CLMAX 7.2 3.8 0.6 1.4 -1.S -2.5 

CLSMR -5.1 -3.2 -2.6 -0.3 -0.7 -1.3 

PWT(3) -1.3 0.2 -1.0 0.4 -1.8 0.7 

Table 6.4: Exploring the linear region 

This check that was done only with statistical widths indicates that it could be 
necessary to restrict the linear region to a region which is defined by n:=0.01. This 
value is that small, that an iterative search for a proper expansion point will hardly 
work. The "eye glasses" of the very large statistics that was used can decide 
between the full model prediction and a linear parametrization up to this very 
small region. Since we have also systematic errors, this eye glasses are not that 
sharp, and it makes sense to use n:=0.5. 

Conclusion: The given series shows, that the used Monte Carlo statistics is velJ! 
appropriate to decide between a correct and an incorrect parametrization. If 
the full errors would only be of the size of the statistical widths, a usage of a 
linear parametrization would hardly make sense, because the linear regions 
that we want to restrict on would be too small Because we have to include the 
systematic errors of the measurements in the estimation function, we are able 
to use a linear approximation, and fix the linear regions for JETSET and 
ARIADNE with n:=O.l, and the linear region for HERWIG with n:=O.S. 
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Handling of systematic errors 

6.4. Handling of systematic errors 

6.4.1. Model parameters in the case of imperfect models 

Previously we always dealt with perfect and fitable models. That means it 
existed one (and only one) set of model parameters which lead to agreement 
between model predictions and experimental data in the case of vanishing errors. 
Consequently the final goal of the fitting procedure was to find estimates for these 
optimal model parameters. 

If systematic deviations between model and data appear, no such set of 
optimal parameters exists. Unfortunately a definition of a reasonable 
generalization of the optimal model parameters is not unique. The most obvious 
way to define a preferred choice of parameters is to introduce a distance between 
model and data in the case of vanishing errors (marked by superscript zeros). This 
can be done by 

D(p):= L {p~ -mi(p)}2 
b 

The preferred model parameters are then defined as the absolute minimum 
of this function. If the sum is done over different sets of bins, we obtain different 
distance functions and therefore in general different sets of preferred model 
parameters. A commonly acceptable choice of the set of bins is needed in order to 
get comparable results. (A a commonly accepted definition of a distance measure 
is also needed.) 

6.4.2. Types of systematic errors 

Two types of systematic errors appear. The first is due to the deviation 
between the model of interest and the real distributions. The second is because of 
the systematic errors of the measurement. For the second type of errors estimates 
of the absolute values are known, while there is no prior knowledge about the 
model deviations. Thus we try to include all the knowledge about the systematic 
errors of the measurement in the estimation function, and restrict the tuning to the 
largest set of bins that can be explained by the model. This set of bins is called the 
''fitable region"(c.f. section 6.4.5). 

150 



Treatment of exactly known systematic errors 

One needs to be careful with the setting of n in the definition of the linear 
region, for otherwise another systematic error due to an imperfect parametrization 
will appear. Because we are using very small values for n as motivated by the 
considerations contained in the last section, these contributions should not be 
noticeable. 

6.4.3. Treatment of exactly known systematic errors 

In the construction of the estimation function we always used the assumption 
that the mean value of the quantities db:=ph -mb(p0

) is zero4 (c.f. section 5.3.2). 
This is only true if there is (at least) one set of parameters p0 that results in mean 
values for the model predictions mb(p0

) that are equal to the mean values of the 
data pb. If there are systematic deviations, this basic assumption is not satisfied. 
Under this circumstances, the mean value of the difference db will be different 
from zero, and if we want to use the same argumentation as in previous sections, 
the generalized difference 

has to be used. Here Eb is the difference between the mean of the measured data­
value and the mean value of the model prediction in bin b derived at a preferred 
set of optimal model parameters in the sense of section 6.4.1. Now, the straight 
forward generalization of the estimation function to the case of systematic errors 
can be given as 

From this formula we can see that systematic errors are negligible if the 

condition crb >>Eb holds. In section 6.3.2 we calculated a valu~ n that was used in 

the definition of the linear range by taking only the statistical widths into account. 

Because it seems possible to include the systematic errors of the measurement in 

the estimation function (c.f. the next section), a comparison to the whole error 

4 Apart from the assumption that the data and the model predictions are normally distributed. 
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Handling of systematic errors 

should be done, and a somewhat bigger value of n would also lead to satisfactory 

results. 
Unfortunately usually we cannot know the exact values (with the right signs) 

of the systematic errors, and so this formula can not be used for parameter 
estimation. 

6.4.4. Treatment of approximately known systematic errors 

Because estimations of the systematic errors of the measurements are 
known, they should be included in the fit according to the general idea that an 
optimal amount of information should be used. The formula derived above is not 
usable, because the signs of the errors are not known. Instead of this, a quite 
obvious method will be introduced and tested which is also used in the literature. 
The idea is to add the systematic errors to the statistical widths and use this 
(quadratic) sum: 

(6.1) 

That means one wants to "de-weight" the contribution of all the bins that are 
known to be uncertain. This procedure seems to be the most natural one, and 
does indeed lead to satisfactory results, as is shown by the following example. 
Beside this successful test, it is easy to see, that this ansatz follows the right 
direction. Systematic errors that are not included lead to an average increase of 
the numerators of the estimation function, while this (quadratic) summation 
decreases the terms in increasing the denominators. Therefore one could expect 
that an overall good approximation to the correct estimation function is 
constructed. 

The following example shows, that one could calculate rather senseless 
results if big systematic errors are neglected, while the results (of this example) are 
quite satisfactory if one is using the summation ansatz. 
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Treatment of approximately known systematic errors 

Example 6.1: Estimation with systematic measurement errors 

Idea: We want to demonstrate, that a neglection of systematic errors can 
cause senseless results while the summation-ansa'fz leads to satisfactory 
predictions. 

Principle: ''Data distributions" are simulated by HERWIG while JETSET 
provides the ''model predictions'5. On this basis very good estimates of the 
systematic deviations are knowrP. Including this systematic errors by the 
summation ansa'fz (with quadratic and linear addition}, the estimation 
function is tested by a fit of several JETSET-parameters to ''HERWIG-data'~ 

In the following table the results of some fits are shown. The fits were 
done using the distributions given in table 6.5. The systematic errors are in 
the range of a few percentage points. 

Par. po without Et auadratic sum linear sum 
EP /). p EP /). p EP /). p 

A 0.30 0.0009 0.0347 0.0035 -0.0042 0.0044 -0.0026 

{lo 1.40 0.0111 0.7664 0.0492 0.0784 0.0642 0.1262 
a 0.36 0.0005 -0.0324 0.0023 0.0021 0.0027 0.0009 

b 0.90 0.0040 -0.0576 0.0150 -0.0412 0.0191 -0.0479 

Table 6.4: Fitting results 

Here E P is the error that was calculated by the matrix of second 

derivatives, and Ii P: = pfi1 
- p0

• Bold numbers were used if Iii PI> 2. 5E P. 

Because there exist cases where estimates based on a linear sum of the 

errors a 101 =ab +lcbl are worse than estimations based on the quadratic sum 

a
101 
=~a; +E; (even if the calculated errors were large enough) this second 

5 For the values of the model parameter used c.f. appendix B, section 4. JETSET is used in the 
version of isotropic decaying gluons. 

6 Imperfections due to the limited statistic are small. 
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Handling of systematic errors 

one is used. The test quantities for the distributions used in this example are 

given in the next table. 

distribution bins without quadr. sum 
E!ys sum 

s 23 701.7 20.5 13.8 

A 16 1245.9 16.1 12.7 

1-T 21 1634.8 17.8 14.2 

m 18 1524.5 16.2 12.7 

-ln(yJ 14 1480.4 12.0 9.2 

xP, (x < 0.02) 8 273.4 6.4 5.3 

xP, (x > 0.02) 38 6916.5 42.5 34.8 

P:n(S) 25 2773.7 21.8 16.6 

p;"r(s) 19 2251.1 16.8 13.7 

X~es /nbin 182 18801.9/182 170.2/182 133.1/182 

Table 6.5: Test quantities with and without contribution of systematic errors 

From the previous table we observe that it seems possible to bring the 
value of the test quantity into the confidence region, if a (quadratic) sum of 
statistical and systematic errors is used. 

Conclusion: If systematic errors appear, they have to be included in the 
estimation procedure, if the results need to be trusted. The ansatz of 
using a quadratic sum of statistical width and systematic error seems to 
be a good candidate for including these systematic uncertainties. 

0 

6.4.5. Restriction to a fitable set of bins 

In the last section we arrived at a possible way for taking the systematic 
errors of measurements into account. The remaining question is how to handle 
systematic discrepancies between the real distributions and the model under 
consideration. First of all an example should be introduced that illustrates the 
problems that appear if one tries to ignore these systematic model inaccuracies. 
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Restriction to a fitable set of bins 

Even if the systematic errors of the measurements are included in the estimation 
function, systematic influences from model deviations and imperfect 
parametrizations remain. 

Example 6.2: Straightforward fits with imperfect models 

Problem: Big systematic deviations appear in the estimates of the model 
parameters if the formulas derived in the last chapter are used in the case of 

systematic deviations between models and data. In other words: Fits to 
different (sets of) distributions lead to sets of systematically deviating 
parameters. 

Principle: The QCD-model JETSET is used because if is well known, that 
this model describes for example the distribution of S, while it fails to 

describe the distributions of p;"1 and p:n (together with other distributions). 

Fits of some model parameters are done both in the well described and also 

in the problematic areas. We use real ALEPH data and include systematic 
errors of the measurement in the estimation function. 

From earlier fits earlier we know that for example the sphericity S is a 
quantity that can be described very well by JETSET together with (parts of) 
other distributions (for values of a global fit c.f. chapter 7). We denote this by 
saying that the whole S-distribution is a fitable range. A fit of the parameters 
A, ~. cr and Bled to the following results. (The other parameters are fixed 
to the values given in appendix B, section 4/) 

p po pfi' f. p 

A 0.30 0.3058 0.0136 

~ 1.40 1.3118 0.2150 

O' 0.36 0.3958 0.04-96 

b 0.90 1.0188 0.1004 

Table 6.6: Fit to S (11=6.6, nbin = 23) 
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Handling of systematic errors 

p Po pfit £p p po pfit £p 

A 0.30 0.3408 0.0057 A 0.30 0.5173 0.0086 

~ 1.40 1.2782 0.3631 ~ 1.40 2.0102 0.3178 

cr 0.36 0.2956 0.0070 cr 0.36 0.2808 0.0044-

b 0.90 1.2028 0.0613 b 0.90 1.6079 0.0699 

Table 6.7: Fit top:" (11=21.1, nbin = 25) Table 6.8: Fit to p;"1 (11=:17.1, nbin = 19) 

Even if the test quantities 11 are in the preferred region, the fits resulted 
in incompatible values. This discrepancy is dramatic for A. The deviation 
between the p

1
-fits is 12.5 times the sum of their errors, so that these errors 

are of little usage (and 17.1 times the quadratic sum). 

Remark: Here we disregard the linear ranges. Especially the p;"1 -fit is far 
outside the linear region, so the cause of this big deviation is a composition 
of imperfect model and the imperfect parametrization of this imperfect 
model. If one tries to make a fit to all three distributions, the result is: 

p po pfit £fit 

A 0.30 0.3376 0.0032 

~ 1.40 1.9688 0.1572 

cr 0.36 0.3610 0.0022 

b 0.90 0.9567 0.0296 

Table 6.9: Fit to S, (11=:41.1) p:11 (Tl:= 279.3) and p;"1 (11:=570.8) 

Now the test quantities indicate well that something is not as it should 
be, and the obvious assumption is to trust the .>distribution most. 

Conclusion: The parameter errors calculated by the matrix of second 
derivatives cannot be trusted if systematic deviations between the 
parametrization of the model and the measured distributions appear. 
Thus fits to different distributions will in general result in estimations for 
the parameters which deviate systematically (more than would be 
expected from the calculated errors). 

0 
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Restriction to a fitable set of bins 

The result of the last example offers little surprise. If these additional 
deviations between measurements and model predictions exist, they should be 
included in the estimation function. If this is not done, it is the same as if they are 
considered as negligible. In the example above, this is definitely wrong. But if 
wrong information is included in the estimation process, who would be surprised if 
the result is wrong, too? 

The derived formulae can be used in two possible scenarios. The first is to 
restrict the fit to regions where these systematic deviations can be neglected. In this 
case we work on solid ground, because all the assumptions are fulfilled. The 
second possibility is to include this wrong information, and to calculate additional 
resulting systematic errors. 

In this work an approximation to the first scenario is used. One point is that 
this scenario is the more honest one, because it points out that the models are able 
to describe parts of the distributions, while they fail to describe every details of 
hadronic events. In addition the calculation of the systematic errors from imperfect 
descriptions cause some rather serious technical problems. 

We can for example calculate a systematic error for each of the parameters 
by making a loop over all possible sets of distributions and by comparing the 
results. This is not trivial because if we take all possible sets of distributions we 
should in principle perform a loop over all different combination of bins which 
require a lot of computing time. Even if we restrict ourselves to all possible 
combinations of different distributions, their total number is still too large to go 
through the full loop. 

To avoid this problem one could argue, that the main deviation will come 
from the fits to single distributions. If more than one distribution is used in the fit, 
the result will always be a compromise between fits to single distributions. 
Therefore it should be possible to calculate the maximum deviation by looping 
over all distributions, and by performing a fit to each of them (if this is possible, i.e. 
if the number of bins is bigger then the number of free parameters) and calculate a 
systematic error by comparing the result of these fits. Even in this case serious 
problems remain. The size of the calculated errors will differ if different numbers of 
parameters are used in the fits. In addition, it will not be possible to perform all 
these fits by using only one linear parametrization, because the results will in 
general lie outside the linear range. That means if we try to perform such a 
calculation of systematic errors of the model parameters, we have the choice to 
use higher order parametrisations, or to calculate unserious results. 
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Handling of systematic errors 

Because of all these difficulties ansmg in the calculation of systematic 
parameter errors, we restrict the analysis to a ''fitable region''. A fitable region is a 
set of bins where all the assumptions introduced while deriving the formulas that 
were used in the fitting procedure are fulfilled. Especially the deviation between 
data and model predictions should not be much bigger than the given errors. The 
remaining problem is to find a good approximation of this fitable region. In this 
work we use two possibilities to choose a candidate for a the fitable region. Both 
are based on major deviations from optimal values of test quantities computed in 
global fits, and both lead to very similar sets of bins. Nevertheless both are 
approximations, and the need for a systematic error of the fitted parameters due 
to these approximations is given. Even if they exist, the systematic errors of the 
parameters due to an imperfect candidate of the fitable region will be much 
smaller than for the previous discussed case, and therefore a calculation makes 
sense even if only the linear parametrization is used. 

A fit to all bins of a given set of distributions was done to get a first candidate 
for a fitable region. All bins where the deviation between data and the model 
prediction exceeds 2.3 times the error of the measurement were rejected7. Then, a 
fit is done using all remaining bins, and the results are taken as the "best fit 

parameter values" (''s-fit'). A second candidate is obtained by performing a series 
of fits. Starting from the same global fit as in the first case, only the bin with the 
worst (that means biggest) contribution to the test quantity is rejected, and the 
whole procedure is repeated with all remaining bins. The iteration is stopped as 
soon as the worst contribution mentioned above is less than (2.3)2 (or again the 
deviation between model and data exceeds 2.3 times the expected error). All the 
bins that pass this series of fits without rejection define the second candidate for an 
approximately fitable region, and the differences between the parameter values 
fitted to this second set of bins and the parameters derived from the first set are 
taken as a systematic errors. 

7 The value 2.3 is taken, because it leads to a test quantity of rt/nfir = 1, if all nfir bins used in the 

fit are taken into account. 
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6.5. Additional Tests of LinFit 

6.5.1. Principle 

All the tests in this section are done with the QCD-model JETSET 7 4 in the 
version of isotropic decaying gluons. Analogous results are expected for the other 
variant of JETSET, and for ARIADNE, because of their similarities. The fitting of 
HERWIG was not tested separately. A set of parameter values p0 was chosen to 
generate test distributions with a statistics sdar· Because of that, "experimental" 
distributions were known together with the corresponding values of the 
parameters of the optimal model. The interesting question dealt with the 
conditions under which LinFit is able to reproduce these data within the calculated 
errors. 

A test of this type can not be a proof of the correctness of the algorithm, but 
it is an impressive check. Even if it is impossible to make a proof of the correctness 
using only a few examples, these examples are able to exclude false assumptions, 
as for example the naive ansatz for including the parametrization width in the 
estimation function (5.5) 

6.5.2. Test at high simulation statistics 

High simulation statistics means that this statistics is high compared to the 
data statistics. For example in the case of our measurements the statistics of the 
simulation was ssim: = 5 · 105 (and therefore s~m: = 2·106 in the expansion point) 
while it was sd.,:= 571825 for the data. The former is available at every point in the 
parameter space (except the expansion point) that is taken into account, and used 
to do the parametrization. Because of that one could expect, that the widths of the 
parametrization can be neglected, and the simple estimation function (5.4) is 
enough. This expectation is to be tested here. 

To avoid complications due to improper parametri~ations, the set of 
parameters p0 that is used to generate the test distributions is used as the 
expansion point. To get a situation that is similar to the real analysis, the following 
statistics were usedB: 

8 In fact, the data errors also have a contribution from the correction procedure. 
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Additional Tests of LinFit 

We especially point out that we only use statistical widths here, and that in 
the real estimation process also systematic errors appear. The next section 
illustrates the fact, that a usage of the simplified estimation function (5.4) leads to 
satisfactory results even in the case of vanishing systematic errors. 

6.5.2.1. Fit under measurement conditions 

In this section we perform a check to see if the simplified estimation function 
(5.4) can be used to fit the models in the case of our analysis, or if the widths of 
the parametrization have to be taken into account. For that reason, all parameters 
that were used in the model tuning of JETSET were tuned to the same set of 
distributions as in the model tuning to real data. In the following tables we 
compare the results of both estimation procedures. 

distribution 2 2 
nbin X-sim X+sim distribution 2 2 

nbin X-sim X+~im 

s 23 21.0 16.2 
K•O 

xP 8 9.3 7.2 
A 16 21.5 16.6 'I'' xP 8 4.8 3.7 

1-T 21 155 11.9 
ro' xP 6 9.1 7.0 

m 18 150 11.6 U2) 1 1.6 1.2 
-Jn(yJ 14 23.1 17.8 Uo) 1 0.0 0.0 

xP <0.02 8 18.5 14.7 -ln(x~} 22 251 19.3 
xi' >0.02 38 49.7 38.5 (2-) 1 0.3 0.2 

p;IUt (S) 19 16.6 13.5 (:E(J385)±) 1 0.1 0.1 
p:n(s) 25 32.9 26.5 (~r) 1 0.0 0.0 
-ln(x:0

) 28 42.1 32.3 (:=:(1530)0
) 1 1.1 0.9 

x~ 18 17.1 13.2 -ln(x:·) < 0.018 11 16.4 12.6 ,,. 
x,,. 9 11.4 8.8 -ln(x:· )>0.07 18 13.4 10.3 

p' xP 8 12.2 9.4 -ln(x~·P>) <0.018 6 9.9 7.6 
(K•+) 1 0.2 0.1 -ln(x~·I») > 0.07 18 6.0 4.6 

sum 339 393.9 30589 

Table 6.10: Test quantities for the first fit under measurement conditions 
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Test at high simulation statistics 

The last table was split up into two parts in order to save space. Even if the 
test quantities are bigger if parametrization errors are ignored, they fall into a 
region as expected and can therefore be used to establish the quality of the fit. In 
the table 6.11 the tuned parameter values are given together with the set of 
parameters p0

• In this fit, we fixed the following parameters: a:=0.4, Ec:=-0.04, 

Eh:= -0. 0035, ~~;1 : = 0. 65, Pf:i~1=2 : = 0. 2 and rt' : = 0. 25. These values are used in 
the generation of test distributions. 

Par. Vo with oar without oar 
£p f:,.p £p f:,.p 

A 0.30 0.0010 -0.0003 0.0008 -0.0004 

'2o 1.40 0.0096 -0.0036 0.0086 -0.0038 

Ys 0.30 0.0005 -0.0007 0.0004 -0.0007 
pS=l 

ud 0.55 0.0010 0.0008 0.0009 0.0008 
pS=l 
s 0.50 0.0009 0.0013 0.0008 0.0013 

qq/q 0.10 0.0003 -0.0003 0.0003 -0.0003 

(su)/(du) 0.60 0.0051 0.0000 0.0045 0.0000 
(j 

0.36 0.0005 0.0004 0.0005 0.0004 

b 0.90 0.0039 0.0015 0.0036 0.0014 

bl 0.6 0.0050 0.0044 0.0044 0.0044 

Table 6.11: Estimated parameter values 

A first indication that shows that both of them produce good estimates is the 
fact, that none of the linear ranges was exceeded, even if we used n=0.01. In 
table 6.11, "with par" means that the errors of the parametrization are included in 
the estimation, while they are neglected in the column "without par". £ P is the 
error that is calculated by the second derivatives of the estimation function, and 
f:t.P:= pfi' - p0 is (again) the deviation of the fitted value from the nominal value. 

In none of the presented estimations, the fitted value differs by more than 
two sigmas from the nominal value p 0

, even in the case of the simple estimation 
function. If we include the systematic errors in this function, the error of the 
parametrization relative to the error of the measurement decreases again, and the 
accuracy of the approximation by the simple estimation function should increase. 
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Additional Tests of LinFit 

Remark about correlations and choice of distributions: It is clear, that every 
available piece of information should be used in a fit. Therefore one should expect 
all the available distributions in the table above. We do not use all of these 
distributions, because some of them are highly correlated, and we did not include 
correlations between bins of different distributions in the estimation function. 

What will happen if correlated distributions are included? This can be seen 
most impressively in the case of identical (and therefore maximally correlated) 
distributions. If we include a distribution twice, it is the same as if we reduce the 
error used in the estimation function by a factor of 1/ ,,ff,. In other words: If we use 
correlated distributions in the fit, we possibly underestimate the parameter errors. 

Since the distributions used in this fit led to a good estimation of the nominal 
parameter values, the correlations for this set of distributions should indeed be 
negligible. The same can be said about the correlation between bins. This should 
also be true for single particle distributions because they were also used in the 
previous fit. 

Conclusion: Both estimation functions produce satisfactory estimates in the 
case that we are using for the measurement, and we can therefore use the 
simpler one, especially because an inclusion of the systematic errors of the 
measurements will make the difference between the predictions even smaller. 
It seems also to be a good approximation if we neglect bin correlations and 
correlations between different distributions for the set of distributions used in 
this section. 
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6.5.3. Test at high data statistics 

This test is done in a way that is similar to the previous section. The 
following values were used to increase the widths of the parametrization: 

The fit results are given in the following tables. The distributions of table 
6.13, together with the multiplicities of table 6.10 were use to perform these fits. 
We also tried a fit by using the naive generalization of the estimation function 
(5.5), but this estimation failed totally. (For example one value was qq/q = 56. 7). 

Par. Do without var with var 
EP AP EP AP 

A 0.30 0.0005 -0.0019 0.0023 -0.0021 

~ 1.40 0.0033 -0.0025 0.0185 -0.0023 

Ys 0.30 0.0002 0.0015 0.0010 0.0016 
pS=l 

u,d 0.55 0.0005 0.0029 0.0024 0.0032 
pS=I 

" 0.50 0.0005 0.0018 0.0022 0.0017 
pS=l 

c,d 0.65 0.0017 -0.0040 0.0085 -0.0054 
P.S=I 

L=IAJ=2 0.20 0.0003 -0.0004 0.0013 -0.0004 
qq/q 0.10 0.0001 -0.0004 0.0006 -0.0004 

(su)/(du) 0.60 0.0024 -0.0024 0.0118 -0.0030 
(j 

0.36 0.0003 0.0006 0.0013 0.0008 
a 0.40 0.0017 0.0033 0.0083 0.0027 
b 0.90 0.0020 -0.0090 0.0101 -0.0107 

EC -0.04 0.0003 0.0006 0.0013 0.0008 
Eb - 0.0000 0.0000 0.0002 0.0000 
bl 0.6 0.0025 0.0176 0.0123 0.0195 
rf 0.25 0.0008 -0.0071 0.0043 -0.0073 

Table 6.12: Some fitting results 

All deviations bigger the three sigmas are typed in bold letters in the table 
above. We can see, that the simple estimation is invalid in the case of non­
negligible parametrization widths, and that the estimation function (5.6) seems to 
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Additional Tests of LinFit 

be a good candidate for a generalization. For all three estimation procedures, the 
values of the test quantities are provided in the following table. Only the test 
quantities for the distributions were listed in order to save space, while the test 
quantities of the multiplicities were included in the final summation. In the case of 
neglecting the parametrization errors, the values of the test quantity are much too 
big, and clearly indicate, that something did not work. It is remarkable that the test 
quantities for the naive generalization (5.5) are not too bad, even if the estimation 

failed. 

Name Bins 
2 

Xwithout var 
2 

Xnaive 
2 

Xwith var 

s 23 452.9 13.6 20.4 

A 16 202.9 9.5 9.7 

1-T 21 715.2 14.8 33.1 

xP, (x < 0.02) 8 103.4 9.1 5.5 

xP, (x > 0.02) 38 696.2 30.2 33.9 
p;'ur(S) 19 304.4 14.5 17.6 
+ 

-In It-

xn , (x < 0.018) 16 568.3 13.6 26.6 
+ 

-In It-

xv , (x>0.045) 23 475.1 13.1 21.9 

-In(x:
0

) 28 663.9 13.9 32.0 

-In K± 
xn , (x < 0.018) 11 234.4 9.4 11.4 

-In 
K± 

xn , (x>0.070) 18 328.5 11.6 15.4 

-In(x~·l'l , (x < 0.018) 6 49.7 2.4 2.4 

-ln(x~·l'l), (x>0.070) 18 653.9 9.0 30.8 

x:es /nbin 258 5634.0/258 177.5/258 269.9/258 

Table 6.13: Test quantities for all three estimation procedures 

Conclusion: If the widths of the parametrization are not negligible, the 
estimation function (5.6) remains as a candidate for a generalized estimation 
function. The simple estimation function (5.4) and the obvious generalization 
(5.5) fail 
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Chapter 7. 

Results II: Tuned models 
and comparison between models and data 

7 .1. Abstract 

In section 1.2, all model parameters that were calculated with the fitting 
algorithm LinFit are presented together with the values of the expansion point and 
the default values. In addition a factor that marks the distance between this 
expansion point and the result of the fit in units of a linear range defined with 
n:=0.1 for JETSETand ARIADNE, and n:=O.Sfor HERWIG is given. 

Some of the model parameters were set to values that differed from their 
default values. These non-default values are discussed in chapter 2, and they are 
also listed here to give a better overview. The test quantities for all distributions 
used in the fit are given both for the "maximum fitable region" defined by one 
global fit and for the whole distributions. The latter strongly indicate distributions 
where the models describe the data weil, and regions, where the description fails. 

Section 1.3 shows some graphical impressions. Here the models are 
compared with the measurement in a graphical way. In this section details about 
the quality of the models or about the problems they have in describing the data 
can be seen. 
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Model parameters and test quantities 

7 .2. Model parameters and test quantities 

7 .2 .1. JETSET 7. 4 with anisotropic gluon decay 

Even if the linear range with n=0.1 is exceeded in some cases, the average 
value of the deviation of the fit result in units of the linear range is 0. 72 which we 
take as a sign, that the result can be trusted. The deviation between fitted values 
and the expansion point in units of the linear range is denoted by 

fit 0 
!Ii":= p -p 

11/ill 

where l1u
11 

is the width of the linear range. /).p1 is the distance from the expansion 
point to the lower (left) end of the parametrized range, while /).pr is the same for 
the upper (right) end. llpsys: = pf1 - P.f1 is the deviation between the estimations 
found in the fits to the different candidates for a fitable range (s marks the 
candidate found by a single fit, and i is used for the candidate found by iteration). 

name pdefau/t /¥J1 po /).pr pfil llpfil /).psys J/in 

A 0.29GeV 0.050 0.291 0.050 0.299 0.003 -0.011 1.07 

Ou l.OGeV 0.400 1.520 0.400 1.560 0.050 0.018 0.55 

(j 0.36GeV 0.050 0.370 0.050 0.381 0.002 0.010 1.66 

a 0.3 0.400 0.400 fixed 
b 0.58GeV2 0.150 0.805 0.150 0.808 0.014 0.004 0.17 

EC 0.05 0.040 0.040 fixed 
Eh 0.005 0.004 0.004 fixed 

pS=I 
ud 0.5 0.150 0.558 0.150 0.534 0.019 0.049 1.21 

pS=I 
s 0.6 0.150 0.466 0.150 0.473 0.021 0.086 0.26 

pS=I 
cb 0.75 0.650 0.650 fixed 

pS=I 
L=IA1=2 0.0 0.200 0.200 fixed 

T\' 0.4 0.275 0.275 fixed 

Ys 0.3 0.050 0.287 0.050 0.292 0.004 0.012 0.74 
qq/q 0.1 0.030 0.107 0.030 0.106 0.002 0.003 0.28 

(su)/(du) 0.3 0.300 0.679 0.300 0.659 0.042 -0.063 0.44 

bl 1.0 0.400 0.564 0.400 0.622 0.029 -0.011 0.84 

Table 7.1: Results from lJnAt 
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JETSET 7.4 with anisotropic gluon decay 

I dd•t• d nS=l nS=l nS=l 5 3 1 d nS=O nS=l Th n a I ion we use .r L=1/\1=2: 'L=1/\1=1: .r L=1/\1=0 = : : an 'L=1 = .r L=1/\1=1 • e 
test quantities corresponding to the parameter values above are listed in the next 

table. Tl.fir does only include the n~1ns bins of the fitable region defined by a single 

global fit, while Tlau includes all nbins bins of a given distribution. The former values 

are given only for the distributions used in the fit, while the latter were calculated 

for other interesting distributions as well. 

distribution nbins nbins 
fit Tlau 11.fir distribution nbins 1'1a11 

s 23 21 23.66 13.1 p 21 36.6 

A 16 9 113.0 29.8 c 24 32.2 

1-T 21 19 26.5 17.9 M 22 39.8 

m 18 14 101.9 24.2 0 20 158.8 
-ln(y3 ) 14 13 17.0 9.2 M1 

h 
21 15.9 

xi'< 0.02 8 3 210.6 10.4 Br 17 12.1 
xi' >0.02 38 30 124.9 30.3 Bw 17 18.4 

p;ur (S) 19 5 882.2 16.4 -ln(xP) 52 556.2 

p;" (S) 25 12 311.8 16.8 p;w (T) 19 964.8 
-ln(xP),K0 28 28 25.7 25.7 Pt(T) 25 164.7 

XE, 11 18 14 62.8 14.9 Yr 21 53.0 

XE, 11
1 9 9 7.2 7.2 (Ko) 1 0.5 

xP,p 
0 8 7 7.4 4.0 p

1
(T),K0 25 90.5 

(K*+) 1 1 0.1 0.1 x,..,D *± 15 21.5 

xP, K'o 8 7 12.1 6.5 (A) 1 0.1 

XP,<p 
0 8 3 47.8 3.6 p

1
(T),A 25 60.4 

XP,<0 
0 6 4 41.0 2.7 -ln(xP), 1t•(x < 0.018) 16 116.5 

U2) 1 1 0.2 1.2 - ln(xP ), 1t±(x > 0.07) 23 3.6 

Uo) 1 0 17.4 
-ln(xP),A 22 20 34.8 12.2 

(::::-) 1 0 5.6 
(i:(l 385)±) 1 1 0.1 0.1 

(~r) 1 1 0.5 0.5 

(::::(1530)0
) 1 1 0.9 0.9 

-ln(xP), K•(x < 0.018) 11 11 4.0 4.0 
-ln(xP), K±(x > 0.07) 18 17 26.2 20.4 

-ln(x.),(p,p)(x < 0.018) 6 6 1.1 1.1 
-ln(x,),(p,p)(x > 0.07) 18 18 17.1 17.1 

sum 349 275 289.1 

Table 7.2: Test quantities corresponding to best fit parameters found by LinFit 
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Model parameters and test quantities 

In the next two tables, bins that were used in both fits are marked by an "x". 
All the bins removed from the candidate for a "fitable region" as defined by a 
single global fit are signed by an ''S''. The bins which are rejected by the iterative 

sequence of fits are signed by an ''/''. 

1 2 3 4 5 6 7 8 9 10 11 12 

s x s x x x x x x x x s x 
A x x I S,J S,J x x I S,J S,J S,I S,I 

1-T x x S,J x x x x x s x x x 
m x x x x I x x x x I S,J S,J 

-ln(yJ x x x x x x x x x s x x 
xr <0.02 x S,J S,J S,J S,J S,J I x 
xP >0.02 x x x x x x x s x x x x 

x x x x x x x S,J S,J x 
p;'w (S) S,J I S,J x S,J S,J x x S,J S,J S,I S,I 
p;" (S) S,J S,J S,J S,J x S,J S,I S,J S,J S,J S,I S,J 

-ln(xP),K0 
x x x x x x x x x x x x 

XE, T} s x x x I x x x x x I x 
XE, T}' x x x x x x x x x 
x Po p' x x x x x x x s 
(r+) x 

XP, 
K•O x x x x s x x I 

0 s S,J xP,<p x s s s x I 
0 

XP,(l) x x x x S,I S,J 
U2) x 
Uo) S,J 

-ln(xP),A x S,J S,I x x x x x x x x x 
(:=:-) S,J 

(:E(l385l) x 
(~r) x 

(:::(1530)
0

) x 
-In(xP),K'(x < 0.018) x x x x x x x x x x x 
-ln(xP),K'(x > 0.07) x x x x x x x x x x x x 

-ln(xP),(p,p)(x < 0.018) x x x x x x 
-ln(xP),(p, p)(x > 0.07) x x x x x x x x x x x x 

Table 7.3: Accepted bins in the "fitable range" (first part) 
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x x 
S,J I 
I x 

S,J S,I 
x x 

x x 

S,J S,J 
S,J s 
x x 
s x 

x x 

x x 

x x 



JETSET 7.4 with anisotropic gluon decay 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

x x x x x x x x x 5 
I x A 

x x x x x x x 1-T 

I x x x m 
-ln(yJ 

xP <0.02 

x x x 5 5,1 x 5,1 5 5 x x x x x xP > 0.02 

5,1 5,1 5,1 5,1 I p;"" (S) 

x x x x x x x x x x x p;"(S) 

x x x x x x x x x x x x x x -ln(xP),K 0 

x x 5,1 5,1 XE, 'fl 

XE, fl' 
x Po 

p' 

(K'+) 
XP, K'o 

xP,<p 
0 

x,,,co 0 

(/2) 
Vo) 

x x x x x x x x -ln(xP),A 

(:::-) 
(l:(1385?) 

(~r) 

(:::(1530)0
) 

-In(xP), K'(x <0.018) 

5,1 x x x -ln(xP),K±(x > 0.07) 

-ln(xP),(p,p)(x < 0.018) 

x x x I - ln(xP),(p, p)(x > 0.07) 

Table 7.4: Accepted bins in the "fitable range" (second part) 
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Model parameters and test quantities 

7 .2 .2. JETSET 7. 4 with isotropic gluon decay 

The average value of the deviation of the fit result in units of the linear range 
is 1.17which we take as a sign that the result can be trusted. Again we calculated 

fit 0 
Jlin:= p -p 

/:ilin 

where liun is the width of the linear range. /),p1 is the distance from the expansion 
point to the lower (left) end of the parametrized range, while llp, is the same for 
the upper (right) end. llp"JS: = pf1 - p.f1 is the deviation between the estimations 
found in the fits to the different candidates for a fitable range (s marks the 
candidate found by a single fit, and i is used for the candidate found by iteration). 

name pdefault /),pl po llp, pfit /),pfit /),p.\')'S Jlin 

A 0.29GeV 0.050 0.315 0.050 0.324 0.003 -0.009 1.06 

Oo l.OGeV 0.400 1.482 0.400 1.487 0.040 -0.020 0.06 
a 

0.36GeV 0.040 0.364 0.040 0.373 0.002 0.009 1.36 

a 0.3 0.400 0.400 fixed 
b 0.58GeV2 0.100 0.895 0.100 0.931 0.014 -0.007 2.17 

EC 0.05 0.040 0.040 fixed 
Eb 0.005 0.004 0.004 fixed 

pS=I 
ud 0.5 0.100 0.519 0.100 0.564 0.015 0.006 2.39 

pS=I 
s 0.6 0.100 0511 0.100 0.474 0.018 0.028 1.88 

pS=l 
c.b 0.75 0.650 0.650 fixed 

pS=I 
L=lr.1=2 0.0 0.200 0.200 fixed 

11' 0.4 0.250 0.250 fixed 
Ys 0.3 0.050 0.288 0.050 0.292 0.004 0.005 0.54 

qq/q 0.1 0.025 0.108 0.025 0.109 0.002 0.001 0.23 
(su)/(du) 0.3 0.200 0.686 0.200 0.652 0.035 -0.005 0.92 

bl 1.0 0.300 0.528 0.300 0.592 0.027 0.002 1.15 

Table 7.5: Results from LinAt 

I dd•t• d nS=I nS=I nS=l 5 3 1 d nS=O nS=l Th n a i1on we use .rL=1r.1=2:.rL=1r.1=1:.rL=1r.1=0=:: an .rL=I =.ri=1r.1=1· e 
test quantities corresponding to the parameter values above are listed in the next 
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JETSET 7.4 with isotropic gluon decay 

table. Tl.fit does only include the n7,tns bins of the fitable region defined by a single 

global fit, while Tlau includes all nbins bins of a given distribution. The former values 

are given ony for the distributins used in the fit, while the latter were calculated for 

other interesting distributions as well. 

distribution nbins nbins 
'fit Tlau Tl fit distribution nbins Tlau 

s 23 22 12.0 9.0 p 21 31.0 

A 16 14 51.4 36.5 c 24 43.1 

1-T 21 18 61.2 23.9 M 22 41.8 

m 18 16 41.3 23.3 0 20 125.9 
-ln(y3 ) 14 14 15.4 15.4 M2 

h 21 30.8 

xP <0.02 8 3 182.5 9.2 Bt 17 17.9 

xP >0.02 38 31 86.5 27.2 Bw 17 36.7 

P,OUI (S) 19 5 676.9 19.2 -ln(xP) 52 485.1 

P:n(s) 25 13 217.1 11.5 p;w(T) 19 771.5 

-ln(xP),K 0 28 27 26.2 21.0 p:n(T) 25 139.8 

XE, 11 18 15 50.0 21.5 YT 21 54.3 

XE, 11
1 9 9 6.3 6.3 (Ko) 1 0.5 

x,,,p 0 8 8 5.3 5.3 p,(T),K0 25 94.8 
(r+) 1 1 0.1 0.1 x,.,D *± 15 22.4 

x,,, K'O 8 7 12.3 6.8 (A) 1 0.0 

x,,,<p 0 8 3 52.1 3.5 Pt(T),A 25 75.3 

xP, coo 6 4 47.3 3.3 -ln(xP), 1t•(x < 0. 018) 16 107.7 

U2) 1 1 0.1 0.1 -ln(xP), 1t±(x > 0.07) 23 3.9 

Uo) 1 0 16.5 
-ln(xP),A 22 20 38.5 11.3 

/-::-\ 
\- I 1 0 5.0 

(:E(l385)±) 1 1 0.1 0.1 
(n-) 1 1 0.6 0.6 

(::::(1530)0
) 1 1 0.9 0.9 

-ln(xP), K±(x < 0.018) 11 11 3.7 3.7 
-ln(xP), K±(x > 0.07) 18 18 24.6 24.6 
-ln(xP),(p,p)(x < 0.018) 6 6 2.8 2.8 
-ln(xP).(p, p)(x > 0.07) 18 17 18.1 10.9 

sum 349 286 297.9 

Table 7.6: Test quantities corresponding to best fit parameters found by LJnFit 

171 



Model parameters and test quantities 

In the next two tables, bins that were used in both fits are marked by an "x". 
All the bins removed from the candidate for a "fitable region" as defined by a 
single global fit are signed by an ''S': The bins which are rejected by the iterative 

sequence of fits are signed by an ''!': 

1 2 3 4 5 6 7 8 9 10 11 12 

s x s x x x x x x x x x x 
A x x x x x x x x I I S,l x 

1-T x S,J S,J x x x x x S,J x x x 
m x x x x x x x x x x I S,J 

-ln(yJ x x x x x x x x x x x x 
xr <0.02 x S,J S,J S,J S,I S,J I x 
xr >0.02 x x x x x x x s x x x x 

x x x x x x x S,I S,I x 
p:"' (S) S,J I I x S,J S,J I x S,J S,J S,J S,J 
p;" (S) S,J S,J S,I S,J x S,J S,J S.I S,I S,J S,J s 

-ln(xµ},K 0 

x x x x x x x x x x x x 
XE, T\ s x x x I x x x x x x x 
XE, T\' x x x x x x x x x 

0 
xP,p x x x x x x x x 
(r+) x 

XP, K•O x x x x s x x x 
x <Po 

p' x s s s s x x S,J 
0 

x" 'w x x x x S,J S,J 
Uz) x 
Uo) SJ 

-ln(xP),A x S,J S,J x x x x x x x x x 
(:::-) S,J 

(:E(l385)±) x 
(~r) x 

(:=:(1530)
0

) x 
-ln(xP), K'(x <0.018) x x x x x x x x x x x 
-In(xP), K'(x > 0.07) x x x x x x x x x x x x 

-In(xP ),(p,p)(x < 0.018) x x x x x x 
-ln(xP ),(p, p)(x > 0.07) x x x x x x x x x x x x 

Table 7. 7: Accepted bins in the "fitable range" (first part) 
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JETSET 7.4 with isotropic gluon decay 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

x x x x x x x x x 5 

x x A 

x x x x x x x 1-T 

x x x x m 
-ln(yJ 

xP <0.02 

x x x x s x s S,J s x x x x x xi' >0.02 

5,1 5,1 S,J S,J S,J p;'"' (S) 

x x x x x x x x x x x p;" (S) 

x x x x x x x x x s x x x x -ln(xP),K 0 

x x S,J S,I XE, 'fl 

XE, 'fl' 

xP,p 
0 

(K•+) 

xP, K'O 

xP,<p 
0 

' 0 x,,, (J) 

(/2) 
(fci) 

x x x x x x x x -ln(xP),A 

(:::-) 
(:E(l 385)') 

(~r) 

(:::(1530)0
) 

-ln(xP), K'(x < 0.018) 

x x x x -ln(xP),K•(x > 0.07) 

-ln(xP),(p,p)(x < 0.018) 

x x x S,J -ln(xJ(p, p)(x > 0.07) 

Table 7.8: Accepted bins in the "fitable range" (second part) 
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Model parameters and test quantities 

7.2.3. ARIADNE 4.05 

The average value of the deviation of the fit result in units of the linear range 
is 0. 78which we take as a sign that the result can be trusted. Again we caluculated 

fit 0 
fin:= P -p 

/::,./in 

where l:!i.un is the width of the linear range. D.p1 is the distance from the expanion 
point to the lower (left) end of the parametrized range, while D.p, is the same for 
the upper (right) end. D.psys: = pf' - p.f1 is the deviation between the estimations 
found in the fits to the different candidates for a fitable range (s marks the 
candidate found by a single fit, and i is used for the candidate found by iteration). 

name pdefaulr D.p, po D.p, pfit D.pfil D.psys Jlin 

A 0.22GeV 0.050 0.228 0.050 0.241 0.002 -0.009 1.80 
Prmin 0.60GeV 0.000 0.749 0.300 0.754 0.024 -0.065 0.19 
() 

0.36GeV 0.060 0.359 0.060 0.362 0.003 0.011 0.51 
a 0.3 0.400 0.400 fixed 
b 0.58GeV2 0.150 0.831 0.150 0.861 0.016 0.036 1.73 

EC 0.05 0.040 0.040 fixed 
Eb 0.005 0.004 0.004 fixed 

pS=I 
ud 0.5 0.100 0.566 0.100 0.540 0.018 0.034 1.49 

pS=I 
s 0.6 0.100 0.468 0.100 0.464 0.019 0.060 0.20 

pS=I 
c.b 0.75 0.650 0.650 fixed 

pS=I 
L=IA1=2 0.0 0.200 0.200 fixed 

11' 0.4 0.286 0.286 fixed 
Ys 0.3 0.050 0.286 0.050 0.287 0.004 0.012 0.20 

qq/q 0.1 0.040 0.114 0.040 0.113 0.002 0.003 0.19 
(su)/(du) 0.3 0.300 0.658 0.300 0.636 0.041 -0.049 0.52 

b, 1.0 0.400 0.515 0.400 0.581 0.027 -0.014 0.98 

Table 7.9: Results from LinFit 

In addit1·on we used ps=i • ps=i · ps=i - 5· 3· I and ps=o ps=1 The 
L=IA1=2. L=IAJ=I · L=IAl=O - · · L=I = L=IAJ=I · 

test quantities corresponding to the parameter values above are listed in the next 
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ARIADNE 4.05 

table. llfir does only include the n~1ns bins of the fitable region defined by a single 

global fit, while 11011 includes all nbins bins of a given distribution. The former values 

are given ony for the distributins used in the fit, while the latter were calculated for 

other interesting distributions as well. 

distribution nbins bins 
nfi, llau llfit distribution nbins llau 

s 23 20 44.1 16.5 p 21 29.8 

A 16 16 23.0 23.0 c 24 19.9 

1-T 21 21 14.8 14.8 M 22 48.0 

m 18 18 30.1 30.1 0 20 91.8 
-ln(yJ 14 14 9.8 9.8 Mz 

h 
21 22.6 

xP <0.02 8 2 242.9 9.0 Br 17 18.1 
xP >0.02 38 29 88.1 31.4 B,," 17 6.2 

p;mr (S) 19 5 489.7 12.4 -ln(xP) 52 605.8 
p;n (S) 25 13 292.6 18.2 p;w(T) 19 533.9 

-ln(xP),K0 28 28 20.4 20.4 p~(T) 25 182.9 

XE, Tl 18 15 53.5 16.2 YT 21 49.1 

XE, 111 9 8 9.0 4.5 (Ko) 1 0.5 

x,,,p 0 8 7 7.7 3.5 p
1
(T),K0 25 77.3 

(K'+) 1 1 0.0 0.0 x,,,D *± 15 23.4 
x K*0 

P' 8 7 12.8 6.3 (A) 1 0.1 

x,,,cp 0 8 3 48.2 4.0 p
1
(T),A 25 64.8 

x,,,co 0 6 4 38.7 2.3 - ln(xP)' 7t'(x < 0. 018) 16 128.5 

U2) 1 1 0.2 0.2 - ln(xP ), 7t±(x > 0.07) 23 5.8 

Uo) 1 0 17.3 
-ln(xP),A 22 20 42.0 17.6 

(:::-) 1 0 3.9 
(1:(1385)±) 1 1 0.1 0.1 

(~r) 1 1 0.2 0.2 
(:::(1530)0

) 1 1 1.5 1.5 
-ln(xP),K'(x <0.018) 11 11 8.5 8.5 
-ln(xP), K±(x > 0.07) 18 17 23.4 18.3 
-ln(x,),(p,p)(x < 0.018) 6 6 1.1 1.1 
-ln(xP),(p, p)(x > 0.07) 18 17 16.9 10.8 

sum 349 286 280.1 

Table 7.10: Test quantities corresponding to best fit parameters found by LinAt 
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Model parameters and test quantities 

In the next two tables, bins that were used in both fits are marked by an "x ". 
All the bins removed from the candidate for a "fitable region" as defined by a 
single global fit are signed by an ''S'~ The bins which are rejected by the iterative 
sequence of fits are signed by an '7'~ 

1 2 3 4 5 6 7 8 9 10 11 12 

s x s s S,J x x x x x x x x 
A x x x x x x x x I I x x 

1-T x x x x x x x x x x x x 
m x x x x x x x x x I I I 

-ln(yJ x x x x x x x x x I x x 
xP <0.02 x S,J S,J S,J S,J S,J I s 
x,, > 0.02 x x s s x x x s x x x x 

x x x x x x x x s x 
p;>Ut (S) S,J I S,J x S,I S,I x x S,J S,I S,J S,! 
p;n (S) S,J S,J S,J S,J x S,J SJ S,I S,J S,J S,I s 

-ln(xP),K0 

x x x x x x x x x x x x 
XE, 11 s x x x x x x x x x x x 
XE, 11' x x x s x x x x x 

0 XP,p x x x x x x x s 
(K'+) x 

xP, K'O x x x x s x x x 
0 

xP,<p x s s s s x I S,I 
0 XP,(l) x x x x S,I S,J 

(!2) x 
Uo) S,I 

-ln(xP),A x S,I S,I x x x x x x x x x 
(=.-) s 

(l:(l385?) x 
(~r) x 

(:::(1530)0
) x 

-ln(xP), K'(x < 0.018) x x x x x x x x x x x 
-ln(xP), K±(x > 0.07) x x x x x x x x x x x x 

-ln(xP),(p,p)(x < 0.018) x x x x x x 
- ln(xP),(p, p)(x > 0.07) x x x x x x x x x x x x 

Table 7.11: Accepted bins in the "fitable range" (first part) 
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ARIADNE 4.05 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

x x x x x x x x x 5 

x x A 

x x x x x x x 1-T 

x x x x m 
-ln(yJ 

xP <0.02 

x x x s S,J x s s s x x x x x xP >0.02 

5,1 S,J S,I 5,1 x p;'"'(S) 

x x x x x x x x x x x p;n (S) 

x x x x x x x x x x x x x x -ln(xP),K0 

x x S,I S,J XE, Tl 

XE, Tl' 

x,,.p 0 

(K•+) 
x,,, K•O 

x,,,<p 0 

x mo p, 

(!2) 
Vo) 

x x x x x x x x -ln{xP),A 

(:::-) 
(:E(l385)±) 

(n-) 
(:::(1530)0

) 

-ln(xP), K'(x <0.018) 

s x x x -ln(xP)' K±(x > 0.07) 

-ln(xP),(p,p)(x < 0.018) 

x x x S,I -ln(xJ(p, p)(x > 0.07) 

Table 7.12: Accepted bins in the "fitable range" (second part) 
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Model parameters and test quantities 

7.2.4. HERWIG 5.8 

The average value of the deviation of the fit result in units of the linear range 
(n:=O.BJ is 0.53 which we take as a sign that the result can be trusted. Again we 
caluculated 

where 11un is the width of the linear range. !1p1 is the distance from the expanion 
point to the lower (left) end of the parametrized range, while ll.p, is the same for 
the upper (right) end. f}.psys: = pf1 - Pt is the deviation between the estimations 
found in the fits to the different candidates for a fitable range (s marks the 
candidate found by a single fit, and i is used for the candidate found by iteration). 

name pdejault 
!}.pl Po ll.p, pfit 11pfit f}.psys Jlin 

IAMQCD 0.18GeV 0.02 0.15 0.02 0.151 0.001 0.007 0.14 
RMASS(J3) 0.75GeV 0.00 0.65 0.20 0.684 0.006 -0.023 1.27 

CLMAX 3.35GeV 0.30 3.65 0.30 3.703 0.018 -0.066 0.55 
CLSMR 0.0 0.20 0.70 0.20 0.704 0.039 -0.126 0.06 
PWT(3) 1.0 0.20 0.80 0.20 0.830 0.014 0.069 0.61 

Table 7.13: Results from UnFit 

The test quantities corresponding to the parameter values above are listed in 

the next table. Tlfir does only include the n~1ns bins of the fitabie region defined by a 

single global fit, while Tlau includes all nbins bins of a given distribution. The former 

values are given ony for the distributins used in the fit, while the latter were 

calculated for other interesting distributions as well. 
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HERWIGS.8 

distribution nbins bins 
nn, 'Tlau 'Tl fit distribution nbins 11a11 

s 23 13 152.9 27.8 p 21 133.5 

A 16 11 114.1 17.8 c 24 67.5 

1-T 21 10 209.6 18.1 M 22 212.9 

m 18 10 251.0 15.6 0 20 83.7 

-ln(yJ 14 13 26.4 21.5 M1 
h 

21 45.4 

xP <0.02 8 5 91.2 15.4 B, 17 157.4 

xP >0.02 38 13 540.1 34.4 Bw 17 65.0 
p;u1 (S) 19 10 251.6 15.6 -ln(xP) 52 710.8 
p;n (S) 25 13 169.4 23.9 p;w(T) 19 417.6 

-ln(xP),K0 28 20 106.4 20.1 p;n(T) 25 148.2 

XE, Tl 18 16 41.4 23.4 YT 21 31.1 

XP,p 
0 8 7 8.4 3.1 (Ko) 1 0.0 

(r+) 1 1 0.0 0.0 XE, 11' 9 29.8 

xP, K•O 8 6 31.3 10.1 p,(T), K 0 25 726.6 

XP,<p 
0 8 4 51.4 7.6 x,..,D *± 15 41.9 

xP,ro 0 6 4 24.1 9.5 (A) 1 62.4 

U2> 1 1 0.0 0.0 -ln(xP),A 22 1790.2 
-ln(xP), K'(x < 0.018) 11 6 58.2 16.0 (:::-) 1 382.4 
-ln(xP),K±(x > 0.07) 18 10 89.0 22.6 p1(T),A 25 461.5 
-ln(x,),(p,p)(x <0.018) 6 6 3.9 3.9 (1:(1385)') 1 128.3 
-ln(x,),(p, p)(x > 0.07) 18 13 141.8 3.7 (n-) 1 1519.4 

(s(I530)0
) 1 1819.4 

-ln(xP ), 1t"(x < 0. 018) 16 40.1 
-ln(xP)' 1t•(x > 0.07) 23 18.0 

sum 313 192 310.2 

Table 7.14: Test quantities corresponding to best fit parameters found by LinAt 
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Model parameters and test quantities 

In the next two tables, bins that were used in both fits are marked by an "x". 
All the bins removed from the candidate for a "fitable region" as defined by a 
single global fit are signed by an ''S'~ The bins which are rejected by the iterative 
sequence of fits are signed by an "!': 

1 2 3 4 5 6 7 8 9 10 11 12 13 
s S,J x S,J S,I x s s s x s S,J x x 
A I S,J S,J I x S,J S,J S,J x x x x x 

1-T S,J S,J x S,J S,J S,J x x s x x x S,J 
m S,J S,J x S,J S,J S,J S,J x s s x x x 

-ln(y3 ) I x x s x x x x x x x x x 
xP <0.02 x S,J S,J x x x I S,J 
xP >0.02 S,J S,J S,J S,J S,J S,J I x x x S,J S,J S,J 

S,J x S,J x x s S,J s S,J S,J 
Prout (S) S,J x x x x x x x x x S,J S,J S,J 
p;n (S) S,J x x x s s x x I I S,J x x 

-ln(xP),K0 

x x x x x x s s S,J s x x x 
XE, fl S,J x I x x x x x x x S,J x x 

0 s xP,p x x x x x x x 
(K•+) x 

xP, K•O x x x x S,J S,J x x 
0 

S,J S,I S,J xP,<p x x S,J x x 
0 

S,I xP,ffi x x x x S,J 
-ln(xP), K'(x < 0.018) S,J S,J S,J I S,J I S,J I x x x 
-ln(xP),K±(x > 0.07) x x x x x x x x x x S,J S,J I S,J 
-ln(x,),(p,p)(x < 0.018) x x x x x x 
-ln(x,),(p. p)(x > 0.07) x x x x x x x x x x x x x 

Table 7.15: Accepted bins in the "fitable range" (first part) 
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HERWIG5.8 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

x x x x x x I S,J x s 
x x A 

x x x x S,J S,I S,J 1-T 

x x x x m 
-ln(y3 ) 

xP <0.02 

S,J S,J S,J S,J S,J x x x x S,J x S,J S,J x xP >0.02 

S,J S,I S,J S,J I p;w (S) 

x s x x S,J S,J S,J S,J S,J S,J x p;n(s) 

x x x x x x x I S,J S,J S,J S,J x x -ln(xP),K0 

x x x x XE, TJ 

xP,p 
0 

(K*+) 
xP, K*O 

xP,<p 
0 

xP' co 
0 

-ln(xP), K'(x <0.018) 

S,! S,! s s -ln(_,),K±(x> 0.07) 

-ln(x,),(p,p)(x < 0.018) 

s S,J S,J S,J -ln(xr),(p,p)(x > 0.07) 

Table 7.16: Accepted bins in the "fitable range" (second part) 
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7.3. Graphical comparison between tuned models and 
experimental data 

The aim of this section is to compare the predictions of the tuned models 
with the measured distributions listed in chapter 4. All the figures below are 
devided into two parts. The first part shows the shape of the measured distribution 
together with the prediction of the tuned models (calculated with a statistics of 
ssim = 2 · 106

), while the second part shows the deviation between the models and 
the data in units of the error of the measurement. The symbol Evis is used for the 
"visible energy" in an event, that means the sum of the energies of all charged 
particles f the final state. 
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Event properties 
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Graphical comparison between tuned models and experimental data 
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Event properties 
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Graphical comparison between tuned models and experimental data 

7.3.2. 
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Concluding remarks 

7 .4. Concluding remarks 

A test quantity based on the whole set of distributions listed in section 7.2 

leads to the following numbers: 

Model n Tlau Tlau/n 

JS 7.4azani 714 4469.2 6.26 

JS 7.4 aziso 714 3737.3 5.23 

Ariadne 4. OS 714 344-9.0 4.83 

Herwig SB 713 11455.3 16.07 

In this sense, ARIADNEis the best model, followed by JETSETwith isotropic 

gluon decay, JETSETwith anisotropic gluon decay and HERWIG. The large value 

of the HERWIG test quantity is mainly due to the strange baryon sector (c.f. table 

7 .12). Also for event properties, HERWIG has problems to describe the data, while 

the other models are in better agreement with the data (c.f. table 7.2, 7.6, 7.10 

and 7.12). 

It is worth noting, that the JETSET version with isotropic decaying gluons is 

in better agreement with the measured event properties, than the version with 

anisotropic gluon decay (c.f. tables 7.2 and 7.6). All the models have problems 
with the description of p;'u1 and p:n. Especially the distributions of p;mr show 

dramatic deviations from the data in the region above 1 Ge V up to 15 times the 

error of the measurement. The distribution of the normalized particle momentum 

is underestimated in the region of very low momenta (xP:::; 0.014 ). The description 

of (fo) seems to be impossible. Apart from this problem, multiplicities of identified 

hadrons are in good agreement with the model predictions of JETSET and 

ARIADNE 

An interesting quantity, that is not directly used in the fit, is the mean 

charged multiplicity. This quantity is for example measured_ in [A2,95] as 

( nc1,) = 20. 91±0. 22. By integrating any single particle distribution, the following 
values are obtained: 
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Model (n~,.) T\ 

JS 74azani 20.53 2.98 

JS 74aziso 20.59 2.12 

HerwigS.8 20.75 0.53 

Ariadne 4. 05 20.54- 2.83 

In the table above, also the test quantity 

is given. One can see, that all the models describe the charged multiplicity 
within two sigmas although systematically below the data. The description of 
HERWIG is the best. 

The next tables contain the correlation coefficients obtained from the matrix 
of second derivatives of the estimation functions used for parameter tuning. 
Because of the similarity of the models JETSET and ARIADNE only the 
correlation coefficients for JETSET with anisotropic decaying gluons and for 
HERWIG are given. 

A (2o (j b pS=l pS=l 'Y s qq/q su/du b, ud ' 

A 0.20 -0.60 0.48 0.02 -0.01 0.08 0.25 -0.15 -0.15 
(2o 0.12 -0.42 0.19 0.36 0.25 0.26 -0.23 -0.13 
(j -0.30 0.35 0.26 0.19 0.08 -0.03 0.00 
b 0.32 -0.05 -0.01 -0.10 0.18 0.01 

pS=l 
ud -0.11 0.28 0.43 -0.22 -0.14 

pS=I 
s 0.22 0.02 -0.05 0.01 
"fs 0.30 -0.61 -0.03 

qq/q -0.60 -0.51 
su/du -0.01 

bl 
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Concluding remarks 

LAMQCD RMASS(13 CLMAX CLSMR PWT(3) 

LAMQCD -0.25 -0.48 -0.42 -0.25 
RMASS(13 0.25 -0.06 0.39 

CLMAX 0.03 0.17 
CLSMR -0.10 
PWT(3) 

These tables show that correlations are in general not negligible. Because of 
that, one is forced to use multi parameter fitting procedures if estimations of the 
parameter values are to be calculated. Only if correlations can be neglected, an 
independent estimation of parameters is possible. 

To conclude, a comparison between fitted and default distributions should 
be given to show the improvement of the description due to the fitting procedure. 
For that reason the model predictions for four representative distributions are 
calculated using the estimated set of best-fit parameters and the default values for 
the model parameters respectively. We used the model JETSET 7.4 in the version 
of anisotropic gluon decay. 
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Summary 

In the first part of this work, we studied some characteristics of charged 
particles of hadronic final states in ALEPH events, while some methods for tuning 
models with free parameters to experimental data were discussed in detail in the 
second part. The main ingredient in the first part was a good simulation for the 
QCD process as well as for the detector effects. After we performed some tests to 
make sure that the available simulation is indeed good enough, standard methods 
for unfolding of detector effects and to correct for ISR and cut-influences were 
used to perform the measurement. 

The main results of this measurement are shown in the tables of chapter 4. 
They lead to the following conclusions: 

• In most of the bins the systematic error is bigger than the statistical one. 
• The systematic error is typical in the order of a few percent, even if some 

regions exist, where this error is bigger. 
• For event properties the statistical error is also typical in the size of a few 

percent, while it is decreased to a few permille in the case of single particle 
distributions. 

• The dominant part of the systematic error is in most cases the model bias. The 
main contribution to the model bias comes from the difference between the 
corrected distributions calculated with the help of JETSETand HERWIG. 

Detailed discussions of methods for model tuning were presented in the 
second part of this work. Starting point for all of them was the maximum 
likelihood principle. These methods together with linear parametrizations of the 
model predictions were the basis of an algorithm that we used for the estimation 
of the model parameters. We called this algorithm "LinFit". In order to minimize 
the contribution of systematic deviations beteween model predictions and 
experimental data to results of the fitting procedure, a restriction to a so-called 
"fitable region" was introduced. 

In addition a new method to include fluctuations of parametrization 
coefficient in the estimation process was developed. 
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The main results of the parameter tuning are: 

• ARIADNE is the best model, followed by JETSET with isotropic gluon decay, 
JETSET with anisotropic gluon decay and HERWIG, because it leads to the 
best overall description. 

• The JETSETversion with isotropic decaying gluons is in better agreement with 
the measured event properties, than the version with anisotropic gluon decay. 

• All the models have problems with the description of p;ur and p;n. Especially 

the distributions of p;u1 show dramatic deviations from the data in the region 
above 1 Ge V up to 15 times the error of the measurement. 

• The distribution of the normalized particle momentum is underestimated in the 
region of very low momenta ( x r :::; 0. 014). 

• The description of (fo) seems to be impossible using the spin counting 
simplification introduced in section 2.3.2.4. 

• Apart from this (lo )-problem, multiplicities of identified hadrons are in good 
agreement with the model predictions of JETS ET and ARIADNE 

• All the models describe the charged multiplicity within two sigmas although 
systematically below the data. The description of HERWIG is the best. 
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Appendix A. 

Remarks concerning part I 

1. Remarks about the choice of bins 

In the predecessor of this work [Al,92] unfolding was done even for event 
properties by the factor method explained in 3.3.2.2. This method should be a 
good approximation if the off-diagonal elements of the detector matrix are small 
compared to the diagonal elements. In some works (for example [01,90]), the 
separation into bins is chosen such that more than 60% of the bin contents remain 
"in a given bin", while the rest is smeared over the other bins by detector 
influences to force this special form of the detector matrix, . 

Here an analysis is performed, thatprovides such a bin separation for most 
of the distributions observed in the main part of this work. For that reason, a 

starting bin-width is set to be ~o (which is a arbitrary choice) of the full range of 
the distribution. If less than 40% of the contents of this bin is smeared into others, 
the width is kept, and the next bin is calculated in a similar way. If more than 40% 

are smeared into other bins, the width is increased by ~0 of the full range, and this 
new width is checked by the 40% criterion. 

The results are shown in the following table. The nu_mbers beneath the 
symbols of the distributions mark the number of resulting bins. If this number is 
big, one can expect that the detector is able to measure the corresponding 
quantity with a high accuracy, and a neglection of off-diagonal elements of the 
detector matrix makes sense. If only a few bins are observed, the smearing of the 
detector is big, and a matrix unfolding has to be done. 

197 



The first and the last number in the columns of bin borders mark the whole 
observed range. The analysis is based on the simulation HVFL04, it uses a 

statistics of ssim: = 30000. 

s A p c 1-T M 0 -2 -2 
M,7 m Mh M, v . ' 

17 13 15 16 12 19 14 13 7 4 6 6 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.018 .005 .013 .025 .010 .018 .010 .015 .010 .003 .010 .009 

.035 .010 .025 .050 .020 .035 .020 .030 .021 .008 .035 .021 

.053 .015 .038 .075 .032 .053 .030 .047 .046 .024 .084 .046 

.070 .020 .050 .105 .048 .070 .040 .068 .090 .120 .161 .097 

.088 .028 .066 .145 .070 .088 .051 .093 .163 .289 .219 

.108 .036 .083 .192 .099 .105 .065 .122 .294 .400 .350 

.135 .047 .107 .250 .130 .124 .081 .159 .400 

.166 .063 .135 .320 .172 .175 .102 .211 

.207 .092 .164 .392 .220 .147 .128 .270 

.247 .118 .204 .475 .262 .205 .162 .329 

.289 .168 .250 .562 .325 .242 .206 .408 

.359 .194 .304 .665 .400 .285 .261 .483 

.429 .200 .362 .752 .334 .327 .600 

.507 .427 .822 .392 .400 

.588 .500 .875 .448 

.695 1.00 .511 

.700 .577 

.635 
=~-~ ~~~ 

.700 

Table Al: Bin borders according to the 40% criterion 

The jet masses and the resolution parameter are smeared most by the 
detector according to this analysis. One should therefore check at least for these 
distributions if the unfolding by correction factors leads to satisfactory values. We 
will do this by comparing the factor-unfolded by the matrix-unfolded values. For 
every distribution the histogram H (c.f. example 3.5) forms the basis of this 
analysis. In the next figure, this histogram is shown for the "C-Parameter". 
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A slice was cut out of the histogram H for two special cases. These cases that 
are shown in the next figures illustrate the 40% smearing quite well. 
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The figure on the left side shows the smearing of the S.th C-Parameters bin 
([0.105,0.145]), while the picture right shows the smearing in the S.th y3 bin 

([0.097' 0.219] ). 
In the next table, a comparison between an unfolding with factors and an 

unfolding with matrices is shown. Since [Al,92) uses correction factors, even if the 
bin widths are smaller than in the previous table, one could expect errors due to 

neglecting the off-diagonal elements. 

s A p c 1-T M m 0 M,~ M,2 M,7 Br Bw y, 

.19 .09 .OB .06 .01 .24 .OB .27 .OJ ,04 1.42 .04 .17 .00 

.69 .34 .S6 .30 .OJ .07 .10 .07 .02 .22 .30 .JS .32 .04 

.24 .09 .60 .03 .54 1.45 l.JB .73 .13 .23 1.30 .SB .22 .so 

.SS .11 .62 .29 .62 .34 .7S .10 .27 .10 .B7 .09 .03 .SJ 

.36 .16 1.00 .16 .OJ .42 .06 .79 .97 .13 l.OB .03 .JB .S6 

.11 .21 .96 .07 .3S .11 .41 l.OS .10 .02 .12 .13 .33 .10 

.13 .03 .29 .21 .S7 .OJ .OS .23 .00 .16 .JS .S9 .21 .19 

.2S .SO .32 .14 .24 .16 .01 .29 .74 .21 2.30 .20 .12 .OJ 

.32 .OB .11 .3S .03 .29 .37 .OS .27 .S6 .3S .OJ .46 .02 

.26 .40 .OB .22 .30 .32 .20 .09 .19 .60 .11 .10 .17 .13 

.Bl .70 .27 .3S .29 .41 .63 .3S .11 .SB .12 .06 .SS .27 

.72 .13 .09 .29 .19 .OB .so .02 .3S .11 .07 .13 .24 .OJ 

.OS .S6 .29 .03 .Bl .OB .S7 .14 .13 .3B .7B 1.01 .16 .36 

.20 .11 .22 .48 .10 .32 .90 .02 .70 .S3 .OS .06 .2B .70 

.12 .3B .3S .4S .JS .17 .07 .JB .12 1.02 .04 .62 .26 .S6 

.02 .41 .OB .12 .64 .11 .3B .S6 .40 .14 .6B .10 .26 .74 

.06 .07 .17 .83 .11 .BB .09 .27 .22 l.2B .69 .14 .33 .22 

.17 .30 .54 .40 .09 .OJ .12 .9S .94 .17 .12 .S9 

.SJ .33 .60 .27 .32 .04 .22 .54 .46 .70 

.22 .48 1.71 .23 .61 .OJ .26 .JB .OB 1.63 

.12 .31 .83 1.11 .11 .90 .4S 

.S6 .S2 .24 .2S .16 .17 

.67 .26 .22 

.69 .02 

Table A2.: Comparison between factor and matrix method 
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The bin widths used in this work (and for the calculation of the values in the 
table above) are very similar to the bin widths used in [Al,92). The same 
conditions as in the measurement are used. All the calculations are done with 
1992 data. The table above shows the deviations between the matrix-corrected 
and the factor-corrected values in units of the error of the measurement. We can 
see from the table above, that the deviations lie mainly below one sigma. This is 
indeed a sign, that the usage of the simple factor method makes sense. This is 
especially true because we are using a higher statistics, and therefore the errors 
are smaller than in [Al,92). 

2. Comparison between event properties for the 1992 
and 1993 runs 

Generally simulation models become better every year, and also the 
reconstruction of particle tracks changes with time. Because of that, a different 
simulation is available for each year. We saw, that a change in the simulation will 
in general lead to a change of the measured distributions. In the following tables 
the differences between the corrected 92- and 93-data are given in units of the 
statistical error. 

(tt2 - t;93) 
L\:= -r====== 

( Llt;92 )2 + ( ilt73 )2 

The measurement is based on sda
1
:= 571825 and ssim:= 1186173 for 1992 as 

well as sd01:= 375696 and ssim:= 1185262 for 1993. The table shows some 
deviations which cannot be explained as purely statistical fluctuation. 

In table A4 the same deviation is given in units of the total measurement 
error, i.e. the quadratic sum of the statistical error, the cut:.systematic and the 
model bias. No further deviations can be observed in units of this error, and the 
measurements are compatible in that sense1. 

1 Note, that the model bias is the same for both years, and therefore fully correlated. 
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s 
-.18 

-1.80 

-1.02 

.65 

-1.08 

-.52 

.72 

1.21 

.89 

.25 

-.93 

1.26 

1.83 

-.08 

-.45 

-.18 

-.43 

.37 

1.26 

-.29 

-.65 

1.26 

1.20 

.54 

A p c 1-T M m 0 -2 
Mh 

-2 
M, 

-2 M., B. B .. , 

-3.31 -1.59 -3.36 -1.07 -.99 -.97 -1.04 -2.34 -9.91 -2.84 -.41 -1.82 

1.76 .27 -4.33 -3.15 -.56 -2.65 -.31 -7.06 -3.86 -2.14 -.65 -1.60 

1.23 .OJ -2.15 -2.84 .38 -.81 1.23 -5.76 1.92 .05 -2.06 -.02 

-.13 .30 .33 -.94 -.86 -.50 .33 -2.91 4.06 1.03 -.87 .92 

.75 -.94 1.09 -.59 -1.50 -.08 .95 .21 3.01 .20 1.32 .17 

-.12 .52 1.59 -.14 -1.05 -.40 -1.27 1.29 3.09 1.23 .71 .71 

.52 -.18 .68 .39 -.02 1.29 -.78 2.01 2.11 .44 -.17 .94 

.17 -.15 .78 .13 -.42 -.08 -1.29 1.89 1.72 .99 .87 .48 

-1.03 1.32 -.68 .91 1.59 1.49 .OJ 1.87 1.49 1.40 .15 -.25 

-.31 .27 1.18 1.25 .61 .57 -.16 1.95 2.26 .66 .24 .73 

.71 .48 1.33 .99 -.89 1.06 .27 1.93 2.14 .39 .74 .02 

.17 .46 1.13 .12 .72 .06 I.OJ 1.00 1.62 .06 .34 .69 

-.66 .13 .88 .99 -.21 .51 .67 1.48 .84 .29 .70 -.62 

.15 .52 .22 1.27 1.10 .67 .86 .42 .34 .59 -.18 -.96 

.42 -.46 .72 .70 .31 -.42 .55 .58 1.38 .92 .81 -.54 

.41 .46 -.11 .28 .96 1.14 -.21 .52 .58 -.44 -.63 .34 

-.29 -.05 -.54 -.33 .30 -.12 -.31 .92 -.08 .19 -.41 .17 

-.84 1.26 .33 .70 -.38 -.70 .94 .04 .50 1.20 

1.24 .53 .27 -.47 -.45 -.17 -.14 .24 

1.11 .15 -.07 -.59 -.08 -.37 -.59 .62 

-.22 1.06 1.25 .36 .07 .06 

.68 .63 .19 -.05 .37 

.47 1.23 

-.09 

Table A3: Differences between corrected distributions from 92and 93 in units of the 

statistical error 
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-241 

2.18 

1.56 

-.67 

.12 

.00 

.25 

.62 

.34 

.27 

-.49 

.43 

-.35 

.11 

.22 

.15 

.81 

.03 

-.31 

-.25 



s A p c 1-T M 0 -2 -2 -2 
B B.., m Mh M, M,, v . ' 

-.OJ -.JO -.67 -.3S -.J8 -.06 -.OS -.J8 -.3S -.92 -.68 -.02 -.JO -.S2 

-J.J9 .37 .OS -J.S2 -.76 -.OS -.J3 -.04 -.76 -.28 -.47 -.04 -.JS J.04 

-.27 .J4 .00 -.3S -J.22 .08 -.J8 .40 -.84 .2S .02 -.54 .00 J.37 

.JS .02 .29 .11 -.27 -.68 -.37 .3S -.33 .67 .44- -.J2 .48 -.SJ 

-.22 .07 -l.J9 .6J -.JS -.46 -.03 .6J .04 .64 .J2 .40 .12 .06 

-.12 -.02 .38 1.42 -.06 -.17 -.08 -.62 .39 .6S .92 .3S .29 .00 

.lS .09 -.17 .82 .J6 .00 .17 -.22 .66 .40 .J8 -.lS .49 .11 

.38 .07 -.lS .93 .12 -.10 -.01 -.42 .9S .29 .86 .71 .21 .42 

.36 -.84 1.17 -.81 .6J .76 .38 .00 .53 .38 .53 .09 -.08 .2S 

.08 -.J8 .22 .9J .99 .53 .30 -.OS .48 .S2 .2S .14 .47 .16 

-.36 .36 .27 .74 .84 -.62 .69 .07 .36 .48 .10 .37 .01 -.27 

.72 .J4 .4S .70 .JO .43 .02 .27 .22 .53 .02 .20 .54 .23 

.83 -.7J .09 .42 .49 -.11 .20 .J8 .44- .26 .11 .30 -.44- -.23 

-.07 .J2 .39 .J4 .S9 .43 .33 .54 .J2 .J8 .24 -.08 -.62 .07 

-.33 .23 -.27 .48 .37 .JS -.J7 .28 .27 .62 .4S .48 -.4S .lS 

-.JS .26 .26 -.06 .J4 .73 .S8 -.JO .2J .2J -.24 -.20 .16 .11 

-.26 -.2S -.06 -.23 -.J9 .11 -.07 -.20 .53 -.04 .JS -.J7 .10 .63 

.J7 -.82 .78 .J8 .30 -.33 -.S6 .37 .03 .2S .3J .02 

.76 J.23 .42 .JO -.23 -.29 -.11 -.J2 .08 -.34 

-.28 1.2S 1 /I -.03 -.29 -.03 -.2S -.SO .47 -.24 ,..£..,. 

-.58 -.J4 .6S .54 .J6 .06 .04 

.8S .62 .66 .JS -.02 .J3 

l.J2 .48 .4S 

.4S -.11 

Table A4: Differences between corrected distributions from 92 and 93 in units of the whole 

error 
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3. Remark about normally distributed random variables 

In this section we prove a fact that is important to several parts of this work. 
This also serves as an example that shows the handling of probability distributions. 

Example Al: Distribution of a linear combination of independent and 
normally distributed random variables 

Fact: If X j, j E { 1, ... , N} are normally distributed and independent random 

variables, that means if their probability density is given by 

then each linear combination Y:= 11 +"' N ~ .X., 11.~. ER is again normally L..i,=1 J J J 

distributed, and the mean value and width are given by: 

µ = 11 + f ~ .µ.' cr = ~"' N (~ .cr .)2 L..,; J J L..,; j=l J J 
j=I 

The proof is done in two steps. In the first step, the calculation of this 
density is explicitly done for the case N = 2. The second step is a 
generalization by induction with respect to N 

Step 1: 

The probability density of a random variable Yi:= 11 + ~ 1 X1 + ~2 X 2 can 
be calculated as: 
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It follows that: 

with: 

l(" = [ y -11- ~2µ2]( ~,µJ + ~l~I ( ~2µ2)
2 

. (~,µJ +(~2µJ 

Now the proof for N = 2 is done, and we continue with 

Step2: 

The starting point for the proof by induction is the assumption, that the proof 

for the case YN:= 11 + :L;=
1 
~jxj is already done, and concluding from this, 

we prove that this assumption does also hold for YN+i: = 11 + :L;=~
1 

~jxj. This 

can be seen as follows: 
YN+i:= YN +~N+iXN+i again is a sum of two normally distributed and 

independent random variables, and we can write down ~heir mean value 
and width, using the result of step 1: 

N+I 

µYN+l =µyN +~N+lµN+I =11+ L~jµj 
j=I 
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0 

4. Remarks concerning a model independent detector 
matrix 

The x2 -test of section 3.4.2 can be used to check directly the correctness of 
the unfolded data if the detector matrix D (c.f. section 3.3.1.1) is (in good 
approximation) independent of the QCD-part of the simulation. The sensitivity of 
this test will be illustrated in the next example. 

Example A2: Statistical test of unfolded data in the case of a QCD mode/­
independent detector matrix 

Idea: The increase of the sensitivity of the x2 -test introduced in section 3. 4.2 
with an increasing statistics will be demonstrated using the matrix unfolding 
procedure from section 3.3.1.3,. 

The test quantities with and without inclusion of the statistical widths of 
the parametrization are given in the following table in the context of the 
simple detector model that was introduced in example 3.1. The tests are 
applied to the "data" distribution tdar• to the "incorrect simulation" tsim, and to 
the result obtained by an unfolding with this "incorrect simulation" tmar. (For 
details see example 3.1.) The second and third of these distributions are 
clearly excluded by this test, while the correct distribution passes it. The high 
sensitivity of this test, which is given by the big values of the test quantity, 
reflects the fact that it is applicable even in cases where the simulation does 
not fail as dramatic as in the case of this simple model. 
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S. sd., x~,(t.J x:,(r .. J x~,(rdJ x:,(rdJ x~,(t,; .. ) x:,(r,J "'" 

10000 1000 16.24 17.25 6.61 7.54 43.59 46.20 

50000 5000 69.88 75.99 8.89 9.80 240.18 252.60 

100000 10000 127.28 138.19 11.70 12.99 479.50 504.25 

500000 50000 502.62 546.14 13.07 15.89 2032.07 2132.80 

1000000 100000 1071.91 1164.47 7.29 8.54 4289.13 4503.45 

1500000 150000 1519.56 1650.25 21.53 25.53 6067.65 6367.23 

2000000 200000 2080.18 2258.93 16.67 20.20 8157.90 8559.11 

With n = 13 the hypothesis of a vanishing mean value (and thus the 
hypothesis of a correct simulation) can be excluded with a probability of 
95% (99%) if the value of the test quantity exceeds 22.4 (27. 7) (c.f. [Br, 79)). 

0 

If an additional information is given, this test can be expanded to a full 
unfolding procedure. The maximum of the x2 probability is not unique without 
this information, and therefore we can not apply the methods of parameter 
estimation introduced in chapter 5. Many so-called ''oscillatory solutions" have the 
same or even a higher probability as the true distribution in this case. One 
preferred maximum is taken by introducing new information. This point is 
illustrated by the next example. 

Example A3: Maximum likelihood and minimum curvature 

Idea: The x2 -test that was discussed in the last example will be expanded to 
a ''pseudo unfolding algorithm'~ For that reason the principle of "minimum 
curvature" is introduced. On that basis the unfolding of a distribution is equal 
to the solution of a minimization problem that is restricted by one condition. 

f signs the unknown true distribution (the unfolded distribution). 
Analogous to section 3.4.2 the x2 -distributed quantity 
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n {oj - i Dj//ll; }2 
x2 (f):= ~_.__~i=l __ ~ 

+s £.. m ( )2 
j=I (j~ + L (j //ll; 

i=l 

is constructed. In addition the following measure of the "overall curvature" of t 

is introduced. It is motivated by the definition of second derivatives. In the 
case of bins with equally widths this expression becomes simpler in this form 

The most probable value of x!s is n-2. Consequently every vector t 
which accounts for the condition x:s (t) = n - 2 should be a favorite 
candidate for the unfolded distribution. The one which minimizes k(t) is 
taken from this set of vectors. This conditioned minimum is found by 
iteration. 

A vector lo which satisfies the condition x!s (lo) - ( n - 2) = 0 is the 
starting point. To find such a vector, a maximum of the x2 -probability 

is calculated using standard minimization methods. The next step is to 

calculate an normalized and orthogonal basis B:= {EP ... ,En_1} in the vector 

space that is perpendicular to Vx!s(fo), using the standard basis of R" and 

an orthogonalization algorithm ("Schmidt'sches Orthogonalisierungsver­

fahren" c.f. [Br,87]). Now the direction 

i=l i=l 
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in this space is evaluated, in which the slope of the function k reaches its 
minimum. For this reason, the solution of the system of equations 

aa.,(fo) =_j_{vk(f)·[~'A.E.+~1- ""n-2 'A.2E ]}=o dA . a'A. o £..J , , £..J;=i , n-1 
1 J i=I 

has to be found. 

. I 1- / ""n-2 2 _ Vk(fo)·bj I ,_.):., I 
With 'An-I -v 1- £..J;=i A; we observe that 'Aj - Vk(fo). En-I 'An-I -·'-Jj An-I and 

thus 

'A =± 1 
n-1 ~1- ""~-2):.2 

£..J1=l '-J, 

Now it is possible to make a small step E in the direction of the 
minimum value of the slope of k without changing the value of x!s. The 
latter has to be checked, because we cannot really make infinitesimal steps. If 
the x!s is in a given tolerance region, this new vector t"i is accepted as a 
starting point for the next iteration step. If the check fails, the correction of t"i 

is done parallel to Vx:s(fo), or if this is not possible, the E -value is 
decreased. In this example we used ssim: = 5 · 105 and s dar: = 5 · 104 and got the 
following unfolded distribution: 
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The nominal values of the true distribution is given in form of bars. 
Even if the result seems to be better than the oscillating "distributions" given 
by matrix inversion (c.f. example 3.3), a bias through a straight line can be 
seen. 

0 

The main problems appear in the calculation of error bars. Even if it seemed 
possible to get better results by using the ad hoc principle of "minimal curvature", 
it is not possible to calculate the bias introduced by such an ad hoc ansatz. If a 
proper estimation of errors is regarded, one has to use well understood algorithms 
based on first principles. Otherwise one could hardly say more than he believes, 
that the calculated results are "not too bad". A very interesting idea that starts from 
first principle is given by ''entropy methods" (for example see [Sc,94]) 
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5. Values of fitted parameters that were used to calculate 
the model bias 

Results from simplified corrections of distributions, using different QCD 
models are compared to calculate an estimate for the model bias. The parameter 
values which are different from the default values are given in the following table. 
For a detailed explanation of the parameters see [JS,93], [AR,92) and [HE,92). 

JS 74 (aniso) JS 74 iso) ARIADNE 4. 05 HERWIGS.8 
Par. TJO Par. TJO Par. TJO Par. TJO 

PARJi1) 0.094 PARJflJ 0.095 PARAflJ 0.218 OCDLAM 0.172 

PARJ(2) 0.289 PARJf2J 0.289 PARAf3J 0.580 RMASSf13J 0.727 

PARJf3J 0.566 PARJf3J 0.571 PARAf5) 0.580 CLMAX 3.700 

PARJfllJ 0.538 PARJ(ll) 0.533 MSTA(l) 1 VPCUT 1.000 

PARJf12J 0.499 PARJ(12) 0.543 MSTA(2) 1 

PARJf13J 0.600 PARJ(13) 0.600 MSTAf3J 0 

PARJi14) 0.096 PARJ(14) 0.096 MSTAf5) 1 

PARJi15) 0.032 PARJfl5J 0.032 MSTAf20J 1 

PARJ(l6J 0.096 PARJf16J 0.096 MSTAf30J 0 

PARJf17J 0.160 PARJfl7J 0.160 

PARJi'21J 0.373 PARJi'21J 0.363 

PARJf26J 0.400 PARJf26J 0.400 

PARJf4JJ 0.500 PARJf4JJ 0.400 

PARJf42J 1.008 PARJf42J 1.030 

PARJf54) -0.050 PARJ(54) -0.050 

PARJ(55) -0.0045 PARJi'.55) -0.0045 

PARJ(81) 0.297 PARJf81) 0.324 

PARJ(82) 1.330 PARJf82J 1.300 

MSTJi11) 3 MSTJfllJ 3 

MSTUf41J 1 MSTlX41J 1 

MSTJ(46J 0 
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Appendix B. 

Remarks concerning part II 

1. Sources of the distributions used in LinFit 

In addition to the distributions that was presented in preceding parts of this 
thesis, the following measured distributions and multiplicities are used in the 
tuning procedure: 

(i) Baryon data 

,..1:-.1....:L.1finn bins source exveriment 

-In x(p.Ji) 
, I) ~ x<0.018 6 [Al,94] ALEPH 

-In x(p,Ji) 
'n ' 

x > 0.070 18 [Al,94] ALEPH 
(A) 1 [A2,94] ALEPH 

-ln(x;) 22 [A2,94] ALEPH 

p:(r) 30 [A2,94] ALEPH 
:::-) 1 [A3,95] ALEPH 

1
8(1530)0

) 1 [A3,95] ALEPH 

1 L(13ssr) 1 [A3,95] ALEPH 

~r) 1 [A3,95] ALEPH 
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(ii) Meson data 

distribution bins source exveriment 

-In Jt± 

x,, ' x < 0.018 16 [Al,94] ALEPH 

-In Jt± 

x,, ' x > 0.045 23 [Al,94] ALEPH 

Ko) 1 [A2,94] ALEPH 

-In(x:
0

) 28 [A2,94] ALEPH 
Ko ( ) P, T 30 [A2,94] ALEPH 

-In K± 

x,, ' x < 0.018 11 [Al,94] ALEPH 

-In K± 

x,, ' x >0.070 18 [Al,94] ALEPH 
K'o 

xP 8 [Al,95] ALEPH 

K*+) 1 [Dl,94] DELPHI 
xll 

E 18 [A3,94] ALEPH 
I)' 

XE 9 [A3,94] ALEPH 
x<l> 

p 8 [Al,95] ALEPH 
xPo 

p 8 [Al,95] ALEPH 
xw 

p 6 [Al,95] ALEPH 

(fo), 0.05 s; xP s; 0.6 1 [Dl,94] DELPHI 

(Ji), 0.05s;xPs;1.0 1 [Dl,94] DELPHI 
n•± 

XE 15 [Al,93] ALEPH 
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2. Decoupling of normally distributed random variables 

Idea: The following decoupling procedure, allows for a construction of a x2 
-

distributed random variable, and for the generalization of the linear error 
propagation from example Al, to the case of correlated random variables. 

The distribution of n normally distributed random variables is given by: 

p(x) = ( )! exp[-!(.x-µ)r c-1(.x-µ)J 
-J2rr, det( C) 2 

Here C is the covariance matrix, which is a quadratic and symmetric matrix. 
Because of these characteristics, even the inverse of C is symmetric, and it is 
possible to find a matrix U that diagonalizes this inverse of C: 
uc-iur =diag('Ap ... ,'AJ. The substitution x=U(x-µ) allows for a calculation of 
the probability density of this new set of random variables: 

(-) 1 1 -r- 1- rrn 1 1 x. 
[ ( )2] p x = exp --x c- x = exp -- -' 

(,(ii[,)" det( C) [ 2 J ,., ,fii[,r;, 2 cr, 

With cr.:= Al and UC -iur =:c-1 

I /..,. 
I 

Therefore the new random variables :x;:= I,:=
1 
Uiixj are normally distributed 

and independent, and their mean values are ;:I;:= I, :=
1 
U iiµ j • 

This decoupling will now be illustrated in constructing a x2 distributed 

quantity out of a set of normally distributed but correlated random variables. The 

covariance matrix of the normally distributed bin contents p; - , which is also the 

covariance matrix of the differences X;: = P; - { k( X; - x0) + d} is: 
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-sp;pj 

(sLi..xJ' 
else 

These differences were decoupled by the method developed above, and the test 
quantity was constructed 

Tluc:= t( X; )

2 

i=I 0"; 

which is x2 distributed with n ( = 5) degrees of freedom. Similar to the procedure 
in example 5.3, this distribution is compared to the generated distribution of the 
test quantity. The agreement with the x2 is indeed better than in this example 
which ignored correlations. 

0.14 

0.12 

0.1 

g 
.JO.OB 
10 

0.04 

0.02 

2 4 10 12 14 16 18 20 

Figure Bl: Test quantity for the decoupled random variable 

216 

0 



3. Higher order parametrization in higher dimensions 

We always used linear parametrisations for the model predictions in the 
parameter tuning described in the main part of this thesis. Because of this we 
always had to be very careful to stay inside a linear region. This was possible in 
our case, because some former knowledge about the parameter values was 
available. It also turned out, that some kind of successive approximation to an 
optimal expansion point of the linear parametrization worked. But what is the 
right proceeding in the case of absence of such information? ls it possible to use 
higher order parametrizations, or does the limited computing power that is 
available today restrict us to linear approximations? 

The main problem in using higher order parametrisations is the number of 
their coefficients. For each of them, at least two points in the parameter space 
should be calculated to fix this parametrization. And for each of these points, a 
statistics as high as possible should be used, to avoid contributions to the errors 
from insufficient parametrization accuracy. All in all the demands of computing 
resources are generally much too high to perform simultaneous fits for many 
parameters. 

The following example demonstrate a very simple kind of generalization of 
the parametrization to higher orders. This is primarily thought as a summary of the 
methods that were derived in chapter 5, and as an illustration of their usage in 
more complicated cases of parameter estimations. It is definitely not a try to give a 
generalization usable in any possible case, even if it lead to results much better 
than the estimations based upon a linear parametrization. 

Example Bl: Higher order fit in more than one dimension 

Idea: The model function for the hadronic cross-section of an electron­
positron annihilation at the 2-peak given in 55 will be used to illustrate a 
simple generalization of the parametrization to higher orders. The conditions 
of this example are chosen in a way that leads to non-negligible 
contributions of the parametrization fluctuations to the estimations function. 
The estimation is done with the simple estimation function (54), and with 
the generalization (56), which is used here in a nontrivial way, because the 
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full covariance matrix of the parametrization coefficients has to be taken into 
account. The results of both estimation processes will be compared. 

(i) Preparation of the surrounding 

We use the hadronic cross section in the range of Ecm E [88, 96]GeV, 

and devide this region into 13 bins with equally widths. After the generation 
of a discrete test distribution in a way that is analogous to example 3.2, and 
by using s: = 5 · 105 and the parameter values sin 2 t} w =: p1 = 0. 23 2 , 
Nv =: p2 = 3 and M z =: p3 = 91.182, a linear parametrization that is similar to 
the one used in LinFit is calculated. The region taken into account was 
p1 =0.2±0.15, p2 =3±2 and p3 =91±1.5. Here the center values 
correspond to the expansion point, and we used four points on every 
parameter axis off the center point to do the calculation. These points are 
located at the ends of the parameter intervals, and on the half way between 
these ends and the center. We used s:= 104 in every point. 

The expansion point is slightly apart from the chosen set of parameters, 
because we want to demonstrate, that even the simple choice of a higher 
order parametrization that we use in this example leads to better agreement 
between estimations and the nominal parameter values, than the linearized 
version. The results of the estimation based on a linear parametrization are: 

p1 := 0.3240±0.0092, p2 :=1.8880±0.1560, p3:= 91.2729±0.0247 

These estimates are clearly not compatible with the nominal values, 
and we conclude, that the usage of the expansion point given above leads to 
systematic errors in the results of the fits. 

(ii) Parametrization by a higher order polynomial 

The model prediction mb (p) of a given bin content pb is parametrized 
by the following polynomial in n dimensions and with a degree of d 

d N 

mb(p):= 'Lct ... ;.P:1 
••• p~· =: LanXn(p) 

i1,. •• ,in=I 
i1+···+i.=d 
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The second way of writing this polynomial is a sum over all n-tuples 
(ip ... ,iJ of powers which fulfills the condition i1 +···+in = d. The bin index is 
left out in this case to avoid too dense notations. We will use this second 
expression in the realization of the parametrization. If estimates for the model 
predictions m(pj) and the corresponding widths crj are known in M>N 
points of the region in the parameter space that one wants to parametrize, 
the coefficients of this parametrization can be estimated in a way analogous 
to section 5.4.2.1 in every bin of the distribution of interest. The minimum of 
the estimation function 

is found by solving the following system of linear equations: 

M X (- )x (-) 
M

po/ _ ~ k pj I pj 
kl - £..,; 2 ' 

j=I (j j 

( k, l = 0, 1, ... , N), and the covariance matrix of the coefficients is again given 
by the inverse of M. 

(i) A simple higher order parametrization 

It is definitely not the best way to simply increase the degree of the 
polynomial if a test of the linear parametrization fails, because in general not 
all the new terms will contribute to a better parametrization. To get a better 
understanding for a minimal parametrization, we introduce fits along the 
parameter axes again, and increase the degree of the· one-dimensional 
polynomial used to parametrize the behavior of the model predictions along 
these parameter axes, until a x2 test quantity lies in a preferred region. In the 
next pictures the degrees of these one dimensional parametrizations define 
an upper limit for the powers that are used in the parametrization of the 
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model function. The approximation of the parametrization along the p 3 -axis 
are given for the 4-th and for the 6th bin. 

45 45 
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89 89.5 90 90.5 91 91,5 92 92.5 93 
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89 89.5 90 90,5 91 91.5 92 92.5 93 

chi2 • 178, Degree • 2 chi2 • 21.21, Degree• 3 

The parametrization along the different axes were accepted if the 

distance between the test quantity Tl and their mean value was less than 

three times the standard deviation of Tl. This condition led to the following 

degrees of the polynomial parametrizations in the 13bins: 

bin 1 2 3 4 5 6 7 8 9 10 11 12 13 

dPt 2 2 2 2 2 2 2 2 2 2 2 1 2 

dP2 1 1 1 1 1 1 1 1 1 1 1 1 1 

dp3 3 2 4 3 4 3 3 2 2 2 2 2 2 

Here dP; signs the degree of the polynomial that passed the Tl­
condition in the i-th bin. A main problem can be seen in the parametrization 
of bin 6. Even if the ri-condition is fulfilled, the parametrizations of this bin 
obviously requires a higher degree. If one uses a higher statistics in every 
point of the parameter space (for example s: = 2. 5·105 was used to produce 
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the following pictures), this can be seen as well. Because of the higher 
sensitivity of the statistical test in this latter case, the following degree of the 
parametrization in these two bins are needed to pass the test. 

40 

35 

30 

20 

15 

10 

5ae 89.s oo oo.s 91 91.S 92 92.5 93 
chi2 • 15.93, Degree • 4 
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35 

~ 30 . 
~ 

25 

20 

15 

1~~.--=-eo~.s~~,--~~.~,~.,~~g1.s=--~~~.~2.s~~ 
cht2 a 10.31, Degree• 5 

That means, that an incorrect parametrization could be used even if the 
test quantity lies in the preferred region, because the statistics used in every 
point is not high enough. 

After these one dimensional parametrizations were done, the number 
of coefficients N was calculated, and the model predictions for 3N additional 
points were generated. The points were taken at random out of the observed 
region in the parameter space. After this step, the parametrization was done 
as discussed in (i). 

(iv) Estimation of the parameters 

Up to now we calculated a parametrization of the given model 
predictions, which we do not expect to be perfect, but is still better than the 
linear parametrization. The estimation of the parameters was now done with 
the simple estimation function (5.4) and with the new one (5.6). Here, the 
calculation of the width of a linear combination of normally distributed 
random variables will be discussed in the case of non-negligible correlations. 
We use this to calculate the width of 

N N 

mb(p)= LanXn(p)=:L:Y:i"-n 
n=l n=l 

Here the symbols Xn(p):= "-n for the real coefficients and an:= Y:i for 
the normally distributed random variables are used. We calculate the matrix 
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U that diagonalizes the inverse of the given covariance matrix, as discussed 
in section 2 of this appendix, and construct the uncorrelated random 
variables 

Z.:= ~n U..f. 
I L...j=l I} j 

By take the inverse of the equation above, every linear combination of 
correlated random variables can be expressed as a linear combination of 
uncorrelated variables by substitution, and consequently the linear error 
propagation of example Al can be applied. 

The estimations led to the following results: 

p1 := 0.2381 ±0.0016 (3./?,, p2 := 3.0995 ±0.0147 (6.8),, p3:= 91.1829 ±0.0022 (0.4), 

p1: = 0. 2407 ± 0. 0038 (2.3), p2 : = 3. 0882 ± 0. 0345 (2.6), p3 : = 91.1829 ± 0. 0051 (0.2), 

The results in the first line are computed with the simple estimation 
function (5.4), while the results in the second line are based on the 
generalization (5.6) The values in brackets are the absolute values of 
distances between these estimations and the nominal values. Even if the 
parametrization was not optimal, it led to satisfactory results, and not only to 
results that are better than the estimates based on a linear parametrization 
(there the distances were (10.0), (7.1), (3. 7)). The estimation with the simple 
estimation function gave good estimations, but the errors calculated from it 
are too small, as should be expected. 

0 

Remark: We must observe the starting point, that is used in the iterative 
approximation to the minimum of the estimation function as a point where 
complications might arise. Especially the generalization is highly non-linear, and 
has therefore in general more than one local minimum. A first test to see if the 
right minimum is reached can again be done by a x2 test. 

If a proper degree of the polynomial is known, the generalized estimation 
function can be used to realize this parametrization even if the statistics in every 
point of the parameter space is not very high. For example it should be possible to 
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use a slightly generalized algorithm to realize a higher order parametrization. The 
fit along the axes, as discussed in the previous example should be done with high 
statistics at every point, in order to avoid false parametrizations as far as possible. 
But the 3N additional points in parameter space can also be calculated by using a 
lower statistics, because their widths should be included in the estimation function. 
Therefore the last example and this remark can be used as a starting point for the 
generation of higher order parametrizations in future parameter fitting procedures. 
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4. Parameter values used in example 6.1 

To demonstrate the inclusion of systematical errors in the estimation 
function, the following parameter settings were used. Values that are not given in 
this table, and that are not set to certain values in chapter 2, are fixed at their 
default values. 

JS 74 fiso) HERWIGS.8 
Par. po Par. po 

A 0.30 QCDLAM 0.15 

On 1.40 RMASS(13) 0.70 
(j 

0.36 CLMAX 3.50 
pS=l 

ud 0.55 CLSMR 0.50 
pS=l 

s 0.50 PWT(3) 1.00 
qq/q 0.10 PWT(7) 1.00 

(su)/(du) 0.60 
'Ys 0.30 
b 0.90 

bl 0.60 
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