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Entropy Bounds and String Cosmology
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Abstract

After discussing some old (and not-so-old) entropy bounds
both for isolated systems and in cosmology, I will argue in
favour of a “Hubble entropy bound” holding in the latter
context. I will then apply this bound to recent develop-
ments in string cosmology, show that it is naturally satu-
rated throughout pre-big bang inflation, and claim that its
fulfilment at later times has interesting implications for the
exit problem of string cosmology.

Why is the second law of thermodynamics valid even when the
microscopic evolution equations are invariant under time-reversal?
The standard answer to this old question (see e.g. [1]) is simple: it
is because the Universe started in a low-entropy state and has not
yet reached its maximal attainable entropy. But then, which is this
maximal possible value of entropy and why has it not already been
reached after so many billion years of cosmic evolution? In this talk
I will argue that, perhaps, there is a simple answer to these last two
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questions, at least in the context of string cosmology. But let us
proceed step by step.

In 1981 J. Bekenstein [2] proposed what he called a “univer-
sal” entropy bound for isolated objects. We will refer to it as the
Bekenstein entropy bound (BEB) [2], which states that, for any iso-
lated physical system of energy E and size R, usual thermodynamic
entropy is bound by 1:

S ≤ SBB = ER/h̄. (1)

I will skip the arguments that led Bekenstein to formulate his bound
and just stress that, in 18 years, no counterexample to it has been
found.

The so-called holographic principle of ’t Hooft, Susskind and
others [3], suggests an apparently unrelated holographic bound on
entropy (HOEB) according to which entropy cannot exceed one
unit per Planckian area of its boundary’s surface. In formulae:

S ≤ SHOB = A l−2
P . (2)

I will now argue that the BEB actually implies the HOEB. In-
deed:

SBB = GER/Gh̄ = Rs R l−2
P ≤ SHOB = R2

eff l−2
P , Rs ≡ GE ,

(3)
where Reff appearing in the holography bound is R if R > Rs (a
non-collapsed object), but has to be identified with Rs if the object
is inside its own Schwarzschild radius (is itself a black hole). In the
latter case the two bounds coincide and are saturated.

Incidentally, the BEB has an amusing application [4] to (weakly
coupled) string theory. Since string entropy is O(α′E/ls) (one unit
per string length ls =

√
α′h̄), it satisfies the BEB iff R > ls. Thus,

in string theory, one cannot have black holes with Schwarzschild
radius smaller than ls (with a Hawking temperature larger than
the string’s Hagedorn temperature) [5].

The situation for isolated systems in flat space-time looks un-
controversial. How can we try to extend these considerations to a

1Throughout this paper we stress functional dependences while ignoring
numerical factors and set c = 1.
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cosmological set up? Let us first pretend that we can use the naive
BEB or holography bounds to an arbitrary sphere of radius R, cut
out of a homogeneous cosmological space. Entropy in cosmology is
extensive, i.e. it grows like R3. But the boundary’s area grows like
R2: therefore, at sufficiently large R, the (naive) holography bound
must be violated! On the other hand, SBB ∼ ER ∼ R4 appears
to be safer at large R. How can this be, since we just argued that
the BEB implies the HOEB? The explanation is simple: when R
becomes very large, the corresponding Rs exceeds R; nevertheless,
we kept using R in the HOEB since we no longer had a black-
hole interpretation for the sphere. Obviously, we have to rethink
everything within a cosmological setting!

In order to show how inadequate the naive bounds are in cos-
mology, let us apply them at t ∼ tP ∼ 10−43 s, within standard
FRW cosmology, to the region of space that has become our visible
Universe today. The size of that region at t ∼ tP was about 1030lP
and the entropy density was of Planckian order. Thus:

S ∼ (1030)3 = 1090 , (4)

SBB ∼ ρR4/h̄ ∼ R4/l4P ∼ 10120 , SHOB ∼ R2l−2
P ∼ 1060 .

Clearly the actual entropy lies at the geometric mean between the
two naive bounds, making one false and the other quite useless!

It was indeed realized by their respective proponents that both
the BEB and the HOEB need revision in a cosmological context.
In 1989 Bekenstein proposed [6] that the BEB applies to a region
as large as the particle horizon dp:

dp(t) = a(t)
∫ t

tbeg

dt′/a(t′) . (5)

The same conclusion (with an important caveat, see below) was
reached by Fischler and Susskind [7] (FS) in their cosmological
generalization of the HOEB.

There is one very welcome property of both the Cosmological
BEB and the FS bound: they appear to be saturated around the
Planck time (when they can be shown to be equivalent) and could
thus justify the initially “low” entropy value. Actually, one finds
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[6] that the bound is saturated at t ∼ N
1/2
eff tp and is violated at

earlier times if one trusts General Relativity so far inside the strong-
curvature region. This result was used by Bekenstein [6] to argue
that the Big Bang singularity must be spurious.

It is interesting to compare the two bounds again, now in their
cosmological variants. They are related as follows:

SCBB ∼ M(r < dp)dp/h̄ = ρd4
p/h̄ = (Hdp)

2d2
p/l

2
p = (Hdp)

2SCHOB ,
(6)

where, with increasingly baroque notation, we have added a C to
distinguish the cosmological versions of the two bounds and we have
used Friedmann’s equation Gρ = H2 to relate energy density to the
Hubble parameter H = ȧ/a.

We note that the two bounds differ by a factor (Hdp)
2. While

such a factor is O(1) in FRW-type cosmologies, it can be huge
after a long period of inflation, i.e. O ((aend/abeg)

2), the square of
the total amount of red-shift suffered during inflation, which has
to be at least as large as 1060. For this reason the CHOEB (FSB
hereafter) appears to be stronger than the CBEB, just the opposite
of what we argued to be the case for isolated systems.

The tight nature of the FSB led some authors [8] to derive con-
straints from it on inflationary parameters. This, however, came
from a misinterpretation of the FSB 2. The logical implication of
the FSB is that it does not apply to entropy produced by non-
adiabatic processes occurring in the bulk. In any inflationary sce-
nario, most of the present entropy is the result of processes of this
type (reheating due to dissipation of the inflaton’s potential energy
at the end of inflation [10]) and should therefore be excluded. As a
result, the FSB puts no constraints on inflation, but also becomes
phenomenologically uninteresting in recent epochs, since it ignores
most of the present entropy. On the contrary, the FSB appears to
exclude closed, recollapsing universes [7], or those driven by a small
negative cosmological constant [9].

Two groups [11], [12] tried to apply the FSB to pre-big bang
(PBB) cosmology. A problem arises, however, since the particle

2This point was clarified after my talk through several discussions with
Fischler and Susskind, see also Ref. [9].
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horizon dp is infinite in PBB (the integral in Eq. (5) diverges at
its lower limit, −∞). One of the groups [11] insisted on using dp

nonetheless, and concluded that the PBB initial state has to be
empty. The second group [12] replaced the particle horizon with
the event horizon (which is finite in PBB and infinite in FRW) and
found very mild constraints. Very recently, Bousso [13] proposed to
change the FS prescription by replacing dp with yet another scale,
and thus managed to avoid the above-mentioned problems [7] with a
recollapsing universe. In the rest of this talk I will argue in favour
of a different cosmological entropy bound, which is unambiguous
and appears to give sensible results. I will then apply it to the
PBB scenario.

Consider a sufficiently homogeneous Universe with its (local,
time-dependent) Hubble expansion rate defined, in the synchronous
gauge, by:

6H = −2K ≡ ∂t (log g) , g ≡ det (gij) , (7)

where, as usual, K denotes the trace of the second fundamental
form on constant t hypersurfaces. We assume H to vary little
(percentage-wise) over distances O(H−1). In this case H−1, the
so-called Hubble radius, corresponds to the scale of causal connec-
tion, i.e. to the scale within which microphysics can act.

As long as we consider, on top of this homogeneous background,
isolated lumps of size much smaller that H−1, the expansion of
the Universe is irrelevant, and we should fall back on the non-
cosmological, asymptotically flat case. In particular, we can imag-
ine to put, in a single Hubble patch, several black holes and compute
their entropy. We can make them coalesce and watch the conse-
quent entropy increase (mass adds up, but entropy is proportional
its square). However, this way of increasing entropy has some limit.
It is hard to imagine that a black hole larger than H−1 can form,
since different parts of its horizon would be unable to hold together.
Actually, strong arguments in this direction were given long ago in
the literature [14] (see also [9]). Thus, the largest entropy we may
conceive for a region of space larger than H−1 is the one corre-
sponding to one black hole per Hubble volume H−3. Using the
Bekenstein–Hawking formula for the entropy of a black hole of size
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H−1 leads to the proposal [15], [16] of a “Hubble entropy bound”
(HEB):

S(V ) < SHB ≡ nHSH = V H3l−2
P H−2 = V Hl−2

P , (8)

where nH is the number of Hubble-size regions within the volume
V , each one carrying maximal entropy SH = l−2

P H−2. A possible
relation between the HEB and a generalized second law of thermo-
dynamics has also been discussed [17].

Note that the bound (8) is partly holographic (the SH part goes
like an area) and partly extensive (the nH part goes like the vol-
ume). If we apply the HEB to a region of size dp we find, amusingly:

SHB = d3
pHl−2

P = S
1/2
CBB S

1/2
FS . (9)

It is easy to show [15] that the above relation is sufficient to avoid
any problem with entropy produced at reheating after inflation.
Also, the HEB coincides with the CBEB and FSB at Planckian
times in FRW cosmology and it is thus as saturated as they are. In
the rest of this talk I will concentrate on applying the HEB to the
PBB scenario, showing that, in that context, the above saturation
is not accidental.

In order to discuss various forms of entropy in the PBB scenario,
let us recall some results that have emerged from recent studies
[18, 19] of the question of initial conditions in string cosmology
(see [20] for a recent review). It has been argued that very natural
initial conditions, corresponding to generic gravitational and dila-
tonic waves superimposed on the trivial, perturbative vacuum of
critical superstring theory (flat space-time and constant dilaton),
lead to a form of stochastic PBB. In the Einstein-frame metric,
this can be seen as a sort of chaotic gravitational collapse which
is bound to occur, owing to gravitational instability through the
Hawking–Penrose theorems [21], provided a (scale and dilaton shift
invariant) collapse criterion is met. Black holes of different sizes
will thus form but, for an observer measuring distances inside each
black hole with a stringy meter, this is experienced as a PBB in-
flationary cosmology in which the (hopefully fake) t = 0 big bang
singularity is identified with the (hopefully equally fake) black hole
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singularity at r = 0 [19]. Since the duration (and efficiency) of the
inflationary phase is controlled by the size of the black hole, we are
led [18, 19] to identify our observable Universe with what became
of a portion of space that was originally inside a sufficiently large
black hole.

It is helpful to follow the evolution of various contributions to
(and bounds on) entropy with the help of Fig. 1. At time t = ti,
corresponding to the first appearance of a horizon, we can use the
Bekenstein–Hawking formula to argue that

Scoll ∼ (Rin/lP,in)
2 ∼ (HinlP,in)

−2 = SHB , (10)

where we have used the fact [19] that the initial size of the black-hole
horizon determines also the initial value of the Hubble parameter.
Thus, at the onset of collapse/inflation, entropy, without any fine-
tuning, is as large as allowed by the HEB. As a confirmation of this,
note that Scoll is also on the order of the number of quanta needed
for collapse to occur [19]. We have implicitly assumed the initial
state of the system to be at small string coupling: consequently,
quantum fluctuations are very small, and contribute, initially, a
negligible amount Sqf to the total entropy.

After a short transient phase, dilaton-driven inflation (DDI)
should follow [18, 19] and last until ts, the time at which a string-
scale curvature is reached. We expect this classical process not to
generate further entropy (unless more energy flows into the black
hole, but this would only increase its total comoving volume), but
what happens to the HEB? Well, it stays constant, thus keeping
the bound saturated, as the result of a well known “conservation
law” of string cosmology [22], which reads (l2P = eφl2s)

∂t

(

e−φ√gH
)

= ∂t

(

(
√

gH3) (e−φH−2)
)

= ∂t (nHSH) = 0 . (11)

Comparing this with (8), we recognize that (11) simply expresses
the time independence of the HEB during the DDI phase. At the
beginning of the DDI phase nH = 1, and the whole entropy is
in a single Hubble volume; however, as DDI proceeds, the same
total amount of entropy becomes equally shared between very many
Hubble volumes until, eventually, each one of them contributes a
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small number. Also, if we assume that the string coupling is still
small at the end of DDI, we can easily argue that the entropy
in quantum fluctuations remains at a negligible level during that
phase.

Is this going to continue indefinitely? Hopefully not: we want to
exit from the DDI phase and enter, eventually, some kind of FRW
cosmology! This is the well-known exit problem of string cosmology
[23]. Two diagrams can be helpful when discussing this problem.
In Fig. 2 we plot, on a linear scale, the Hubble parameter against a
(duality-invariant) combination of the rate of growth of the dilaton
and H . DDI lies in the first quadrant of this plane, FRW in the
second. If exit occurs, the two branches should smoothly connect
(dotted line). In Fig. 3, we show instead, on a log-log plot, H as
a function of the string coupling. DDI solutions now correspond
to the parallel straight lines going upwards to the right. Differ-
ent straight lines correspond to different initial conditions (differ-
ent classical moduli). The horizontal boundary corresponds to the
reach of string-scale curvatures, where α′ corrections should become
essential in order to prevent the singularity.

Let us assume for the moment initial conditions such that we
hit this boundary while the coupling is still small and ask whether
the HEB may come to our help. In fact, since the HEB is saturated
all the time during DDI, it cannot decrease after this phase ends.
This condition reads:

∂t(e
−φ√gH) ≥ 0 ⇒ (φ̇ − 3H) ≤ Ḣ/H . (12)

This constraint is very welcome. As α′ corrections intervene to stop
the growth of H , the HEB forces φ̇ − 3H to decrease and even to
change sign if H stops growing. But this is just what is needed to
make the DDI branch flow into the FRW branch in Fig. 2!

Consider now the second possibility [24], the case in which
strong coupling is reached first, i.e. while the curvature is still
small in string units. In this case we can neglect α′ corrections
but not loop corrections, particle production, and back-reaction ef-
fects. When will exit occur? It has been assumed [25] that it does
when the energy in the quantum fluctuations (which can be easily
estimated [22]) becomes critical, i.e. when
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ρqf ∼ Neff H4
max = ρcr = e−φexitM2

s H2
max , (13)

where Neff is the effective number of particle species produced.
This gives the exit condition Neff eφexit l2s H2

max = 1, i.e. the
rightmost boundary in Fig. 3. Let us show that this is also the
boundary where the HEB is saturated. Using known results on
entropy production due to the cosmological squeezing of vacuum
fluctuations [26], and the previous constraint, we find:

S
(ex)
qf ∼ Neff H3

maxV ∼ e−φexitl−2
s HmaxV ∼ l−2

P HmaxV ∼ S
(ex)
HB .

(14)
Note that the existence of this boundary can also be argued for [24]
on the basis of M-theory: Kaluza–Klein modes living in the 11th
dimension become tachyonic when this critical line is reached.

In conclusion, the entropy and arrow-of-time problems are neatly
solved, in PBB cosmology, by the identification of our observable
Universe with the interior of a large, primordial black hole. The
entropy of the black hole is large, because of its size (> 1020ls) and,
therefore, as with other features of PBB cosmology, this can be
objected to as huge fine-tuning [27]. My answer to this objection,
as to the others, is simple: the classical collapse/inflation process
is scale-free; it should therefore lead to a flattish distribution of
horizon sizes, extending from a minimal stringy size to very large
“macroscopic” scales. Given such a size, no other ratio is tuned to
a particularly large or small value. Next, there is a built-in mech-
anism to provide saturation of the HEB till the end of the DDI
phase, and for the HEB to force an exit to the radiation-dominated
FRW phase. From there on, the entropy budget story is simple:
our entropy remains, to date, roughly constant and around 1090,
while SBH keeps increasing –at somewhat different rates– during
the radiation- and matter-dominated epochs, reaching about 10120

today. Thus our entropy has still a long way to go while it keeps
fixing our arrow-of-time!

It is a pleasure to thank the organizers of this meeting for their
kind invitation and to wish François many more years of highly
rewarding research.

9



References

1. R. Penrose, The Emperor’s new mind (Oxford University
Press, New York, 1989), Chapter 7.

2. J. D. Bekenstein, Phys. Rev. D23 (1981) 287; D49 (1994)
1912, and references therein.

3. G. ’t Hooft, Abdus Salam Festschrift: a collection of talks,
eds. A. Ali, J. Ellis and S. Randjbar-Daemi (World Scientific,
Singapore, 1993), gr-qc/9321026;
L. Susskind, J. Math. Phys. 36 (1995) 6377, and references
therein.

4. G. Veneziano, in Hot Hadronic Matter: Theory and Experi-

ments, Divonne, June 1994, eds. J. Letessier, H. Gutbrod and
J. Rafelsky, NATO-ASI Series B: Physics, 346 (Plenum Press,
New York 1995), p. 63.

5. G. Veneziano, Europhys. Lett. 2 (1986) 133.
6. J. D. Bekenstein, Int. J. Theor. Phys. 28 (1989) 967.
7. W. Fischler and L. Susskind, Holography and cosmology, hep-

th/9806039.
8. S. K. Rama and T. Sarkar, Phys. Lett. B450 (1999) 55, hep-

th/9812043.
9. N. Kaloper and A. Linde, Cosmology vs. Holography, hep-

th/9904120.
10. E. W. Kolb and M. S. Turner, The early Universe (Addison-

Wesley, Redwood City, CA, 1990); A.D. Linde, Particle physics

and inflationary cosmology (Harwood, New York, 1990).
11. D. Bak and S.-J. Rey, Holographic principle and string cosmol-

ogy, hep-th/9811008.
12. A. K. Biswas, J. Maharana and R.K. Pradhan, The holography

principle and pre-big bang cosmology, hep-th/9811051.
13. R. Bousso, A Covariant Entropy Conjecture, hep-th/9905177;

Holography in General Space-Times, hep-th/9906022.
14. B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astr. Soc.

168 (1974) 399; B. J. Carr, Astrophys. J. 201 (1975) 1; I. D.
Novikov and A. G. Polnarev, Astron. Zh. 57 (1980) 250 [Sov.

Astron. 24 (1980) 147].
15. G. Veneziano, Pre-bangian origin of our entropy and time ar-

row, hep-th/9902126.

10

http://arxiv.org/abs/gr-qc/9321026
http://arxiv.org/abs/hep-th/9806039
http://arxiv.org/abs/hep-th/9806039
http://arxiv.org/abs/hep-th/9812043
http://arxiv.org/abs/hep-th/9812043
http://arxiv.org/abs/hep-th/9904120
http://arxiv.org/abs/hep-th/9904120
http://arxiv.org/abs/hep-th/9811008
http://arxiv.org/abs/hep-th/9811051
http://arxiv.org/abs/hep-th/9905177
http://arxiv.org/abs/hep-th/9906022
http://arxiv.org/abs/hep-th/9902126


16. R. Easther and D. A. Lowe, Holography, Cosmology, and the

Second Law of Thermodynamics, hep-th/9902088; D. Bak and
S.-J. Rey, Cosmic Holography, hep-th/9902173.

17. R. Brustein, The Generalized Second Law of Thermodynamics

in Cosmology, gr-qc/9904061.
18. G. Veneziano, Phys. Lett. B406 (1997) 297; A. Buonanno,

K.A. Meissner, C. Ungarelli and G. Veneziano, Phys. Rev. D57

(1998) 2543.
19. A. Buonanno, T. Damour and G. Veneziano, Nucl. Phys. B543

(1999) 275, hep-th/9806230.
20. G. Veneziano, Inflating, warming up, and probing the pre-

bangian Universe, hep-th/9902097.
21. S. W. Hawking and R. Penrose, Proc. Roy. Soc. Lond. A314

(1970) 529.
22. G. Veneziano, Phys. Lett. B265 (1991) 287; M. Gasperini

and G. Veneziano, Astropart. Phys. 1 (1993) 317. An updated
collection of papers on the pre-big bang scenario is available
at http://www.to.infn.it/~gasperin/.

23. R. Brustein and G. Veneziano, Phys. Lett. B329 (1994) 429;
N. Kaloper, R. Madden and K.A. Olive, Nucl. Phys. B452

(1995) 677, Phys. Lett. B371 (1996) 34; R. Easther, K. Maeda
and D. Wands, Phys. Rev. D53 (1996) 4247; M. Gasperini, M.
Maggiore and G. Veneziano, Nucl. Phys. B494 (1997) 315; R.
Brustein and R. Madden, Phys. Lett. B410 (1997) 110, Phys.

Rev. D57 (1998) 712.
24. M. Maggiore and A. Riotto, D-branes and cosmology, hep-

th/9811089.
25. G. Veneziano, in Effective theories and fundamental interac-

tions, Erice, 1996, ed. A. Zichichi (World Scientific, Singapore,
1997), p. 300; A. Buonanno, K. A. Meissner, C. Ungarelli and
G. Veneziano, JHEP01, 004 (1998).

26. M. Gasperini and M. Giovannini, Phys. Lett. B301 (1993) 334,
Class. Quant. Grav. 10 (1993) L133; R. Brandenberger, V.
Mukhanov and T. Prokopec, Phys. Rev. Lett. 69 (1992) 3606,
Phys. Rev. D48 (1993) 2443.

11

http://arxiv.org/abs/hep-th/9902088
http://arxiv.org/abs/hep-th/9902173
http://arxiv.org/abs/gr-qc/9904061
http://arxiv.org/abs/hep-th/9806230
http://arxiv.org/abs/hep-th/9902097
http://www.to.infn.it/~gasperin/
http://arxiv.org/abs/hep-th/9811089
http://arxiv.org/abs/hep-th/9811089


SHB

SHB

SHB

Sqf

Sqf

ti ts tr = tex teq t0 t

S0

Scoll

Stot = Scoll+Sqf

Scoll

10120

1090

(Hin   p,in)-2 -2

Figure 1: Entropy history from the onset of PBB inflation till today.
Various contributions to the entropy budget of our Universe are
shown together with the Hubble entropy bound SHB. See text for
explanation.

27. M. Turner and E. Weinberg, Phys. Rev. D56 (1997) 4604;
N. Kaloper, A. Linde and R. Bousso, Phys. Rev. D59 (1999)
043508.

12



pertubative
singularity

pertubative
singularity

O(1)

sH

s(φ-3H)O(1)

DDIFRW

contracting
Universes

.

Figure 2: The standard phase diagram of string cosmology showing
the duality-related inflationary and FRW branches and a possible
(dashed) path connecting the two
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