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Abstract
We generalize the construction of four dimensional non-tachyonic orien-
tifolds of type 0B string theory to non-supersymmetric backgrounds. We
construct a four dimensional model containing self-dual D3 and D9-branes
and leading to a chiral anomaly-free massless spectrum. Moreover, we dis-
cuss a further tachyon-free six dimensional model with only D5 branes.
Eventually, we speculate about strong coupling dual models of the ten-
dimensional orientifolds of type 0B.
06/99

1 e–mail: blumenha@physik.hu-berlin.de
2 e–mail: Alok.Kumar@cern.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25262125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Non-supersymmetric string theories have received a lot of attention during the

last year [1–18]. Most of the effort went into a better understanding of phenomena

in the effective non-supersymmetric gauge theories including a new approach to solve

the hierarchy problem by a non-supersymmetric conformal gauge theory in some inter-

mediate energy regime [19]. Parallel to that there were some attempts to construct

consistent non-supersymmetric four dimensional string vacua. Besides the seven het-

erotic non-supersymmetric ten-dimensional string theories there also exist the two non-

supersymmetric type 0A/B string theories [20]. The latter models both contain a tachy-

onic mode which renders the theory unstable. One way to circumvent this problem is by

placing enough RR flux in the background which shifts the square of the tachyon mass

to positive values. This approach was used in [1] to reliably study the effective theory on

the D3 branes. Another way of getting rid of the tachyon is by doing a special orientifold

[21,22,23].

There exist three independent orientifold projections of type 0B string theory

{Ω, Ω(−1)FR , Ω(−1)fR}, where (−1)FR is the right moving space-time fermion number

and (−1)fR is the right moving world-sheet fermion number. The first two models still

contain a bulk tachyon, whereas in the third, the type 0′, model the tachyon is projected

out. The massless spectrum of the resulting ten-dimensional non-supersymmetric string

theory contains the graviton, the dilaton, a RR 0-form, a 2-form and a self-dual 4-form in

the closed string sector and a gauge field in the adjoint of U(32) equipped by a left-handed

Majorana-Weyl fermion in the 496 ⊕ 496 representation in the open string sector. The

latter fermions necessarily appear for this class of orientifolds, because the world-sheet

fermion number operator (−1)fR exchanges a D9 brane charged under the first of the two

RR 10-forms in type 0B with a D9’ brane charged under the second of the two RR 10-

forms. Open strings stretched between these different kinds of 9-branes lead to space-time

fermions.

As was pointed out in [24,11] requiring the absence of tachyons also for compact-

ified type 0′ orientifolds is highly restrictive and so far only one ZZ2 orientifold in six-

dimensions and one ZZ3 orientifold in four dimensions have been constructed. In all other

cases there appear extra tachyons in twisted sectors which can not all be projected out as

long as Ω exchanges a g-twisted sector with a g−1 twisted sector. One can allow Ω to act

without exchanging twisted sectors but as was argued in [25] such models contain extra

non-perturbative states.
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All compact models studied so far were supersymmetric backgrounds in the sense that
when used in a type IIB compactification they preserve some supersymmetry. However,
since type 0B is non-supersymmetric anyway, one might try to consider backgrounds not
preserving any supersymmetry at all. In this case the absence of tachyons is highly re-
strictive, as well, but in the first part of this letter in some detail we will present one
specific ZZ2 model in which everything works out nicely. It turns out that in order to
cancel all RR tadpoles one has to introduce D9/D9’ and D3/D3’ branes. Of course, as in
all type 0′ orientifolds there remains an uncancelled dilaton tadpole which can be cured
by the Fischler/Susskind mechanism [26]. In the second part of this paper we will discuss
one more compact model in six dimensions followed by some speculations about possible
dual models of the ten-dimensional type 0B orientifolds.

2. Type 0’ orientifold on a non-supersymmetric background

We take type 0B string theory, compactify it on a six torus T 6 = (S1)6 and divide out
by the orientifold group {(1+R)+Ω′(1+R)} with Ω′ = Ω(−1)fR and R : zi → −zi for all
i ∈ {1, 2, 3}. Note, that in a type IIB compactification R would not satisfy level-matching
in the NS-R and R-NS sector. However, precisely these two sectors are absent in type 0B
string theory so that dividing out by R leads to a modular invariant torus amplitude.
Already at this stage we would like to point out that there exists a subtlety in the Ramond
sector which will become important in the open string sector. Since the action of R on the
left-moving Ramond sector ground states is given by

R|s1 s2 s3 s4〉 = eπi(s2+s3+s4)|s1 s2 s3 s4〉 = ±i|s1 s2 s3 s4〉 with si = ±1
2
, (2.1)

it acts rather like a ZZ4 than a ZZ2 operation. Of course in the closed string sector the
left-moving Ramond sector is always paired with the right-moving Ramond sector, so that
here R really acts like a ZZ2. As usual in orientifolds one has to compute all one-loop
diagrams and require tadpole cancellation.

2.1. The Klein bottle amplitude

The computation of the Klein bottle amplitude is straightforward

K = 4 c

∫ ∞

0

dt

t3
Tr

[
Ω′

2
1 + R

2
1 + (−1)fL+fR

2
e−2πt(L0+L0)

]

= −2 c

∫ ∞

0

dt

t3
f8
4 (e−2πt)

f8
1 (e−2πt)

[∑
m

e−πt m2
ρ

]6

+

[∑
n

e−πtn2ρ

]6
 ,

(2.2)

with c = V4/(8π2α′)2 and ρ = r2/α′. The transformation to tree channel reveals that
there are RR 10-form and RR 4-form tadpoles but no NS tadpole.
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2.2. The annulus amplitude

In order to cancel these RR tadpoles we introduce N9 pairs of D9/D9’ branes and N3

pairs of D3/D3’ branes. Note, that in a type I compactification this would be impossible,

as in contrast to type 0′ string theory type I string theory simply does not contain any

D3-branes. Since open strings stretched between a Dp and Dp’ brane have fermionic zero

modes, we are facing the subtlety mentioned in (2.1). The action of R on the modes leads

to extra factors of i which must be compensated by further factors of i from the action

of R on the Chan-Paton factors of the open strings. Thus, in the open string sector we

better consider R as a ZZ4 action, so that the annulus amplitude is

A = c

∫ ∞

0

dt

t3
Tr

[
1
2

1 + R + R2 + R3

4
1 + (−1)Fs

2
1 + (−1)f

2
e−2πtL0

]
(2.3)

where the trace has to be taken over all open strings stretched between the four different

kinds of D-branes {D9, D9′, D3, D3′}. The presentation of the whole amplitude would be

much too lengthy to present here. However, completely analogous to the model discussed

in [27], cancellation of the twisted RR tadpoles requires

Tr(γR,p) = 0 with p ∈ {9, 9′, 3, 3′}. (2.4)

Neglecting all the terms becoming zero by the choice in (2.4), for instance in the 99, 9’9’,

99’ and 9’9 sectors the total annulus amplitude reads

A99 = c

∫
dt

t3

[∑
m

e−2πt m2
ρ

]6 [
N2

9

8

(
f8
3 − f8

4 − f8
2

f8
1

)
(e−πt)+

1
16

[
Tr(γR2,9)Tr(γ−1

R2,9) + Tr(γR2,9′)Tr(γ−1
R2,9′)

] (
f8
3 − f8

4

f8
1

)
(e−πt)+

1
8

Tr(γR2,9)Tr(γ−1
R2,9′)

f8
2

f8
1

(e−πt)
]
.

(2.5)

For open strings stretched between D3/D3’ branes the result is completely analogous. If

we would simply choose Tr(γR2,9) = Tr(γR2,9′) = 0 then only the first term in (2.5) would

be non-zero. However, since we have introduced in (2.3) an extra factor of two in the

denominator compared to a usual ZZ2 annulus amplitude, we would get a problem with

tadpole cancellation. We can cure this missing factor of two by requiring that the second

and third term in (2.5) add up exactly to the first term leading to

Tr(γR2,9)Tr(γ−1
R2,9) = Tr(γR2,9′)Tr(γ−1

R2,9′) = N2
9

Tr(γR2,9)Tr(γ−1
R2,9′) = −N2

9 .
(2.6)
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A solution to the conditions (2.4) and (2.6) is

ΓR,9 =
(

γR,9 0
0 γR,9′

)
2N9,2N9

=


I 0 0 0
0 −I 0 0
0 0 i I 0
0 0 0 −i I


2N9,2N9

(2.7)

where I denotes the matrix I = diag[1, . . . , 1]. With this choice of Chan-Paton actions the

non-zero contribution of the open strings stretched between the various 9 and 3 branes to

the annulus amplitude is

A93 = c

∫
dt

t3
1
2
N9N3

(
f2
3 f6

2 − f2
2 f6

3

f2
1 f6

4

)
(e−πt). (2.8)

As we will see below in tree channel this leads to further NSNS tadpoles.

2.3. The Möbius amplitude

In order to compute the Möbius amplitude

M = c

∫ ∞

0

dt

t3
Tr99′,33′

[
Ω′

2
1 + R + R2 + R3

4
1 + (−1)Fs

2
1 + (−1)f

2
e−2πtL0

]
(2.9)

we have to take into account that Ω′ acts on the ground states in the 99’ and 33’ sector in

the following way

Ω′|s1 s2 s3 s4〉99′ = −|s1 s2 s3 s4〉99′

Ω′|s1 s2 s3 s4〉33′ = −eπi(s2+s3+s4)|s1 s2 s3 s4〉33′ .
(2.10)

For the 99’ sector there are non-zero contributions from the Ω′ and Ω′R2 insertions in the

trace. With the choice of the ΓR matrix above one gets

M99′ = c

∫ ∞

0

dt

t3
1
8
Tr(ΓT

Ω′,9 Γ−1
Ω′,9)

f8
2 (i e−πt)

f8
1 (ie−πt)

[∑
m

e−2πt m2
ρ

]6

. (2.11)

For the 33’ sector there are non-zero contributions from the Ω′R and Ω′R3 insertions in

the trace. With the choice of the ΓR matrix above one gets

M33′ = c

∫ ∞

0

dt

t3
1
8
Tr(ΓT

Ω′R,3 Γ−1
Ω′R,3)

f8
2 (i e−πt)

f8
1 (ie−πt)

[∑
n

e−2πtn2ρ

]6

. (2.12)

Thus, the Möbius amplitude only leads to RR tadpoles in the tree channel.
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2.4. Tadpole Cancellation

Transforming all the amplitude in tree channel and extracting the divergent pieces

one derives the following two RR tadpole cancellation conditions

V4ρ
3
(
N2

9 − 32 Tr(ΓT
Ω′,9 Γ−1

Ω′,9) + 210
)

= 0

V4/ρ3
(
N2

3 − 32 Tr(ΓT
Ω′R,3 Γ−1

Ω′R,3) + 210
)

= 0.
(2.13)

The first equation tells us that ΓΩ′,9 is symmetric, where we can always make the choice

ΓΩ′,9 =


0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0


2N9,2N9

(2.14)

so that N9 = 32. T-duality as well as the algebra of γ matrices leads to the following

choice of ΓΩ′,3 and ΓR,3

ΓΩ′,3 =


0 0 −i I 0
0 0 0 i I
I 0 0 0
0 −I 0 0


2N3,2N3

, ΓR,3 =


i I 0 0 0
0 −i I 0 0
0 0 I 0
0 0 0 −I


2N3,2N3

, (2.15)

which indeed satisfies

ΓR,3ΓΩ′,3 ∼ ΓΩ′,3(Γ−1
R,3)

T ∼ ΓΩ′,9 (2.16)

up to phases implying that N3 = 32. As always in type 0′ orientifolds there remains an

uncancelled NSNS tadpole

8c

∫ ∞

0

dl V4

(
N2

9 ρ3 + N2
3 /ρ3 −N9N3/8

)
. (2.17)

which needs to be cancelled by the Fischler/Susskind mechanism [26].

2.5. The massless spectrum

Having defined all the actions of the R and Ω′ on the various modes and on the Chan-

Paton factors it is now a straightforward exercise to compute the massless spectrum as

displayed for the closed string sector in Table 1.
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sector field

untwisted NS-NS Gµν , dilaton Φ, 21 scalars

untwisted R-R 32 scalars

twisted NS-NS massive

twisted R-R 64 scalars

Table 1: Closed string spectrum of T 6/ZZ2

Thus, there is the graviton, the dilaton and 117 further scalars. For the case that all 32

D3/D3’ branes are placed on the same fixed point of R on T 6, we derive the massless open

string spectrum listed in Table 2.

sector field gauge U(16)× U(16)|9× U(16) × U(16)|3
99, 33 vector Adj

9′9′, 3′3′ scalar 6× {(16, 16; 1, 1) + (16, 16; 1, 1) + (1, 1; 16, 16) + (1, 1; 16, 16)}
93, 9′3′ – massive

99′, 33′ Weyl 4× {(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 120, 1) + (1, 1; 1, 120)}
Weyl 4× {(16, 16; 1, 1) + (1, 1; 16, 16)}

93′, 39′ Weyl {(16, 1; 16, 1) + (1, 16; 1, 16)}

Table 2: Open string spectrum of T 6/ZZ2

Note, that the chiral massless spectrum in Table 2 passes the non-trivial check of absence of

non-abelian gauge anomalies. Similar to the supersymmetric case we expect the anomalous

U(1)s to be cancelled by some generalized Green-Schwarz mechanism [28].

3. Type 0’ orientifold in 6D with D5-branes

We now discuss the possibility of constructing type 0’ orientifolds using certain sym-

metry properties of the compactified manifolds. In particular, orientifolds of type IIB on

K3 have been constructed previously [29,30] and give rise to anomaly free models in six

dimensions with different number of tensor, vector and hyper-multiplets. It is also known

that K3 possesses certain discrete isometries which can be combined with orientifold pro-

jections. Since these isometries maintain supersymmetry, one is able to obtain consistent

models without breaking supersymmetry further. Such projections have also been utilized
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earlier for constructing type II examples of string models which are dual to the reduced

rank heterotic string compactifications with maximal supersymmetry [31].

We now show that such projections can also be applied to construct consistent type 0’

orientifolds. As an explicit example we concentrate on a particular ZZ2 isometry of K3 which

leaves all three self-dual 2-forms of K3 invariant. However among the 19 anti-self-dual 2-

forms 8 are odd under its operation. We work with a particular realization of this projection

in the orbifold limit T 4/ZZ2 of K3 [29]. The orbifold is constructed by complex coordinates

(z1, z2) on the torus T 4 defined by periodic identifications: z1 ∼ z1 + 1, z1 ∼ z1 + i

(similarly for z2) and by dividing the torus by ZZ2 ≡ {1, R}, where the projection R acts

on complex coordinates as, R : (z1, z2) → (−z1,−z2). On the other hand the isometry of

K3 mentioned above is represented by an operation S : (z1, z2) → (−z1 + 1
2 ,−z2 + 1

2 ).

The orientifold model that we are considering involves the projections R and Ω′S.

The closed string spectrum in the untwisted NS-NS sector then consists of the graviton,

dilaton and 10 scalars denoted by the representations [(3, 3) + 11(1, 1)] of SU(2)× SU(2),

which is the little group of the Lorentz group in six dimensions. The untwisted R-R sector

consists of 4 self-dual and 4 anti-self-dual 2-forms, in addition to 8 scalars, represented as:

[4(3, 1)+4(1, 3)+8(1, 1)]. The twisted NS-NS sectors contribute 64 scalars and the twisted

R-R sectors contribute states: [8(3, 1) + 8(1, 3) + 16(1, 1)].

As a result the total closed string spectrum consists of graviton, dilaton, 98 scalars

and 12 self-dual as well as 12 anti-self-dual 2-forms. The model is free of gravitational

anomaly, as the self-dual and anti-self-dual 2-forms come in equal numbers.

To obtain the open string spectrum, one analyses the tadpole cancellation conditions.

Twisted RR tadpoles are once again cancelled by choosing γR traceless for both 9 and

5-branes. Since the action of S includes shifts along coordinates x6 and x8, the model is

also free of the massless RR 10-form tadpoles in the untwisted sector. As a result, apart

from uncancelled NS-NS tadpoles, one only has RR 6-form tadpoles which are cancelled

by adding only 32 D5 and 32 D5’-branes in two possible ways:

(i) 16 5-branes and 16 5’-branes at a fixed point y of R and the same numbers of them

at the image of y under S. The Chan-Paton indices are determined by a 32 × 32

block-diagonal matrix γR = diag[M, M ] with M a 16× 16 matrix: M = diag[I8,−I8].

The resulting open string spectrum is listed in Table 3.
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sector spin gauge U(8)× U(8)× U(8)’ × U(8)’

55, 5’5’ vector Adj

(1, 1) 4× {(8, 8; 1, 1) + (8, 8; 1, 1) + (1, 1; 8, 8) + (1, 1; 8, 8)}
55′ (1, 2) 2× {(8, 1; 8, 1) + (8, 1; 8, 1) + (1, 8; 1, 8) + (1, 8; 1, 8)}

(2, 1) 2× {(8, 1; 1, 8) + (8, 1; 1, 8) + (1, 8; 8, 1) + (1, 8; 8, 1)}

Table 3: Open string spectrum of T 4/ZZ2

Since there are equal number of left and right-handed fermions, the model is anomaly

free.

(ii) Alternatively, one can take 16 5-branes (as well as 16 5’-branes) to lie at a fixed point

x of S and the remaining ones at the image of x under R. In this case the gauge group

is U(16). To compare, for a similar IIB model the gauge group was SO(16) [29] and

the difference comes due to the form of γΩ′S . In our case γΩ′S is a 32×32 matrix with

identities (I16) along the off-diagonal blocks, so as to mix the 5 and 5’-branes under

Ω′. In this case, one obtains the massless spectrum shown in Table 4.

sector spin gauge U(16)

55, 5’5’ vector Adj

(1, 1) 4×Adj

55′ (1, 2) 2× {120 + 120}
(2, 1) 2× {120 + 120}

Table 4: Open string spectrum of T 4/ZZ2

The model is once again anomaly free.

In this section we have presented one tachyon free six dimensional type 0’ orientifold using

a discrete isometry of K3. As mentioned earlier, K3 has several other discrete isometries,

knows as finite abelian automorphism groups. One can use these isometries as projection

elements to construct other models as well. One can also use certain supersymmetry non-

preserving involution of K3, known as Enrique involution, to construct a type 0’ model.

However it turns out that the Klein-Bottle amplitude is free of tadpoles and hence there

is no need to add any D-branes. The model is found to be purely bosonic in the closed

string sector.
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4. A duality conjecture

In [12] a very intriguing conjecture about the strong coupling limit of type 0A was

presented, namely that type 0A string theory at strong coupling is M-theory compactified

on S1/(−1)FsS, where S denotes the half-shift along the compact circle. So far no dual

candidate has been conjectured for the type 0′ orientifold. In [23] arguments were given that

the type 0 orientifold might be dual to the bosonic string compactified on an SO(32) torus.

Here we would like to speculate about a different scenario. Analogous to the discussion in

[32], consider M-theory compactified to nine dimensions on S1/ZZ2 × S1/(−1)FsS, where

the first ZZ2 is the reflection I1 : x10 → −x10 combined with the change of the sign of the

three-form. Compactifying first x10 and then x9 one arrives at the E8×E8 heterotic string

compactified on S1/(−1)FsS. As argued in [33], after applying T-duality for r9 → 0 this

should be the ten-dimensional non-tachyonic SO(16)× SO(16) heterotic string. Exchanging

the role of x10 and x9 one arrives at type 0A/Ω I1, which is supposed to be T-dual to type

0B/Ω. Taking this chain of dualities seriously, one is led to the following strong-weak

duality conjecture:

Type 0 orientifold “dual′′⇐⇒ non-susy SO(16)× SO(16) heterotic string.

At first glance this seems to make no sense, as the gauge group of the type 0 orientifold

has rank equal to 32. However, as was noticed in [12,34], at strong coupling the pair of a

Dp and a Dp’ brane might form a bound state in which half of the zero modes at weak

coupling are frozen. By T-duality this implies that also the rank of the gauge group get

reduced by a factor of two at strong coupling. Therefore, we think the conjecture not

necessarily is nonsence and it deserves a more detailed investigation about the actual sense

in which the duality relation should be understood. In view of the duality above, it is very

tempting to make the following conjecture for the type 0′ orientifold:

Type 0’ orientifold “dual′′⇐⇒ non-susy U(16) heterotic string.

The U(16) heterotic model has a tachyon which makes the whole picture somehow symmet-

ric. In the former dual pair the heterotic model encounters a tachyonic instability at strong

coupling whereas in the latter dual pair it is the orientifold model which has a tachyonic

instability at strong coupling. The analysis of interpolating models carried out in [33] sug-

gests that all these models are dynamically driven to their supersymmetric counterparts.
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