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Abstract

We compute certain (2K+ 4)–point, one–loop couplings in the type
IIA string compactified on K3 × T 2, which are related to a topologi-
cal index on this manifold. Their special feature is that they are sensi-
tive to only short and intermediate BPS multiplets. The couplings de-
rive from underlying prepotentials G[2K+4](T, U), which can be summed up
to a generating function in the form:

∑∞
K=0 V

2K/(2K)! G[2K+4](T, U) =∑
d(4kl−m2) Li3[e2πi(kT+lU)emV ]. In the dual heterotic string on T 6,

the amplitudes describe non–perturbative gravitational corrections to K-
loop amplitudes due to bound states of fivebrane instantons with heterotic
world-sheet instantons. We argue, as a consequence, that our results also
give information about instanton configurations in six dimensional Sp(2k)
gauge theories on T 6.
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1. Introduction

BPS-saturated string loop amplitudes [1–7] play an important rôle since they

can give exact non-perturbative answers for appropriate dual formulations of a given

theory. The corresponding pieces of the effective action are often given by holomor-

phic prepotentials, and it is this holomorphicity which underlies their computability.

Particularly well-known are the couplings in N=2 supersymmetric string compactifi-

cations that describe gauge and certain gravitational interactions. They are character-

ized by holomorphic prepotentials Fg [8–12], which can be geometrically computed via

mirror symmetry [13] on Calabi-Yau threefolds. An analogous holomorphic structure

arises also in certain eight dimensional string vacua [5].

However, a comparable systematic treatment for four dimensional string theories

with more, notably N =4 supersymmetries has been lacking so far. The main novel

feature in N = 4 supersymmetry is the appearance of intermediate (“1/4 BPS”) be-

sides the short (“1/2 BPS”) supermultiplets. An example for a 1/2 BPS saturated

amplitude is given by ∂T 〈R2〉, which is perturbatively exact at one loop order in the

type IIA string compactified on K3 × T 2. It has been shown in [8,14,15] to be given

by the T–derivative of:
†

F (K3×T2)

1 (T, U) =

∫
d2τ

τ2
Tr

K3×T 2

[
(−1)JR+JLJRJLq

L0qL0 − 24
]

= 24
[
ln(T2|η(T )|4) + ln(U2|η(U)|4) − lnκ

]

≡ 24F (T2)

1 (T, U) − 24 lnκ ,

(1.1)

where T ≡ B45 + i
√

|G| and U ≡ (G45 + i
√

|G|)/G44 are the Kähler and complex

structure moduli of the two-torus, respectively. Since there are no contributions from

the K3 apart from the 24 zero modes, the result is proportional to the topological

partition function on T 2 [8]. Indeed F (T2)

1 (T, U) is precisely what counts the 1/2 BPS

states in the theory.

In the dual heterotic string on the six-torus T 6, the type IIA modulus T plays

the rôle [16,17] of the heterotic dilaton: T = Shet. Thus (1.1) represents a non-

perturbative result from the heterotic point of view, where the Shet dependence reflects

contributions from 1/2 BPS fivebrane instantons [14].

† The regularization constant is κ ≡ 8π

3
√

3
e1−γE , where γE is the Euler constant. In the type IIB

string on K3 × T 2, it is the U–derivative of this function what becomes relevant.
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On the other hand, amplitudes sensitive to the intermediate, 1/4 BPS states have

not yet been computed, at least as far as we know.
⋄

It is the purpose of the present

paper to compute certain of such couplings at one loop order for type IIA strings on

K3 × T 2, and investigate their structure.

More specifically, in the next section we will review some features of 1/4 BPS

states in relation to the heterotic-type II duality. In section 3 we will then discuss

(similar to refs. [7,15]) some facts about BPS saturated helicity traces and their re-

lation to elliptic genera. In section 4 we will first compute quartic couplings in the

moduli fields that are sensitive to the 1/2 BPS states only; not surprisingly, their

structure turns out to be essentially the same as for the R2 coupling in (1.1). Subse-

quently we will then compute certain sextic couplings, some of which will be sensitive

to 1/4 BPS states. We will find that these couplings are characterized by two prepo-

tentials G1(T, U) and G2(T, U), which enjoy an intriguing factorization property. In

their structure they resemble Borcherds-like sum formulas, with counting functions

given by the Eisenstein series E2(q). In the subsequent sections we investigate these

prepotentials by rewriting them in various ways, and also obtain a generalization to

an infinite sequence of (2K+ 4)-point amplitudes.

Finally, in the last section we will discuss the non-perturbative significance of

these amplitudes when they are mapped by duality to the heterotic string. Specifi-

cally we will argue that the prepotentials carry non-trivial information about genus

K instantons on heterotic fivebranes, and will also present some more speculative

remarks.

2. Short and intermediate BPS multiplets

We will consider N = 4 supersymmetric compactifications of type IIA super-

strings on K3 × T 2, or equivalently, of heterotic strings on T 6. Besides the graviton,

the bosonic content of the supergravity multiplet in N=4, d = 4 supergravity is a

⋄ Some works that deal with different but related issues discuss topological amplitudes for six
dimensional compactifications of type IIA strings [18], and the counting 1/8 BPS states of

type IIA on T 6 [19]. Moreover, counting 1/4 BPS states in 5d black holes has been considered

first in [20].

− 2 −



complex scalar (the dilaton Shet) and six gravi-photons. In addition we have 22 vec-

tor multiplets, which contain each six scalars and one vector. In terms of the heterotic

variables, the bosonic part of the action reads (up to two derivatives, see e.g. [21]):

Sd=4,N=4 =

∫
d4x

√−g
[
R + 2

∂µShet∂µShet

(Shet − Shet)2

− 1

4
Im(Shet)FµνLMLFµν+

1

4
Re(Shet)FµνLF̃

µν +
1

8
Tr(∂µML∂µML)

]
.

(2.1)

This action is manifestly invariant under SO(22, 6, IR) [22], while the equations of

motion show a further invariance under SL(2, IR) acting on Shet. Accordingly, the

local geometry of the scalar manifold is

M =
SL(2, IR)

U(1)

∣∣∣
Shet

× SO(22, 6, IR)

SO(22, IR) × SO(6, IR)
. (2.2)

The mass formula for 1/4 BPS states on this space is [17,23]:

M2
BPS =

1

Shet − Shet

[
(m + Shetn)t(M + L)(m + Shetn)

± 1

2

√
[mt(M + L)m][nt(M + L)n] − [mt(M + L)n]2

]
,

(2.3)

which involves the electric (m) and magnetic (n) charge vectors. The sign is always

meant to be chosen such that MBPS is maximized. The degenerate case, in which

the square root vanishes, corresponds to the 1/2 BPS states [21]. Hence these may

be viewed as specializations of the more generic 1/4 BPS states that “accidentally”

leave more supersymmetries unbroken.

We will consider in the following only the subspace spanned by Shet, Thet and

Uhet, so that the relevant moduli sub-space is
(SL(2,IR)

U(1)

)3
. On this subspace we have

M2
BPS ∼ 1

S2hetT2hetU2het
|Z|2, where Z =max{|Z+|, |Z−|} with [24,23]:

Z+ = m1 +m2Uhet + k1Thet + k2ThetUhet

+ Shet(n1 + n2Uhet + p1Thet + p2ThetUhet)

Z− = m1 +m2Uhet + k1Thet + k2ThetUhet

+ Shet(n1 + n2Uhet + p1Thet + p2ThetUhet) .

(2.4)

One can check that in the degenerate case, |Z+| = |Z−|, these central charges reduce

to the 1/2 BPS mass formula [21]:

Z = (q1 + q2Shet)(m1 +m2Uhet + k1Thet + k2ThetUhet) . (2.5)

− 3 −



Note that the Shet-independent terms of (2.4) and (2.5) coincide, which implies that

the perturbative states are at least 1/2 BPS and thus that the 1/4 BPS states are

intrinsically non-perturbative from the heterotic point of view. That is, there is no

perturbative calculation in the heterotic string that could possibly see the 1/4 BPS

states.

However, as noted above, the heterotic and type IIA compactifications are dual

to each other provided [16,25,17] we exchange: Thet = S, Shet = T and Uhet = U .

Inserting this into (2.4) and (2.5), we see that at least some of the 1/4 BPS states

do have a perturbative description on the type IIA side, though certainly not all of

them.

Indeed we cannot expect to exactly compute the simultaneous dependence on all

three moduli S, T, U in perturbation theory, in whatever framework. But what we

can do is to simply focus on the T, U subspace on the type IIA side, while going to

weak coupling, S ≡ Thet → i∞. In this limit, further non-perturbative corrections on

the type IIA side are suppressed. Even though this will not capture the full story, it

will capture at least some of the non-perturbative physics in the heterotic string that

is related to 1/4 BPS states.

The relevant physical states we thus consider are tensor products of the states

on the K3 together with the momentum and winding modes on T 2, characterized by

pL =
1√

2T2U2

(m1 +m2U + n1T + n2TU)

pR =
1√

2T2U2

(m1 +m2U + n1T + n2TU) .

(2.6)

These states are 1/4 BPS if either the left- or the right-moving component is a ground

state [26,20,27], ie., NL = h
(K3)
L = 0 or NR = h

(K3)
R = 0, where NL,R denotes the

oscillator number and h
(K3)
L + h

(K3)
R the mass of excitations on the K3. That is,

(suppressing any vacuum energy shifts) the level matching condition for BPS states

reads

|pL|2 − |pR|2 ≡ m1n2 − n1m2 =






NR + h
(K3)
R : 1/4 BPS

−NL − h
(K3)
L : 1/4 BPS

0 : 1/2 BPS

, (2.7)

which exhibits the dyonic nature of the 1/4 BPS states. Clearly, the 1/2 BPS states

correspond to both left and right moving ground states, and the level matching con-

dition is identically satisfied for the momenta (2.5) with ki = 0.
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3. Topological indices and N=4 supersymmetry

One–loop amplitudes that are sensitive only to BPS states must certainly very

special. Indeed they must be proportional to certain “helicity traces” [2–6] (or gener-

alizations thereof), in which the long multiplets cancel out. A canonical example for

such a trace is given by [7]:

〈λ2n 〉 =
( ∂

∂vL
+

∂

∂vR

)2n

Str
all

sectors

[
qL0qL0evLJ

(st)
L evRJ

(st)
R

]∣∣∣
vL=vR=0

. (3.1)

Here, λ ≡ J
(st)
L + J

(st)
R denotes the helicity operator, where in each left and right

moving sector J (st) = 1
2πi

∮
ψ̃µψµ is the zero mode of the fermion number current

(“(st)” denotes the light-cone space-time part of the theory).

In order to recognize the saturation or vanishing of such traces more easily, it

is convenient to map them to the RR sector of the theory, in which this becomes a

simple question of saturation of fermionic zero modes. This map [28,29] is universal

for a given number of left- and right-moving supersymmetries and otherwise does not

depend on the background. For simplicity, we will write the relevant identity down

only for the left-moving variables, understanding that an analogous identity holds

independently also in the right-moving sector:

Str
all

sectors

[
qL0ev(st)J(st)+v(T2)J(T2)+v(K3)J(K3)

]

= Tr
R

[
(−1)J(st)+J(T2)+J(K3)

qL0ev̂(st)J(st)+v̂(T2)J(T2)+v̂(K3)J(K3)
]
,

(3.2)

where
v̂(st) = 1

2
v(st) + 1

2
v(T2) + 1

2

√
2v(K3)

v̂(T2) = 1
2v

(st) + 1
2v

(T2) − 1
2

√
2v(K3)

v̂(K3) = 1
2

√
2v(st) − 1

2

√
2v(T2) .

(3.3)

Above, J (T2) denotes the fermion number current in the T 2 sector and J (K3) the zero

mode of the U(1) ⊂ SU(2) current of the N =4 world-sheet superconformal algebra

that is intrinsic to a sigma-model on K3. From this it is easy to see that in the type

IIA compactification on K3 × T 2, we need at least two current insertions in each of

the left and right moving sectors in order to get a non-vanishing result.
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There are however traces that are more general than the left-right symmetric

helicity trace in (3.1), and involve arbitrarily high powers of a current insertion in one

of the left- or right-moving sectors, for example:

B2K+4 ≡
〈
(J

(st)
L )2+2K(J

(st)
R )2

〉
=
( ∂

∂vL

)2+2K( ∂

∂vR

)2

×

Tr
RR

[
(−1)

∑
(Ji

L+Ji
R)qL0qL0e

1
2 vL(J

(st)
L

+J
(T2)
L

+
√

2J
(K3)
L

)e
1
2 vR(J

(st)
R

+J
(T2)
R

+
√

2J
(K3)
R

)
]∣∣∣

vL=vR=0

= |η(q)|−12Z2,2(T, U, q, q)
( ∂

∂vL

)2+2K( ∂

∂vR

)2

θ1(
1
2vL)2θ1(

1
2vR)2 ×

Tr
RR

[
(−1)J

(K3)

L
+J

(K3)

R qL0qL0e
1
2

√
2(vLJ

(K3)

L
+vRJ

(K3)

R
)
]∣∣∣

vL=vR=0

= 2η(q)−6Z2,2(T, U, q, q)
( ∂

∂vL

)2+2K

E(st×T 2)(
1
2vL, q)E(K3)(

1
2vL, q)

∣∣∣
vL=0

.

(3.4)

Here,

Z2,2(T, U, q, q) =
∑

pL,pR

q
1
2 |pL|2q

1
2 |pR|2 (3.5)

is the partition function of windings and momenta on the two-torus, and

E(st×T 2)(v, q) =
(iθ1(v, q)
η3(q)

)2

=:
∑

n≥0,ℓ∈ZZ

d(4n− ℓ2) qneℓv

E(K3)(v, q) = 8

4∑

i=2

(θi(v, q)

θi(0, q)

)2

=:
∑

n≥0,ℓ∈ZZ

e(4n− ℓ2) qneℓv

(3.6)

are the elliptic genera [30] of the space-time sector times T 2 and of the K3 surface,

respectively. Like all elliptic genera, these are weak Jacobi modular forms, namely of

weight −2 and index 1, and of weight 0 and index 1, respectively.

Even more general traces can be obtained by inserting the individual fermion

number currents J
(st)
L , J

(T2)
L and J

(K3)
L independently. The generalized Riemanm

identity (3.2) will then in general produce some product of the individual elliptic gen-

era E(st)(v̂
(st), q), E(T 2)(v̂

(T 2), q) and E(K3)(v̂
(K3), q). As we will see, for the amplitudes

that we will consider, only one of those factors will be realized.

Elliptic genera depend holomorphically on q, which reflects that all non-zero

modes in the right-moving sector cancel out due to world-sheet supersymmetry. Via

the identity (3.2) (which is due to space-time supersymmetry), this is simultaneously

a reflection of the fact that the long multiplets cancel out in the trace, independent

− 6 −



of any deformations in the K3 moduli. While in fact the total number of BPS states

may jump when varying the moduli, the weighted helicity sums count effectively net

numbers of BPS states and so remain invariant. It is this index-like, topological nature

of BPS saturated amplitudes what makes them special and their modular integrals

exactly computable [28,2–7].

More specifically, for K = 0 only the χ(K3) = 24 left and right moving ground

states can contribute in the K3 sector, so that

B4 =
〈
(J

(st)
L )2(J

(st)
R )2

〉
= 4 Z2,2(T, U, q, q) Tr

K3

[
(−1)J

(K3)

L
+J

(K3)

R qL0qL0

]

= 96 Z2,2(T, U, q, q)
(3.7)

gets only contributions from 1/2 BPS states and this is what underlies the R2 coupling

(1.1) [14,15].

On the other hand, for K > 0 in (3.4) the states that contribute to the trace

consist of right-moving ground states and arbitrary left-moving states – from what

we said in the previous section, this precisely characterizes the 1/4 BPS states. For

example, for K = 1 one has the following six-th order trace:
†
:

B6 =
〈
(J

(st)
L )4(J

(st)
R )2

〉

= 12Z2,2(T, U, q, q) Tr
K3

[
(−1)J

(K3)

L
+J

(K3)

R (J
(K3)
L )2qL0qL0

]

= 192E2(q)Z2,2(T, U, q, q) .

(3.8)

The issue is now to identify physical amplitudes that contain these building

blocks.

4. 1/2 and 1/4 BPS saturated amplitudes

As a warm–up, we study quartic interactions of the T and U moduli at one–loop

order in type IIA compactified on K3 × T 2:

〈Vφ1
(k1)Vφ2

(k2)Vφ3
(k3)Vφ4

(k4)〉 , φi = T, U, T , U . (4.1)

† Which has previously been calculated in the Z2 orbifold limit of K3 [15,7].
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We want to extract from (4.1) the kinematical factor (k1k3)(k2k4) (and permu-

tations thereof), which corresponds to an one–loop corrections A to the term

(∂µφ1∂
µφ3)(∂νφ2∂

νφ4) in the effective action. These amplitudes receive non–

vanishing contributions only from the NSNS–sector and not from the RNS,NSR

and RR–sectors. We thus consider insertions of the moduli vertex operators:

V
(0,0)
T (k) =

2

T − T
: [∂Z + i(kψ̃)Ψ̃(z)] [∂Z + i(kψ)Ψ(z)] eikµXµ(z,z) : ,

V
(0,0)
U (k) =

−2

U − U
: [∂Z + i(kψ̃)Ψ̃(z)] [∂Z + i(kψ)Ψ(z)] eikµXµ(z,z) : ,

(4.2)

in the zero ghost picture with Z =
√
T2/2U2(X

4 + UX5), Z =
√
T2/2U2(X

4 +

UX5), Ψ =
√
T2/2U2(ψ

4 + Uψ5), Ψ =
√
T2/2U2(ψ

4 + Uψ5). In this normalization

we have: 〈Ψ(z1)Ψ(z2)〉α,even = − θα(z12,τ)θ′
1(0,τ)

θα(0,τ)θ1(z12,τ) , 〈Ψ(z1)Ψ(z2)〉α,even = 0, and for the

kinematics we consider, the only non–vanishing fermionic contractions are those that

lead to the helicity trace B4 in (3.7). However, from the bosonic contractions
⋄
:

〈∂Z(z1, z1) ∂Z(z2, z2)〉 = p2
R

〈∂Z(z1, z1) ∂Z(z2, z2)〉 = pRpL

〈∂Z(z1, z1) ∂Z(z2, z2)〉 = pRpL

〈∂Z(z1, z1) ∂Z(z2, z2)〉 = |pR|2 −
1

2πτ2
+

1

2π2
∂2

z21
GB

(4.3)

(GB ≡ − ln |χ|2), we have additional Narain momentum insertions, whose contribu-

tions are crucial for modular invariance. The resulting modular integrals
‡

can be eval-

uated by using extensively the results of [32]. A typical example for a non–vanishing

amplitude is:

U4
2 A(∂µU∂µU)(∂νU∂νU) = T 2

2U
2
2 A(∂µT∂µT )(∂νU∂νU)

=

∫
d2τ

τ2

∑

(pL,pR)

τ2
2

(
|pR|2−

1

2πτ2

)(
|pL|2−

1

2πτ2

)
q

1
2 |pL|2q

1
2 |pR|2

= − 1

4π2
F (T2)

1 (T, U) +
1

4π2
[1 + γE − ln(4π)] .

(4.4)

⋄ The third correlator may also contain a δ–function [31]. However, it would lead to manifestly
non–covariant amplitudes.

‡ Some of these integrals have to be regularized with an IR–regulator. This is described in the

appendix of [32] and results in an extra constant contribution.
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More generally, we find that all the non-vanishing amplitudes are proportional to

F (T2)

1 (T, U) (cf., (1.1)), which of course reflects that the helicity trace B4 is sensitive

only to 1/2 BPS states.

Now let us turn to more interesting scalar field interactions at the sixth derivative

level. More specifically, we consider the following type of amplitudes:

〈Vφ1
(k1)Vφ2

(k2)Vφ3
(k3)Vφ4

(k4)Vφ5
(k5)Vφ6

(k6)〉 , φi = T, U, T , U (4.5)

and focus on the kinematics for which each modulus φi contributes one momentum

ki. This momentum structure can arise in three different ways: (i) four–fermionic

contractions on both sides, giving rise to the helicity trace B4, (ii) eight– and four–

fermionic contractions on the right- and left-moving sides, respectively, or (iii) four–

and eight–fermionic contractions on the right-moving and left-moving sides, respec-

tively.

The main technical issue is the evaluation of the modular integrals, which is not

entirely trivial and will be outlined in Appendix A. Performing these integrals, it turns

out that there are two types of non–vanishing results, one type displaying again only

1/2 BPS states, the other however being sensitive to 1/4 BPS states. As an example

for the first type, consider

U6
2A

(i)

(∂µU∂µU)(∂νU∂νU)(∂ρφ∂ρφ)
= −

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pL|4 −

2

πτ2
|pL|2 +

1

2π2τ2
2

)

×
(
|pR|4 −

2

πτ2
|pR|2 +

1

2π2τ2
2

)
q

1
2 |pL|2q

1
2 |pR|2

=
1

4π4
F (T2)

1 (T, U) − 1

8π4
[3 + 2γE − 2 ln(4π)] ,

(4.6)

where φ can be any of {T, U}. Since it involves the eight fermion contraction of type

(i), which gives rise to B4, this amplitude is obviously sensitive only to 1/2 BPS

states. However, it can happen even for amplitudes with twelve-fermion contractions

of types (ii) and (iii) that only 1/2 BPS states contribute. An example is given by
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the following two contributions to the same amplitude
♮
:

Ã(ii)

(∂µU∂µU)(∂νU∂νU)(∂ρφ∂ρφ)
=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pR|2 −

1

2πτ2

)

×
(
|pL|4 −

2

πτ2
|pL|2 +

1

2π2τ2
2

)
Ê2 q

1
2 |pL|2q

1
2 |pR|2

= − 3

4π4
F (T2)

1 (T, U) +
3

8π4
[3 + 2γE − 2 ln(4π)] ,

Ã(iii)

(∂µU∂µU)(∂νU∂νU)(∂ρφ∂ρφ)
=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pR|4 −

2

πτ2
|pR|2 +

1

2π2τ2
2

)

×
(
|pL|2 −

1

2πτ2

)
Ê2 q

1
2 |pL|2q

1
2 |pR|2

= − 3

4π4
F (T2)

1 (T, U) +
3

8π4
[3 + 2γE − 2 ln(4π)] .

(4.7)

Even though the (suitable regularized) second derivative of the elliptic genus appears

in the form of Ê2 ≡ E2 − 3
πτ2

, the integral involving E2 vanishes
∗

in a non-trivial

manner, so that basically only the non–harmonic part of Ê2 contributes – this means

that again only 1/2 BPS and no 1/4 BPS states contribute.

Summarizing, the first kind of sextic couplings has exactly the same 1/2 BPS

structure as the quartic couplings discussed above.
•

On the other hand, in the following examples, where only one type of contraction

contributes (either of type (ii) or type (iii)), we see an interesting new structure

♮ The normalization of the vertex operators (4.2) is absorbed into Ã.

∗ Up to a term
T2
4π3 c(0), which is absorbed in ln(η(T )).

• It is known [33] that some of the six-derivative couplings are related to the four-derivative ones

by field redefinitions. The similarity of the results in (4.7) and (4.4) may be partly related to
that. Moreover, their kinematical structure coincides with some of the six-derivative couplings

that arise from expansions of Born-Infeld actions [34], and so may be also reproduced from

simple D-brane interactions.
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emerging. More specifically, we find
⋆
:

Ã(ii)

(∂µT∂µU)(∂νT∂νU)(∂ρφ∂ρφ)

=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pR|2 −

1

2πτ2

)
p4

L Ê2 q
1
2 |pL|2q

1
2 |pR|2

= − 4

π2
T 2

2U
2
2

(
∂U +

2

U − U

)(
∂T +

2

T − T

)
G1(T, U)

Ã(ii)

(∂µT∂µU)(∂νT∂νU)(∂ρT∂ρU)

=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2 p

2
Rp

4
L Ê2 q

1
2 |pL|2q

1
2 |pR|2

=
4

π2
T 3

2U2

(
∂T +

4

T − T

)(
∂T +

2

T − T

)
G1(T, U) ,

(4.8)

and:

Ã(iii)

(∂µT∂µU)(∂νT∂νU)(∂ρφ∂ρφ)

=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pL|2 −

1

2πτ2

)
p4

R Ê2 q
1
2 |pL|2q

1
2 |pR|2

= − 4

π2
T 2

2U
2
2

(
∂U − 2

U − U

)(
∂T +

2

T − T

)
G2(T, U)

Ã(iii)

(∂µT∂µU)(∂νT∂νU)(∂ρT∂ρU)

=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2 p

2
Lp

4
R Ê2 q

1
2 |pL|2q

1
2 |pR|2

=
4

π2
T 3

2U2

(
∂T +

4

T − T

)(
∂T +

2

T − T

)
G2(T, U) .

(4.9)

Furthermore
∇

Ã(iii)

(∂µT∂µT )(∂νT∂νU)(∂ρφ∂ρφ)
=

∫
d2τ

τ2

∑

(pL,pR)

τ4
2

(
|pL|2 −

1

2πτ2

)(
|pR|2 −

3

2πτ2

)

× p2
R Ê2 q

1
2 |pL|2q

1
2 |pR|2

= − 1

π2
T2U2 G2(T, U) .

(4.10)

⋆ However: Ã
(i)

(∂µT ∂µU)(∂ν T ∂ν U)(∂ρφ∂ρφ)
= 0 = Ã

(i)

(∂µT ∂µU)(∂ν T ∂ν U)(∂ρT ∂ρU)
.

∇ But, Ã
(i)

(∂µT ∂µT )(∂ν T ∂ν U)(∂ρφ∂ρφ)
= 0.
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One can easily check that there is no tree-level contribution to this kind of BPS

saturated amplitudes, so they are exact up to one loop order (possible higher loop

and non-perturbative corrections are suppressed anyway in the limit that we consider,

S → i∞).

Importantly, what characterizes these amplitudes is a prepotential:

G1(T, U) =
ζ(−1)

2
c(0) +

i

4π

c(0)

U − U
+

i

4π

1

T − T
+

3

2π2

1

(T − T )(U − U)

− 3

π2(T − T )
∂U

∑

l>0

Li1
(
e2πilU

)
− 3

π2(U − U)
∂T

∑

k>0

Li1
(
e2πikT

)

+
∑

(k,l)>0

c(kl) Li−1

(
e2πi(kT+lU)

)
,

(4.11)

and similarly for G2(T, U) in the chamber T2 > U2. Here ζ(−1) = − 1
12 , and the poly-

logarithms are defined by Lia(z) =
∑

p>0 z
pp−a for a > 0 and Lia(z) = (z∂z)

|a| 1
1−z

for

a < 0; in particular, Li1(ez) = − ln(1 − ez), Li0(ez) = ez

1−ez and Li−1(e
z) = ez

(1−ez)2 .

Moreover the sum runs over the positive roots k > 0, l ∈ ZZ ∧ k = 0, l > 0, and

the coefficients are defined by:

∑

n

c(n)qn := E2(q) ≡ 1 − 24q − 72q2 + . . . . (4.12)

This must be the derivative of some combination of the elliptic genera in (3.6),

but because of the uniqueness of the quasi-modular form of weight two, it is un-

clear at this point of exactly which elliptic genus:
†
E2 = 1

4
∂v

2E(K3)(v/2, q)|v=0 =
1
2∂v

4E(st×T 2)(v/2, q)|v=0 = 1
96∂v

4E(st×T 2)(v/2, q)× E(K3)(v/2, q)|v=0. While the dis-

tinction is not important here, it will be more relevant later on when we will discuss

the generalization to (2K + 4)-point amplitudes.

Note that since c(−1) = 0, there is no singularity in the T, U moduli space and

this reflects the impossibility of states becoming massless. Note also that G1(T, U) has

weight 2 under T–and U–duality, respectively, and indeed we find that (4.11) and its

† It was the equality of these expressions that has been misleading us to some conclusions that

we have presented in a previous version of this paper.
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holomorphic/anti-holomorphic cousin can be rewritten in terms of a simple product

involving (regularized) Eisenstein functions:

G1(T, U) = − 1

24
Ê2(T )Ê2(U)

G2(T, U) = − 1

24
Ê2(T )Ê2(U) .

(4.13)

These intriguing identities exhibit a factorization that is not manifest in (4.11). We

can furthermore obtain both of these prepotentials (and their complex conjugates) by

taking mixed derivatives of the following function:

H(T, U) = −6 ln(T2|η(T )|4) · ln(U2|η(U)|4) , (4.14)

which in this sense appears to be a more fundamental function
⋄

for the six-point

amplitudes we consider here. It is the analog of the 1/2 BPS free energy F (T2)

1 (T, U)

in (1.1), the difference being that the ln η’s are multiplied rather than added; by

adjusting possible integration constants we see that H(T, U) is essentially the square

of F (T2)

1 (T, U).

5. Partition functions

The holomorphic prepotential (4.11) is one of the main results of this paper. Its

appearance hints at the existence of a yet unknown superspace formulation of the the-

ory, in which it might figure as an effective lagrangian. It resembles the “Borcherds”

type prepotentials that arise in other contexts [2,35,36,5], where non-negative poly-

logarithms appear instead. However, that difference is not important and simply to

be attributed to the mass dimension of the couplings.

The structurally more profound feature is that G1(T, U) intrinsically mixes the

Kähler and complex structure sectors, and this is specifically tied to the 1/4 BPS

⋄ Switching on all the moduli should promote ln(U2|η(U)|4) to the logarithm of some

SO(22, 6,ZZ) modular form.
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states. Indeed, when restricted to the subset of 1/2 BPS states (which corresponds

to the terms with kl = 0), the sum in (4.11) nicely separates into decoupled pieces:

G1(T, U)
1/2BPS−→
(kl)=0

∞∑

k=1

e2πikT

(1 − e2πikT )2
+

∞∑

l=1

e2πilU

(1 − e2πilU )2
+ . . .

= − 1

2πi

[
∂T ln η(T ) + ∂U ln η(U)

]
+ . . .

= − 1

4πi

(
∂T + ∂U

)
F (T2)

1 (T, U) + . . . ,

(5.1)

which in turn can be written manifestly in terms of the 1/2 BPS spectrum using

[37,1]:

F (T2)

1 (T, U) = − 1
12

∑

m1n2−n1m2=0

ln |pR|2 = − 1
12

∑

m1n2−n1m2=0

ln |pL|2 . (5.2)

We thus explicitly see that the mixing terms in G1(T, U) (or G2(T, U)) correspond

to the 1/4 BPS states and originate from the presence of E2(q) (or E2(q)) in the

integrand. Its effect is to shift the 1/2 BPS level matching condition, |pL|2 = |pR|2,
to the 1/4 BPS condition: |pL|2 = |pR|2 + kl (or |pR|2 = |pL|2 + kl).

Using the product representation (4.13) and the well-known sum formulas of the

Eisenstein series, we can represent the prepotentials in a form that generalizes the

1/2 BPS sum (5.2):

−24G1(T, U)
∣∣∣

holom.
piece

= E2(T )E2(U) =
∑

(N1,N2)6=(0,0)

(M1,M2)6=(0,0)

1

(N2 +N1T )2(M2 +M1U)2

=
1

2T2U2

∑

m1n2−n1m2=0

γ(mi, ni)

p2
L

,

−24G2(T, U)
∣∣∣

holom.
piece

= E2(T )E2(U) =
1

2T2U2

∑

m1n2−n1m2=0

γ(mi, ni)

p2
R

,

(5.3)

with m1 = N2M2, m2 = N2M1, n1 = N1M2, n2 = N1M1. Since there are in gen-

eral many different {Mi, Ni} that contribute to a given set {mi, ni}, the coefficients

γ(mi, ni) are in general larger than one, and this must be so since otherwise the sums

would be counting (just like (5.2)) exactly the 1/2 BPS states.

Note that while F (T2)

1 (T, U) has been written in (5.2) as a sum over 1/2 BPS states

circulating in loops, it has also an interpretation in terms of world-sheet instantons
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[8]; this is exhibited by the instanton expansion in the first line of eq. (5.1). Such a

view-point is indeed more natural in the path integral formulation, where F (T2)

1 (T, U)

is seen as counting holomorphic maps from a toroidal world-sheet into the target

space T 2.

The additional mixing terms proportional to e2πikT e2πilU , which are due to the

1/4 BPS states, must have an analogous instantonic interpretation, however involving

holomorphic (and anti-holomorphic) maps that couple together both Kähler and com-

plex structure sectors. Such configurations can presumably be obtained via T -duality

from string networks [38,39], in which the 1/4 BPS states have a simple geometric

representation.
†

6. Generalization to an infinite sequence of prepotentials

We will now discuss the generalization of the results of section 4 to (2K+4)–point

amplitudes with K + 1 pairs of T and U moduli, besides one pair of moduli, (φ, φ)

with φ = {T, U}. Performing four-fermion contractions in the left-moving sector and

4K+4 fermion contractions in the right-moving sector, integrating over the location of

the vertex operators and subsequently applying the Riemann identity (see Appendix

B for some of the details), we eventually find:

Ã[2K+4]

(∂νT∂νU)K+1(∂ρφ∂ρφ)
=

1

4

∫
d2τ

τ2

∑

(pL,pR)

(
|pR|2 −

1

2πτ2

)
(τ2pL)2K+2q

1
2 |pL|2q

1
2 |pR|2

×
( ∂
∂v

)2K+2[
e−

v2

4πτ2 E(st×T 2)(v, q)
]∣∣∣

v=0
.

(6.1)

The most harmonic part then evaluates to:

− 1

π2
(−2T2U2)

K+1
(
∂T +

2K

T − T

)(
∂U +

2K

U − U

)
G[2K+4]

1 (T, U) , (6.2)

† By correctly identifying the variables, we can map the mass formula for (wrapped) triple string
junctions to the mass formula (2.6), ie., M2

BP S =
∑

3

i=1
Tpi,qi

= max{|Z+|2, |Z−|2}. Here,

pi, qi are the charges of the i-th link of the junction, Tpi,qi
the corresponding tension and Z±

the central charges of (2.4). Our results thus amount to counting such string junctions.
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with prepotentials G[2K+4]

1 (T, U) that form an infinity sequence given by:

G[2K+4]

1 (T, U)
∣∣∣

harm.
piece

=
1

2
ζ(1−2K) c[2K+4](0) +

∑

(k,l)>0

c[2K+4](kl) Li1−2K

(
e2πi(kT+lU)

)
.

(6.3)

The counting functions for these are simply:

∑

n

c[2K+4](n)qn =
( ∂
∂v

)2K+2

E(st×T 2)(v, q)
∣∣∣
v=0

=
( ∂
∂v

)2K+2
(
iθ1(v, q)

η3(q)

)2∣∣∣
v=0

,

(6.4)

In fact, we can concisely assemble all the prepotentials into a single generating func-

tion:

Ĝ1(T, U, V ) =

∞∑

K=0

1

(2K)!
V 2KG[2K+4]

1 (T, U)

=
∑

(k,l,m)>0

d(4kl −m2) Li3
(
e2πi(kT+lU)emV

)
,

(6.5)

where d(4n−m2) are the expansion coefficients (3.6) of E(st)×T 2(v, q).

Note that what appears here is the elliptic genus of the space-time sector times

T 2, and not the elliptic genus of K3 as one might have expected.
⋄

This is indeed a bit

surprising, since the Riemann identities typically mix all the internal and space-time

sectors (cf., (3.3)).

However, our amplitudes do not (as usual) amount to fermion number current

insertions, but to more complicated fermionic contractions, and the results of Ap-

pendix B show that, in the net result, the elliptic genus of K3 happens to cancel out.

Heuristically one may say that this is because our correlators probe only the T 2 sector

of the theory because they involve only T and U .

7. Non-perturbative results for the N=4 heterotic string

So far we have been dealing with perturbative quantities in the type IIA string

on K3 × T 2. The interesting issue now is to map these via duality to the heterotic

⋄ and as we had mis-stated in a previous version of this paper. It does however appear in

subsequent work [40] which deals with graviphoton amplitudes.

− 16 −



string on T 6, by identifying [16,17]:

T = Shet ≡ θ

2π
+

4πi

ghet
2

≡ a+ ie−Φ

S = Thet ≡ Bhet
45 + i

√
|Ghet|

U = Uhet ≡ (Ghet
45 + i

√
|Ghet|)/Ghet

44 ,

(7.1)

where Thet, Uhet correspond to the two-torus in T 6 = T 4 × T 2.

The perturbative T -dependence that we have been computing before will thus

give non-perturbative information about the heterotic string. Remember that we have

been suppressing non-perturbative corrections in the type IIA string by going to weak

coupling, by sending S = Thet → i∞. This corresponds to the decompactification

limit of the heterotic two-torus.

More specifically, while the Kaluza-Klein modes (labelled by mi in (2.6)) re-

main KK modes in the heterotic string, the type IIA windings around 1-cycles of

T 2 (labelled by ni) turn into magnetically charged wrapping modes of the heterotic

fivebrane
‡

around 5-cycles in T 6. Alternatively, one may imagine wrapping the five-

brane first around the sub-torus T 4, to yield a string in six dimensions that is dual to

the heterotic string [16,44,45,17,26]. The type IIA windings ni are then the same as

the windings of this dual string around 1-cycles of the remaining T 2 on the heterotic

side. In total we thus have dyonic bound states of wrapped fivebranes of charge mi

with KK modes of momentum nj, which are 1/4 BPS if m1n2 −m2n1 6= 0 and 1/2

BPS if the DZW product vanishes. The windings and momenta are exchanged by

S-duality, which is a non-perturbative symmetry from the heterotic string point of

view, but a perturbative one from either the type IIA string or from the heterotic

fivebrane point of view [21,46].

However, in analogy to the type IIA side, it is more natural to interpret the

prepotentials in terms of instanton series. Quite generally, world-sheet instantons are

mapped under the duality to space-time instantons, and indeed contributions of the

form e2πikShet correspond [14] to gravitational fivebrane instantons that arise from

winding the heterotic fivebrane around the whole of T 6.

‡ Since we are at a generic point in the Narain moduli space, where there are no non-abelian

gauge symmetries, this is the neutral heterotic fivebrane [41–43] with zero size, or a “small

instanton” [26].
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As far as the Uhet dependence is concerned (which simply describes KK exci-

tations), it is actually more interesting to convert Uhet → Thet, by making use of

the Thet − Uhet exchange symmetry of the heterotic string. The purely Thet depen-

dent terms then describe heterotic world-sheet instanton contributions, and the mixed

terms in the prepotentials

G[2K+4]

1 (Shet, Thet)
∣∣∣

harm.
piece

∼
( ∂

∂V

)2K+2

Ĝ1(Shet, Thet, V )
∣∣∣
V →0

∼
∑

(k,l)>0

c[2K+4](kl)Li1−2K

(
e2πikShete2πilThet

) (7.2)

must therefore be due to bound states or superpositions of fivebrane instantons with

world-sheet instantons. In particular, the remarkable factorization property (4.13) of

the prepotential for the six-point couplings,

G[6]

1 (Shet, Thet)
∣∣∣

holom.
piece

= − 1

24

(
1−24

∑

k>0

k
e2πikShet

1−e2πikShet

)(
1−24

∑

l>0

l
e2πilThet

1−e2πilThet

)
,

(7.3)

tells us that the fivebrane and world-sheet instanton sectors that contribute to these

couplings must be essentially independent.

In fact, by investigating the dependence on the coupling constants we find that

the prepotentials G[2K+4]

1 correspond to non-perturbative corrections to (2K+4)-point

amplitudes at K-loop order in the heterotic string, so that the world-sheet instantons

are of genus g ≤ K.
♮

Note that world-sheet instantons on top of a fivebrane can also be viewed as

gauge instantons in the world-volume theory of the fivebranes [47]. More specifically,

it is known that a stack of Q5 = k heterotic fivebranes has Sp(2k) gauge symmetry

[26,48]. Accordingly it has among other terms:

∫
d6x

(
B ∧ tr

Sp(2k)
F ∧ F +

1

g5br
2

tr
Sp(2k)

F 2
)

on its world-volume, the first term being necessary for anomaly cancellation [49].

It is known [16,17] that the “space-time” coupling of the T 4-wrapped fivebrane (or

♮ The prepotentials G
[2K+4]
1 are thus analogs of the well-known prepotentials Fg that arise (in

N = 2 supersymmetric theories) at one-loop order in the heterotic string but at g loops on

the type II side [8,9,10,12].
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dual string, that is) is equal to the world-sheet coupling of the fundamental string,

which means: 1
g5br

2 =
√
|Ghet|. Comparing to (7.1), we thus see that a charge Q1 = l

instanton on top of a charge Q5 = k fivebrane will give an additional factor of e2πilThet

besides e2πikShet , and this is what finally gives a particularly interesting physical

interpretation of the Shet −Thet mixing terms in (7.2). Moreover the instantons must

break one-half of the supersymmetries on the fivebrane, so that the total configuration

has only 1/4 unbroken supersymmetries.

Something non-trivial may then be learned for these gauge theories from the nu-

merical values of the coefficients of the mixing terms in (7.2). In analogous situations

such coefficients count either isolated instantons, or Euler numbers of the moduli

spaces if the instantons are not isolated. Most likely the coefficients mean something

similar here too, and in particular c[2K+4](kl) should carry information about the coho-

mology of moduli spaces of charge l, genus K instantons in the Sp(2k) gauge theories

on T 6 (the exchange symmetry in k and l would relate this to charge k instantons in

Sp(2l) gauge theories). We hope to present a more complete discussion elsewhere.
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Appendix A. Generalized world–sheet torus integrals

In this section we outline how to evaluate world–sheet torus integrals of the

following form:

∂q1+q2+q3+q4

∂Λq1

1 ∂Λq2

2 ∂Λq3

3 ∂Λq4

4

∫
d2τ

τ2
τ r
2

1

τ s
2

∑

(pL,pR)

eπiτ |pL|2e−πiτ |pR|2

× eΛ1pR+Λ2pR+Λ3pL+Λ4pL e
− 1

2πτ2
(Λ1Λ2+Λ2Λ3+Λ3Λ4+Λ4Λ1) fk(q)gl(q)

∣∣∣
Λi=0

,

(A.1)
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where fk(q) =
∑
n
c(n)qn and gl(q) =

∑
m
d(m)qm are modular functions of weights k, l,

respectively, and the integers obey r, s ≥ 0, q1, q2, q3, q4 ≥ 0. Modular invariance of

the integrand requires:
q1 + q2 − r + s+ k = 0

q3 + q4 − r + s+ l = 0 .
(A.2)

The integral (A.1) can be performed with the orbit decomposition method of [50]. In

the following we will discuss only the non–degenerate orbit I1, as the degenerate orbit

has already been evaluated in ref. [32].

In the same reference, the non–degenerate orbit I1 with gl(q) = 1, fk(q) 6= 1

has been worked out as well. A general feature of I1 is that the T and U moduli

always appear in pairs in the poly-logarithms that are either completely holomorphic

or anti-holomorphic, i.e., either (T, U) and/or (T, U) appear.

Before we go to the general case, let us discuss the example fk(q) = 1, gl(q) 6= 1,

which is in fact what we need in section 4:

∂q1+q2+q3+q4

∂Λq1

1 ∂Λq2

2 ∂Λq3

3 ∂Λq4

4

∫
d2τ

τ2
τ r
2

1

τ s
2

∑

(pL,pR)

eπiτ |pL|2e−πiτ |pR|2

× eΛ1pR+Λ2pR+Λ3pL+Λ4pL e
− 1

2πτ2
(Λ1Λ2+Λ2Λ3+Λ3Λ4+Λ4Λ1) gl(q)

∣∣∣
Λi=0

.

(A.3)

The presence of a holomorphic function gl(q) (which is in contrast to the usually con-

sidered situation) has as consequence that now mixed holomorphic/anti-holomorphic

pairs of moduli appear in the arguments of the poly-logarithms, i.e., (T, U) and/or

(T , U). After introducing

b = p2 − i(Λ1 + Λ2 + Λ3 + Λ4)p

π
√

2T2U2

− 1

8

(Λ1 − Λ2 + Λ3 − Λ4)
2

π2T2U2

ϕ = p(kT1 + lU1)

+
1

2π
√

2T2U2

[
(kT2 − lU2)Λ1 + (−kT2 + lU2)Λ2 + (−kT2 − lU2)Λ3 + (kT2 + lU2)Λ4

]

(A.4)

plus the function

Ĩ1(α, β) =
2√
βb
e−2π(kT2−lU2)

√
αβb e−2πiϕ , (A.5)
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we obtain the following closed expression for I1 in the chamber T2 > U2:

I1 =
∂q1+q2+q3+q4

∂Λq1

1 ∂Λq2

2 ∂Λq3

3 ∂Λq4

4

×

×
∑

k>0
l∈ZZ

∑

p6=0

d(−kl)
[ T2U2

π(kT2 − lU2)2

]r 1

(πT2U2b)s

(−1)r+s∂r+s

∂αr∂βs
Ĩ1(α, β)

∣∣∣
α=1
β=1 ,Λi=0

.

(A.6)

Finally, for the general case where fk, gl 6= 1, the expressions (A.5) and (A.6) are

modified to

I1(α, β) =
2√
βb
e−2π

√
(kT2+lU2)2+4T2U2(n−kl)

√
αβb e−2πiϕ (A.7)

and

I1 =
∂q1+q2+q3+q4

∂Λq1

1 ∂Λq2

2 ∂Λq3

3 ∂Λq4

4

∑

n

∑

k>0
l∈ZZ

∑

p6=0

c(n)d(n− kl)×

×
[ T2U2

π[(kT2 + lU2)2 + 4T2U2(n− kl)]

]r 1

(πT2U2b)s

(−1)r+s∂r+s

∂αr∂βs
I1(α, β)

∣∣∣
α=1
β=1 ,Λi=0

,

(A.8)

The last equation represents the result for the non–degenerate orbit of (A.1). We see

that the amount of holomorphic/anti–holomorphic mixing is determined bym = n−kl
and is absent for m = 0. This reflects in our context that 1/4 BPS states can mix

holomorphic and anti-holomorphic sectors, in contrast to the 1/2 BPS states.

Appendix B. Fermionic contractions and bipartite Graphs

In this section we want to calculate the following correlator of 2N real fermions

(where N ≡ (2K + 2))

∑

spin
structures α

∫
dz1 . . .

∫
dzN 〈ψi1(z1)ψ

j1(z1) . . . ψ
iN (zN )ψjN (zN )〉α , (B.1)

which appears in the amplitudes Ã[2K+4]

(∂νT∂νU)K+1(∂ρφ∂ρφ)
in (6.1). For these amplitudes,

where the left–moving sector is saturated with four fermionic insertions, the compu-

tations reduce to the right–moving part only; this is in line with the considerations
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about elliptic genera of section 3, and of course a reflection of the fact that only 1/4

BPS states contribute.

We therefore expect (B.1) to be given by a (2K +2)–fold derivative of an elliptic

genus, and by considering modular invariance we see that this genus should be a

Jacobi form of weight −2. There are only two natural candidates for it, namely either

the total elliptic genus

E(v1, v2, q) = E(st×T 2)[
1
2 (v1 + v2), q] E(K3)[

1
2 (v1 − v2), q]

=
iθ1[

1
2 (v1 + v2), q]

η3(q)

iθ1[
1
2 (v1 + v2), q]

η3(q)
E(K3)

[
1
2 (v1 − v2), q

]
,

(B.2)

or just only the weight −2 factor of it, which is E(st×T 2).

To fix this ambiguity, our strategy will be to do the fermion contractions in (B.1)

for a few values of K, integrate these and sum over the spin structures, and then

compare the results with the two candidate genera.

To deal with the fermionic contractions, we first decompose the correlator (B.1)

into a product of N two–point functions:

〈ψi(z1)ψ
j(z2)〉α = δij θα(z12, τ)θ

′
1(0, τ)

θα(0, τ)θ1(z12, τ)
. (B.3)

There are in general many of such partitions, and denoting contractions 〈ψi(zi)ψ
j(zj)〉

by (ij), the pattern looks like:

[2, 2, 2 . . . , 2, 2] ∼ (12)2(34)2 . . . (N − 1, N)2 ,

[2, 2 . . . , 2, 4] ∼ (12)(23)(34)(41)× (56)2 . . . (N − 1, N)2 ,

...
...

...
...

[N ] ∼ (12)(23)(34) . . . (N1) .

(B.4)

Note that these contractions form cycles, and the idea is to perform the integrations

and spin structure sums just for one (canonically ordered) representative of each cy-

cle class, P (above, the cycle class is indicated on the left). Indeed, as the ordering

of the positions zi influences the zi–integrations in (B.1), each cycle class in (B.4)

will in general lead, after integration, to a different modular function gP
α (q). Subse-

quently will then need to multiply the result for each cycle class with the appropriate

combinatorial factor.
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Moreover, we need to sum over the spin structures α, which amounts to folding

the gP
α (q) into the right–moving part of the partition function, which then yields new

functions GP (q). We find it easiest to write this map in terms of a ZZN orbifold limit

of the K3:

GP (q) =
∑

(h,g)6=(0,0)

η(q)−6

Θ
[

1+h
1+g

]
Θ
[

1−h
1−g

]
∑

(α,β)

gP
α (q) Θ2

[α
β

]
(q)Θ

[α− h

β − g

]
(q)Θ

[α+ h

β + g

]
(q) ,

(B.5)

Taking all this together, we see that (B.1) may be written in the following way:
†

∑

α

∫
dz1 . . .

∫
dzN 〈ψi1(z1)ψ

j1(z1) . . . ψ
iN (zN )ψjN (zN )〉α

= (2τ2)
N−1πN

∑

cycle
classes P

nP GP (q) ,
(B.6)

where nP denote the combinatorial factors that count the number of permutations in

(B.4).

Let us now compute the (quasi)-modular forms GP for some low values of N ≡ 2K+2:

4 fermion contractions (N = 2): There is only the possibility (12)2, which yields:

g[2]
α (τ) =

1

3
(E2 + eα) , (B.7)

where eα(q) = −24q d
dq

ln θα(q) −E2(q). Inserted in (B.5), this gives
⋄
:

G[2] = −12 . (B.8)

8 fermion contractions (N = 4): There are two possibilities, namely, (i) (12)2(34)2

and (ii) (12)(23)(34)(41) which integrate to

g[2,2]
α (τ) =

1

32
(E2 + eα)2 ,

g[4]
α (τ) =

1

9
(E4 − e2α) ,

(B.9)

† Correlators similar to (B.1) appear in N gauge boson amplitudes with fermionized currents. In

that case the combinations (B.4) correspond to the different invariants (TrF 2n)m , 2nm = N ,

which arise in the decomposition of the N gauge boson amplitude. For N = 4 this has been
studied before in the literature [51].

⋄ We perform the calculation in an ZZ2 orbifold limit of K3. However the calculations can be

easily generalized to ZZN orbifold limits along [52].
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respectively. Inserting into (B.5) leads to:
‡

G[2,2] = −8E2 ,

G[4] = 0 .
(B.10)

In the following we will explicitly display the spin-structure dependent correlator only

for the last combination in (B.4), namely g
[N ]
α (q), as the others are combinations of

correlators with less fermions.

12 fermion contractions (N = 6): The chain (12)(23)(34)(45)(56)(61) gives after the

zi–integration

g[6]
α (τ) =

2

45
(E6 − E4eα) . (B.11)

Altogether, after the orbifold sum we obtain:

G[2,2,2] = −4(E2
2 +E4) ,

G[2,2,4] = −8

3
E4 ,

G[6] = −8

5
E4 .

(B.12)

16 fermion contractions (N = 8): Similarly as before:

g[8]
α (τ) =

28

5040
(− 1

16
E2

4 − 5

48
e4α +

1

6
E4e

2
α) , (B.13)

and
(12)2(34)2(56)2(78)2 G[2,2,2,2]=− 8

9 (2E3
2+6E2E4+E6)

(12)(23)(34)(41)×(56)(67)(78)(85) G[4,4]=− 8
9E6

(12)(23)(34)(45)(56)(61)×(78)2 G[2,6]=− 8
15 (E6+E2E4)

(12)(23)(34)(41)×(56)2(78)2 G[2,2,4]=− 8
9 (E6+2E2E4)

(12)(23)(34)(45)(56)(67)(78)(81) G[8]=− 8
21 E6 .

(B.14)

20 fermion contractions (N = 10):

g[10]
α (τ) =

−210

362880
(
11

12
E4E6 +

5

6
E6e

2
α +

7

4
E2

4eα) . (B.15)

‡ We remark that while the last type of contractions leads to a vanishing result for K3 × T 2

vacua, it gives a non-zero contribution in the corresponding computation in the heterotic string

and so leads to additional kinematics.
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and

(12)2(34)2(56)2(78)2(9,10)2 G[2,2,2,2,2]=− 4
27 (5E4

2+30E2
2E4+10E2E6+9E2

4)

(12)(23)(34)(41)×(56)(67)(78)(89)(9,10)(10,5) G[4,6]=− 16
45 E2

4

(12)(23)(34)(41)×(56)(67)(78)(85)×(9,10)2 G[2,4,4]=− 8
27 (2E2

4+E2E6)

(12)(23)(34)(45)(56)(67)(78)(81)×(9,10)2 G[2,8]=− 16
945 (18E2

4+ 15
2 E2E6)

(12)(23)(34)(45)(56)(61)×(78)2(9,10)2 G[2,2,6]=− 8
45 (3E2

4+2E2E6+E2
2E4)

(12)(23)(34)(41)×(56)2(78)2(9,10)2 G[2,2,2,4]=− 8
9 (E2

4+E2E6+E2
2E4)

(12)(23)(34)(45)(56)(67)(78)(89)(9,10)(10,1) G[2,2,2,2,2]=− 8
45 E2

4 .
(B.16)

24 fermion contractions (N = 12):

g[12]
α (τ) =

2

4455
(−34

63
E2

6 − 1

5
E3

4 +
92

63
E6e

3
α +

11

5
E2

4e
2
α) , (B.17)

and

(12)2(34)2(56)2(78)2(9,10)2(11,12)2 G[2,2,2,2,2,2]=− 1
27 (8E5

2+80E3
2E4+40E2

2E6

+72E2E2
4+16E4E6)

(12)(23)(34)(41)×(56)(67)(78)(89)(9,10)(10,11)(11,12)(12,1) G[4,8]=− 136
945 E4E6

(12)(23)(34)(45)(56)(61)×(78)(89)(9,10)(10,11)(11,12)(12,1) G[6,6]=− 32
225 E4E6

(12)(23)(34)(41)×(56)(67)(78)(81)×(9,10)(10,11)(11,12)(12,1) G[4,4,4]=− 8
27 E4E6

(12)(23)(34)(41)×(56)(67)(78)(85)×(9,10)2(11,12)2 G[2,2,4,4]=− 8
81 (E2

2E6+4E2E2
4+4E4E6)

(12)(23)(34)(41)×(56)(67)(78)(89)(9,10)(10,1)×(11,12)2 G[2,4,6]=− 16
135 (E2E2

4+2E4E6)

(12)(23)(34)(45)(56)(67)(78)(89)(9,10)(10,1)×(11,12)2 G[2,10]=− 8
135 (E2E2

4+ 41
21 E4E6)

(12)(23)(34)(45)(56)(67)(78)(81)×(9,10)2(11,12)2 G[2,2,8]=− 8
189 (E2

2E6+ 24
5 E2E2

4+ 22
5 E4E6)

(12)(23)(34)(45)(56)(61)×(78)2(9,10)2(11,12)2 G[2,2,2,6]=− 8
15 ( 1

9 E3
2E4+

1
3 E2

2E6+E2E2
4+ 5

9E4E6)

(12)(23)(34)(41)×(56)2(78)2(9,10)2(11,12)2 G[2,2,2,2,4]=− 8
27 ( 4

3E3
2E4+2E2

2E6+4E2E2
4+ 5

3 E4E6)

(12)(23)(34)(45)(56)(67)(78)(89)(9,10)(10,11)(11,12)(12,1) G[12]=− 736
10395E4E6 .

(B.18)

In order to assemble these modular functions into (B.6), we still need to find

the combinatorial factors nP . For this we employ a graphical method, somewhat

similar in spirit to that what was used in the second reference of [51]. Indeed all
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the contractions can be represented by graphs, which can be labelled by their cycle

structure.

More precisely, we need to consider graphs with two kinds of vertices, one kind

referring to the moduli T and the other to the moduli U . That is, the first kind

of vertices correspond to operators (k · ψ)Ψ, while the second kind corresponds to

(k · ψ)Ψ. Charge conservation for Ψ,Ψ and the kinematical structure of the form

(∂µT∂
µU)K+1 then implies that only contractions between the two sets of vertices

are allowed; furthermore the contractions must form loops made from alternating

sequences of ψψ and ΨΨ propagators – see the figure.

[2,2,2]:   -6

[2,4]:  +18

[6]:     -12

Fig.1: Bipartite graphs relevant for K = 2. Each point on the

left of a diagram corresponds to an operator (k · ψ)Ψ, while on the

right it correspond to (k · ψ)Ψ. Each loop has to be counted twice,

reflecting the two ways to assign to it an alternating sequence of ψψ

and ΨΨ propagators. The cycle structure also determines the signs.

Such “bipartite” graphs are characterized by incidence matrices of the block from

I =

(
0 R
Rt 0

)

where R =
∑

i,j(ri + rj) and where {ri} are all the permutations of the columns of

the N/2 = K + 1 dimensional identity matrix. Clearly there are in total ((K + 1)!)2

such graphs. Each of such graphs needs now to be classified with respect to its cycle

structure, which also determines its sign (given by the signature of the permutation).

Being pragmatic, we generated these graphs up to N = 12 with Mathematica

(which gives a formidable number), and decomposed them in terms of their cycle
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structure. In this way, we obtained the following list of combinatorial coefficients:

N = 4 : n[2,2] = 2, n[4] = −2

N = 6 : n[2,2,2] = −6, n[2,4] = 18, n[6] = −12

N = 8 : n[2,2,2,2] = 24, n[2,2,4] = −144,

n[4,4] = 72, n[2,6] = 192, n[8] = −144

N = 10 : n[2,2,2,2,2] = −120, n[2,2,2,4] = 1200, n[2,4,4] = −1800,

n[2,2,6] = −2400, n[4,6] = 2400, n[2,8] = 3600,

n[10] = −2880

N = 12 : n[2,2,2,2,2,2] = 720, n[2,2,2,2,4] = −10800, n[2,2,4,4] = 32400,

n[2,2,2,6] = 28800, n[4,4,4] = −10800, n[2,4,6] = −86400,

n[2,2,8] = −64800, n[6,6] = 28800, n[4,8] = 64800,

n[2,10] = 103680, n[12] = −86400.

Inserting these together with our expressions for the GP (q) into (B.6), then pro-

duces combinations of Eisenstein series that exactly match the following derivatives

of E(st×T 2)(v, q):

∑

cycle
classes P

nP (K)G
P
(K)(q) =

( ∂
∂v

)2K+2
(
iθ1(

1
2
v, q)

η3(q)

)2 ∣∣∣
v=0

,

for K = 0, . . . , 5. By the uniqueness of the Jacobi forms this makes clear what the

relevant elliptic genus is, and in particular that the elliptic genus of K3 cancels out.
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