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Abstract

We have recently calculated the second-order QCD corrections to the forward–
backward asymmetry in e+e− annihilation. Here we recall the results and compare
them to others in the literature.



Experimental measurements of the forward–backward and left–right for-

ward–backward asymmetries in e+e− annihilation to fermions provide some of the

best determinations of the weak mixing angle sin2 θeff
1). In particular, the forward–

backward asymmetry of b quarks is measured with a precision of about 2%, allowing

an extraction of sin2 θeff with almost per mille accuracy. However, since we are

dealing with quarks in the final state, we must ensure that QCD corrections, both

perturbative and non-perturbative, are understood to at least the same precision.

For the perturbative corrections, this requires working to at least next-to-next-to-

leading order (NNLO).

To date there have been two O(α2
S) calculations, both in the massless ap-

proximation and using a slightly different definition of the asymmetry than the

experimental measurements, which use the thrust axis rather than the quark di-

rection. The classic calculation of Altarelli and Lampe 2) determined the O(α2
S)

coefficient numerically and found it to be small. This result has been the basis

of all the experimental analyses since. However, the recent analytical calculation

by Ravindran and van Neerven 3) obtained a coefficient about four times bigger.

This discrepancy is comparable to the size of the experimental errors and needs to

be resolved before the final electroweak fits to the LEP1 data can be made. The

O(α2
S)-calculation using the experimentally-used thrust axis definition, would also

be highly desirable.

We have recently performed a numerical calculation of the O(α2
S) correc-

tions to the forward–backward asymmetry 4). Anticipating the result, given below,

we can say that to the precision required by experiment we confirm the result of

Ravindran and van Neerven and therefore rule out the result of Altarelli and Lampe.

However, we do have a theoretically-important difference compared to Ravindran

and van Neerven, in that we find that the forward–backward asymmetry contains

terms enhanced by logarithms of the quark mass. Even though these terms are

numerically tiny for realistic quark masses, as a point of principle it means that the

forward–backward asymmetry of massless quarks is not perturbatively calculable

and non-perturbative fragmentation functions have to be introduced.

We also calculated for the first time the corrections using the thrust axis

definition rather than the quark direction. These lie approximately midway between

the results of Refs. 2) and 3) for the quark axis definition.

We here only briefly sketch the method and give the final result, and refer

the reader to Ref. 4) for more details.



The simplest definition of the b-quark1 forward–backward asymmetry AFB

is

AFB =
NF −NB

NF + NB

, (1)

where NF and NB are the number of b quarks observed in the forward and backward

hemispheres, respectively.

The axis that identifies the forward direction can be defined in a variety

of ways. In this paper we explicitly consider two different definitions: the b-quark

direction, and the thrust axis direction, which we denote by Ab
FB and AT

FB respec-

tively.

According to the definition in Eq. (1), AFB can be expressed in an equiv-

alent way in terms of the cross section

dσ(e+e− → b + X)

dx dcos θ
(2)

for inclusive b-quark production, where x is the fraction of the electron energy carried

by the b quark and θ is the angle between the electron momentum and the direction

defining the forward hemisphere (both energies and angles are defined in the centre-

of-mass frame).

Starting from the distribution in Eq. (2), we can introduce the forward and

backward cross sections σF and σB:

σF ≡
∫ 1

0
dcos θ

∫ 1

0
dx

dσ

dx dcos θ
, σB ≡

∫ 0

−1
dcos θ

∫ 1

0
dx

dσ

dx dcos θ
, (3)

and the symmetric and antisymmetric cross sections σS and σA:

σS = σF + σB , σA = σF − σB . (4)

We can then write the forward–backward asymmetry as

AFB =
σA

σS

. (5)

In order to calculate this ratio perturbatively, we first separate the con-

tributions to the cross sections into three classes: flavour non-singlet (NS), flavour

singlet (S), and interference (or triangle) (Tr) (see Ref. 4) for their precise defini-

tion). We thus write the cross sections as

σS = σS,NS + σ
(2)
S,S + σ

(2)
S,Tr +O(α3

S) , (6)

σA = σA,NS + σ
(2)
A,Tr +O(α3

S) . (7)

1Throughout this paper we explicitly consider the case of the b-quark. The results for the charm
quark can be simply obtained by properly replacing the mass and couplings of the massive quark.



In this notation, up to O(αS) there are only non-singlet contributions. Thus,

σ
(2)
S,S, σ

(2)
S,Tr and σ

(2)
A,Tr are proportional to α2

S. There are no singlet contributions

to the antisymmetric cross section σA.

The forward–backward asymmetry is decomposed in a similar way. Ex-

panding the ratio σA/σS up to O(α2
S), we write

A
(2)
FB = A

(2)
FB,NS +

σ
(0)
A

σ
(0)
S

σ
(2)
A,Tr

σ
(0)
A

− σ
(2)
S,Tr

σ
(0)
S

− σ
(2)
S,S

σ
(0)
S

 , (8)

where A
(2)
FB,NS denotes the non-singlet component:

A
(2)
FB,NS =

σA,NS

σS,NS
. (9)

The triangle contributions give non-universal (i.e. non-factorizable) correc-

tions to both the symmetric and antisymmetric cross sections. They are calculated

in Ref. 2) for the b-quark axis definition and found to be very small. To our knowl-

edge their contribution to the thrust axis definition has never been calculated, but

we expect it to be similarly small. We therefore neglected it, i.e. σ
(2)
S,Tr and σ

(2)
A,Tr in

Eq. (8), from our calculation.

The singlet contribution to the symmetric cross section, σS , is logarith-

mically enhanced in the small-mass limit and proportional to α2
S ln3 Q2/m2

b . An

approximate expression for it, denoted by FBranco, was used in Ref. 2). It is calcu-

lated exactly to O(α2
S) in Refs. 5, 6), and the leading and next-to-leading logarithms

are summed to all orders in αS in Ref. 6).

In some sense the singlet component is a ‘background’ to the forward–

backward asymmetry measurement and, in fact, in the experimental analyses (see

e.g. Ref. 7)) it is statistically subtracted using Monte Carlo event generators. We

therefore neglected it, i.e. σ
(2)
S,S in Eq. (8), from our calculation.

Before describing the calculation of A
(2)
FB,NS, we take a slight diversion to

discuss the contribution to it from four-b final states. Let us first point out a basic

fact. The four-b process contributes to both the b-quark cross sections σS and σA

and the e+e− total cross section. However, they appear with different multiplicity

factors in the two cases. In the case of the e+e− total cross section the multiplicity

factor is simply equal to unity. In the contribution to the inclusive b-quark cross

sections σS and σA, these terms count twice since there are two b quarks in the final

state. This observation is important in understanding the results for the non-singlet

component of the symmetric cross section σS discussed shortly.

After summing and squaring the Feynman diagrams for four-b production,

we obtain two types of contribution: i) those that are identical to the bb̄qq̄ final state



but with the other quark q replaced by an untriggered-on b quark, and ii) those

that are genuine interference terms arising from the fact that the two antiquarks

are indistinguishable, called the E-term in Ref. 8). The squared diagrams of type i)

are lumped together with the corresponding terms from bb̄qq̄ in the singlet (σ
(2)
S,S

in Eq. (6)), non-singlet (σS,NS and σA,NS in Eqs. (6) and (7)) or triangle (σ
(2)
S,Tr

and σ
(2)
A,Tr in Eqs. (6) and (7)) contributions. The squared diagrams of type ii),

which give a universal (i.e. factorizable) correction to both the antisymmetric and

symmetric cross sections, can be considered part of the non-singlet contributions.

It is not entirely clear how four-quark final states are actually treated

in the different experimental analyses, i.e. the extent to which they are genuinely

measuring the inclusive cross sections. Often some vague statement like “a four-b

final state is more likely to be tagged than a two-b one, but less than twice as likely”

is made. To know what to calculate one must understand the corrections that

are applied for this difference in tagging efficiency, which are not usually explicitly

stated in the papers. In the absence of a unique experimental procedure and of a

definitive statement from the experiments on what they are measuring, we make this

ambiguity explicit by multiplying the E-term by an arbitrary weight factor WE . An

inclusive definition would correspond to WE = 2 (each b quark contributing once),

while an exclusive definition (the cross section for events containing at least one b

quark) would correspond to WE = 1. Since the forward–backward asymmetry is

defined to be the asymmetry of a differential cross section, it is clear that we must

use the same cross section definition in the numerator and denominator, i.e. that

WE must be the same in the symmetric and antisymmetric cross sections.

Having defined the weight factor WE for the E-term, we can define the

following symmetric and antisymmetric cross sections

σS,NS(WE) = σS,NS(WE = 0) + WE σ
(0)
S

∫
ES , (10)

σA,NS(WE) = σA,NS(WE = 0) + WE σ
(0)
A

∫
EA , (11)

where
∫

ES and
∫

EA denote the integral of the symmetric and antisymmetric E-

term, respectively. We recall that the ‘truly’ inclusive cross sections in Eq. (4)

correspond to the definition with WE = 2, i.e. σS,NS = σS,NS(WE = 2) and σA,NS =

σA,NS(WE = 2).

The O(α2
S)-calculation of the cross sections in Eqs. (10, 11) and of the

corresponding forward–backward asymmetry in the case of a finite b-quark mass is

extremely complicated, and we are not able to perform it. It is thus convenient to

separate the calculation into a piece that is finite (although still cumbersome) in the



massless limit and a simpler piece that is not. Then, the finite piece can be more

easily computed in the massless approximation, while the simpler non-finite piece

can be computed in the massive theory.

It is possible to show 4) that the inclusive definition, with WE = 2, results

in an antisymmetric cross section σA (or, analogously, σA,NS) that is finite in the

massless limit, at least at O(α2
S). However, in the same limit, the inclusive symmet-

ric cross section is divergent at O(α2
S), even if we only consider its non-singlet com-

ponent. The corrections to (the non-singlet component of) the forward–backward

asymmetry itself must therefore also be divergent in the massless limit.

This final statement remains true for any value of WE > 0. For example,

with WE = 1, the non-singlet part of the symmetric cross section is finite, but the

antisymmetric cross section contains logarithmically-enhanced terms.

The divergences in the non-singlet components correspond to logarithmi-

cally-enhanced terms α2
S ln Q2/m2

b coming from the E-term in the triple-collinear

limit, i.e. when three fermions of the four-quark final state become simultaneously

parallel. The integral of the symmetric E-term is calculated numerically in Ref. 4)

and, neglecting corrections of O(mb/Q), the final result is

∫
ES = CF

(
CF − CA

2

)(
αS

2π

)2
[
2

(
13

4
− π2

2
+ 2ζ3

)
ln

Q2

m2
b

− 8.1790± 0.0013

]
,

(12)

where the analytic coefficient in front of lnQ2/m2
b is proportional to the integral of

the non-singlet Altarelli–Parisi probability P NS
qq̄ (z, αS) (see, for instance, Ref. 9)):

∫ 1

0
dz P NS

qq̄ (z, αS) =
(

αS

2π

)2

CF

(
CF − 1

2
CA

)(
13

4
− π2

2
+ 2ζ3

)
, (13)

and the constant term is the result of our numerical calculation.

Having pointed out that the symmetric E-term is divergent in the massless

limit, it is very simple to show how the divergence appears in the inclusive symmet-

ric cross section. According to the definition of the non-singlet component of σS,

the virtual diagrams that contribute to σS,NS are exactly those that contribute to

the e+e− total cross section. As for the real diagrams, they only differ by the con-

tributions coming from the E-term. In the total cross section, the E-term enters

with a multiplicity factor WE = 1, and its divergence is cancelled by that of the

virtual diagrams. In the inclusive b-quark cross section, the multiplicity factor of

the E-term is WE = 2 and, thus, the cancellation of the divergence with the virtual

terms is spoiled.



This argument also allows us to directly compute the O(α2
S)-correction to

Eq. (10). Exploiting the fact that the massless QCD correction to σS,NS(WE = 1)

is equal to the correction Re+e− to the total cross section, we write

σS,NS(WE) = σ
(0)
S

[
Re+e− + (WE − 1)

∫
ES +O(α3

S)
]

. (14)

Then, we obtain an explicit expression for σS,NS(WE) by simply introducing in

Eq. (14) our result in Eq. (12) for
∫

ES and the well-known result 10) for Re+e−. In

particular, for the inclusive symmetric cross section we obtain

σS,NS = σS,NS(WE = 2) = σ
(0)
S

[
Re+e− +

∫
ES +O(α3

S)
]

. (15)

Since both σA,NS(WE = 2) and σS,NS(WE = 1) are finite when mb → 0, we

can use the dependence on WE to construct an unphysical observable that is finite

in the massless limit:

A
(2);finite
FB ≡ σA,NS(WE = 2)

σS,NS(WE = 1)
. (16)

This observable is the ratio of the antisymmetric part of the inclusive cross section

and the symmetric part of the exclusive cross section. Thus A
(2);finite
FB is unphysical

in the sense that it is not the forward–backward asymmetry of a single differential

cross section. Nonetheless the definition in Eq. (16) helps us to perform a massless

calculation. The physical result for WE = 2 is then given by

A
(2)
FB,NS = A

(2);finite
FB −A

(0)
FB

∫
ES , (17)

where
∫

ES is the integral of the symmetric E-term, given in Eq. (12).

Even in the massless limit numerical two-loop calculations are prohibitively

difficult to set up. Fortunately there is a cancellation between the genuinely two-

loop effects in the ratio on the right-hand-side of Eq. (16), which does allow its

numerical evaluation. The total contribution can be written as

A
(2);finite
FB =

σ
(0)
A + σ

(1);one-loop
A + σ

(1);tree
A + σ

(2);two-loop
A + σ

(2);one-loop
A + σ

(2);tree
A (WE = 2)

σ
(0)
S + σ

(1);one-loop
S + σ

(1);tree
S + σ

(2);two-loop
S + σ

(2);one-loop
S + σ

(2);tree
S (WE = 1)

.

(18)

The O(αS)-contributions come from the one-loop cross sections σ(1);one-loop for the

two-parton process e+e− → bb̄ and the tree-level cross sections σ(1);tree for the three-

parton process e+e− → bb̄g. Similarly the non-singlet O(α2
S)-contributions from the

two-parton, three-parton and four-parton final states are denoted by σ(2);two-loop,

σ(2);one-loop and σ(2);tree respectively. Of course, the dependence on WE enters only

through the four-parton terms σ
(2);tree
A (WE = 2) and σ

(2);tree
S (WE = 1).



Each of the cross sections is separately divergent, so they have to be regu-

larized in some way before being combined together. In any regularization scheme

that preserves the helicity conservation of massless QCD2 (for example, dimensional

regularization), we have the properties

σ
(1);one-loop
A

σ
(0)
A

=
σ

(1);one-loop
S

σ
(0)
S

,
σ

(2);two-loop
A

σ
(0)
A

=
σ

(2);two-loop
S

σ
(0)
S

, (19)

so that if we expand the ratio in Eq. (18) up to O(α2
S), the two-loop corrections

cancel, and we obtain

A
(2);finite
FB =

σ
(0)
A

σ
(0)
S

[
1 +

(
1− σ

(1)
S

σ
(0)
S

)(
σ

(1)
A

σ
(0)
A

− σ
(1)
S

σ
(0)
S

)
(20)

+
σ

(2);one-loop
A

σ
(0)
A

− σ
(2);one-loop
S

σ
(0)
S

+
σ

(2);tree
A (WE = 2)

σ
(0)
A

− σ
(2);tree
S (WE = 1)

σ
(0)
S

]
,

where σ
(1)
A and σ

(1)
S are the complete contributions to the antisymmetric and sym-

metric cross sections at O(αS), σ(1) = σ(1);one-loop + σ(1);tree. The first line can be

calculated analytically, but the second line is too complicated to be able to, so must

be done numerically. Since the two-loop terms have cancelled, this has the structure

of a NLO three-jet calculation, as first noticed by Altarelli and Lampe 2). Thus the

calculation can be performed using known techniques (we use the dipole-formalism

version of the subtraction method 11)).

We are finally ready to present our numerical results. We start with the

unphysical, but finite, quantity defined in Eq. (16), and separate out the different

colour factors, as in Refs. 2, 3):

A
(2);finite;b
FB = A

(0)
FB

[
1− αS

2π

(
1− αS

2π

3

2
CF

)(
3

2
CF

)

+
(

αS

2π

)2

CF (CCF + NNC + TTRNf )

]
, (21)

with αS ≡ αS(Q
2). Our numerical results are shown in Table 1, in comparison

with the previous calculations. It is clear that we disagree badly with the results

of Altarelli and Lampe 2), but are in excellent agreement with Ravindran and van

Neerven 3), who give the coefficients analytically. However, we should recall that

A
(2);finite
FB , as given in Eq. (21), is not the forward–backward asymmetry of a definite

cross section. The physical forward–backward asymmetry must have subtracted

2Note that the relations (19) are explicitly violated for massive quarks.



b-quark axis C N T

AL 2) 4.4± 0.5 −10.3± 0.3 5.68± 0.04

RvN 3) 3
8

= 0.375 −123
8

= −15.375 11
2

= 5.5

Our Calculation 0.3765± 0.0038 −15.3769± 0.0034 5.5002± 0.0008

Table 1: Results for the coefficients of the O(α2
S) correction to the finite part of the

forward–backward asymmetry with the b-quark axis definition, Eqs. (17, 21).

from Eq. (21) the logarithmically-enhanced term of Eq. (17), which is not present in

the result of Ref. 3). Thus it seems that they have somehow computed the unphysical

A
(2);finite
FB rather than the forward–backward asymmetry. In fact, their expression for

the correction to the symmetric cross section (fT +fL in their Eqs. (31) and (32)) is

actually equal to our σS,NS(WE = 1) in Eq. 14. So, the fact that their result for A
(2)
FB

agrees with our A
(2);finite
FB means that we confirm their result 12, 3) for the inclusive

antisymmetric cross section σ
(2)
A = σ

(2)
A (WE = 2) (fA in Eq. (33) of Ref. 3)).

Using our numerical program it is straightforward to calculate the forward–

backward asymmetry with any other axis definition (or cuts, for example on the value

of the thrust). With the thrust axis definition, we obtain

A
(2);finite;T
FB = A

(0)
FB

[
1− αS

2π

(
1− αS

2π

3

2
CF

)
(1.34CF )

+
(

αS

2π

)2

CF (CCF + NNC + TTRNf )

]
, (22)

with αS ≡ αS(Q
2) and the coefficients given in Table 2. The logarithmically-

enhanced piece that has to be added to this is identical to that in the b-quark

axis definition, namely Eqs. (17, 12). It is worth noting that the difference between

the two definitions is the same size and in the same direction as at O(αS), leading

to an overall difference of 0.8% for αS ∼ 0.12.

We finally recall that we include an arbitrary factor WE in front of the

thrust axis C N T

Our Calculation −3.7212± 0.0065 −9.6011± 0.0049 4.4144± 0.0006

Table 2: Results for the coefficients of the O(α2
S) correction to the finite part of the

forward–backward asymmetry with the thrust axis definition, Eqs. (17, 22).



four-b contribution to account for the way in which it is treated in the experimental

analyses. For a fully inclusive definition, in which each b quark contributes once,

WE should be set equal to 2, while for an exclusive definition, WE should be set

equal to 1. Our final result for the non-singlet component of the forward–backward

asymmetry, is then:

A
(2)
FB,NS(WE) ≡ σA,NS(WE)

σS,NS(WE)
= A

(2);finite
FB − A

(0)
FB

[
(1− 1

2
WE)

(
2
∫

EA −
∫

ES

)
+ 1

2
WE

∫
ES

]
,

(23)

where A
(2);finite
FB is given in Eqs. (21, 22) and Tables 1 and 2,

∫
ES is given in Eq. (12),

and (see Appendix B of Ref. 4))

2
∫

EA −
∫

ES =
(

αS

2π

)2

CF (CF − 1
2
CA)

(
0.3620± 0.0007

)
, quark axis, (24)

2
∫

EA −
∫

ES =
(

αS

2π

)2

CF (CF − 1
2
CA)

(
0.1144± 0.0009

)
, thrust axis. (25)

Note that the combinations of E-term contributions in Eqs. (24) and (25) are finite

in the massless limit (see the discussion in Appendix B of Ref. 4)).

Putting all these numbers together, and setting Nf = 5, we write the

forward–backward asymmetry according to the two definitions as:

A
(2);b
FB,NS(WE) = A

(0)
FB

[
1− 0.318αS − 0.973α2

S + WEα2
S

(
0.00405 ln

Q2

m2
b

− 0.0240

)]
,

(26)

A
(2);T
FB,NS(WE) = A

(0)
FB

[
1− 0.284αS − 0.676α2

S + WEα2
S

(
0.00405 ln

Q2

m2
b

− 0.0233

)]
,

(27)

with αS ≡ αS(Q
2). Note that the logarithmically-enhanced term, ln Q2/m2

b , is

present for any physical (WE > 0) value of WE .

Putting in an explicit value for αS, we summarize the total QCD correction

according to the various available calculations in Table 3. We continue to neglect all

terms that vanish in the massless limit. Since in the existing experimental analyses

(see for example Ref. 7)), the known O(αS) correction for the thrust axis definition

was included, together with the Altarelli and Lampe quark axis value for the O(α2
S)

corrections, we do the same in Table 3.

We find that the difference between the Ravindran and van Neerven calcu-

lation and ours is numerically irrelevant, being smaller than 10−4 for b quarks and

∼ 2.5×10−4 for c quarks. Therefore at the numerical precision required by current

or any foreseen experiments, we agree with their result – the difference is only one



AL 2) RvN 3) Our Calculation Our Calculation
quark axis quark axis quark axis thrust axis

Correction, A
(2)
FB/A

(0)
FB 0.962 0.952 0.952 0.956

Table 3: Total QCD correction to the forward–backward asymmetry in the small-
mass limit, with αS = 0.12. In each case, the thrust axis definition is used for
the O(αS) correction and the definition shown is used for the O(α2

S) correction, as
discussed in the text.

of principle. The difference between the Altarelli and Lampe calculation and ours

for the quark axis definition is more significant though, at around 1%. However, the

error in their calculation and the effect of using the thrust axis definition partially

cancel, and the total difference is around 0.6%.

We should also mention the important fact, discussed in Ref. 7), that the

experimental procedures introduce a bias towards more two-jet-like events. This

actually decreases the size of the QCD corrections considerably, so our number

should be considered as an upper bound on the final difference.

In Ref. 4) we try to estimate the remaining uncertainties in the forward–

backward asymmetry, bearing in mind that while the 2% precision of current exper-

iments is close to their final limit, a future linear collider could be capable of experi-

mental errors on the left–right forward–backward asymmetry of order 0.1% 13). We

found several sources of uncertainty that all contribute at the few per mille level.

While this is certainly sufficient for the current precision of the data, matching the

precision of a future linear collider measurement could be extremely difficult. It is

likely that this could only be done by making even more stringent two-jet cuts in

order to work in a region in which the corrections and their uncertainties are smaller.
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