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1. Introduction

The Standard Model (SM) of particle physics provides an excellent description of data

from collider experiments, including the precision electroweak observables measured

at LEP and SLD. The fit to the data clearly improves if the Higgs boson has a

mass less than 250 GeV [1]. LEP is the only accelerator currently running which

can directly test for the existence of a Standard Model-like Higgs boson, if its mass

is sufficiently light [2]. The LEP experiments at CERN have recently performed

searches for a Standard Model Higgs boson at a center of mass energy of
√

s = 189

GeV. Preliminary limits on the Higgs mass of about 95 GeV were set by two of the

experiments, DELPHI and L3. The other two experiments, ALEPH and OPAL,

see a small excess of events in the mass window 90–96 GeV [3] and set an exclusion

limit of about 91 GeV. LEP is currently running at a center of mass energy of 192–

196 GeV and will increase gradually the center–of–mass energy towards 200 GeV

and collect data until the end of the year 2000.

In spite of the phenomenological success of the SM, an explanation of the hi-

erarchy between the Planck and the electroweak scales can only be obtained if new

physics is present at scales of the order of the weak scale. The success of the SM in

describing the precision electroweak data suggests (although it does not require) that

any new physics should be weakly–coupled, should lead to small or negligible cor-

rections to precision electroweak observables, and, in addition, should be consistent

with a light Higgs boson. Low energy supersymmetry provides such an extension of

the Standard Model.

In the minimal supersymmetric extension of the Standard Model (MSSM), the

Higgs sector contains two doublets. At tree-level, the down and up quarks only couple

to the neutral components of the Higgs doublet H1 and H2, respectively, preventing

dangerous flavor–changing neutral current (FCNC) effects. The ratio of the two

Higgs doublet expectation values, v1 and v2, is parametrized by tan β = v2/v1. The

Higgs spectrum consists of one charged, H±, one CP-odd, A, and two CP-even, h and

H , Higgs bosons. At tree-level all Higgs boson masses may be expressed as a function

of tanβ, mA and the W and Z boson masses, and an upper bound on the lightest

CP-even Higgs mass is found, mh ≤ MZ | cos 2β|. This bound is modified by radiative

corrections, which depend quartically on the top quark mass and logarithmically on

the stop masses [4, 5, 6, 7, 8]. As will be discussed below, even after the inclusion of

radiative corrections, an upper bound on the lightest CP-even Higgs mass is obtained

for large values of the CP-odd Higgs mass mA
>∼ 300 GeV, for which the lightest CP-

even Higgs boson has standard model-like properties.

The supersymmetric spectrum is constrained by direct experimental searches and

by the requirement that it provides a good description of the precision electroweak

data. This requirement implies that, unless unnatural cancellations take place [9], the

soft supersymmetry-breaking mass parameter for the left-handed top-squark should
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be larger than 300 GeV. Quite generally, the heavier the supersymmetric spectrum,

and in particular the heavier the left-handed sfermions, the better the agreement

between the MSSM and the precision electroweak observables. If supersymmetric

particles are heavy, the low energy properties of the Higgs sector of the MSSM can

be described by an effective theory containing two Higgs doublets, with couplings and

masses fixed by the proper matching conditions at the scale of the supersymmetric

particle masses.

In this low energy, effective theory, the couplings of the two CP-even Higgs

bosons, h and H , to the W and Z bosons are given by the SM Higgs couplings

multiplied by sin(α − β) and cos(α − β), respectively, where α is the Higgs mixing

angle. These scaling factors are just the projections of the CP-even Higgs bosons on

Φ, defined as the Higgs combination that acquires vacuum expectation value,

Φ =
√

2
[
Re(H0

1 ) cos β + Re(H0
2 ) sin β

]
≡ v + h sin(β − α) + H cos(β − α) (1.1)

where v ' 246 GeV is the SM Higgs vacuum expectation value. In the MSSM, Φ

is not a mass eigenstate. However, sin(α − β) or cos(α − β) becomes close to one

in large regions of parameter space, reflecting the fact that one of the two Higgs

bosons is mainly responsible for the electroweak symmetry breaking. In particular,

for relatively large values of the CP-odd Higgs mass (mA ≥ 300 GeV), one finds

sin(α− β) ≈ 1.

The Higgs searches at LEP, the Tevatron and the Large Hadron Collider (LHC)

are motivated by the desire to understand the mechanism of electroweak symmetry

breaking. For this reason, it is most important to find the Higgs with relevant

couplings to the W and Z bosons, with sin2(β − α) (or cos2(β − α)) close to unity.

For convenience, we denote such a Higgs boson as φW to emphasize its couplings to

the W (and Z). As shown in Appendix A, there is a useful relation between the

masses of the CP-even Higgs bosons and their couplings to the W and Z bosons,

m2
h sin2(β − α) + m2

H cos2(β − α) = m2
h

∣∣∣
mA�MZ

. (1.2)

In Eq. (1.2), the right hand side is equal to the upper bound on the Higgs boson

mass, which, for squark masses of the order of 1 TeV, is about 120–130 GeV for

moderate or large values of tanβ and about 100 GeV for tan β close to one [6, 10].

The above relation, Eq. (1.2), implies that the Higgs φW that couples in a relevant

way to the W and Z bosons should also be relatively light, with a mass close to

the upper bound when it couples to the W and Z boson with nearly SM strength.

Therefore, not only is it true that the lightest CP–even Higgs boson mass is bounded

from above, but, when cos(β−α) ≈ 1, then the bound applies to mH , with mh being

even smaller. If sin2(β−α)→ 1 or cos2(β−α) → 1, there can be a substantial mass

splitting between h and H . However, in the latter case, the mass splitting cannot

be too large, or the lightest CP-even Higgs boson would have been already seen at

LEP.
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2. Higgs searches at present and (near) future colliders

There are three experiments that are expected to search for the Higgs φW in the

mass range 95–130 GeV. LEP, at present, the Tevatron in the years 2000–2006 and

LHC from 2005 on. As we mentioned above, LEP is actively looking for a Higgs

boson with couplings to the Z boson and with a mass below or near 100 GeV in the

channel ZφW with φW → bb̄ or τ+τ−. If LEP reaches a center–of–mass energy of

about 200 GeV and collects 200 pb−1 of data per experiment, then evidence for such

a Higgs boson should be observed if:

1. sin2(α− β) ' O(1) (or cos2(α− β) ' O(1)),

2. The CP-even Higgs mass mh
<∼ 107 GeV (or mH

<∼ 107 GeV),

3. The branching ratio BR(h → bb̄) (or BR(H → bb̄)) is close to the Standard

Model value.

The Run II of the Tevatron Collider is expected to start in the year 2000. The

Tevatron will have sensitivity to Higgs boson in the V φ channel, with V = Z or

W , and φ → bb̄. Hence, its discovery potential depends also on points number 1

and 3 above, although the kinematic constraint on the Higgs mass may be relaxed

(point 2). However, the Tevatron discovery potential will depend strongly on the

final integrated luminosity collected by the CDF and D0 experiments [11].

Experiments at the LHC will rely mainly on the signature pp → γγ+X to detect

a Higgs φW in the mass range mφW
<∼ 130 GeV. In particular, the ATLAS and CMS

experiments have performed studies that show sensitivity to φW in the channels

gg → φ(→ γγ), tt̄φ(→ γγ), Wφ(→ γγ), and tt̄φ(→ bb̄).1 These studies show that

these channels cover wide regions of the mA − tan β plane of the MSSM, with the

small mA region (mA
<∼ 250 GeV) being the most difficult. Larger coverage of the

mA − tan β plane in the MSSM can be achieved by considering also the production

and decay signatures of all MSSM Higgs bosons [14, 15]. In these analyses, it is

assumed that the sparticles have typical masses MS of order 1 TeV, and that the

stop trilinear coupling Ãt = At−µ/ tanβ is much smaller than MS. The latter is, in

principle, a conservative assumption, since, for low luminosity, and for a Higgs mass

mφW
≤ 130 GeV, the reach potential improves for larger values of the Higgs mass

1Several other channels have been proposed which would be useful for studying a Higgs boson
with SM-like couplings to the gauge bosons and up-quarks[12, 13]. However, these are experimen-
tally challenging, and, to the best of our knowledge, the ATLAS and CMS collaborations have not
yet analyzed the reach in these channels. We shall therefore not discuss these channels in detail,
although we shall analyze their possible relevance in sections 3 and 4.3.
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(large values of Ãt, MS, etc.). In the present study, we are interested in the search

for φW and we shall hence concentrate on only its signatures.

The object of the present study is to illustrate the relationship between measure-

ments at the different colliders, and to demonstrate the potential of the combined

experimental program to discover the Higgs φW . In the following section, we will

review the behavior of the Higgs boson couplings to particles and sparticles with

respect to variations in the MSSM parameters. In particular, we will show their im-

pact on production cross sections and branching ratios. Given the sensitivity of the

various experiments to discover a Higgs boson as a function of the Higgs boson mass

and their integrated luminosity, we then calculate the corresponding sensitivity in

the MSSM, based on the Standard Model experimental simulations done at the LEP,

Tevatron and LHC colliders.2 This will be shown in Section 4. We pay particular at-

tention to choices of MSSM parameters which will clearly lead to difficulty at one of

the experiments, and explain why this increases the sensitivity of the complementary

experiment. Our conclusions are stated in Section 5.

3. The couplings of the CP-even Higgs bosons

Quite generally, the two CP–even Higgs boson eigenstates are a mixture of the real,

neutral components of the H1 and H2 Higgs doublets,(
h

H

)
=

(− sin α cos α

cos α sin α

)(√
2Re(H0

1 )− v1√
2Re(H0

2 )− v2

)
, (3.1)

and the lightest CP–even Higgs boson couples to down quarks/leptons and up quarks

by its Standard Model values times − sin α/ cosβ and cos α/ sinβ, respectively. The

couplings to the heavier CP–even Higgs boson are given by the standard model values

times cos α/ cos β and sin α/ sinβ, respectively. Analogously, the coupling of the CP–

odd Higgs boson to down quarks/leptons and up quarks is given by the Standard

Model coupling times tan β and 1/ tanβ, respectively. The lightest (heaviest) CP–

even Higgs boson has V V h (V V H) couplings which are given by the Standard Model

value times sin(β−α) (cos(β−α)), where V represents a W or Z boson. The coupling

of a CP–even and a CP–odd Higgs boson with a Z boson ZhA (ZHA) is proportional

to cos(β − α) (sin(β − α)).

As stated above, LEP is presently exploring the Higgs mass region 95 GeV
<∼ mφW

<∼ 107 GeV. Already the present bounds on a SM-like Higgs mass, of about

95 GeV, put strong constraints on the realization of the infrared fixed–point scenario

2The sensitivity or R–value is the ratio of the Higgs production cross section times Higgs decay
branching ratio to the ones necessary to claim discovery in the Standard Model. If R > 1, then
an enhancement of the Higgs production rate and/or branching ratio over the Standard Model
expectation is needed to claim discovery for a stated luminosity. If R < 1, then the Standard Model
Higgs boson can be discovered with less luminosity.
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in the MSSM, and, in general, of the small tanβ scenario, with tan β close to one [10].

Indeed, if a SM-like Higgs were discovered at LEP in this region of mass, the fixed–

point scenario could only be accommodated for large values of the stop masses and

of the stop mixing parameters. In general, this Higgs φW mass range is naturally

obtained for 2 < tanβ <∼ 5, with smaller values of the Higgs mass being obtained for

smaller values of tanβ. Larger values of the ratio of Higgs vacuum expectation values,

tan β > 5, tend to lead to values of the Higgs φW mass beyond the reach of LEP. It

is important to stress that, in the presence of large mixing in the lepton sector, as

suggested by the SuperKamiokande data, these values of tanβ, 2 < tan β <∼ 5, are

consistent with the unification of the bottom and τ Yukawa couplings at the grand

unification scale [16].

As explained above, the present experimental constraints are most naturally

satisfied for moderate or large values of tan β, tanβ > 2. For tanβ larger than a few,

the approximation sin β ' 1, and hence, 1/ cosβ ' tanβ, is a good one, and one can

construct the following table of simplified tree level couplings of fermions and gauge

bosons (V ≡ W or Z) to the CP–even Higgs bosons relative to their Standard Model

values:

bb̄ tt̄ V V

h − sin α× tanβ cos α cos α

H cos α× tan β sin α sin α

(3.2)

Note that the tree level couplings tt̄φ and V V φ exhibit the same behavior, so that, for

the same values of the Higgs mass the production rates for Zφ at LEP, W/Zφ at the

Tevatron, and tt̄/Wφ at the LHC are simultaneously enhanced or suppressed with

respect to the Standard Model case. Also, for heavy sparticles, the φ → gg decay

rate (which determines the gg → φ production rate) is approximately proportional

to the tree level tt̄φ coupling. Therefore, the production of tt̄φ, Wφ and gg → φ

have the same dependence on the MSSM couplings (when the sparticles are heavy).

Moreover, when sparticles are heavy, the partial width for the decay of the Higgs

boson to a photon pair depends on one–loop contributions from the top quark and

W boson, which come with opposite signs. When the sparticles are light, however,

all color–charged sparticles affect the φgg coupling, while all electrically–charged

sparticles affect the φγγ coupling, and we will show a few examples in which their

effect become relevant. Finally, it is important to remark that, while for tanβ larger

than a few, the tt̄φ and V V φ couplings depend only weakly on tanβ, the φbb̄ coupling

has a strong dependence on this parameter, and may be strongly affected by radiative

corrections proportional to tanβ [17, 18]. This can have a significant impact on Higgs

decay branching ratios.

The LEP experiments are sensitive to the Higgs φW mainly through the Zφ(→
bb̄) process. Given the cross section limit for the Standard Model Higgs boson, the

MSSM limit is derived by properly including the MSSM couplings. Figure 1 shows
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the reach of the Standard Model Higgs discovery potential of the LEP and Tevatron

colliders for different integrated luminosities of the latter as a function of R, defined

as the total V bb̄ production rate normalized to the Standard Model value:

R(mφ) =
σ(V φ) BR(φ→ bb̄)

σ(V φ)SM BR(φ→ bb̄)SM

. (3.3)

The subscript SM in Eq. (3.3) denotes the Standard Model values. For the case of

the MSSM, the production cross section is only modified by the strength of the V V φ

coupling, so that

R(mφ) =
{
sin2(β − α), cos2(β − α)

} BR(φ→ bb̄)

BR(φ→ bb̄)SM

'
{
cos2 α, sin2 α

} BR(φ→ bb̄)

BR(φ→ bb̄)SM

, (3.4)

where the left (right) portion of the expression in brackets refers to φ = h(H), and

we have used the approximations of Table I in the second line. If R is too small, then

discovery of a SM–like Higgs boson will not be possible. Problem regions are when:

(a) h ≡ φW or H ≡ φW but mh or mH is too large to be kinematically accessible, (b)

h (H) has SM–like couplings to the gauge bosons, but BR(φW → bb̄) is suppressed

because the mixing angle α is such that sin α/ cos β � 1 (cos α/ cosβ � 1) or because

there are large radiative corrections, induced by supersymmetric particles, which lead

to a suppression of the renormalized φW bb̄ coupling, and (c) cos2(β−α) ' sin2(β−α)

and mh and mH are sufficiently different in mass, so that the production cross section

for both Higgs bosons is small and the two signals do not overlap. The experiments in

Run II and Run III (the proposed high–luminosity run) at the Tevatron are sensitive

to both the Wφ(→ bb̄) and Zφ(→ bb̄) processes. Since these depend on the same

couplings, the previous discussion for LEP holds, except that (a) will not occur

provided the experiments receive enough integrated luminosity.

As stated above, the φbb̄ coupling can become small because a tree level cou-

pling vanishes or because of large radiative corrections. The former occurs when

sin α or cos α vanishes, whereas, as explained below, the latter depends on the soft

supersymmetry-breaking parameters, but tends to occur for small values of sinα or

cos α, such that the tree level coupling is non-vanishing, but still suppressed com-

pared to the SM one. The value of α is determined by diagonalizing the quadratic

mass matrix M2 for the CP–even Higgs bosons:

M2 =

(M2
11 M2

12

M2
12 M2

22

)
, (3.5)

where the matrix components are given by [6, 18]

M2
11 ' m2

A sin2 β + M2
Z cos2 β

6



− h4
t v

2

16π2
µ̄2 sin2 βã2

[
1 +

t

16π2

(
6h2

t − 2h2
b − 16g2

3

)]
+O(h2

t M
2
Z)

− h4
bv

2

16π2
µ̄2 sin2 βĀ2

b

[
1 +

t

16π2

(
6h2

b − 2h2
t − 16g2

3

)]
M2

22 ' m2
A cos2 β + M2

Z sin2 β
(
1− 3

8π2
h2

t t
)

+
h4

t v
2

16π2
12 sin2 β

{
t
[
1 +

t

16π2

(
1.5h2

t + 0.5h2
b − 8g2

3

)]
+ Ātã

(
1− Ātã

12

)[
1 +

t

16π2

(
3h2

t + h2
b − 16g2

3

)]}

− v2h4
b

16π2
sin2 βµ̄4

[
1 +

t

16π2

(
9h2

b − 5h2
t − 16g2

3

)]
+O(h2

t M
2
Z)

M2
12 ' −

[
m2

A + M2
Z −

h4
tv

2

8π2

(
3µ̄2 − µ̄2Ā2

t

)]
sin β cos β

+

[
h4

t v
2

16π2
sin2 βµ̄ã

[
Ātã− 6

]
+

3h2
tM

2
Z

32π2
µ̄ã

] [
1 +

t

16π2

(
4.5h2

t − 0.5h2
b − 16g2

3

)]

+
h4

bv
2

16π2
sin2 βµ̄3Āb

[
1 +

t

16π2

(
7.5h2

b − 3.5h2
t − 16g2

3

)]
. (3.6)

In Eq. (3.6), g3 is the QCD running coupling constant, ht and hb are the top and

bottom Yukawa couplings, and the barred quantities (e.g. Āt) are the usual MSSM

parameters divided by the SUSY scale MS. The quantity ã ≡ Āt − µ̄/ tanβ and

t = ln(M2
S/m2

t ). Only the leading terms in powers of hb and tan β have been retained,

and the small, O(h2
t M

2
Z) correction to M2

12 has been explicitly included. Note, the

above expressions hold only in the limit of small splittings between the running stop

masses, and the condition 2mt max(|At|, |µ|) < M2
S must be fulfilled, with a similar

condition in the sbottom sector. The analytical expressions presented above are very

useful, since they provide an understanding of the behavior of the Higgs masses and

mixing angles with the stop and sbottom soft supersymmetry breaking masses and

mixing parameters, and, unless the stop and sbottom mass splittings are very large,

they provide an excellent approximation to the precise Higgs mass matrix elements.

However, the final, numerical results of our analysis make use of the complete one–

loop RG improved effective potential computation [6] of the Higgs squared mass

matrix elements, which allows a more reliable treatment of the cases in which the

squark mixing terms or the squark mass splittings become large.

The approximation that sin β ' 1, which is good for moderate or large values of

tan β, is equivalent to the relation v2
2 � v2

1. In this limit, H2 is the Higgs doublet

mainly responsible for electroweak symmetry breaking and the mass of the Higgs φW

is well approximated by
√
M2

22, where the mA dependence is suppressed by the large

tan β factor. On the other hand, the mixing angle α can be determined from the
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expression

sin α cos α =
M2

12√
(TrM2)2 − 4 detM2

. (3.7)

In the limit that M12 → 0, either sin α or cos α → 0. In the case that M2
11 > M2

22,

it is sin α that vanishes. Otherwise, it is cosα that vanishes. Because M2
11 '

m2
A sin2 β ' m2

A, it is sin α that is suppressed when the off–diagonal elements of the

quadratic mass matrix are small and mA is large. In both cases the suppression of

the BR(φ → bb̄) affects the Higgs φW . Observe that the tree-level contribution to the

Higgs matrix element M2
12 is suppressed by a 1/ tanβ factor. This factor does not

lead in general to a suppression of the effective φW coupling to bottom quarks, but

compensates the tan β enhancement of hb to render it Standard Model–like. What

is emphasized above is an additional suppression, which only takes place when M2
12

is significantly smaller than the tree level value. In general, the radiative corrections

are very important and depend on the sign and size of µ̄ × Āt and µ̄ × Āb. The

possibility of such effects will no be apparent if one assumes µ ' 0 or At, Ab ' 0.

Up to this point, the discussion has made use of the tree–level (but QCD cor-

rected) relation between the Yukawa couplings and the quark masses. However, for

large values of tanβ, there can be a significant modification of the bottom and pos-

sibly tau Yukawa couplings from SUSY corrections [17, 18]. In fact, it is possible

to enhance the bottom or tau coupling of the Higgs boson independently of each

other. For completeness, we provide the modifications to the φbb̄ couplings derived

by us earlier 3 in an effective Lagrangian approach [18]. The starting point is the

effective Lagrangian at energies below the supersymmetric particle masses, which are

assumed to be larger than the weak scale, M2
S � M2

Z ,

L ' hbH
0
1bb̄ + ∆hbH

0
2bb̄. (3.8)

In the above, the appearance of the one-loop suppressed coupling ∆hb is a reflection

of the breakdown of supersymmetry at low energies. The CP-even Higgs boson

couplings to bottom quarks are approximately given by [18]

hb,h ' −mb sin α

v cos β

[
1− ∆(mb)

1 + ∆(mb)

(
1 +

1

tanα tan β

)]
, (3.9)

hb,H ' mb cos α

v cos β

[
1− ∆(mb)

1 + ∆(mb)

(
1− tan α

tan β

)]
, (3.10)

where hb,h and hb,H denote the couplings of the lightest and heaviest CP-even Higgs

3These results agree with those obtained by diagrammatic computations[19, 20].
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boson respectively and ∆(mb) = (∆hb/hb) tanβ. The coupling of the CP-odd Higgs

boson is much simpler, and takes the form

hb,A =
mb

(1 + ∆(mb))v
tanβ ' hb. (3.11)

The function ∆(mb) contains two main contributions, one from a bottom squark–

gluino loop (depending on the two bottom squark masses Mb̃1
and Mb̃2

and the gluino

mass Mg̃) and another one from a top squark–higgsino loop (depending on the two

top squark masses Mt̃1 and Mt̃2 and the higgsino mass parameter µ). The explicit

form of ∆(mb) at one–loop can be approximated by computing the supersymmetric

loop diagrams at zero external momentum (MS � mb) and is given by [21, 22, 23, 24]:

∆(mb) ' 2α3

3π
Mg̃µ tanβ I(Mb̃1

, Mb̃2
, Mg̃) +

Yt

4π
Atµ tanβ I(Mt̃1 , Mt̃2 , µ), (3.12)

where α3 = g2
3/4π, Yt =

h2
t

4π
, and the function I is given by,

I(a, b, c) =
a2b2 ln(a2/b2) + b2c2 ln(b2/c2) + c2a2 ln(c2/a2)

(a2 − b2)(b2 − c2)(a2 − c2)
, (3.13)

which is positive by definition. Smaller contributions to ∆(mb) [23] have been ne-

glected for the purpose of this discussion. The value of ∆(mb) in Eq. (3.12) is defined

at the scale MS, where the sparticles are decoupled. The hb and ∆hb couplings should

be computed at that scale, and run down with their respective renormalization group

equations to the scale mA, where the relations between the couplings of the bottom

quark to the neutral Higgs bosons and the running bottom quark mass are defined.

The CP-even Higgs couplings to the τ -leptons are also affected by large correc-

tions at large tan β. They are given by similar expressions as the ones for the bottom

couplings, but replacing ∆(mb) by

∆(mτ ) ' g2
1

16π2
M1µ tanβI(Mτ̃1, Mτ̃2 , M1) +

g2
2

16π2
M2µ tanβ I(Mν̃τ , M2, µ),(3.14)

where g1 and g2 are the U(1) hypercharge and SU(2) weak isospin couplings. Since

it is proportional to weak couplings, ∆(mτ ) is usually much smaller than ∆(mb); the

exact value of ∆(mτ ) depending on the relative size of the weak gaugino masses.

In the earlier discussion of the suppression of the φbb̄ coupling, an implicit as-

sumption was made that ∆(mb) and ∆(mτ ) were small. Indeed, from Eq. (3.9) (Eq.

(3.10)), we observe that, in the limit sin α = 0 (cos α = 0), the φbb̄ coupling is given

by

hb,h(hb,H) =
mb

sin βv
× ∆(mb)

(1 + ∆(mb))
≡ ∆hb, (3.15)
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which vanishes if |∆(mb)| � 1. A similar expression to Eq. (3.15) holds for the τ

lepton coupling.

The bottom mass correction factor ∆(mb) � 1, except when tan β and/or the

stop mixing mass parameters At and µ are large, in which case it can be near unity.

When ∆(mb) is of order 1, the φbb̄ coupling can be of the order of the Standard

Model one even though sin α cos α → 0. Moreover, since ∆(mb) and ∆(mτ ) will be

different in general, their relative strength can be quite different from that in the

SM or the tree–level MSSM. It is possible for hτ,h to vanish, while hb,h is substantial.

Note, a strong suppression of the bottom coupling hb,h can still occur for slightly

different values of the Higgs mixing angle α, namely

tanα ' ∆(mb)

tanβ
≡ ∆hb

hb

. (3.16)

Under these conditions,

hτ,h =
mτ

v sin β

(
∆(mτ )−∆(mb)

1 + ∆(mτ )

)
, hb,h = 0. (3.17)

A similar expression is obtained for the coupling hτ,H in the case hb,H = 0. Hence,

if tan β is very large and ∆(mb) is of order one, the τ Yukawa coupling may not be

strongly suppressed with respect to the Standard Model case and can provide the

dominant decay mode for a Standard Model–like Higgs boson. Likewise, a suppres-

sion of the hτ,h coupling arises for tanα ' ∆(mτ )/ tanβ.

At tree-level, when φ → bb̄ vanishes, so does φ → τ+τ−. Therefore, the Higgs

decays to gg, cc̄, W ∗W ∗ and γγ occur at enhanced rates compared to the SM expecta-

tions. Once the vertex corrections are included, the results will depend on ∆(mb) (we

assume for the rest of this discussion that ∆(mτ ) is small). Since the ∆(mb) correc-

tions depend strongly on the size and sign of Mg̃, and hence introduce a dependence

on parameters which do not otherwise affect the Higgs masses and mixing angles in

a relevant way, we shall neglect them in the main analysis. However, in Section 4,

we shall present a dedicated analysis of the possible effects of these corrections on

the Higgs phenomenology.

The vanishing of the φbb̄ coupling may be problematic for Higgs searches at

LEP and the Tevatron. The enhanced decays φ → gg and φ → cc̄ are difficult to

observe at the LEP and particularly at the Tevatron collider because of increased

backgrounds. The “trilepton” signature from Wφ(→ W ∗W ∗) may be challenging at

the Tevatron [25], because of the small signal rate. While the cross section for the

process gg → φ → γγ can be enhanced up to about 10 fb at the Tevatron collider,

which may be observable, a detailed study of the γγ backgrounds in the mass range

around 100 GeV is still lacking.

We now turn our attention to the case of the LHC. Search strategies in the

γγ + X final state change from the low luminosity run (collecting up to 30 fb−1) to
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the high luminosity run (30 to 100 fb−1 and up to 300 fb−1) 4 because of the relative

behavior of the signals and backgrounds. At low luminosity, the experiments are

most sensitive to the subprocess gg → φ → γγ. Given the reach for a SM Higgs

boson, the reach in the MSSM can be calculated using the factor R
′
(mφ):

R
′
(mφ) =

Γ(φ→ gg) BR(φ→ γγ)

Γ(φ → gg)SM BR(φ→ γγ)SM
. (3.18)

At high luminosity, the best reach for a Higgs with SM-like couplings to the gauge

bosons is in the WφW (→ γγ) and tt̄φW (→ γγ) channels. In this case, the production

cross section depends on a tree level coupling, and loop effects arise only in BR(φW →
γγ). The relevant factor R

′′
(mφ) is

R
′′
(mφ) =

{
sin2(β − α), cos2(β − α)

} BR(φ→ γγ)

BR(φ → γγ)SM

'
{
cos2 α, sin2 α

} BR(φ→ γγ)

BR(φ→ γγ)SM
. (3.19)

Let us analyze the properties of the Higgs sector relevant to R
′
and R

′′
in more

detail. The effect of a light top squark (or light bottom squark at large tanβ) with

Ãt (Ãb ≡ Ab − µ tanβ) large is to decrease the top quark contribution to these loop

effects. This decreases the partial width Γ(φW → gg), but increases BR(φW → γγ)

since in the Standard Model the W and t contributions destructively interfere, with

the former being the dominant one. It was noted earlier that there is a reciprocal

relation between Γ(φW → gg) and Γ(φW → γγ) because of the domination of the

WW loop in the latter [26]. Because BR(φW → γγ) = Γ(φW → γγ)/Γtot, the relation

is not entirely compensating, since BR(φW → γγ) depends on Γtot and hence on the

width of the Higgs decay into bottom quarks and tau leptons. For small values of

tan β or large values, the factor R
′
, Eq. (3.18) can be significantly decreased [26]

because of a cancellation between the top quark loops and the stop and sbottom

loops. Of course, the presence of light sparticles implies that the next generation of

experiments can directly probe them. The advantage of the tt̄φW channel is that R
′′

depends on BR(φW → γγ)) and not Γ(φW → gg). Therefore, the decrease in R
′
can

be compensated by an increase in R
′′
.

Another way to modify R
′
and R

′′
is to change one of the tree level couplings

listed above. For instance, when tanβ is large and sin α is small, the lightest CP-even

Higgs boson presents Standard Model–like couplings to the W and Z gauge bosons.

However, even when sin α is small, the product sinα×tan β is not determined a priori,

and depends on the exact characteristics of the supersymmetric spectrum. When

sin α × tan β is larger than one, the BR(h → bb̄) becomes larger than the SM one,

4We use the term luminosity interchangeably to mean instantaneous luminosity and total inte-
grated luminosity. The meaning should be clear from context.
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and, since it is the dominant Higgs decay channel, it partially suppress the BR(φ →
γγ). On the contrary, if BR(h → bb̄) becomes much smaller than one, something

that, as we explained above, can happen in certain regions of parameters [18], the

BR(φ → γγ) will be strongly enhanced, improving the LHC prospects of finding a

light CP-even Higgs without going to the highest luminosity runs.

Our discussion of searches for a SM–like Higgs boson at the LHC is limited to

those presented by the experiments themselves. ATLAS has presented encouraging

numbers for their reach in the tt̄φ(→ bb̄) channel.5 In the approximation of Table

I, we observe that this signature has large or small couplings in the same regions of

MSSM parameters space as for V φ(→ bb̄) at the LEP and Tevatron colliders. This

potentially important channel is not included in our analysis. Let us mention, how-

ever, that, if the Higgs were discovered at LEP and/or the Tevatron, this channel will

serve to measure its coupling to the top quark, providing an important independent

test of the origin of fermion masses. On the other hand, if the effective luminosity at

the next run of the Tevatron were small, this channel will provide additional means

for the LHC to test the Higgs responsible for electroweak symmetry breaking in most

of the MSSM parameter space. Hence, this Higgs production channel at LHC adds to

the complementary physics potential of the three colliders that we are emphasizing

in this article.

4. Results

For our analysis, we rely on the projected discovery reach of the three colliders

for a Standard Model Higgs boson. For LEP2, running at
√

s = 200 GeV and

collecting 200 pb−1 of data (per experiment), we use the numbers of Ref. [27]. For

the Tevatron in Run II and Run III, we use the results of the Higgs Working Group

of the Workshop on Physics at Run II [11]. For the LHC, we use the technical design

reports and updates of the ATLAS[14] and CMS[15] collaborations. A comparison

of the sensitivity of the two experiments in the γγ channels reveals that CMS is

substantially more sensitive than ATLAS. Therefore, only the projected reach of

the CMS detector is explicitly used in our analysis to represent the reach of the

LHC. To demonstrate the potential of the LHC if 300 fb−1 of data is collected, we

scale the 100 fb−1 significances by a factor of
√

3. The significance in the MSSM is

determined by rescaling the partial widths and branching ratios accordingly.

As discussed in Sec. 3, some choices for the soft supersymmetry-breaking param-

eters at the weak scale can make it difficult to observe the Higgs φW at LEP and

the Tevatron in the φW → bb̄ channel or LHC in the φW → γγ channel. In this

section, we demonstrate that, quite generally, difficulties will not arise in both chan-

5At low luminosity, the process Wφ(→ bb̄) can also be used.
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nels, provided that the experiments operate efficiently and receive enough integrated

luminosity.

We construct our argument by concentrating on MSSM parameters that are

problematic for one of the channels, and then displaying the complementarity of the

other channel. Our choices include the possibility of light top and bottom squarks,

which can have an important impact on one-loop suppressed decays of φW . Higgs

boson properties are calculated using HDECAY [28]. However, due to the relevance

of the bottom mass corrections in defining the proper bottom quark Yukawa coupling

at the scale MS, we have modified the effective potential calculation of Ref. [6], used

in HDECAY, in order to include these corrections in the large tan β regime. The

inclusion of these corrections in the expression of the Higgs masses lead to non-leading

logarithmic two-loop corrections. Although in a complete two-loop calculation there

might be other non-logarithmic terms modifying the Higgs masses, these corrections

are particularly important, since they can modify the one-loop result by factors of

order one.

4.1 The Minimal Mixing Model

The case when Ãt = 0 yields the smallest value for the upper bound on the Higgs

boson mass for a given choice of µ and stop masses (for large values of tanβ, small

sbottom masses or large values of µ tend to lead to even lower values for the upper

bound [6]). We fix the overall scale of supersymmetry particle masses MS = 1 TeV,

with M2
S = 1

2
(m2

t̃1
+ m2

t̃2
). Furthermore, for comparison with the results presented

by ATLAS and CMS, we choose µ = −100 GeV, which is small enough that it

does not differ significantly from the µ = 0 case, but large enough to avoid a light

chargino. In our scan of the mA − tan β plane, we tune At = µ/ tanβ to achieve the

conditions of minimal mixing at each point in the plane. This choice of parameters

yields a moderate upper bound for the lightest Higgs boson mass which is, however,

beyond the kinematic reach of LEP. This is a conservative assumption for the LHC

experiments, since the discovery reach is typically best for a Higgs φW mass near the

highest allowed upper bound in the MSSM.

The regions of the MA − tan β plane in which a Higgs φW boson would be

discovered at the 5–σ level at the Tevatron are shown as shaded regions in Fig. 2(a).

Different shadings correspond to different assumptions about the luminosity delivered

to both experiments. The LEP discovery contour (for a Higgs φW boson) is shown

by the double line (the region below the contour will be probed). With more than

5 fb−1, the Tevatron begins to provide information beyond that from LEP, provided

that the Higgs boson is not already discovered. Up to 30 fb−1 of data is needed to

cover the problematic region around sin2(β − α) ' cos2(β − α) at low tan β where

mh and mH are separated by more than ' 10 GeV [29, 18].

In Fig. 2(b), the corresponding discovery reach with the CMS experiment is

shown. The complementarity of the colliders is clear. The LHC experiments are most
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sensitive to large mA, where mh approaches its upper bound for the given choice of

parameters.. As mA decreases, the φbb̄ coupling increases, so that B(φ → γγ) and R
′

and R
′′

decrease. At the Tevatron, the region of large mA and large tan β is harder to

cover, because the φbb̄ coupling decreases towards the Standard Model value, yielding

R ' 1. Simultaneously, the lightest CP-even Higgs boson mass approaches its upper

bound, so that more integrated luminosity is needed to probe this region. It is worth

noting the change in the shape of the LHC contours between low and high luminosity,

when the gg → φ process becomes less important than the tt̄φ/Wφ process. After

the low luminosity run at the LHC (30 fb−1), if the Tevatron obtains only 10 fb−1 of

data, there remains a region uncovered by both colliders for mA ' 250 − 300 GeV

(there would also still be the hole at sin2(β−α) ' cos2(β−α)). The high luminosity

run (but only with 100 fb−1) is necessary to guarantee full coverage in this region,

unless the Tevatron collects 20 fb−1 or more of integrated luminosity per experiment.

4.2 φbb̄ suppression for large MS

Figure 3 was generated using the choice of MSSM parameters At = −µ = 1.5 TeV

and MS = 1 TeV, which yields a suppression of the Higgs boson coupling to bb̄ (and

τ+τ−) in a significant portion of the mA − tanβ plane for the same Higgs boson

that couples strongly to W and Z bosons (φW ). An approximate analytic formula

that shows the necessary relations between parameters can be obtained by setting

M2
12 = 0 in Eq. (3.6) and was presented in Ref. [18]. In Fig. 3(a), the vanishing

of sin α is seen when h ≡ φW (region which remains uncovered by the Tevatron, in

the upper part of the Figure), whereas the vanishing of cosα occurs when H ≡ φW

(region which remains uncovered by the Tevatron, in the lower part of the Figure

). As alluded to earlier, the vanishing of the φW bb̄ and φW τ+τ− couplings greatly

enhances BR(φ→ γγ), and CMS has little difficulty in covering the complementary

regions in the low luminosity run, as shown in Fig. 3(b).

After combining both discovery reaches, a small region, for which sin2(β − α) '
cos2(β − α) persists, however, uncovered by both colliders. For clarity, we wish to

emphasize again that LHC will have other means of testing the region of parameters

which remain uncovered in our analysis by means of the production of other Higgs

bosons of the low energy effective theory [14]. However, in this region of parameters,

none of these Higgs bosons will have SM–like couplings, and hence will not directly

test the mechanism of electroweak symmetry breaking. In addition, one of the un-

ambiguous predictions of weak-scale supersymmetry (the upper bound on the mass

of the SM–like Higgs) will not be tested directly.

4.3 Bottom Yukawa corrections

So far, our analysis has neglected corrections to the fermion Yukawa couplings from

loop corrections. To illustrate the potential importance of these effects, we must
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specify other parameters of the MSSM which, in the next–to–leading–logarithmic ap-

proximation, do not affect the CP-even Higgs masses and mixing angles in a relevant

way (apart from the effects arising from the redefinition of the b-Yukawa coupling,

which we will discuss below). Care must be taken in choosing these parameters,

since an additional enhancement of the b Yukawa coupling at large values of tan β

can cause the theory to become non–perturbative. Therefore, we consider an example

similar to the one presented in Fig. 3, taking At = −µ = 1 TeV. This still illustrates

the suppression of the φbb̄ coupling, but in a smaller region of the MA− tan β plane.

For this same choice of parameters, we then consider the effects of ∆(mb) when the

gluino mass parameter Mg̃ takes the values ±.5 TeV. From Eq. (3.12), we observe

that the top quark-Yukawa coupling induced-contribution is negative for Atµ < 0,

while a positive (negative) gluino mass will decrease (increase) ∆(mb). The case of an

overall positive correction (negative gluino mass) is illustrated in Fig. 4. The effect of

the correction is minimal, since ∆(mb) is never larger than about 0.3 at large tanβ.

For the case of a negative correction, however, as seen in Fig. 5, the suppression of

the φbb̄ coupling for mA
>∼ 130 GeV is shifted to lower values of tanβ. Note that

the suppression is now occurring because tan α ' ∆(mb)/ tanβ, and not because

the tree-level coupling vanishes sinα cos α/ cosβ → 0. According to Eq. (3.15), in

the regions of parameter space where the tree-level φbb̄ vanishes, the φbb̄ coupling

can be substantial and the φτ+τ− coupling is suppressed. When the φbb̄ coupling

suppression occurs, the φτ+τ− coupling will typically not vanish, as demonstrated

in Eq. (3.17).

There are several phenomenological consequences of the mismatch in the behav-

ior of the φbb̄ and φτ+τ− couplings. First, in the previous examples, we observed that

the φW → bb̄ channel at the Tevatron (or the LHC) can cover those regions where

the φW → γγ channel is suppressed. Secondly, in such examples, the simultaneous

vanishing of the φbb̄ and the φτ+τ− couplings led to an enhancement of BR(φ→ γγ).

However, the enhancement in the region where φbb̄ is suppressed will generally not

be as large as naively expected, since Γ(φ → τ+τ−) can still be substantial. Still,

the complementarity of the Tevatron and the LHC experiments in the search for the

Higgs φW remains clear. Given the fact that the decay φW → τ+τ− may be dominant

in this region, it is important to consider φW → τ+τ− signatures at the Tevatron

and LHC. Preliminary results in this direction have been presented in Ref. [12].

An illustration of the possible variation of the φW → bb̄ and φW → τ+τ− decay

modes in parameter space is presented in Fig. 6, which shows the function R of

Eq. (3.4) for the bb̄ final state (Rb) (a) and the τ+τ− final state (Rτ )(b) for the same

parameters as in Fig. 5. Note the large region where Rb is greater than the SM value,

where as Rτ is below it. Of course, there is a compensating region along contours

of tanα ' ∆(mb)/ tanβ at very large tan β where φW → τ+τ− is the dominant

decay mode. In terms of area covered in the MA − tanβ plane, the former is more

significant than the latter. It is also worth noting that both R values approach their
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SM values in the limit of large MA. Indeed, when MA is large and MS is large, the

effect of the radiative corrections vanish. When MA is fixed and MS is arbitrarily

large, however, the radiative corrections will in general be relevant [18], a reflection

of the lack of supersymmetry in the low energy effective theory.

It is important to emphasize that the nice complementarity between the φW → bb̄

and φW → γγ decay channels holds due to the fact that the former is, in general,

the dominant Higgs decay channel. This complementarity does not extend to the

φW → τ+τ− channel. Indeed, in the above example, we see region of parameters for

which φW → τ+τ− is suppressed and, due to a slight enhancement of φ → bb̄ decay

rate in the same region of parameters, the LHC reach in the φW → γγ channel is

also suppressed.

4.4 Cancellations from the sbottom sector

In the previous examples, we showed how relatively large values of At ' −µ led to

the suppression of the φbb̄ coupling in the large tanβ regime. We demonstrate that

this can also occur when Ab ' µ in Figs. 7, and 8. The effect of Ab, however, is in

general much weaker than the At one, and becomes only relevant for large values of

the bottom Yukawa coupling, that is for values of tanβ ' mt/mb. To show this, in

these figures, we choose moderate values of Ab and µ, taking At = 0. The vanishing

of At leads, in general, to masses that are of the order of the ones obtained in the

minimal mixing case, although they can be further reduced, due to the µ–induced

terms discussed above, for large values of tanβ. Also, the top Yukawa contribution

to ∆(mb) vanishes for At = 0. In Fig. 7, we have chosen Ab = µ = 1.25 TeV and

Mg̃ = .5 TeV, leading to ∆(mb) > 0. No relevant modification in the reach is found

compared to the minimal mixing case (Fig. 2). Indeed, for the parameters chosen,

the suppression of the φbb̄ coupling takes place at values of tanβ larger than the ones

considered in this analysis. To observe the suppression for positive corrections, we

would need to choose larger values of Ab and µ.

For Mg̃ = −.5 TeV, which yields ∆(mb) < 0, we observe the suppression of the

φbb̄ coupling in Fig. 8, in region of parameter space in which tanα ' ∆(mb)/ tanβ.

This leads to holes in the regions of parameter space to be tested at LEP and the

Tevatron in the φW → bb̄ channel, but a compensating increase in φW → γγ rate

in the same regions of parameters. Since we have also included the bottom Yukawa

coupling corrections to the calculation of the mass spectrum, we observe the reap-

pearance of the LEP exclusion at large tanβ, due to a reduction of the Higgs boson

mass.

Although the above provides only an extreme example for which only the Ab-

induced effects were considered, it shows in a clear way the relative importance of

the effects on the Higgs mass matrix elements induced by the presence of non-trivial

mixing in the sbottom and stop sectors. In the following sections, we shall present

examples in which At ' Ab 6= 0.
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4.5 Light stop and large mixing

In the minimal mixing model investigated in section 4.1, the SUSY scale MS was set

to 1 TeV, but the mixing term Ãt was zero. In the present case, we consider equal

values for the left- and right-handed soft supersymmetry-breaking squark masses of

the third generation, and adjust the common value to yield a lightest top squark

mass of 200 GeV. This is meant to demonstrate the possibility of large corrections

to the φgg and φγγ couplings from light sparticles. In addition, this lowers the scale

MS . We fix µ = −.3 TeV, and At = 1 TeV, so that stop mixing is large 6. This

is motivated by the form of the {h, H}t̃t̃ coupling (written here in the interaction

basis):

2m2
t

v sin β
{cos α, sinα} − 2M2

Z

v
{sin(α + β),− cos(α + β)} (1/2− 2/3 sin2 θW ) (LL)

2m2
t

v sin β
{cos α, sinα} − 2M2

Z

v
{sin(α + β),− cos(α + β)} 2/3 sin2 θW (RR)

mt

v sin β
[At {cos α, sinα}+ µ {sin α,− cosα}] (LR)

where we have denoted the components in parentheses. For large LR mixing, the

terms proportional to At and µ can dominate the stop-Higgs couplings. For a Higgs

with SM-like couplings to the gauge bosons, in the moderate and large tan β regime,

At is the relevant mixing parameter determining the strength of this coupling. For

large values of mA and arbitrary values of tan β, this coupling is proportional to Ãt,

which is approximately equal to At in the large tan β regime.

In this region of parameters, the Tevatron can discover a Higgs φW in most of

the parameter space with about 20 fb−1. One observes from Fig. 9(a) that although

the stops are lighter in this case, the reach at the Tevatron is somewhat suppressed

with respect to the minimal mixing case, and 30 fb−1 are necessary to cover the

whole parameter space, with the exception of the region of parameters for which

sin2(β−α) ' cos2(β−α). The origin of the relative suppression in the discovery reach

is the upper bound on the lightest CP-even Higgs mass, which increases substantially

when Ãt 6= 0. For instance, while for the minimal mixing case this upper bound is

below 115 GeV, values close to 120 GeV are obtained in the case under analysis.

As noted earlier, light top and bottom squarks can have a large effect on the one–

loop suppressed partial widths Γ(φ → gg) and Γ(φ → γγ). The relation between

these two quantities is reciprocal, and depends on the size of At and µ. When the

stop mixing mass parameters (in particular At) become large, the width Γ(φ → gg)

can be greatly decreased since the light top squark loop contribution can partially or

6As has been observed in Ref. [26], precision electroweak measurements tend to disfavor the
presence of light third generation squarks with large mixing angles. Most of the parameters con-
sidered in this subsection, as in the following two, are only marginally consistent with the precision
electroweak data.
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totally cancel the top quark loop induced one. In Fig. 9(b), it is clear that R
′
, Eq.

(3.18) is widely suppressed, and this is reflected in the fact that the low luminosity

run of the LHC cannot observe the Higgs boson that couples strongly to the W and

Z boson in the gluon fusion channel. In the high luminosity run, the dependence on

Γ(φ → gg) is weakened, and the reach is dominated by the tt̄φ/Wφ channels (see

also [13]). In this Higgs mass range, the LHC sensitivity in these channels depends

only weakly on the Higgs mass and for high luminosity the LHC discovery reach

becomes similar to the one in the minimal mixing case.

The complementarity of the Tevatron and LHC colliders in this case is similar to

the case of minimal mixing, although somewhat larger luminosities in both colliders

are needed in order to obtain full coverage of the MSSM parameter space.

4.6 φbb̄ coupling suppression for light stops

Since we have identified two interesting effects, namely the suppression of the φbb̄

coupling from Higgs mixing and the suppression of one–loop couplings from large

stop mixing, one may wonder if both can occur. The conditions for the cancellation

of M2
12, and hence for φbb̄ suppression, can be determined analogously to the large

MS case, but since the stop mixing effects become larger, the approximate formulae

Eq. (3.6) is no longer valid, and one should work with the full effective potential

computation [6]. One example occurs for µ = 1 TeV, At = .65 TeV, and a lightest

stop mass fixed at 200 GeV as before. We display an example in Figure 10. Since

the stop mixing effects we are considering are larger than in the previous cases, the

cancellation of the φbb̄ coupling occurs for larger values of the CP-odd Higgs mass.

Indeed, Fig. 10(a) reveals that the region of φbb̄ suppression is shifted substantially.

Most interesting is the fact that LEP could discover a Higgs boson with strong

couplings to W and Z bosons at large tan β. As noticed before, this is just a reflection

of the suppression of the Higgs mass induced by the µ parameter at large values of

tan β, as shown in the expression ofM2
22 in Eq. (3.6). Of course, in the regions of φbb̄

suppression, neither LEP nor the Tevatron have any reach (we are not considering

a possible enhancement of the tau lepton coupling, which, as explained before, can

take place if ∆(mb) 6= ∆(mτ )).

Because of the suppression of the φbb̄ coupling, the LHC, Fig. 10(b), has signif-

icant reach in the regions complementary to LEP and the Tevatron. Observe that

the reach at low tan β and large mA
>∼ 350 GeV is slightly less than for the minimal

mixing model, because of a small increase of the φbb̄ coupling. However, for the same

value of tan β and mA, the lightest CP-even Higgs mass increases, and therefore the

increase of the BR(h→ bb̄) is not reflected in an increase of the Tevatron reach.

More important, there are region of parameters, at large values of tan β, for which

the Higgs becomes accessible to the three colliders with relatively small luminosity.

This would provide a perfect situation: A Higgs with SM-like couplings to the gauge
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bosons will be discovered at LEP by the end of the year 2000, and its properties will

be further tested at the Tevatron and LHC colliders.

4.7 φbb̄ coupling enhancement and light third generation squarks.

A large value of Ãb ≡ Ab − µ tanβ can have significant consequences when the

bottom squark is also light. In Fig. 11(b), one observes a general suppression of R
′

and R
′′

throughout most of the MA − tan β plane. For this example, we have set

At = Ab = −0.5 TeV, µ = −1 TeV, and all third generation squark parameters equal

and tuned to yield a bottom squark mass of 200 GeV. For small values of the ratio

of Higgs vacuum expectation values tanβ < 2) this choice of parameters may lead

to too light top squarks, with masses below the present experimental bound, or even

negative ones. In these cases, we have increase the squark masses by setting a lower

bound on the lightest bottom squark of about 300 GeV. Although this implies a slight

discontinuity of the parameters chosen to perform the figures, this does not affect

the physical results since for such light stops and sbottoms the tan β < 2 regime is

already ruled out by LEP2 data.

Since Ãt and Ãb are large, and the bottom and top squarks are light, one might

expect that Γ(φ → gg) will decrease and Γ(φ → γγ) will increase. This is true,

but any further expectation that BR(φ → γγ) increases is nullified by the fact

that, for this choice of parameters, the bottom quark coupling to the Higgs φW

is enhanced with respect to the Standard Model expectation, inducing a decrease

of the BR(φW → γγ). Had we chosen the opposite sign of µ, an increase of the

BR(φW → γγ) with respect to the SM value would have been observed, as in the

previous section.

Because of the enhancement of BR(φ → bb̄) and given that the Higgs φW mass

is below 112 GeV (it becomes smaller at small and large values of tan β), it is par-

ticularly easy to probe this region of the MSSM parameters. For instance, LEP can

probe a significant portion of the MA − tan β plane (LEP will be sensitive to the

region connected by the narrow strip around MA ' 135 GeV) as seen in Fig. 11(a),

and the Tevatron would only need a substantial luminosity upgrade to cover the

difficult region near MA ' 120 GeV.

5. Conclusions

To test if the mechanism of electroweak symmetry breaking is indeed generated by a

fundamental scalar, as postulated in the minimal Standard Model and its supersym-

metric extension, it will be necessary to observe the Higgs boson which is responsible

for the W and Z boson masses, and hence, has SM–like couplings to these gauge

bosons. Otherwise, it will be difficult to conclude if the mechanism of electroweak

symmetry breaking relies on a weakly or strongly coupled model, or, if the low en-

ergy Higgs sector fulfills the properties demanded in the MSSM, for instance the
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upper bound on the lightest CP-even Higgs mass. In theories with more than one

Higgs doublet, the real part of the neutral Higgs combination which acquires vac-

uum expectation value is not necessarily associated with a physical mass eigenstate.

However, there are large regions of the MSSM parameter space where one of the

CP-even Higgs bosons couples in a Standard Model way to the W and Z bosons and

up quarks and, hence, can be identified as the dominant source of electroweak sym-

metry breaking. We have denoted such a Higgs boson as φW . Interestingly enough,

the φW couplings to bottom quarks and τ -leptons, which control the dominant decay

modes of the Standard Model Higgs, can be highly non-standard. Therefore, the

full experimental program to discover the Higgs φW must account for the possibility

that some of its standard signatures may be significantly modified. A suppression

of the standard signatures may occur for natural choices of the soft supersymmetry-

breaking parameters of the low-energy effective theory. When viewed in this light,

one sees that measurements at LEP and Tevatron can provide important information

about the Higgs sector which will be complemented by measurements at the LHC.

On the other hand, in the regions of parameter space where the Higgs searches at

the LEP and Tevatron colliders become difficult, the LHC will, in general, be able

to find the Higgs φW at relatively low integrated luminosities, L < 100 fb−1. We

have presented several explicit choices of MSSM parameters which demonstrate this

point, including the possibility that the top and bottom squarks are relatively heavy

or light.

In general, we have observed some patterns in the choices of soft supersymmetry-

breaking parameters that lead to difficulties at either LEP/Tevatron or LHC, but

give a complementary enhanced signature at the other collider(s):

• When Atµ < 0 or Abµ > 0, with parameter values of the order of the scale

MS ' 1 TeV, there can be a suppression of the φW bb̄ coupling, which limits the

φW → bb̄ channel at LEP/Tevatron. Complementary to this, BR(φW → γγ)

is enhanced at the LHC. Hence, while for these conditions the discovery of the

Higgs φW at LEP and the Tevatron will require very high luminosities, even a

low luminosity run at the LHC will be sufficient to discover the Higgs φW .

• As the values of At, Ab and µ are lowered, the φW bb̄ coupling can still be

suppressed in the presence of large radiative corrections to the φW bb̄ coupling,

∆(mb), which are proportional to tanβ and can be of order one for large tanβ.

In this case, the suppression occurs because the relation tanα ' ∆(mb)/ tanβ

holds. There is also a mismatch between the φW bb̄ and φW τ+τ− couplings, to

be discussed below. As before, the complementarity arises because the LHC

reach in the φW → γγ channel increases (decreases) when the bottom Yukawa

coupling is decreased (increased).

• If MS is decreased, but the other parameters still obtain values near 1 TeV, then

20



the φW bb̄ suppression occurs for smaller values of tanβ and at large values of

mA. At large tanβ, the mass of the Higgs φW decreases from its upper bound,

which is achieved at intermediate values of tan β between 10 and 20, and LEP

becomes sensitive to the Higgs φW , but not in the regions where the Tevatron

reach is also suppressed. The signal rate in the φW → γγ channel is again

enhanced in those regions inaccessible at the LEP/Tevatron.

• A small top squark mass, a large value for At and moderate µ can decrease

Γ(φW → gg) through the interference of top and top squark loops, which limits

the channel gg → φW → γγ at the LHC. Simultaneously, the φW bb̄ coupling can

be enhanced or suppressed over the SM value, because of the contribution of

At and µ to the mixing in the Higgs sector. If the φW bb̄ coupling is enhanced,

the BR(φW → γγ) can actually also decrease. Because of the increase in

BR(φW → bb̄), the channel φW → bb̄ at the Tevatron can be used to cover

the problematic regions at the LHC, provided that the experiments at the

Tevatron receive enough luminosity. On the other hand, if the φW bb̄ coupling

is suppressed, there will be a further increase in BR(φW → γγ) which enhances

the reach of the LHC in the tt̄φW and WφW channels.

• Large values for Ab, At and µ with light bottom and top squarks may lead

to a wide suppression of BR(φW → γγ), because the φW bb̄ coupling can be

significantly enhanced. This limits all of the φW → γγ channels at the LHC.

The upper bound on the Higgs boson mass is reduced in conjunction with

the increase in BR(φW → bb̄), so that LEP and the Tevatron cover most of

the complementary regions of the MA − tan β plane. High luminosity is only

required at the Tevatron to cover the regions where neither CP-even Higgs

boson has SM-like couplings to the gauge bosons, sin2(β − α) ' cos2(β − α).

• For MSSM parameter choices where the Higgs mixing would cause a suppres-

sion of both the φW bb̄ and φW τ+τ− couplings at tree–level, large radiative

corrections from SUSY–breaking effects can modify the bottom and tau de-

cay rates in different ways. As a result, one may observe φW (→ bb̄) without

φW (→ τ+τ−). In the regions where there is a suppression of the φW τ+τ− cou-

pling, there is not necessarily an enhancement of BR(φW → γγ), because the

φW bb̄ coupling can be of the order of the Standard Model value. In the presence

of large SUSY–breaking effects, the suppression of the φW bb̄ coupling occurs

when tan α ' ∆(mb)/ tanβ. For this value of tanα, the φW τ+τ− coupling will

not vanish, in general, and φW → τ+τ− may be the dominant decay.

While our analysis has emphasized the complementarity of LEP and the Tevatron

in the φW (→ bb̄) channels to the LHC in the φW (→ γγ) channels, our results are more

general. If the experiments at the Tevatron do not receive enough luminosity, then
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the tt̄φW (→ bb̄) channel, which to a good approximation has the same parameter

dependence as the WφW (→ bb̄) channel, at the LHC will be complementary to

the φW (→ γγ) channels (the WW → φW (→ τ+τ−) channel may also be useful).

On the other hand, with enough luminosity, the Tevatron may be able to observe

the φW (→ γγ) channel when the φW bb̄ coupling is greatly suppressed. Regardless

which of these scenarios is realized, the next generation of measurements at LEP, the

Tevatron and the LHC can most likely reveal the nature of electroweak symmetry

breaking by observing or excluding a light Higgs boson with Standard Model–like

couplings to the W and Z bosons.
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A. Relations between the CP even Higgs masses

To derive Eq. (1.2), we start with the Higgs squared-mass matrix elements parametrized

in the following form (see Eq. (3.6)),

M2
11 = m2

A sin2 β + ∆11

M2
22 = m2

A cos2 β + ∆22

M2
12 = −m2

A cos β sin β + ∆12, (A.1)

where ∆ij denotes terms independent of m2
A. For very large values of m2

A, the heaviest

CP-even Higgs mass m2
H ' m2

A and the determinant of the Higgs squared mass matrix

will be equal to m2
A × m2

h|m2
A�M2

Z
, where the last term is the upper bound on the

lightest CP-even Higgs mass. This upper bound can be obtained by taking the terms

proportional to m2
A in the determinant of the Higgs squared-mass matrix,

m2
h

∣∣∣
m2

A
�M2

Z

' ∆11 cos2 β + ∆22 sin2 β + 2∆12 cos β sin β

= M2
11 cos2 β +M2

22 sin2 β + 2M2
12 cos β sin β (A.2)

Since the mass matrix is diagonalized by a rotation with mixing angle α, we have

M2
11 = m2

h sin2 α + m2
H cos2 α

M2
22 = m2

h cos2 α + m2
H sin2 α

M2
12 =

(
m2

H −m2
h

)
sin α cos α. (A.3)

Substituting Eq. (A.3) into Eq. (A.2) yields the desired relation, namely,

m2
h

∣∣∣
m2

A�M2
Z

= m2
h sin2(β − α) + m2

H cos2(β − α). (A.4)
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Let us emphasize that, in the above, we have ignored the small differences between

pole masses and running masses, while we have defined all matrix elements at the

scale mt, ignoring the effects of the decoupling of the heavy Higgs doublet. These

effects, however, are only relevant for mA � MZ , in which case sin2(β − α) → 1

independently of the scale of definition. It is easy to prove that cos2(β − α) =

O(M4
Z/m4

A) for the same conditions, and therefore the above equality, Eq. (A.4), is

satisfied in a straightforward way.
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1, edited by G. Altarelli, T. Sjöstrand, and F. Zwirner, CERN Report No. 96–01.

[3] M. Felcini, Higgs searches at LEP, talk presented at the Moriond Conference, Elec-
troweak Session, March 1999.

[4] R. Hempfling and A. Hoang, Phys. Lett. 331B (1994) 99;
J. Kodaira, Y. Yasui and K. Sasaki, Phys. Rev. D50 (1994) 7035.

[5] J. Casas, J.R. Espinosa, M. Quiros and A. Riotto, Nucl. Phys. B436 (1995) 3.

[6] M. Carena, J.-R. Espinosa, M. Quiros and C.E.M. Wagner, Phys. Lett. 355B (1995)
209; M. Carena, M. Quiros and C.E.M. Wagner, Nucl. Phys. B461 (1996) 407.

[7] H. Haber, R. Hempfling and A.H. Hoang, Z. Phys. C57 (1997) 539.

[8] S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rev. D58 (1998) 091701; Eur. Phys.
J. C9 (1999) 343.

[9] See, for example, P. Chankowski and S. Pokorski, hep-ph/9707497, in Perspectives in
Supersymmetry, ed. by G. Kane, World Scientific, 1997; M. Carena, D. Choudhury, S.
Raychaudhuri and C.E.M. Wagner, Phys. Lett. B414 (1997) 414.

[10] M. Carena, P. Chankowski, S. Pokorski and C.E.M. Wagner, Phys. Lett. B 441 (1998)
205.

[11] M. Carena, J. Conway, H. Haber, J. Hobbs et. al, Report of the Higgs Work-
ing Group of the RunII Workshop, Fermilab, 1999, to appear. Results available at
http://fnth37.fnal.gov/higgs.html

[12] D. Rainwater and D. Zeppenfeld, JHEP 12 (1997) 005; D. Rainwater, D. Zeppen-
feld and K. Hagiwara, Phys. Rev. D59 (1999) 014037; T. Plehn, D. Rainwater and
D. Zeppenfeld, Phys. Lett. B454 (1999) 297.

23



[13] G. Belanger, F. Boudjema and K. Sridhar, hep-ph/9904348; A. Dedes and S. Moretti,
hep-ph/9904491.

[14] E. Richter–Was, D. Froidevaux, F. Gianotti, L. Poggioli, D. Cavalli, and S. Resconi,
Int. Jour. Mod. Phys. 13 (1998) 1371.

[15] G. Acquistapace et al. [CMS Collaboration], CERN-LHCC-97-10; R. Kinnunen and
D. Denegri, CMS-NOTE-1997-057; K. Lassila–Perini, CMS-THESIS-1998-147.

[16] M. Carena, J. Ellis, S. Lola and C.E.M. Wagner, preprint CERN-TH/99-173, hep-
ph/9906362.

[17] J.A. Coarasa, R.A. Jimenez, and J. Sola, Phys. Lett. B389 (1996) 312; R.A. Jimenez
and J. Sola, Phys. Lett. B389 (1996) 53.

[18] M. Carena, S. Mrenna and C.E.M. Wagner, hep-ph/9808312; to be published in Phys.
Rev. D.

[19] A. Dabelstein, Nucl. Phys. B456 (1995) 25.

[20] See the transparencies from the talks of H. Logan, M.J. Herrero at SUSY99.

[21] L. Hall, R. Rattazzi and U. Sarid, Phys. Rev. D 50 (1994) 7048; R. Hempfling Phys.
Rev. D 49 (1994) 6168.

[22] M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Nucl. Phys B426 (1994)
269.

[23] D. Pierce, J. Bagger, K. Matchev, and R. Zhang, Nucl. Phys. B491 (1997) 3.

[24] For related work, see, F. Borzumati, G.R. Farrar, N. Polonsky and S. Thomas, hep-
ph/9712428; preprint CERN-TH/98-383, hep-ph/9902443.

[25] H. Baer and J.D. Wells, Phys. Rev. D57 (1998) 4446; W. Loinaz and J.D. Wells,
Phys. Lett. B445 (1998) 178.

[26] A. Djouadi, Phys. Lett. B435 (1998) 101.

[27] As presented by P. Janot (CERN) at the Chamonix-IX Workshop, January 28, 1999.

[28] A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun. 108 (1998) 56.

[29] H. Baer, B.W. Harris and X. Tata, Phys. Rev. D59 (1999) 015003.

24



30 fb-1
20 fb-1
10 fb-1
5 fb-1

200 pb-1, 200 GeV, LEP2

CDF+D0 Combined

5 σ Higgs Discovery Contours

Mφ (GeV)

R
=σ

(V
φ)

B
R

(φ
→

bb
_
)/

σ(
V

H
S

M
)B

R
(H

S
M

→
bb

_
)

0.05

0.06
0.07
0.08
0.09

0.1

0.2

0.3

0.4

0.5
0.6
0.7
0.8
0.9

1

90 95 100 105 110 115 120 125 130

Figure 1: Sensitivity of the Standard Model Higgs searches at LEP and the Tevatron (for
different total integrated luminosity).
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Figure 2: Discover reach of the LEP, Tevatron and LHC experiments in the minimal
mixing model, as defined in the text.
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At=−µ=1.5 TeV, MS=1 TeV,W/Zh→bb
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Figure 3: Same as Fig. 2 but for At = −µ = 1.5 TeV, MS = 1 TeV
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A=−µ=1 TeV, MS=1 TeV, Mgl=−.5 TeV,W/Zh→bb
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Figure 4: Same as Fig. 2, but for At = −µ = 1 TeV, and including the effects of the
bottom mass corrections, ∆(mb), calculated using Mg̃ = −.5 TeV.
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A=−µ=1 TeV, MS=1 TeV, Mgl=.5 TeV,W/Zh→bb
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Figure 5: Same as Fig. 4, but for Mg̃ = .5 TeV.

29



0

0.2

0.4

0.6

0.8

1

1.2

1.4

mA (GeV)

ta
nβ

At=−µ=1 TeV, Mgl=.5 TeV, MS=1 TeV
Rb

5

10

15

20

25

30

35

40

45

50

100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

mA (GeV)

ta
nβ

At=−µ=1 TeV, Mgl=.5 TeV, MS=1 TeV
Rτ

5

10

15

20

25

30

35

40

45

50

100 150 200 250 300 350 400

Figure 6: Comparison of the sensitivity of the φW → bb̄ and φW → τ+τ− channels, Rb

and Rτ , respectively, when the Higgs φW is produced from a V V φW vertex, V = W or Z.
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At=0, Ab=µ=1.25 TeV, MS=1 TeV, Mgl=.5 TeV,W/Zh→bb
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Figure 7: Same as Fig. 2, but considering a possible cancellation of BR(φW → bb̄) for
large Ab = µ and ∆(mb) > 0.
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At=0, Ab=µ=1.25 TeV, MS=1 TeV, Mgl=−.5 TeV,W/Zh→bb
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Figure 8: Same as Fig 7 but for ∆(mb) < 0.
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mstop=200 GeV, At=1 TeV, µ=−300 GeV,W/Zh→bb
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Figure 9: Same as Fig 2, but for a region of parameters such that Γ(φW → gg) is
suppressed with respect to the SM value, Mt̃1

= 200 GeV, At = 1 TeV, µ = −.3 TeV
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mstop=200 GeV, At=.65 TeV, µ=−1 TeV,W/Zh→bb
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Figure 10: Same as Fig. 9, but considering stop mixing mass parameters which induce a
suppression of the φW bb̄ coupling, Mt̃1

= 200 GeV, At = .65 TeV, µ = −1 TeV
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msbot=200 GeV, At=Ab=−.5 TeV, µ=−1 TeV,W/Zh→bb
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Figure 11: Same as Fig. 2, but for light top and bottom squarks, and large mixing mass
parameters, Mb̃1

= 200 GeV, At = Ab = −.5 TeV, µ = −1 TeV
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