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Abstract

This thesis is devoted to the analysis of the data collected by the ALEPH
detector at the large electron-positron (LEP) particle accelerator at CERN which
studies the production and decay of the Z boson. The data was collected between
1990 and 1993 and corresponds to the production of about 1,422,000 Z events.
Such a large data sample enables a detailed study of Z — (*]= + ny (n > 1)
events to be undertaken, where the aim is to observe physics beyond the standard
model which enhances the number of events with an [T/~ 4 n~ final states, e.g.

compositeness.

The thesis focuses on Z — puTu~ +my (m = 1 or 2) and Z — 7177y
decays. The analysis of the former decay involves comparing the data with a
number of electroweak theoretical predictions. Any discrepancies would indicate
the presence of physics beyond the standard model. The latter decay is used to

obtain a limit for the anomalous magnetic moment of the tau.

The analysis of Z — putu™ + my events indicates that the Monte Carlo has
some inadequacies; it overpredicts the number of events with either low energy
photons or photons close to the muons. The data has a small excess in the region
of phase space in which physics beyond the standard model is most likely to be
observed. This excess is, however, more likely due to the deficiencies of the Monte
Carlo. The other theoretical predictions are generally in good agreement with
the data and show the necessity of including initial state radiation and s channel

photon exchange when considering final states with a detected photon.

The standard model prediction for the value of the anomalous magnetic mo-
ment of the tau, denoted by FJ(0), is 11773(3) x 10~7. The current experimental
limit of £7(0) < 0.0062 does not rule out the possibility that the tau is composite.
The analysis of Z — 7177 v events produces the limit /77 (0) < 0.051. Whilst this
result is worse than the current limit it is based on simpler theoretical assump-

tions.
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Chapter 1

The standard model and the
phenomenological effects of

radiative corrections

1.1 Introduction

At the end of the last century it was thought that all physical phenomena could
be explained using the principles of deterministic mechanics, but the theories of
quantum physics and special relativity postulated phenomena that the classical
theories did not. The predictions of the new theories were confirmed by experi-
ment, and classical ideas were found to be invalid when dealing with subatomic
phenomena or processes which involve velocities approaching the speed of light.
Classical equations, however, could still be obtained as approximations of the

new theories.

The birth of modern particle physics theory occured when the ideas of quan-
tum mechanics and relativity were combined, and the initial ideas have been
developed to produce the minimal standard model of particle physics [1], a self
consistent theory which accommodates all experimental results [2]. The model
is based on a locally gauge invariant quantum field theory and, at its most basic

level, provides a list of physical fields and describes the non-linear interactions
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that occur between these fields. The phenomenological effects of the interactions
between the fields can be calculated, and within the framework of the model all

known subatomic processes can be explained if gravitational effects are excluded.

Whilst predictions of the standard model are in good agreement with exper-
imental results there are many philosophical questions which it does not answer
(such as why three generations, why is the top mass so large, etc.), and as the
theory contains twenty one free parameters which must be experimentally de-
termined, there is some dissatisfaction with the notion that it is the final layer
of knowledge about the universe. Therefore it is hoped that some experimental
evidence can be found which invalidates the model, and the LHC (Large Hadron
Collider) should provide such evidence by illuminating the mechanism by which
fields obtain mass. Such a mechanism must be discovered or else unitarity will

be violated [3].

In this thesis comparisons are made between data collected by the ALEPH ex-
periment and theoretical predictions made within the framework of the standard
model, with the aim of finding indications of new physics beyond the standard
model. To achieve this the phenomenological effects induced by radiative correc-
tions are studied as these are similar to the effects of some of the theories that
contain physics beyond the standard model. Therefore an explanation of the rel-
evant sections of the standard model and the effect of radiative corrections are

given in this chapter.

1.2 The standard model

The fields in the standard model can be classified into three classes - fermionic,
vector and scalar. The spin 1/2 fermion fields are used to construct all of the
physically observable matter in the universe, whilst the vector fields are intro-
duced into the model when the lagrangian for the free fermionic fields is required
to be invariant under local SU(3)c @ SU(2)p @ U(1)y transformations. These

bosonic fields transmit forces between the fermionic fields. The scalar field is a

12



by-product of the mechanism by which particles acquire a gauge invariant mass

term in the lagrangian, a process known as spontaneous symmetry breaking.

The matter in the universe is subjected to four forces - strong, weak, electro-
magnetic and gravitational. Only the first three are incorporated in the standard
model; the latter is not present because a physical quantum theory of gravity has

not yet been achieved within the confines of field theory.

In quantum field theory the effect of a force between two matter fields is
realised by the exchange of a quantum of a vector, or gauge, field. Each force
has an associated gauge field, or fields, and therefore an associated gauge group.
Thus a matter field can be subjected to a force only if it couples to the associated
gauge field, i.e. if the matter field has a non-zero value of the gauge charge.
Table 1.1 makes the link between the three forces and the three gauge groups of
the standard model, and lists the parameters of the groups that are required by
the theory.

The twelve fermion fields present in the standard model are displayed in ta-
ble 1.2. These fields have corresponding anti-fields with the same masses and
allowed spin states but opposite internal quantum numbers. The fermion fields
are subdivided into quarks and leptons: the former coupling to the strong gauge
field whilst the latter do not. The quarks and leptons are grouped into three
generations of four fields, the only physically observable difference between the
generations being the masses attributed to the fields. Each generation consists
of an up type quark and a down type quark along with a charged and neutral
lepton, the leptons having the same flavour. All the fermions can be in either a
left or right handed helicity eigenstate except for the neutral leptons, or neutri-
nos, which are assumed to be only left handed (only right handed anti-neutrinos).
For the neutrinos to have only one helicity eigenstate it is required that they are

massless.

An important, and unique, feature of the strong force is that, for separations
greater than 107!% m, its strength is linearly proportional to the distance between

two coloured objects. Therefore it is energetically favourable for quarks to cluster
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Gauge | Gauge | Gauge | Coupling
Force group | bosons | charge | constant
Strong SU(3) | Gluons | Colour Js
Weak SU(2) | W%, Z° | Tsospin q'/2
Electromagnetic | U(1) 0% Electric g

Table 1.1: The properties of the forces in the standard model.

QUARKS LEPTONS
Electric Electric
Generation | Flavour | charge || Flavour | charge
1 u +2/3 v, 0
d -1/3 e -1
2 c +2/3 vy 0
S -1/3 i -1
3 t +2/3 vy 0
b -1/3 T -1

Table 1.2: The physical properties of the fermionic matter.

Spin | Colour | Electric charge

Higgs scalar | 0 | colourless 0

Table 1.3: The physical properties of the Higgs boson.

14



together to form singlets of SU(3)c as these are not attracted to other coloured
objects. Thus free quarks are never observed. These clusters of quarks are known
as hadronic matter and can be either baryons (three quarks) or mesons (a quark

and an anti-quark).

The only scalar field predicted by the theory is shown in table 1.3. It is a
remnant of the process that is used to provide mass terms for both the gauge
bosons and the fermions. It has not yet been experimentally observed and its

mass range is 63.1 GeV/c? [4] < Mpizys < O(1 TeV/c?). The upper limit comes

from theoretical self-consistency arguments.

There are four accidental U(1) symmetries present in the standard model
which introduce an extra four conserved quantum numbers. These are an electron
number, a muon number, a tau number and a baryon number. Quanta of lepton
fields have a value of +1 for the appropriate flavour quantum number, whilst

those of the anti-lepton fields have the value -1.

Non-zero baryon numbers are present only in the quark fields and the values
assigned are flavour independent. The quanta of all quark fields have baryon num-
ber +1/3 and those of anti-quark fields have the value -1/3. Therefore baryons
and anti-baryons have the values +1 and -1 respectively for their baryon quantum

number.

Since these symmetries are produced by U(1) groups, the four quantum num-
bers must be conserved globally. Thus if a quantum of a lepton, or quark, field is
created then a quantum of the appropriate flavour anti-lepton field, or any flavour
anti-quark field, must also occur. Mesons are not conserved as their baryon num-

ber is zero.

1.2.1 Electroweak unification

The idea of unifying the electromagnetic and weak forces into a single framework
was proposed by Weinberg, Salam and Glashow [5] [6] [7], and has since been
confirmed by experiment. This section will explain the stages of this process

which are relevant to this thesis, and show how a model is formed with physical

15



particles and phenomenological predictions which agree with experiment [8].

The first of the four known forces to be explained by a gauge invariant quan-
tum field theory was electromagnetism. The resulting theory is known as quan-
tum electrodynamics, or QED, and is based on a U(1) symmetry. There is one
gauge boson, the photon, as the adjoint representation of U(1) only has one ele-
ment. The group charge is identified to be electric charge, and thus the strength
of the coupling between the gauge field and a fermionic field is dependent on the
electric charge carried by the latter. QED, after applying Noethers theorem, also
predicts the conservation of electric charge. QED successfully predicts all known
electromagnetic phenomena and its higher order predictions have been rigorously

tested experimentally and no discrepancies have been found [9].

Experimental studies of the weak force suggest that it has an underlying
SU(2) symmetry. A major factor which points to this idea is that the three
experimentally identified weak bosons, two electrically charged and one neutral,
are equivalent to those predicted by the adjoint representation of SU(2). This
symmetry, however, must be broken as experiments have determined that the
weak bosons are massive, and the inclusion of mass terms for the gauge bosons

in the lagrangian breaks the SU(2) symmetry.

The underlying SU(2) of the weak force maximally violates parity as experi-
mental observations have shown that, in their rest frame, the charged weak gauge
bosons couple only to left handed particles. This is in contrast with QED where
the photon couples equally to left and right handed particles. A problem arises,
however, with the experimental observation that the weak neutral boson cou-
ples to both left and right handed particles, albeit unequally. A solution to this
problem exists if the electromagnetic and weak forces can be combined, as then
the neutral weak boson can obtain a non-zero coupling to right handed particles

through mixing with the electromagnetic gauge boson.

To combine the electromagnetic and weak forces it is initially necessary to
assume the masses of all the field quanta, both fermionic and bosonic, are zero

and consider a quantum field theory which is invariant under SU(2);, @ U(1)y
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transformations. It is shown below how such a theory produces the experimentally

observed U(1)ggp and massive weak bosons.

In this theory the massless fermionic fields are arranged into left handed
SU(2);, doublets and right handed SU(2);, singlets. The doublets have total
weak isospin, I, of +1/2, with the third component of weak isospin, I3, being
+1/2 and -1/2 for the upper and lower components of the doublets respectively.
The right handed singlets have both [ and I3 equal to zero. The left handed

doublets for each generation of fermions have the following generic structure

up type quark neutral lepton
down type quark . charged lepton

All the fermionic field quanta, except those of the neutral lepton fields, exist as

right handed singlets.

The weak hypercharge, Y, assigned to the field quanta is given by

where () is the electric charge, in units of e, of the experimentally observed
fermions. The values of I, I3, Y and () for all the fermionic fields is shown in

table 1.4.

Field quantum | [ I3 Y Q
VerLy VuLy VrL 1/2 1/2 -1 0

€r, UL, TL 1/2 —1/2 -1 -1

€Rr, 'R, TR 0 0 -2 -1

ur, cr, g, /2] 1/2 | 1/3 | +2/3
UR, CR, IR 0 0 4/3 | +2/3
dr, sg, by, /2 -1/2 | 1/3 | -1/3
dr, sgr, br 0 0 |-2/3| -1/3

Table 1.4: The SU(2);, @ U(1)y charges of the fermionic fields.

The three SU(2);, gauge bosons, W; 1 = 1,2,3, couple to the fermion fields

through weak isospin with coupling constant g, whilst the U(1)y gauge boson,
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B, couples to the fermion fields through their weak hypercharge with coupling
constant ¢'/2. The section of the SU(2);, @ U(1)y lagrangian which contains the

interactions between gauge bosons and fermions is
’ 1, = Y ; —; Y 4
Lr=3 317" (—957 W= g’gBu) X = 2 OrY"9 5 Bud
7 J
where y; and ¢y are a left handed SU(2);, doublet and a right handed SU(2)y,

singlet of the fermionic fields respectively, and 7,, ¢ = 1,2, 3, are the Pauli spin

matrices.

Table 1.4 shows that left and right handed particles have different values of
Y, although the same values of (). This means that the U(1)y gauge boson
does not have chirally symmetric couplings, and thus U(1)y is different from the
gauge group of electromagnetism. How the U(1)grp symmetry is obtained will

be explained.

It is possible to split £ into a charged current contribution, L¢¢, where the
incoming and outgoing fermions differ by one unit of electric charge, and a neutral
current contribution, Lyc, where the incoming and outgoing fermions have the

same electric charge.

For the charged current it is convenient to construct two electrically charged
weak gauge bosons from W and W7} which are defined as
+ 7l a2
Wor=W, £:W,.

The new gauge bosons raise or lower by one unit the third component of weak
isospin of one of the elements of an SU(2); doublet, and so they couple the
I3 = +1/2 element of an SU(2)y, doublet to the I3 = —1/2 element. The form of

the charged current lagrangian is
Loo = = ST A r AW 4 Xy o\ W
cc XLV T+ XpW, T X7V T-XLW,
22 <
with
T+ =T £1my

Thus the theory has predicted particles with the same interactions as the exper-
imentally observed charged weak bosons, although the theoretical particles are

still massless.

18



It is known from experiment that there is a neutral current which couples
equally to left and right handed particles. Neither the Wi or B, have chirally
symmetric couplings and it is therefore necessary to mix these two fields to obtain
two new fields, A, and Z,, the first of which will be the QED gauge field. A free
parameter, fy, is introduced to quantify the mixing between the Wi and B,

fields, and the new fields are defined by requiring that

Wi’ = costwZ, +sinfyw A,

B, = —sindwZ,+ cosbywA,.
Thus the neutral current lagrangian has the form

[ vy . i
Lyo = Zy}fy“ (—g sin@wg —d Cosewg) X7 — qu%’y“g’ cos@wgqb% A,
L 4 ]

Z,

_ ' T . YN —; ‘ Y .
+ ZYZLVM <_g COSGI/V?3 + g/ Slﬂ@w;) XZL + Z qb?%,.yug/ Sln@w;qﬁ%
L ¢ J
where electric charge is given by ¢ = gsinfy = ¢ cosfy .

The introduction of #y has not increased the total degrees of freedom of the
theory as equation 1.1 provides a link between the coupling constants of the
two gauge groups, i.e. ¢’ = gtanfy. It is because this link between the gauge
couplings is established that the combining of the electromagnetic and weak forces
is known as electroweak unification, even though the weak and electromagnetic

theories are not embedded in a larger gauge group.

The non-abelian nature of the product group SU(2)r, @ U(1)y means that the
kinetic terms of the gauge bosons present in the electroweak lagrangian contain
expressions that allow the four derived gauge bosons, that is the Wf, Z,and A,

to couple amongst themselves.

The SU(2)r, @ U(1)y theory constructed above has many facets in common
with experimental knowledge of the electroweak sector - the same number of
matter fields with the correct quantum numbers, two electrically charged weak

bosons and two neutral bosons, where one of the latter has equal left and right
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handed couplings allowing the U(1)grp symmetry to be introduced. However,
any mass terms for either the gauge bosons or the fermions breaks the gauge
invariance. Thus the Higgs mechanism is introduced to spontaneously break the

gauge symmetry and allow the theory to contain massive particles.

The Higgs mechanism introduces a scalar field into the SU(2);, @ U(1)y la-
grangian which has non-trivial gauge transformation properties. A scalar is used
so that Lorentz invariance is not violated. The term introduced into the la-

grangian is

N R Y
EHiggs — ‘(au + g7 Wu + Zg/_BM) Qb

(1.2)

2 (¢6) = A (s10)” (1:3)

where 1.2 is the gauge invariant kinetic term of the scalar field and 1.3 is the
potential term. Higher order ¢!¢ terms are not included as their dimensionality

would make the lagrangian unrenormalisable. The field ¢ is a complex scalar

doublet of SU(2);, and has the form

qb _ Qboz _ L le + i¢2
bg V2 O3 + 14

where the ¢;, 1 = 1,2,3,4, all have Y = 1, which leads to one component of
the doublet being electrically neutral. Thus the U(1)grp can be preserved after

spontaneous symmetry breaking.

The potential part of Lpyys gives the vacuum a structure which has a local

minimum when
2

do= (Aratdta)=-1
It is required that ¢f¢ is positive, and therefore either 2 > 0 and A < 0 or
p? < 0 and A > 0. The former describes the case where four scalar particles
interact with massless gauge bosons, and is therefore irrelevant. The latter case,
however, produces the required spontaneous breaking of the SU(2);, @ U(1)y

symmetry and leads to a local minimum that has only one degree of freedom,

and thus three components of ¢ become Goldstone bosons.
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By choosing the unitary gauge, where unphysical particles do not appear, ¢

is transformed to ¢q, with

0
Po =
v+ H
where v (= —p?/)) is the vacuum expectation value, and H is the observable

scalar field that is a relic of the Higgs process, and is interpreted as quantum
fluctuations perpendicular to the rotational degree of freedom of the vacuum.
The three Goldstone bosons provide the Wf and Z, fields with longitudinal
polarisation vectors. It is these polarisation states which enable the gauge fields
to have a non-zero mass. The observable Higgs field is electrically neutral and
therefore does not couple to the photon, thus the QED gauge boson is a mass
eigenstate with eigenvalue zero, as required. Therefore the SU(2), and U(1)y
symmetries have been spontaneously broken (this is where the lagrangian remains
gauge invariant but the vacuum does not), whilst the derived U(1)ggp symmetry

remains.

The masses for the gauge bosons following spontaneous symmetry breaking

are
v
My = o
1
MZ — 51) 92_|_g/2
M, =0

and the mass of the physical Higgs scalar is
M3, = 20\,

Thus for the gauge bosons to become massive two additional degrees of freedom
have been introduced - the vacuum expectation value and the mass of the physical

Higgs field.

Finally, mass terms for the fermions are obtained by introducing gauge invari-

ant Yukawa-type couplings between the fermionic fields and the Higgs field. For
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the leptons the term

Gi ;o i i
- z’:;,f Ve (XLQbOQbR + ¢R¢0XL) (1.4)
provides the electron, muon and tau with masses Giv/v/2, i = e, i, 7, where the

(; are free parameters. The neutrinos are assumed to be massless and are not

given such Yukawa-type couplings.

In the quark sector the down type quarks acquire masses using a term identical
to 1.4, but the sum is over j = w, ¢, t. Thus three further degrees of freedom, the
(ij, have to be introduced. The up type quarks obtain mass terms by coupling
to the conjugate Higgs field, ¢, where

bc = 1T29.

In the unitary gauge

5 1 v+ H
co = —=
V2 0

and the expression providing mass terms for the up type fields is
— Z —= (X1.¢c0PR + dpoPcoxt,) -
j=bs,d V2 ( )
A problem arises in the quark sector because the mass eigenstates are not equal
to the weak eigenstates. This is solved by introducing mixing between the three

generations of down type quarks through the CKM matrix [10].

Therefore, by starting off with a field theory invariant under SU(2), @ U(1)y
transformations it is possible to obtain a model of electroweak interactions which
provides predictions that are in good agreement with experimental observations.

The final electroweak lagrangian, after spontaneous symmetry breaking, is

1o =1
L= — W W — BB (1.5)

. , Y ,
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where

e 1.5 contains the kinetic energies and self interactions of the electroweak

gauge bosons;

e 1.6 contains the fermionic kinetic energies and their interactions with the

electroweak gauge bosons;

e 1.7 provides the terms which allow the gauge bosons and the physical Higgs
scalar to be massive, and also describes the interactions between the gauge

bosons and the physical Higgs boson;

e 1.8 provides the terms which define the masses of the fermions and details

how the fermions couple to the physical Higgs boson.

1.2.2 Quantum chromodynamics

In the standard model the quarks are the only matter fields which couple to
the mediators of the strong force. It is the effect of this force which produces the
clusters of quarks that are detected by experiment; a free particle with a fractional
charge has never been experimentally observed, implying that free quarks are not
found in nature. The residual effects of this force hold the constituents of nuclei
together, and this was the first phenomenological effect of the strong force to be
experimentally observed. The true nature of the strong force was discovered when
deep inelastic scattering experiments implied that nucleons had substructure, and

thus the quark was discovered [11].

Following this discovery, it was shown that there exists a class of gauge in-

variant quantum field theories that are both renormalisable and which produce a
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mechanism to explain quark confinement, i.e. a force that is small in magnitude
for distances less than 107'"m but whose strength increases dramatically as this
limit is exceeded. This is known as asymptotic freedom. The member of this
class of field theories with properties that match experimental observations has

the gauge group SU(3).

The charge of the strong gauge group SU(3)¢ is colour, and can take one of
three values - red, green or blue. Thus one of these three charges is assigned
to each quark, whilst the anti-quarks are either anti-red, anti-green or anti-blue.
Therefore, for calculations involving effects of the strong force the quarks are

placed in triplet representations of SU(3)c.

The nature of the strong gauge bosons, or gluons, is determined by the algebra
of the adjoint representation of SU(3)¢, which has eight elements. Due to the non-
abelian nature of the gauge group, the gauge bosons are coloured and therefore

self-couple. It is this facet of the theory which gives rise to asymptotic freedom.

If a quark, or cluster of quarks, is not a colour singlet of SU(3)¢c then more
quarks will be attracted until a cluster is produced which is a colour singlet. The
two SU(3)¢ representations of quarks which produce the colour singlets that are
physically observed are either clusters of three quarks (or three anti-quarks) or a
quark coupled to an anti-quark. The former are known as baryons, the latter as
mesons, and together are collectively refered to as hadrons. The large spectrum
of observed hadrons arises because they are composite objects, and therefore
two hadrons with the same constituent quarks can have different masses. This is
because the constituent quarks of the hadron with the larger mass occupy excited
energy states with larger energy eigenvalues than those inhabited by the quarks

of the less massive hadron.

1.3 Beyond the standard model

Despite good agreement between the predictions of the standard model and ex-

perimental results, the standard model is not thought to be the final explanation
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of how forces interact with matter, but rather a low energy approximation of
either a grand unified theory or a theory of everything. This is because the stan-
dard model is based on a gauge field theory, and such theories never predict the
values of the couplings between the fields and the masses of the fields, although
they can occasionally predict ratios between some of these values, e.g. the grand
unified theory based on SU(5) predicts the value of sin® @y [1]. This leads to the
standard model having 21 free parameters which must be determined experimen-
tally. Another problem with the standard model is that some of the procedures
used in its formulation are employed simply because they provide the correct

answer, e.g. the Higgs mechanism.

If there is physics beyond the standard model then some experimental observa-
tions may not exactly match the predictions of the standard model. For example,
the theory of compositeness [12] enhances certain regions of the standard model
prediction for the photon energy spectrum obtained by considering the process
of a lepton radiating a photon. Thus, if compositeness is a valid theory, the en-
ergy spectrum of photons radiated from leptons obtained by experiment will be

different from that predicted by the standard model.

As compositeness produces phenomenological effects which are similar to those
being studied in this thesis, a brief outline of the relevant ideas of compositeness

follows.

In compositeness some (or maybe all, depending on the model) of the fermionic
and bosonic fields of the standard model are constructed from preonic fields. It is
possible for a composite object to have a series of energy levels which means that
it can have a variety of mass eigenstates. The standard model fields are taken
to be the lowest energy configuration of preons, and excited states are obtained
through the absorbtion of a photon. Therefore an excited state returns to the
ground state through the emission of a photon. Thus if, for example, a lepton is
composite it will radiate more photons than it would if it were not composite. The
photons emitted by a preon tend to have higher energies and a greater angular
separation from the fermion than is the case for photons radiated by the fermion

through standard model processes.
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1.4 Higher order effects

The previous section on the standard model explained how a lagrangian could
be constructed which contains physical particles identical to those observed by
experiment. In order to carry out experimental tests of this model it is necessary
to construct the S matrix [13]. An element of this matrix, S;;, is a measure of the
probability that state 7 at time t = —oo will develop into state j at time ¢t = 4-00.
If conservation of probability is required then the S matrix must be unitary, i.e.
STS = 1. Thus if any of the elements of the S matrix are extremely large then

unitarity, and hence the conservation of probability, are violated.

Calculation of an element of the S matrix in the framework of quantum field
theory involves the use of functional integrals [14]. In the case of the standard
model these integrals can not be solved exactly but an asymptotic answer can be
obtained if the machinery of perturbation theory is employed, where the coupling

constants between the fields are chosen to be the expansion parameters.

The results provided by the perturbation expansion are asymptotic rather
than approximate because all S matrix elements contain effects which can not be
calculated using perturbation theory. However, for virtually all of the matrix ele-
ments the non-perturbative effects are negligible and the perturbation expansion
provides an accurate approximation of the functional integral. Though there are
some cases, e.g. low energy QCD calculations, where perturbation theory breaks
down and can not be used to produce a value for the result of the functional

integral.

The method of calculating the functional integrals using perturbation theory
is complex. Therefore it is usual to adopt the method of calculating S matrix
elements which was introduced by Feynman. In this method a perturbation
expansion is represented by a set of diagrams, and application of the Feynman
rules converts these diagrams into a matrix element. This approach, where field

quanta are replaced by point like particles, is adopted for the rest of this thesis.

The nature of perturbation theory means that an exact prediction of pertur-

bative effects can only be obtained if the expansion is done to infinite order. In
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practice this is impossible, and thus all elements of the S matrix that are ob-
tained using perturbation theory are approximations. It is therefore important
that truncating the expansion does not significantly affect the result, i.e. that
as the order of the term in the expansion increases its contribution to the sum
over all orders decreases. For the standard model, however, this is not true, and
higher order terms produce infinite contributions to the perturbation expansion.
This situation is rectified by a process known as renormalisation. This process is

briefly summarised in the next section.

The last two sections of this chapter are concerned with the effects associated
with the introduction of higher order photonic corrections. The first of these
sections includes an explanation of the phenomenological effects of corrections
involving real photons, whilst the second shows how a sub-class of virtual pho-
tonic corrections gives the fermions an anomalous magnetic moment within the

standard model.

1.4.1 Renormalisation

When calculating the matrix element 5;; for a given ¢ and j there are a finite
number of Feynman diagrams representing the lowest order of the perturbation
expansion. These are known as the Born level diagrams. If higher order contri-
butions are to be included in the calculation of S;; then new Feynman diagrams
must be added to the Born diagrams, but as 7 and j do not change then the
additional particles in the new diagrams have to create internal closed loops. As

an illustrative example consider a photon propagating between two points.

The Born diagram for a photon propagating between the points A and B is
shown in fig. 1.1 (a). If the Feynman rules are employed to convert this diagram
into the S matrix element where both the ¢ and j states are a photon then the
answer obtained does not violate unitarity. A possible higher order correction to
the S matrix element is shown in fig. 1.1 (b). Here, whilst between A and B,
the photon decays to an electron-positron pair which then recombine back into a

photon. This is known as vacuum polarisation.
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Figure 1.1: The Born term (a) and a vacuum polarisation term (b) which con-

tribute to the S matrix element for a photon propagating between A and B.

Whilst the momenta of the external photons in fig. 1.1 (b) are fixed, the mo-
menta of the particles in the internal loop can take any value up to, and including,
infinity. This is possible as in Feynman diagrams conservation of momentum is
only applied at the vertices. The contribution of this vacuum polarisation dia-
gram to the S matrix element is proportional to an integral which tends to infinity
as the upper limit of the momenta of the particles in the internal loop tends to
infinity. Thus this correction makes an infinite contribution to the matrix ele-
ment. This is an example of ultraviolet divergence, i.e. when the unconstrained
upper limit of the momenta of particles in an internal loop results in an infinite
S matrix element. Thus unitarity is violated and the model does not appear to

be a physical theory.

The method used to remove such ultraviolet divergences is known as renor-
malisation. Following the application of this procedure, if the theory is renor-
malisable, all elements of the S matrix calculated using perturbation theory are

finite and the S matrix is unitary.

The removal of an ultraviolet divergence involves a three stage process. In
the first stage, dimensional regularisation is used to make the term containing

the ultraviolet divergence finite. This is achieved by reducing the dimensionality
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of the manifold to 4 — ¢ (|e|] < 1). Following this, counterterms which cancel
the ultraviolet divergence are added to the lagrangian. Finally, the manifold is
restored to four dimensions by letting ¢ tend to zero. Thus the perturbation
expansion involving the ultraviolet divergence now produces a finite S matrix

element.

The above technique is valid only if the ultraviolet divergence is logarithmic.
Theories where all ultraviolet divergencies are logarithmic are called renormalis-
able, or physical, theories. The standard model is such a theory and thus has a

unitary S matrix.

The counterterms which are added to the lagrangian are used to define the
renormalised charges and masses of the particles. The redefinition of these quan-
tities is required because when comparing theory with data it is only the renor-
malised charges and masses which have any physical meaning. The original, or
bare, charges and masses which appear in the lagrangian can take any value, in-
cluding infinity, as they are not physically observable. This is because the charges
and masses in the lagrangian have values equivalent to a Born level calculation,
whilst the values of physical quantities are obtained from calculations involving

an infinite perturbation expansion.

1.4.2 The phenomenology resulting from photonic correc-

tions

There are three ways of adding photons to the external fermion lines of Born level
Feynman diagrams. As an illustrative example consider the different ways that
one photon can be added to the muon lines of the Born diagram for Z — putpu~,

shown in fig. 1.2 (a).

The two diagrams of fig. 1.2 (b) are created by adding a real photon to each of
the muon lines of (a). The other two possibilities of adding a photon to the Born
diagram involve virtual photons and produce a total of three diagrams. Allowing
either of the muons to emit and reabsorb a photon produces two diagrams (fig. 1.2

(c)), and the last diagram arises when the photon is emitted by one muon and
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Figure 1.2: This figure shows (a) the Born diagram for Z — gt u~ and in (b) (c)

and (d) the diagrams resulting from adding a photon to a fermion line.
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reabsorbed by the other (fig. 1.2 (d)).

This section will describe how these photonic corrections affect the S matrix
element for Z — p*p~, and also will outline the phenomenology of the new pro-
cess Z — ptpu~~ which is created by these corrections. Before these explanations,
it is shown how the final state particles of the diagrams in fig 1.2 (b) can have two

different topological configurations when they are detected by an experiment.

The calorimeters used to identify photons in particle physics experiments have
a threshold energy for detecting an incident particle. This means that very low
energy photons are not detected. Thus the decay Z — ptpu~+ can be experi-
mentally detected as either two muons, if the photon energy is lower than the
detection threshold, or two muons and a photon. The total detected energy in the
former case will still be approximately the centre of mass energy as the photon
energy is small, and thus it will be interpreted as coming from a Z — ptpu~ decay.
The splitting of the decay 7 — uTp~v into two different final state topologies
by the process of experimental detection is required for cancellation of infrared

divergences, as explained below.

One effect of the Feynman diagrams in figs. 1.2 (c¢) and (d) is to change the
renormalised charge of the muon. This creates a problem because the magnitude
of this change is dependent on the mass of the muon, and thus such corrections
suggest that leptons have different renormalised charges. The Ward identities,
however, show that the effect on the muon charge of the diagrams of fig. 1.2 (c)
is equal and opposite to the effect of the diagram of fig. 1.2 (d). Thus the net
change to the renormalised charge of the muon is zero. Therefore the physically
observed electric charge of the leptons, and also that of the quarks, is unaffected
by photonic corrections to the fermionic legs of Feynman diagrams. Thus the
renormalisation of electric charge is entirely due to vacuum polarisation of the

propagator, a process independent of the masses of the external fermions.

The virtual photon corrections of fig. 1.2 introduce negative infinities, called
infrared divergences, into the perturbation expansion. The addition of countert-

erms to the lagrangian is not required in this instance as the corrections involving
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real photons give rise to positive infinities which cancel the negative infrared diver-
gences. This appears to be a cancellation between different final state topologies
but, as the divergences due to real photon corrections occur as the photon energy
tends to zero, the cancellation occurs for photon energies lower than the experi-
mental detection threshold. It was shown above that events with such low energy
photons are experimentally designated to be Z — utu~ decays. Thus, from an
experimental viewpoint, the cancellation is between decays with the same final

state topologies.

The diagram of fig. 1.2 (d) also alters the structure of the Zu*u~ vertex. This

effect is explained in the next section.

Consider the phenomenology produced by the diagrams of fig. 1.2 (b) when
the photon energy is larger than the experimental detection threshold, which
means that there is a putpu~~ final state. Firstly consider the spectra of the
photon energy and the angle between the photon and the radiating muon. The
contribution to the S matrix element from both Feynman diagrams contains a
factor which arises from the muon propagator which has the form

1 1

(o + ) = Mz 2E, (B, — \JE2 — M? cos )

where p, (= (F,,p.)) and p, (= (E,,p,)) are the four-momenta of the radiating

(1.9)

muon and the photon respectively, and 8 is the angle between these two particles.
Equation 1.9 is inversely proportional to the photon energy, which means that
the contribution to the matrix element increases as the photon energy decreases.
This also illustrates how infrared divergences arise as the photon energy tends to
zero. It is also possible to observe that as cos # tends to one, or é tends to zero,
the contribution to the matrix element will increase. Thus it is more likely for a
photon to have a small energy and/or be collinear with a muon than to have a

large energy and be well separated from both muons.

Now consider the phenomenology of the process ete™ — Z/v — utu=~,
where again the photon energy is above the detection threshold. When the photon
is radiated from a muon then the phenomenology of the detected particles is

generally identical to that described above for the decay Z — u*u~, allowing
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for the effect of interference between the Z and photon s channel propagators.
However, if the photon is radiated from either the electron or the positron then
there are two important effects which affect the phenomenology of the final state

particles.

The first effect is that for photons from initial state particles the distribution
of the smaller of the two angles between the photon and muons will tend to be
flatter, which is due to the fact that a photon is more likely to have a large angular
separation from the muons if it has been radiated by an initial state particle. This
is because the direction of a photon radiated by an initial state particle is not
strongly correlated to the directions of either of the final state muons. This is
due to the fermion propagator now being an initial state particle, and thus the
0 of equation 1.9 is between an initial state particle and the photon. Therefore
the photon tends to be close to one of the initial state particles. The direction
of the final state particles is random, within the confines of the differential cross-
section, and thus there is little correlation between the direction of the photon
and the muons. There is, however, some correlation due to the conservation of
momentum, which means that a high energy photon from an initial state particle

severely reduces the phase space available to the muons.

Another phenomenological effect of radiation from the initial state particles
is most significant when the centre of mass energy for the collision equals M.
In this case, when the radiation of photons from initial state particles is ignored,
the cross-section for Z exchange is several orders of magnitude larger than that
for photon exchange. The effect of including initial state radiation is that the
cross-section for Z exchange is reduced by approximately thirty percent, whilst
the cross-section for photon exchange is not significantly affected. This is because
the probability of an electron-positron annihilation producing a Z has the form
of a Breit-Wigner resonance, with the peak being when the centre of mass energy
equals Mz, whilst the probability of an electron-positron annihilation producing
a photon is almost flat for centre of mass energies close to Mz. Initial state
radiation lowers the centre of mass energy available for the annihilation and thus

lowers the probability that a Z boson will be produced. Conversely initial state
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radiation increases the probability that an s channel photon will be produced.

Thus, for a centre of mass energy equal to My, initial state radiation lowers
the S matrix element where ¢ is an electron and a positron and j is two muons

and n photons (n > 0) by approximately thirty percent.

As explained in the previous section, when an S matrix element is calculated
using a perturbation expansion then, following renormalisation, the contribution
of a term to the total decreases as the order of the term increases. If this prop-
erty were not present in the theory then some predictions could not be made as
they require the explicit calculation of an infinite perturbation expansion. This
is impossible in practice as only a finite number of explicit terms of an expansion
series can actually be calculated, and the fact that the contribution of the higher
order terms decreases implies that the loss of the higher order terms will not sig-
nificantly affect the result of the calculation. However, this truncation introduces

a theoretical uncertainty on the result of the calculation.

When a theoretical prediction is compared with an experimental result it is
important that the theoretical uncertainty is lower than the experimental error.
Thus, as an experiment achieves more accurate results it is necessary to reduce
the theoretical uncertainty by including higher orders of the perturbation expan-
sion in the calculation of the matrix element. This can create a problem as the
inclusion of higher order terms increases the number of Feynman diagrams non-
linearly, and thus approximations of higher order effects are used. For higher
order photonic corrections two commonly used approximation techniques are ex-
ponentiation and the leading logarithm approximation [15]. The former estimates
infinite order corrections for the radiation of low energy photons, whilst the latter
is employed so that only the significant parts of the higher order photonic terms
need to be calculated explicitly.
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1.5 Magnetic moments of the fermions within

the standard model

The aim of the analysis detailed in chapter 5 is to constrain the anomalous mag-
netic moment of the tau. Therefore this section will outline how the Dirac equa-
tion implies that the fermions have a magnetic moment, and explain the mecha-
nism by which the fermions acquire an anomalous magnetic moment within the

framework of the standard model.

The Dirac equation for a free fermion is

(Yup" — M)y =0

where p*, My and vy are the four-momentum, mass and wavefunction of the
fermion respectively. Now consider the interaction between a fermion of charge
e@)s and an electromagnetic field A# (: (A A))) To find the effect of the elec-
tromagnetic field on the wavefunction of the fermion it is necessary for the substi-
tution p* — p" —e@) s A" to be made in the Dirac equation for the free fermion. In

the non-relativistic limit, this substitution leads to the Schrodinger-Pauli equa-

tion

where B (= Curlg) is the magnetic component of A*, & are the Pauli matrices

and Eng (= Ef — M) is the non-relativistic energy of the fermion.

Equation 1.10 contains the interaction between the fermion and the electro-
magnetic field which is due to the electric charge of the fermion, and also includes
an interaction which can be interpreted as a coupling between the fermion and the
electromagnetic field due to the fermion having a magnetic moment [16]. Thus

the fermions have an intrinsic (or spin) magnetic moment /i;, which is defined as

. eQy eQy =
= — = — S 1.11
fiy oM, = Y, (1.11)

where gy is the gyromagnetic ratio of the fermion and S (= &/2) is the spin
angular momentum operator. Thus, in the non-relativistic limit, g5 has the value

two.
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The matrix element describing the general relativistic Born level interaction
between a fermion and a photon is obtained through Gordon decomposition of
the current [17], and has the form

i

S P ) )

(1.12)

ol (K)py) = —eQ () (F{<k2>w+

teu(pa) F (K*)7 0"k, u(p)

where
7
g = 9 (v

W

7=y

and pf, py and k* (= pi — p{') are the four-momenta of the incoming fermion,
outgoing fermion and photon respectively. The three Pauli form factors Flf(kQ),
F;(kz) and F:{(kQ) represent the proportion of the coupling between the fermion
and the photon that is due to the electric charge, anomalous magnetic moment
and anomalous electric dipole moment of the fermion respectively. To ensure that

the conservation of probability is not violated it is required that

F{(k*=0)+ FJ(K* = 0) + F{(k* = 0) = 1.

The factor sz(kz) is related to the gyromagnetic ratio of the fermion by the
relationship
-2

Thus the magnetic moment for the fermion obtained using equation 1.10 im-
plies that sz(()) is zero, which means that there is no anomalous contribution in
the non-relativistic limit. It is only by considering higher order photonic vertex

corrections, e.g. fig. 1.3, that sz(()) obtains a non-zero value.

If the matrix element (py|J* (k*)|p1) is calculated for the Feynman diagram
of fig. 1.3 it is found that an additional contribution is made to the magnetic

moment of the fermion predicted by equation 1.10, and now

. ey ( Oé) .
_ 14+ —
he==on, U Mg )
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Figure 1.3: The lowest order vertex correction term.

where a = €*/4m. Thus the fermions have gained an anomalous magnetic moment

within the standard model, and the gyromagnetic ratio is now
95 = T
Thus F4(0) has a non-zero value.

The Feynman diagram of fig. 1.3 produces the lowest order vertex correction
term. There are infinite number of higher order vertex correction terms, and

these lead to the gyromagnetic ratio being given by
o0 o T
gr =2+ af <—)
n=1 T

where the coefficients a/ are obtained by explicitly calculating the vertex correc-

tions, and af — 0 as n — oc.

Thus all the fermions gain an anomalous magnetic moment during the process
of applying photonic radiative corrections. The value of sz(()) is different for
each fermion as the anomalies are dependent on the mass of the relevant fermion.
However, the magnitude of the anomalous magnetic moment is very small for all
of the fermions when compared with the non-relativistic prediction of g, = 2.
This is illustrated by the results of the calculations of the anomalous magnetic

moments of the fermions [18], where it has been found that
F5(0) = 115965214 0(28) x 107"
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F0) = 116591 902(77) x 1071

F7(0) =11773(3) x 107".
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Chapter 2

The ALEPH detector

2.1 Introduction

ALEPH is one of four detectors which utilise the LEP storage ring at CERN. The
data collected by ALEPH is primarily used to further knowledge about the stan-
dard model of particle physics, with the most accurate results coming from the
electroweak sector. This involves both rigorous testing of the theory’s predictions
and constraining some of the 21 free parameters existing in the standard model.
This large number of free parameters is an unattractive feature of the model and
therefore the data is also used to check consistency of the standard model and
search for physics beyond the standard model, both of which are the aims of the

analyses in this thesis.

2.2 LEP

The experimental discovery of the neutral weak current in the early seventies
verified the theoretical postulate of electroweak unification. In order to study the
physics contained in this theoretical framework more precisely the LEP (Large
Electron Positron) collider was proposed, with its design parameters being more

clearly defined after the discovery of the W and Z bosons by UA2 in 1983 [19] [20].

LEP requires two phases if it is to cover most aspects of electroweak physics. In
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the first phase, which is in progress, the electron-positron annihilation occurs at
energies around the 7 pole, whereas in the second phase the annihilations will

have enough energy to pair produce on-shell W’s.

During normal running LEP acts as a storage ring. Originally there were
4 bunches of electrons and 4 bunches of positrons in circulation, but this was
upgraded to eight bunches on eight bunches in 1992, and finally running with
bunch trains was adopted in 1995. The bunches are brought into collision at the
four experiments and electrostatic separators are used to keep them apart at the

other points where a bunch crossing occurs.

Dipole magnets, used to bend the bunches into circular orbits, produces unde-
sirable bremsstrahlung radiation from the beams, the power of which is inversely
proportional to the radius of curvature of LEP. This is the main reason for the
large 8486 m diameter of LEP. The energy loss due to this radiation is compen-
sated by RF cavities, which are also used to accelerate the beams from 20 GeV

to about 45 GeV after injection.

2.3 Overview of ALEPH

ALEPH (Apparatus for LEP pHysics) is a large detector, about 1000 m?, and
was designed to cover all branches of physics available in the LEP environment.
ALEPH covers a large proportion of the solid angle in order to maximise the
information obtained about each event. This is essential, given the low rate of
events at both phases of LEP, if accurate measurements of electroweak parameters

are to be made.

ALEPH consists of a barrel region which is closed by two endcaps. An artist’s
impression of a cut away view of ALEPH is shown in figure 2.1. There are three
tracking detectors, all contained in the barrel, with a shell of calorimetry detectors

surrounding them.

Moving radially out from the middle of ALEPH, which is the nominal inter-

action point during a bunch crossing, the tracking subdetectors are encountered
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Figure 2.1: The ALEPH detector
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first. The first of these is the silicon strip microvertex detector. This is a small
detector close to the beam pipe which improves the accuracy of track reconstruc-
tion close to the interaction point. Outside this is the inner tracking chamber.
This is a conventional cylindrical drift chamber, and is the only tracking chamber
used in the first level of triggering. It also provides up to eight accurate r¢ coor-
dinates for track reconstruction. The outermost shell of tracking is provided by

the time projection chamber which provides three dimensional track coordinates.

Enclosing the tracking chambers are two levels of calorimetry, separated in the
barrel region by a superconducting solenoid. The first level is the electromagnetic
calorimeter which, due to high granularity, has good photon and electron identi-
fication capability. The outer layer of calorimetry is for particles that penetrate
through the first layer, mainly hadrons and muons. Outside the calorimetry is a
double layer of streamer tubes covering 92% of the solid angle, which are used in

the identification of muons.

The detectors used to monitor luminosity are all close to the beam pipe in
order to make use of Bhabha scattering. The primary luminosity measurement

is done by a highly segmented silicon/tungsten calorimeter.

This chapter contains only a brief account of the principal components of

ALEPH and more complete and detailed descriptions exist [21] [22] [23].

2.4 The micro vertex detector

The micro vertex detector [24], or VDET, encircles the beam pipe and provides
tracking points close to the interaction region. It consists of two concentric cylin-
ders coaxial with the beams which are constructed from double sided silicon
wafers. The cylinders are approximately 200 mm long and have radii of 63 and

110 mm.

A total of 96 wafers are used in VDET, 40 in the first layer and 56 in the
second layer. The silicon wafers have dimensions 51.2 x 51.2 x 0.3 mm. Readout

is instrumented on both sides of the wafers, one side giving coordinates parallel
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to the beam direction (r¢), and the other giving coordinates perpendicular (rz).
On both sides the readout strip is 100 pm across. Interpolation using capacitive

charge division is used to find the track impact point between readout strips.

The relative positions of the wafers is found using data and involves no other
tracking detectors. A 5% active overlap region of neighbouring wafers in ¢ is
used to constrain the relative position of the wafers in ¢ and the average radius
of the circle of wafers, whilst Z — u*u~ events constrain the relative position of
wafers in different layers and on opposite sides of the detector. This procedure

gives point resolution ory ~ 12pum and oz ~ 10pm.

The hits from VDET are implemented in track reconstruction during the
extrapolation of tracks found in the outer tracking chambers. VDET hits are
included by averaging the charge weighted positions of adjacent strips that have

at least three times the mean noise charge.

2.5 The inner tracking chamber

The inner tracking chamber [25], or ITC, is a cylindrical multiwire drift chamber
with inner and outer radii of 128 and 285 mm and length of 2 m. The ITC
has two main purposes - it provides up to eight accurate r¢ coordinates (eight
coordinates for tracks with |cosf| < 0.97) and it is the only tracking chamber
used by the first level trigger as its fast readout allows a trigger decision to be

reached within 2-3 ps.

The wires in the ITC run parallel to the beam, or z, axis which means that
r¢ coordinates are obtained by measuring the drift time of the ions produced by
a charged particle travelling through the I'TC. An accuracy of about 150 pm is
obtained in r¢ (averaged over the drift cell). It is also possible, by measuring the
time difference that an induced pulse takes to reach both ends of the sense wire,
to obtain the z coordinate. This can achieve an accuracy of about 70 mm when

averaged over z and all layers.

The ITC has 960 sense wires strung between two aluminium end plates which
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are configured into eight concentric layers, with 96 wires in each of the four
inner layers and 144 wires in the outer four layers. Each sense wire is at the
centre of a drift cell, being surrounded by six field shaping wires to give the cell
hexagonal geometry. This means that four of the field wires are shared with
neighbouring cells on the same layer. Only five of the field wires are earthed, the
other is insulated from earth and pulses are injected along it during calibration.
Combining the need for a fast level 1 decision with the finite drift speed of the
gas enables an upper limit for the cell size to be obtained, and the size of cell
adopted is less than this maximum. The cells are “close packed”, meaning that
cells in adjacent layers are shifted sideways by half a cell, resolving the left-right

ambiguity which would otherwise be present in track reconstruction.

The gas used in the ITC is Ar(80%) + CO4(20%) at atmospheric pressure,

with the sense wire operating voltage for this mixture between 1.85 and 2.05 kV.

The information for the trigger decision is provided by special fast trigger
processors which provide both r¢ and r¢z information. The r¢ trigger decision is
delivered in approximately 500 ns whilst the r¢z trigger decision is reached within

about 2 us.

The alignment of the I'TC relative to the other tracking chambers is done
using Z — ptu~ and Z — ¢q events where the tracks are extrapolated from the
TPC into the ITC, and a comparison is made between the predicted and actual
hits.

2.6 The time projection chamber

The largest tracking chamber in ALEPH is the time projection chamber [26],
or TPC (fig. 2.2). It is of cylindrical geometry, having inner radius of 310 mm,
outer radius of 1800 mm and length of 4.7 m. The magnetic and electric fields
contained in the TPC are parallel with each other and the beam axis. A central
membrane divides the TPC into two halves and creates an electric drift field such

that ionisation electrons drift to the endplates where there is a plane of wire
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chambers. This enables three dimensional coordinates to be obtained, and means
the TPC can measure momentum and emission angle of charged tracks with high

accuracy. The ionisation density, dE/dx, can also be determined.

Figure 2.2: The ALEPH time projection chamber.

The TPC consists structurally of inner and outer field cages and two endplates.
The field cages are coaxial with the beam axis and use copper electrodes to
ensure that the electric drift field in the volume between them is constant and
parallel to the beam axis. The central membrane is mylar coated on both sides
with conducting graphite paint and is held at —27 kV whilst the endplates are
connected to ground, giving rise to a electric drift field of 115 V/em. The gas
used in the TPC is Ar(91%) + CH4(9%) with a drift velocity of 5.2 cm/us.

The large diameter of the TPC is necessary to measure track momenta pre-
cisely and the resultant large endplate area means each endplate has 18 wire

chambers, called sectors. The geometry of the cracks between adjacent sectors
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has been designed to minimise the loss in track momentum resolution (fig. 2.3).
Each wire chamber has three layers of wires which act as the gating grid, cathode
plane and sense wire plane respectively. Field shaping wires permeate through
all three planes. When a negative ion reaches the sense wire it causes an ion-
isation avalanche which induces a signal on the cathode pad that is 4 mm be-
hind the sense wire. There are 41004 pads in the TPC, each having dimensions
6.2 mm x 30 mm (§(r¢) x dr). The signal on the pad is read out for coordinate
measurement and the pulses on the wires are used for measuring dE/dx. The
second level trigger uses the TPC and there are 32 trigger pads per sector, which

are located between the rows of cathode pads.

Figure 2.3: The sectors of the ALEPH time projection chamber.

The gating grid is required to stop positive ions produced in avalanches near
the sense wires reentering the drift region, as these ions can change the drift field
and cause track distortions. The gating grid is either open, where the passage of

charged particles is not impeded, or closed, where a dipole field is created that is
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opaque to charged particles. The gate is normally closed and is only opened for

a bunch crossing.

The r¢ coordinate of a drift electron is obtained by interpolating the signals
induced on the cathode pads, whose positions are well known. The r coordinate
is found by knowing the radial position of the pad involved, and the z coordinate
can be calculated if the drift velocity field is known and the drift time of electron
is measured. The TPC can measure 21 three dimensional points for charged
particles crossing both inner and outer field cages. The resolution is dependent
on the angles which the charged track makes with both the sense wires and the
cathode pads. The r¢ spatial resolution for a track with 0° pad crossing angle
is 180 um. The z coordinate can be obtained from either the pads or the wires
if there are no other tracks crossing the sector. The z spatial resolution for the
wires is 1.2 mm (with a slight z dependence), and 0.8 mm (for § = 90°) for the
pads.

Due to the solenoidal magnetic field all charged particles follow a helical path.
The projection of this three dimensional object onto the two dimensional endplate
produces an arc of a circle. Using the sagitta of this arc it is possible to find the
radius of curvature of the charged particle, which is proportional to the modulus
of the track momentum component perpendicular to the magnetic field. The
resolution of the transverse momentum p; (GeV/c), Apy, is proportional to the

resolution in the measurement of the sagitta, As (mm), i.e.,

Apy As
L 0.097p, —
P 0-027pe 17

where B is the modulus of the magnetic field and [ (m) is the length of the pro-
jected trajectory. The relative error on the measured momentum of a track arises
from the error on the transverse momentum as the error on the measurement of
the polar angle, #, is small. The momentum resolution, Ap/p?, for a 45 GeV
track traversing the full TPC radius is 1.2 x 107 (GeV/c)™" for the TPC only,
0.8x1073(GeV/c)™" for ITC + TPC and 0.6 x 1073 (GeV/c)™" for ITC 4+ TPC +
VDET. The error on p; has a  dependence because if a track has a large | cosd|

then there are fewer measured coordinates and a shorter projected trajectory.
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This effect can be expressed as a function of cos 4.

The calibration of the field in the TPC is carried out using a laser system
which produces straight ‘tracks’. The measured curvature of these tracks is used
to correct sagitta measurements whilst the drift velocity is determined from re-

constructed polar angles.

2.7 The electromagnetic calorimeter

The electromagnetic calorimeter, or ECAL, is the inner layer of a double shell of
calorimeters. Its purpose is to stop and identify electrons and photons. ECAL
is a lead /wire chamber sampling device which is highly granular and hermitic,
covering 3.9 7 sr with 73728 readout channels. It is situated inside the solenoid
to reduce the number of radiation lengths that preceed it, thus reducing preshow-

ering.

Figure 2.4: The electromagnetic calorimeter of ALEPH.

The ECAL surrounds the tracking chambers and consists of a barrel of length
4.77 m and radii 1.85 and 2.25 m, closed at either end by endcaps which have
active inner and outer radii of 0.568 and 2.275 m and depth 411 mm. The endcaps
and barrel are subdivided into 12 modules, each subtending 30° in azimuth. The

cracks between the modules, where no readout is possible, constitute 2% of the
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barrel surface and 6% of the endcap surface. To ensure that the cracks in the
endcaps and the barrel are not coincident the endcap modules are rotated through
15° in azimuth. Further, to ensure that the cracks in ECAL and the hadron
calorimeter are not aligned, the whole of ECAL is rotated by —1.875°% in azimuth
with respect to the hadron calorimeter (fig. 2.4). The mechanics and electronics

for the endcap and barrel modules are as identical as possible.

The total energy of electromagnetic showers is measured in the ECAL using
approximately 30 x 30 mm? cathode pads. These pads are connected together to
give towers which point towards the interaction point and are read out in three
sections, called storeys. A module consists of 45 layers of lead and proportional
wire chambers, with the first storey ten layers thick (2 mm layers of lead giving
4 radiation lengths total), the second storey 23 layers (2 mm layers of lead giving
9 radiation lengths total) and the third storey 12 layers (4 mm layers of lead
giving 9 radiation lengths total). Each tower has a granularity in Af x A¢sin 0
of between 17 mrad x 17 mrad at 90° in the barrel, to 10 mrad x 10 mrad for
36° < 0 < 42° in the endcaps. The construction methods used result in a tower

to tower uniformity of response within 1.6% (r.m.s.).

The wire chambers are built using an open sided aluminium extrusion. Anode
wires sit inside channels on the open face of the extrusion and run parallel to the
z axis. Below the extrusion is the cathode plane, which consists of the pads and
readout lines. This ensemble is placed behind a highly resistive graphite coated
mylar sheet and the resulting wire chamber is placed between two layers of lead
sheet (fig. 2.5). Thus an electromagnetic shower, created by a particle travelling
through the lead, will cause ionisation avalanches around the anode wires. This
ionisation capacitively induces a signal on the cathode pads which is read out.

The signals on each plane of wires are summed and also read out.

The gas used in the ECAL is Xe(80%)+C04(20%) and is about 60 mbar above
atmospheric pressure. Calibration of the gain of the gas system was initially done
by including radioactive ®*Kr in the gas mixture. The short term drift of the gas
gain is done in each module by a dedicated single small wire chamber which

contains a **Fe source. This produces 6 KeV X-rays which induce charge on the
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Figure 2.5: The composition of a layer of the electromagnetic calorimeter.

wire.

The ECAL has an energy resolution of o/ E = 0.18 GeV'/2/\/E, and position
resolution ¢, = o, = 6.8 mm GeV'/2/\/E.

2.8 The superconducting solenoid

The magnetic field, vital for obtaining track momenta, is provided by a super-
conducting solenoid which produces a field of 1.5 T at 5000 A. It is 7 m long with
inner and outer radii of 2.48 and 2.92 m. The iron return yolk of the solenoid is

fully instrumented as the hadron calorimeter.

The magnetic field produced is parallel to the LEP beam and has homogene-
ity AB./B, < 0.2%, radial component B, /B, < 0.4% and azimuth component
By/B. < 0.04%. The non-uniformity of the magnetic field produces sagitta dis-
tortions of only 0.2 mm in the TPC.

2.9 The hadronic calorimeter

The Hadronic Calorimeter, or HCAL, is the outer shell of calorimetry and pro-
vides information about particles that pass through ECAL, i.e. most hadrons and

muons. The iron structure providing the passive part of the calorimetry is also
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the main structural support for ALEPH and the return yolk for the magnetic
field. The polar angle coverage is 6° < # < 174°. As in the case of the electro-
magnetic calorimeter the hadronic calorimeter has a barrel region which is closed

at both ends by endcaps.

The barrel is divided into twelve modules and thus has dodecagonal geometry,
with each module split down the middle for construction purposes. The iron of
each module is split into twenty two iron slabs, with spacers between each slab
to allow insertion of limited streamer tubes to act as the active, or readout, part
of the calorimeter. The spacers reduce the azimuithal coverage available to the
streamer tubes by 3.4%. The total iron thickness is 1200 mm at = 90°, which
corresponds to 7.16 interaction lengths. The first layer of streamer tubes is in

front of the first iron slab and is held in place by a 5 mm thick aluminium sheet.

The streamer tubes are made from extruded plastic (PVC) shaped into a base
sheet perpendicular to which there are nine fins. This means that there are eight
long cells which have internal dimension 9 x 9 mm?, and are about 7 m long.
The inner surfaces of the the cells are painted with graphite and a 100 pm thick
wire runs along the axis of the cell and operates at 4 kV. Opposite the open
side of the cell are copper pads. The pads from different layers are summed to
form projective towers which subtend 3.7° in azimuth at the interaction point
and have been designed so each tower has the same width in polar angle. The
pattern of towers matches the pattern in the electromagnetic calorimeter, with
about fourteen ECAL towers to one HCAL tower. On the opposite side of the
cells to the pads is an aluminium strip which runs the length of the cell parallel to
the wire. These provide a standard logic signal whenever an avalanche is induced
on the wire and are used to obtain a two dimensional picture of hadronic showers
and aid in muon identification. Thus there are three types of signal from HCAL -
those from the pads which are to measure the energy deposited in the calorimeter,
those from the aluminium strips which provide the pattern of fired tubes in an
event, and those from the wires which give the energy deposited in a single planes

and are used for triggering.

The endcaps are divided into six modules each and are constructed in a similar
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way to the barrel. The main difference is that 2.1 m radially from the centre the

endcaps have only 15 layers to enable them to fit into the barrel.

There are 2688 projective towers fully in the barrel, 2032 fully within the

endcaps and 768 which are shared between the barrel and the endcaps.

The gas used in the streamer tubes is Ar + CO; + Isobutane in the ratios
12.5% = 56.5% : 30%. To record changes in the gas composition or ambient
temperature and pressure, and thus variations in the calibration factor, control

tubes are installed in the gas line of each module.

The hadronic calorimeter has energy resolution o /E of 84%/VE.

Figure 2.6: The configuration of the x and y strip electrodes in the muon cham-

bers.

2.10 The muon chambers

Outside of the hadron calorimeter are two double layers of streamer tubes which
cover 92% of the solid angle. They are used as tracking chambers and do not give
information about the hadronic shower energy. They provide two dimensional
coordinates by having strip electrodes both parallel and perpendicular to the
wire in each cell of the tubes (fig. 2.6).

The tubes follow the geometry of the hadron calorimeter except in the region
of overlap between the endcap and barrel, i.e. the outer edges of the endcap

modules, where there are additional middle angle chambers. The distance of
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separation between the double layers is 0.5 m for the barrel region and 0.4 m for
the endcaps, which allows track directions for a particle travelling through both

layers to be measured with an accuracy of about 10-15 mrad.

2.11 Luminosity detectors

It is essential for accurate physics results that there is a small error on the mea-
surement of integrated luminosity received by ALEPH. Thus low angle elastic
(Bhabha) scattering is used to measure the integrated luminosity as it is almost
a pure QED process with very little interference from the weak sector, and has a

well known cross section.

The luminosity monitors are designed so that their systematic uncertainties
are smaller than the statistical error of the measured integrated luminosity. For
this precision to be attained it is necessary to detect both the scattered electron
and positron in coincidence on both sides of the interaction region. It is also very
important to measure accurately the polar angle of both particles as the Bhabha
cross section is proportional to one over the fourth power of #. For particle iden-
tification purposes, and thus background rejection, good energy determination is

required from these detectors.

Since 1992 the luminosity in ALEPH has been measured using a silicon tung-
sten calorimeter, SICAL [27]. This consists of two cylindrical calorimeters in-
stalled about 2.5 m on either side of the interaction region. The active inner and
outer radii on both are 61 and 144 mm which corresponds to 8,,;, and 0,,,, of
24.3 and 57.7 mrad respectively. Both calorimeters are made in two halves and
enclose the beam pipe. The detectors are constructed from 12 layers of tung-
sten sheets between which there are silicon layers, each with 512 readout pads
instrumented. There are sixteen 5.2 mm radial pad-rows, each with a ¢ interval
of 11.25°. Consecutive layers of silicon are rotated through 3.75° in ¢ to elim-
inate azimuthal cracks. The energy resolution of SICAL is op/E = 23%/\E.

The SICAL was designed to produce a systematic uncertainty in the integrated
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luminosity measurement of less than 0.1%), and this has been improved to about

0.05% during operational running.

Before the installation of SICAL the luminosity calorimeter, or LCAL, mea-
sured luminosity. This is a sampling calorimeter based on the design of ECAL
with 38 layers of lead sheets and wire chambers. It is made from four semi-
cylindrical modules placed around the beam pipe 2.625 m from the interaction
point. The systematic uncertainty in the integrated luminosity measurement due

to LCAL was designed to be less than 2%, and during running an uncertainty of

0.4% was achieved.

Instantaneous luminosity is provided by the very small angle luminosity mon-
itor, or BCAL. This consists of two pairs of detectors placed at £7.7 m from the
interaction point and has twenty times more Bhabha events than SICAL due to

lower polar angle detection.

2.12 Triggering

ALEPH employs a three level triggering system in order to separate all genuine

et

e~ interactions from background, to reduce the frequency of accepted events
to a rate which can be written to tape, i.e. about 1-2 Hz, and to reduce the dead
time of the detector. The background events are mainly from three sources -
beam-gas interactions arising from a non-perfect vacuum in the beam pipe, off-
momentum particles from the beam hitting either the collimators or the vacuum
pipe close to ALEPH, and cosmic rays. The luminosity received by ALEPH is
low enough for there to be no need to select areas of physics on which to trigger

once backgrounds have been eliminated. The trigger has been designed to be

sensitive to single particles or single jets.

The maximum output acceptable from the level 1 trigger is a few hundred Hz
in order to keep dead time in the data acquisition to a minimum and to ensure

there are no TPC gating problems. To enable the trigger to cover all areas of

physics it uses information from HCAL, ECAL, LCAL and the ITC. After a
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bunch crossing there is a level 1 yes if:

there are track candidates in the I'TC;

there is energy in a ‘trigger region’ of ECAL or HCAL;

the total energy in the barrel, either endcap or entire detector is larger than

given thresholds;

there is a Bhabha event in SICAL.

Level 1 uses specially built hardware to enable a decision to be reached in 5 us,
and as there is 11 ps between bunch crossing it means that the detector does not
miss a bunch crossing if there is a level 1 no. It is common for events to cause more
than one trigger and it is therefore possible to measure the fiducial efficiencies of
different event types. Level 1 has 100% fiducial efficiency for hadronic Z decays,
approximately 100% for leptonic 7 decays and 99.7 4 0.2% for Bhabha events.

The second level trigger uses only the TPC, and extends the level 1 track
information. Again it is based on hard-wired processors. A search is made for
tracks straight in the rz plane, as all tracks accepted by level 1 have transverse
momentum greater than 1 GeV/c. If level 2 decides to reject an event then the
data acquisition is reset by the fifth bunch crossing following the initial level 1
trigger, this being a 58 ps gap and the level 2 decision time being about 50 us.

Level 2 removes approximately 75% of level 1 track only triggers.

The level 3 trigger is applied after readout and is based on software analysis. It
is done within the data acquisition system before events are written to tape. Level
3 reconstructs all events which reach it and studies the regions of the detector
which triggered the first two levels. The event is accepted and written to tape
if this reconstruction validates the trigger decision. This reduces the output

frequency to the desired 1-2 Hz.
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2.13 Event reconstruction

Event reconstruction is the process where the digital signals from the subdetectors
in ALEPH are turned into objects which can be used in physics studies. The two
types of objects that are found are tracks, using the three tracking chambers, and
calorimeter clusters. This is done off-line by a dedicated facility coupled to the

main data acquisition computer.

The method to find tracks starts by using TPC information. Neighbouring
hits in the TPC are connected together to form track segments. These segments
are joined together if the result is consistent with a helical track hypothesis. The
resulting tracks are extrapolated inwards to the other two tracking chambers
where appropriate hits are assigned to the tracks. The resulting preliminary
tracks are used as inputs to an accurate track fitting procedure, which uses the
errors determined from the preliminary track parameters and takes into account

multiple scattering.

Clusters are found in both ECAL and HCAL by the following method. All
storeys which have an energy deposition greater than 30 MeV and are connected
by a minimum of a storey edge or corner are collected together and called clus-
ters. In the electromagnetic calorimeter corrections are made to a clusters energy
to allow for storey threshold effects, ionisation losses for charged particles in
the tracking detectors, leakage of electromagnetic showers which punch through
ECAL and penetrate HCAL, and the non-linearity of calorimeter response which

was found in test beam results.

2.14 Particle identification

The high granularity of both ECAL and HCAL are important for the identi-
fication of muons and photons, both of which are used in the analyses in this

thesis.
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2.14.1 Muon identification

The identification of muons has a high efficiency and purity since they have an
unusual signature. The identification procedure makes use of the digital readout
of the HCAL, which acts as a tracking detector, to see if a particle traverses the
whole of HCAL.

All tracks with momentum greater than 1.5 GeV /c are checked against a muon
hypothesis. This is done by extrapolating each track through HCAL as though
it were a muon, making allowances for the accurate magnetic field map and es-
timated energy losses. A road through HCAL around the extrapolated track is
created with a width three times the multiple scattering uncertainty resulting
from the extrapolation. HCAL planes which are within the road are expected
to have fired. A hit is included in the identification procedure only if no more
than three adjacent tubes have fired. Only tracks with momentum greater than
3 GeV/c are considered muon candidates. This increases the efficiency of detec-
tion if the track is a muon because it guarantees it will completely traverse the
calorimeter. Hits from the muon chambers are attributed to the extrapolated
track if the distance between the two is less than four times the estimated stan-
dard deviation due to multiple scattering. After the above procedure, a track is
considered a muon if the number of planes fired in total is greater than 9, out
of the last ten planes more than four fired, a non zero number of the last three

planes fired, or the number of hits in the muon chambers is greater than zero.

Therefore due to the muon’s extremely long interaction length it has an easily
identifiable signature. Monte Carlo studies have shown that for a 95% fiducial
efficiency of identifying a 5 GeV muon the probability of mistaking a 7 for a p is
0.7% and a K for a p is 1.6%.

2.14.2 Photon identification

The three dimensional segmentation of ECAL ensures good photon resolution

is possible up to the highest LEP energies available. A photon identification
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package is required because the clustering algorithm in the event reconstruction
builds clusters which are too large and contain more than one photon. The photon
package starts by considering the clusters found in the event reconstruction but
uses the assumptions that electromagnetic showers tend to begin in the first

segment in depth of ECAL and that photon clusters are very compact.

The method used to identify candidate photons starts by looping over, in
decreasing energy, the ECAL clusters found by the reconstruction algorithm.
Firstly the inner layer of the towers is searched for all possible photon cluster
seeds, i.e. a storey without a more energetic neighbour. Following this the other
storeys are added to the appropriate seeds to make clusters; the outer layers
being added sequentially. This method takes advantage of the compactness of
electromagnetic clusters and the good projective geometry of ECAL. Finally, a
new cluster is declared a photon candidate if its energy is greater than 0.25 GeV
and no charged track is within 20 mm of the energy weighted mean centre of the

cluster.

The position of the photon impact point is given by correcting the cluster
barycentre to allow for the finite size of the calorimeter cells. The photon energy
calculation uses the four central towers of the cluster and the expected value of
the fraction of energy in the four towers, Fy. This fraction has been obtained by
parametrising the shower shape for a single photon in ECAL. The effects of the
calorimeter pad area, the distance between the photon impact and nearest tower
corner and the variation with energy of Fj are all included in the photon energy

calculation.

The spatial resolution obtained is 044 = (2.5/4/F/GeV 4 0.25) mrad and the
energy resolution op/F = 0.25/v/E. The energy resolution is worse than the
expected 0.18/v/E since only the four central towers of the cluster are used.
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2.15 Energy flow

The energy resolution of an event can be improved by using an energy flow al-
gorithm. This method links charged tracks to calorimeter objects and uses the
redundency in energy measurements that results to assign neutral particle energy.

It also uses particle identification methods.

The method begins by considering all charged tracks found in the reconstruc-
tion. It produces a subset of good tracks which require at least four TPC hits (if
the track has momentum greater than 15 GeV/c then it requires at least 8 TPC
hits and 1 ITC hit) and which must originate from a cylinder of length 200 mm
and radius 20 mm which is coaxial with the beams and centered on the inter-
action point. This will exclude all VO candidates so these are searched for and
reinstated. When dealing with the calorimeter known noisy channels are masked
out from the cluster finding and the readout redundency in both calorimeters is

made use of to smooth occasional noise.

The next stage is to associate good charged tracks with calorimeter objects.
All good charged tracks are called charged energy and they are assumed to be
pions unless they have already been identified. Electrons, muons, photons and
7%s which have been identified are removed from the lists taking the appropriate
energy from the associated calorimeter object. This should leave only charged
and neutral hadrons. Lastly the energy of the tracks is subtracted from the
calorimeter objects, and if the remainder is larger than 500 MeV it is attributed

to neutral hadrons.

This algorithm enables a relative energy resolution of less than 9% to be

obtained regardless of the energies involved.

2.16 Detector simulation by Monte Carlo

Most analyses require the use of complicated cuts which mean that Monte Carlo

methods are favoured over semi-analytical ones. A Monte Carlo program will
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generate individual events which can be given the same structure as real data
and thus the same analysis can be applied transparently to both sets of data.
To generate Monte Carlo is a two stage process, initially simulating the physics

under study and then simulating the detector.

The differential cross section for a given physics process can be expressed
in terms of phase space variables. By using a random number generator it is
possible to obtain values for these variables and thus calculate the differential
cross section for these given values. It is relatively simple to convert phase space
variables to the four momenta of the particles, thus events can be created and
a differential cross section used to measure the likely occurence of this event
geometry. Therefore the first stage of generation involves obtaining four momenta

and calculating the probability for this particular configuration to have occured.

The second stage is to simulate the passage of the generated particles through
the detector, taking into account particle lifetimes and decays. The method used
is based on the GEANT/GHEISHA approach [28], producing an output which
has the same structure as the data. After this stage the Monte Carlo undergoes

the same procedures as data.

60



Chapter 3

A study of radiative muon events

at LEP

3.1 Introduction

The ensemble of LEP and its detectors provides a platform which can be used to
probe the electroweak sector of the standard model with a high degree of accuracy,
enabling a definitive study of radiative corrections to be undertaken. Such a
study is required to check the self consistency of the theory and to understand

the phenomenological implications of these corrections.

If the standard model is a physical theory then all calculations done in its
framework using perturbation theory must be self consistent to all orders of the
expansion. The implications of this constraint mean that all terms in the expan-
sion must be finite and that as the order of a term increases its contribution to
the sum over all orders decreases. For the standard model to be a self consistent
theory the application of a process known as renormalisation is required. This
process involves redefining the physically observable parameters of the theory so
that infinities produced by higher order corrections have no effect on the physical

predictions of the theory.

If the predictions of the renormalised standard model are not compatible with

experimental results then either there is a fundamental flaw in the theoretical un-
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derstanding of renormalisation or else there is physics beyond the standard model

which produces phenomenological effects at the energy scale of the experiment.

Theoretical models containing physics beyond the standard model often pre-
dict, at the electroweak energy scale, a larger number of energetic photons isolated
from tracks than the standard model does. An example of such a theory is com-
positeness [12]. Therefore, in order to find an indication of new physics, the
analysis detailed in this chapter involves using ALEPH data collected between
1990 and 1993 to study the reaction ete™ — Z — utu™ +ny (n > 1), and com-
paring the results obtained with theoretical predictions made in the framework

of the standard model.

3.2 Phenomenology

It is possible that some of the photons created by the decay 7 — u™u™ +nvy will
not be detected by ALEPH. This is because if the energy of a photon is below
a certain threshold then the signal from the electromagnetic calorimeter caused
by the photon is indistinguishable from electronic noise. Therefore the detected
topology of an event is not always the same as the topology created by the decay.
Such a change in topology can not be identified using the missing mass of the

event because the energy of the undetected photon is extremely small.

The change in event topology which occurs because of the experimental in-
ability to detect very low energy photons is necessary for the standard model
to remain renormalisable. This is because the infinities produced by attaching
virtual photons to the external fermion lines of a specific event topology are can-
celled by the divergences resulting from the addition of extremely low energy real
photons. Such cancellations can only occur if both corrections have the same
topology following experimental detection. This is true in this case as the ener-
gies of the real photons required to produce the divergences are lower than the

detection threshold (section 1.4.2).

Experimental problems are also encountered if a photon is collinear with a
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track. Here misidentification of either one or both particles can result, or the

measurement of their four-momenta is inaccurate.

Events containing photons with either of the above properties (i.e. low energy
or collinear with a track) create problems for theorists because the cross-section
calculations including such regions of phase space are complex. Therefore it is
both experimentally and theoretically advantageous to only consider those pho-
tons in an event which have a non-negligible energy (for example 5% of the centre
of mass energy) and are well separated from all charged tracks. Events containing
such photons are also a signal for new physics and a method is therefore required
for this analysis to distinguish between energetic isolated photons and soft and/or
collinear photons. Thus when a putu~™ + ny (n > 1) final state is searched for

only the former type of photons will be counted.

The dimensionless parameter y..; is used to classify the photons in an event
into those which are isolated and energetic and those which are collinear and/or

soft. This parameter is defined by requiring that

(pu_—l_ki)z > ycutM%

(put +Ki)* > yeur M7 (3.1)

where k7, p;_ and pj, are the four-momenta of the i*" photon, the muon and
the antimuon respectively. From this definition it is possible to conclude that
Yeur 18 dependent on both the angles between the muons and the photons and
the energies of these particles. This means that the same range of y.,; values for
which the inequalities 3.1 are satisfied can apply to different final state geometries
of the same topology. As an example consider the u™ =+ topology, where it is
possible for an event with an energetic photon collinear with a muon to have
the same range of y., values as an event with a low energy photon which is
well separated from both muons. Thus as y.,, increases the soft and/or collinear
photons in an event will be excluded, leaving only the energetic photons which
have a large angular separation from the muons. Therefore, as photons from new
physics tend to be energetic and well separated from tracks [29], only large values

of Y.t are considered in this analysis.
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Figure 3.1: An example of obtaining the maximum ;.

If the muons are assumed to be massless then the maximum y.,, of an event
which will satisfy the inequalities 3.1 becomes a function of the energies of the
photons and the muons and the angles between the photons and the muons. An
event with n photons has 2n candidates for the maximum y.,; allowed by the
inequalities 3.1, and the value adopted for the maximum is obviously the lowest
of these candidates. Fig. 3.1 shows an example for the decay Z — u*Tu~~. Here
there are two values of y.,; due to the topology, but the geometry of the event dic-
tates which one is the lowest and hence for what range of y.,; the inequalities 3.1

are valid.

By considering the inequalities 3.1 it is possible to derive two important phe-
nomenological relationships. Firstly, there is a y.,; dependent lower limit imposed

on the energy of the photons in an event, which is

BT = yeun/s. (3.2)

The second relationship determines the maximum y.,; that can be obtained by

an event of a given topology, and is

max 1
v () = oo (33)

where n is the number of photons in the event topology.
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The final results of this analysis will be expressed in the form adopted by
Stirling [29], i.e. to produce the ratio R, (y..:) where

N(Z = p*p” +ny)

Rn cut) —
(g N(Z — ptp”)

. (3.4)

This ratio is a function of y..; because, as shown above, each event has a value of
Yeur Which cannot be exceeded if the inequalities 3.1 are to remain valid. Therefore
as Yeur 18 increased some utp~ + ny will no longer be included in the width

I(Z — ptp™ + ny), and thus the value of R, is dependent on y..;.

Expressing the final result in the form of R, (y..:) has both experimental
and theoretical advantages. The main experimental advantage is that R, (yeut)
is independent of the experiment and therefore it is possible to compare the
result with theoretical predictions. An important theoretical advantage is that if
/s = My then the equation relating the width and cross-section for a final state
X is

_ 127 Fe+6—FX
0'(€+€ — 7 — X)|\/§=MZ = @T (35)
which leads to
I(Z = ptp~ +ny)  olete” = Z = ptp™ +ny) (3.6)

(7 — ptp) olete = 7 — utu~)
Therefore whilst the final result can be quoted in terms of partial widths, which
are experimentally easier to obtain than cross-sections, the theoretical values for
R, (Yeut) can be obtained using cross-sections. The importance of this is that
cross-sections include correlations between initial and final state particles, such
as the forward-backward lepton asymmetry, whereas widths do not. Another the-
oretical consideration is that the value of the peak cross-section is very sensitive
to electroweak corrections, but by forming R,(y..:) many of these corrections

cancel and are no longer significant.

3.3 Data analysis

A large fraction of the events which trigger the ALEPH detector are Z boson

decays. The remaining events come from interactions such as t-channel Bhabha
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scattering, cosmic showers, off-momentum beam particles and instances where
there is a photon exchanged in the s-channel rather than a Z. The purpose
of this analysis is to distil from these events the subset which can be used to

construct Ry, (Yeut)-

The analysis has two stages - firstly to extract the events with the correct
topology, and then to purify this subset so that it contains events mainly from
the interaction ete™ — Z — uTu~ + ny. The cuts used in these two stages are

explained below.

Only data which has been collected at the peak is used for this analysis as
some of the theoretical results considered include calculations only valid for this
centre of mass energy. Data collected in 1990, 1991, 1992 and 1993 was used to

build a sample with a total integrated luminosity of 47.4 pb™1.

3.3.1 The Monte Carlo generators required

When carrying out an analysis it is necessary to use Monte Carlo events which
have undergone detector simulation (section 2.16) in order to develop cuts which
remove events arising from processes not under study (background) whilst keeping
most of the events from the process under study (signal). This is impossible using

only data as the reaction which produced a detected event is never known.

To ensure that virtually all of the processes that produce events which occur

in the data were considered the following Monte Carlo generators were used:

e BABAMC [30] [31] [32] generates eTe™ — ete™(v) events. It includes
full O(«a) electroweak corrections, but does not include full exponentiation,

higher order corrections to the Z width and the energy dependence of the
7 width;

e KORALZ [33] [34] [35] generates eTe™ — utu™ and ete™ — 7177 events.
It contains second order initial state radiation with full exponentiation, but

there is only first order final state radiation;
o HVFL generates ee™ — gq’ events within the JETSET73 [36] framework;
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e PHOPHO [37] generates eTe™ — e¢te™ X events, where X is created by
gamma-gamma annihilation and can be either a multihadronic state via
the VDM process, a pair of leptons produced through QED or a single

resonance;

e GGMJET [38] is an implementation of the multijet QCD processes in
gamma-gamma collisions, where two primary high pr jets are produced

along with one or two beam pipe jets from the photon.

It is necessary to normalise the output of all of the Monte Carlo generators
before any comparisons can be made between their combined results and those
of experimental data. The method used to normalise the Monte Carlo output
in this analysis is to scale the Monte Carlo results by the ratio of the integrated

luminosities of the data and the generated Monte Carlo events.
The integrated luminosity of the data, Lpata, is obtained using

" Z—had

/:DATA =
07 —had

where ny_ypaq and 0z _4paq are the number of 7 — hadron decays and the cross-

section for ete™ — Z — hadron measured by ALEPH respectively [39].

When a Monte Carlo generator is run it calculates the cross-section for the
events generated, and thus
Ngenerated

O calculated

Therefore the normalisation factor for a set of Monte Carlo generated events is
Lpata /Lyic.

The processes simulated by Monte Carlo generators which are used in this
analysis are shown in table 3.1 along with the normalisation factors that are
required for the generated events. It should be noted that the process with a

normalisation factor greater than one does not make a significant contribution to

the final result.
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Process Normalisation factor
ete™ — ete” 0.545
ete™ — putu~ 0.183
ete™ — 7t~ 0.0988
ete™ — q¢ 0.323
vy — ete” 0.648
vy = ptp” 0.614
vy — 7t 0.588
vy = qq 1.65

Table 3.1: The Monte Carlo simulated processes required for this analysis and

the normalisation factors for the generated events used.

3.3.2 Topological selection

The event topology that is required is two good tracks along with at least one
photon. Good tracks are found by placing additional constraints on the subset
of charged tracks produced by energy flow (section 2.15). The energy flow subset
of charged tracks is obtained by applying the following cuts to the tracks found

during event reconstruction:

e the number of TPC hits > 4 (if the track has momentum > 15 GeV/c then
there must be at least 8 TPC hits and 1 ITC hit);

o the radial distance of closest approach to the beam axis < 2 c¢m;

o the z coordinate of the closest approach of to the beam axis < 10 em.
The additional constraints required of a good track are that:

o the angle between the charged track and the beam axis > 18.2°;

e the z coordinate of the closest approach of the charged track to the beam

axis < 7.5 cm.

The former ensures that the track travels through the tracking subdetectors and

is therefore well measured whilst the latter is a slight tightening of the energy
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flow constraint. If two such tracks are found in an event then two further cuts
are applied to reject events which are unlikely to have arisen from a Z decay.
Firstly, it is required that the sum of the track charges is zero, and secondly that

the total transverse momentum of the tracks is greater than 1 GeV/c.

Photons are found using a method similar to that employed for tracks. Objects
which energy flow has designated as electromagnetic calorimeter objects with no
associated track are considered to be photons for the purpose of this analysis.
This is valid as complex photon identification (section 2.14.2) is required only
where there is the possibility of misidentifying another particle as a photon. This
is possible, for example, in the decays Z — g¢/+ny or Z — 777~ 4-n~v where there
can be other neutral particles. In the decay Z — ptpu~ + ny it is unlikely that
there are photon candidates which are not photons. The reason for not imposing
harsh cuts before a candidate is declared a photon is that a higher efficiency of

identification is obtained.

To obtain well defined photons for this analysis the following cuts were made

on the energy flow photons:

o the angle between the photon and the beam axis > 18.2°;

e photon energy > 3 GeV.

The former is to make sure that the barycentre of the photon is not in the
lower region of the electromagnetic calorimeter, where photon energy is not well
measured, and the latter is imposed because equation 3.2 shows that low energy
photons can never have an associated y.,; which is large enough to be relevant

for this analysis.

The number of data and Monte Carlo events which survive the topological
selection cuts are 80015 and 84385 respectively (table 3.2). The Monte Carlo
total is 14.0 standard deviations higher than the data if the errors on both the
data and the Monte Carlo are taken into account. Tables 3.3 and 3.4 show the
contributions of the individual Monte Carlo generators, where the number of

events has been rounded following normalisation.
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Cut Data | MC sum \/%
None ALL | 2141861
Topological selection || 80015 | 84385 14.0
Muon identification cut || 10888 | 11165 2.6
Visible energy cut 5352 5775 5.7

Table 3.2: Effect of the cuts on data and summed Monte Carlo.

ete™ = ete™ | ete™ — M+M_ ete™ — 7tr~
Number of

events generated 280000 390953 710000
Normalised number of

events generated 147728 67733 67691

Topological selection 54031 5964 23296

Muon identification cut 0 5840 5299

Visible energy cut 0 5704 69

Table 3.3: Breakdown of numbers for electroweak Monte Carlo generators.

cte™ = qq | vy = X
Number of
events generated 4384159 430780
Normalised number of
events generated 1371803 486906
Topological selection 425 670
Muon identification cut 2 23
Visible energy cut 1 1

Table 3.4: Breakdown of numbers for non-electroweak Monte Carlo generators.
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Only events containing exactly two good tracks and at least one good photon
survive the topological selection cuts. The plots of fig. 3.2 show that virtually
all of the 14.0 standard deviation difference between the data (80015 events) and
the Monte Carlo (84385 events) is due to events where there are either one or two
good photons; there is good agreement for events containing between three and
eight good photons. This suggests that there is not an overall systematic effect
causing the 14.0 difference, but rather that the Monte Carlo produces too many

events with one or two photons.

Consider the case when the final state topology is two tracks and one good
photon. Fig. 3.2 (b) shows that the Monte Carlo is approximately 12 standard
deviations larger than the data for this topology. The plots in fig. 3.3 show the
distributions of the photon energy versus the cosine of the isolation angle of the
photon (the isolation angle being defined as the smaller of the two angles between
the photon and the tracks and is denoted by 8,,) for the data and Monte Carlo.
It is possible to conclude from these plots that there is good general agreement
between data and Monte Carlo, but fig. 3.4, which shows the number of standard
deviations between data and Monte Carlo for each of the channels of fig. 3.3,
illustrates that under close scrutiny there are significant differences. It can be
deduced that the Monte Carlo predicts too many events with either a low energy
photon or a photon close to a track whilst not predicting enough events containing

a high energy photon which is well separated from both tracks.

The major contribution to the Monte Carlo total following the topological
selection comes from the Bhabha generator BABAMC, and fig. 3.5 shows that it
makes at least fifty percent of the contribution to the channels of fig. 3.4 where
the Monte Carlo is very much larger than the data. Therefore it is possible to
conclude that the main reason for the Monte Carlo total being significantly larger
than the data is because of the contribution from the BABAMC generator. The

reasons why this conclusion were reached are outlined below.

The cross-section obtained when BABAMC is run is slightly too large because
the generator does not include higher order corrections to the Z width and the

energy dependence of the width. This means that the normalisation factor for
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Figure 3.2: Plots showing (a) the number of photons per event in data and Monte
Carlo after topological cuts, and (b) the number of standard deviations between

data and Monte Carlo in (a).
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(b)

Figure 3.3: The photon energy versus the cosine of the photon’s isolation angle for
pt ™y final states in (a) the data and (b) the Monte Carlo after the topological

cuts have been applied.
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Figure 3.4: The number of standard deviations between the data and the Monte
Carlo following the topological cuts.

Figure 3.5: A plot showing the fractional contribution of the Bhabha Monte Carlo

to the Monte Carlo total following topological cuts.
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BABAMUC is slightly larger than it should be, and thus there are too many Bhabha
events predicted. Another problem arises because BABAMC was mainly designed
to predict the low angle scattering events which are used to monitor and measure
the integrated luminosity received by ALEPH. Therefore the distributions for
large energy photons and photons well separated from tracks are not correctly
implemented. These arguments may suggest that another Monte Carlo generator
should have been used to simulate ete™ — ete™ events. BABAMC is, however,

the most reliable Bhabha Monte Carlo generator available for this analysis.

The predicted number of tau Monte Carlo events is much larger than that
of the muon Monte Carlo because of the additional photons created during tau

decays, both directly and through 7% decays.

3.3.3 Background rejection

Following the topological cuts the aim of the analysis is to isolate a sample mainly
consisting of events from the process ete™ = Z — utu™ +ny (n > 1). The level
of purity of the sample affects the efficiency of the selection process, and therefore
some contamination from other processes is inevitable if the efficiency is to be

maintained at a reasonable level.

The first stage of the process of isolating the sample with which the results
can be obtained makes use of the high efficiency with which ALEPH identifies

muons (section 2.14.1).

The ALEPH muon identification program either rejects a candidate track or,
depending on which subdetectors have been triggered, provides a muon identifi-

cation number. This number can have one the following values:

o = 1 if flagged a muon by only the hadronic calorimeter;
o = 2 if flagged a muon by only the muon chambers;
o = 3 if flagged a muon by both the hadronic calorimeter and the muon

chambers;
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o = 10 if the track produced one hit in each layer of the muon chambers but
the tight matching to the muon hypothesis fails;

o = 11 if the track produced a good pattern in the hadronic calorimeter;

o = 12 if the track produces one and only one good hit in the muon chambers;

o = 13 if the track produced a good pattern in the hadronic calorimeter and
one and only one good hit in the muon chambers;

o = 14 if the track produced a good pattern in the hadronic calorimeter and
one hit in each layer of the muon chambers;

o = 15 if the track produced one hit in each layer of the muon chambers which

passes the tight matching to a muon hypothesis.

If the candidate is rejected as a muon then the identification program returns

Z€ro.

If the identifications attributed to the tracks in data and Monte Carlo are
compared the agreement is superficially good, as the plots in fig. 3.6 illustrate.
However, if the muon identifications of the Monte Carlo plot are divided by those
of the data it is possible to observe that for certain muon identifications there is
a poor match (fig. 3.7). This arises because the Monte Carlo detector simulation
of ALEPH has been optimised to facilitate faster running, which means that not
all of the subdetectors are fully simulated. In order that muons are still found
with the same efficiency in data and Monte Carlo the identification program was
tuned, but only the muon identification numbers 3, 13 and 14 were used. Thus

only this subset of the identified muons produce the same results in data and

Monte Carlo [23].

The large rise at the origin in fig. 3.7 is because the Bhabha Monte Carlo
overestimates the normalised number of events, as explained in the previous sec-

tion.

In order to reduce the systematic error introduced by muon identification it

is only required that at least one of the candidate tracks returns a value of 3, 13
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(b)

Figure 3.6: A plot showing the muon identifications of track 1 versus track 2 for

(a) data and (b) Monte Carlo.
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Figure 3.7: The result of dividing the muon identifications of Monte Carlo by
those of the data.

or 14. This creates a problem as Z — 777~ events where only one tau decays
to a muon can be accepted, therefore increasing the contamination, but this is

rectified later with a cut to reduce the tau background.

The results of the muon identification cut are contained in tables 3.2, 3.3 and
3.4. Table 3.2 shows that the Monte Carlo and data totals are now 11165 and

10888 respectively, a difference of 2.6 standard deviations.

The cut on muon identification has reduced the Bhabha contribution to zero,
and the number of standard deviations between data and Monte Carlo has also
decreased from 14.0 to 2.6. Thus the conclusion reached in the last section that

the BABAMC Monte Carlo was the cause of the 14.0 standard deviation difference

between data and Monte Carlo appears to be valid.

The remaining background consists almost wholly of events arising from the

decay Z — 7t7~. Taus decay within a couple of centimetres of the production
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Figure 3.8: A plot of the total visible energy in the event for data and Monte
Carlo.

point with at least one neutrino associated with each decay. Thus some of the
energy of the event escapes detection. Therefore a reduction in this background

will result from a cut on the total energy carried by the detected particles.

The total detected energy, or visible energy, in the event was found by sum-
ming all of the energy flow objects. The resulting plot of visible energy/+/s for
all events is shown in fig. 3.8. From this plot it can be seen that if the region for
which 0.9 < visible energy/\/s < 1.1 is considered the muon Monte Carlo purity
is greatly enhanced (the two arrows on the plot indicate these two limits). For
this region the Monte Carlo is 5.7 standard deviations above the data (tables 3.2,
3.3 and 3.4).

An upper limit was imposed because the tails of distributions are not always
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simulated properly by both Monte Carlo generators and detector simulation, and

it is therefore safer to avoid these regions.

Therefore the generic topologies for Z — utu~ + nvy have been isolated from
the initial samples leaving 5352 data events and 5775 Monte Carlo events, a
difference of 5.7 standard deviations. The plots of fig. 3.9 show that the reason
for this discrepancy is that the number of p*p~~ final states predicted by Monte
Carlo is over eight standard deviations larger than the data. It is interesting to
note that the Monte Carlo prediction for the number of u*p~v~ final states is
approximately twelve standard deviations lower than the data, suggesting that
there is not a systematic problem with the method used to normalise the Monte

Carlo to the data.

The deficiency of the Monte Carlo for 1~ events is created by an absence
of a smaller number of events than the number of additional events overpredicted
for the u*p~~ final state. This means that if the u™p~~ and u™p~~~ events are
combined then the Monte Carlo is still 5.4 standard deviations larger than the
data. The difference between the Monte Carlo predictions for utu™ + kv (k > 2)
and the data are all less than two standard deviations, although the low number
of events in these cases means that any systematic effects would be swamped by

the statistical errors.

That the number of put ™+ events is larger in the Monte Carlo than the data
and yet the number of u*u~vv events lower illustrates the inadequacies of the
generator used to simulate Z — ptu~™ 4+ ny (n > 1) events. For this analysis
these events are simulated by KORALZ, which is not fully second order in «;
whilst there can be either two initial state photons or an initial and final state
photon in an event, it is not possible for there to be two final state photons. This
explains why the number of putu~~7 events is lower in Monte Carlo than data,
and such a deficiency enhances the number of u*tu~v events. This is because
some of the putu~v events should be u™u~+v events, partially explaining why
the Monte Carlo is high for gt =~ events. However, as mentioned above, adding
the ut =~ and utp~~v events still leaves the Monte Carlo higher than the data.
Therefore it appears that KORALZ predicts too many events with a u*p~~ final
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state even after correcting for the fact that it is not fully second order in a.

The plots in fig. 3.10 show that the Monte Carlo and data distributions of
photon energy versus the cosine of the photon’s isolation angle for u* =+ events
are similar in form, but fig. 3.11 illustrates some subtle differences between the
data and Monte Carlo distributions. The Monte Carlo predicts too many events
where the photon has an isolation angle of less than 90°, in particular there
are many more events where the photon is collinear with a muon. The data,
however, has more events with a high energy isolated photon than the Monte
Carlo predicts, but the overprediction of Monte Carlo events with a collinear

photon far outweighs this small excess in data.

Therefore the reason why the Monte Carlo is 5.7 standard deviations higher
than the data is because of the excessive number of u* =~ events predicted by

the Monte Carlo where the photon is collinear with a muon.

The topological selection and background rejection procedures have produced
samples of Monte Carlo and data with a high purity of Z — p*pu~+ events, and
it is now possible to construct Ry(yeu) and Ra(yeut) so that comparisons can be

made with theoretical predictions.

3.4 The results for R (y.,) and Ra(ycu)

It is possible to show, using equations 3.4, 3.5 and 3.6 along with n = o £ (where
n is the number of events produced by a given process with cross-section o for
integrated luminosity £), that for the data and Monte Carlo samples R, (yey:) is
given by

Number of u*pu~ + nvy events
Rn(ycut) — .

(3.7)

Number of ptpu~ events

The selection procedures outlined in the previous section provide data and
Monte Carlo samples which can be used to produce the numerator of equation 3.7.
To obtain the denominator it is assumed that a utu~ event can contain two
muons and m photons (m > 0) in the final state. This definition of a u*u~ event

is adopted as a complicated set of cuts would have to be devised to determine
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Figure 3.9: Plots showing (a) the number of photons per event in data and Monte

Carlo after topological and background rejection cuts, and (b) the number of

standard deviations between data and Monte Carlo in (a).
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Figure 3.10: Plots showing the photon energy versus the cosine of the photon’s
isolation angle for p*p~v final states in (a) the data and (b) the Monte Carlo

after the topological and background rejection cuts have been applied.
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Figure 3.11: The ratio of the data and the Monte Carlo distributions of photon
energy versus the cosine of the photon’s isolation angle for %~ events following

topological, muon identification and visible energy cuts.

whether a low energy electromagnetic calorimeter cluster constituted a photon if it
was necessary to have only two muons and no photons. In addition, the difference
between the numbers of events with final states of u* ™ and utu= 4+ my (m > 0)
is of the order of a percent. This is because the effect of radiating an additional

photon reduces the probability of the interaction occuring by a(Myz) ~ 1/128.

To obtain the number of ™ 4+ m~ (m > 0) events the topological selection
and background rejection processes were applied to the data and Monte Carlo
with all cuts relating to photons removed. There are 60798 data and 60240 Monte
Carlo events surviving these cuts, the difference between these results being 2.1
standard deviations. Combining this result, where there is more data than Monte
Carlo, with the result obtained for u*u™ 4+ ny (n > 1), reinforces the argument
that the Monte Carlo predicts too many events containing photons, especially

since the method of identifying photons has similar efficiencies in data and Monte

Carlo [23].
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The first stage of deriving a plot of R, (yeu) for the data is to create a sample
of events with two muons and exactly n good photons. This is used to create a
plot of the number of u* ™ + n+y events versus y.,;. To achieve this the range of
Yeur values which satisfy the inequalities 3.1 are determined for each event, and
one is added to all of the channels of an appropriately defined histogram which
lie within each event’s range of valid y.,; values. The final plot of R, (yeu:) is
realised by dividing all of the channels of the histogram with non-zero entries by
the total number of utu™ 4+ my (m > 0) events. Exactly the same procedure is

used to procure the plot for the Monte Carlo sample.

Fig 3.12 contains Ri(y..:) for data and Monte Carlo along with the ratio of
these distributions. It is possible to observe that the Monte Carlo is systematically
higher than the data for low values of y.,; whilst the data is higher at large y.,;.
Given that a low y.,; indicates low energy and/or collinear photons whilst a large
Yeur 18 only obtained by isolated high energy photons, these plots vindicate the

conclusion previously reached concerning the inadequacies of the Monte Carlo.

The three theoretical predictions for Ri(y..:) which are compared with the
data and Monte Carlo results are from Stirling [29], from a collaboration with
Summers [40] and from a set of KORALZ events which have not been subjected

to detector simulation.

The method employed by Stirling to obtain Rj(ye.) is to use a phase space
generator to produce either two or three four-vectors which all have zero mass and
whose sum in both cases is (Mg, 6) By interpretting these as u™p~™ and putpu=y
final states it is possible, using Monte Carlo integration techniques [41], to cal-
culate both o(ete™ = Z — putp~) and o(ete™ = Z — ptu~v). Equations 3.4
and 3.6 show that Ri(y..:) can be obtained by constructing the ratio of these two
cross-sections. In order to simplify the cross-section calculations Stirling assumes

that initial state radiation and s channel photon exchange are negligible.

Summers calculates Ry(y..:) using exactly the same methodology as Stirling
but includes the effects of both initial state radiation and s channel photon ex-

change when calculating the cross-sections.
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Figure 3.12: Plots showing (a) the R;(yey:) distributions of data and Monte Carlo
and (b) the ratio of the data and Monte Carlo distributions.
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Equation 3.7 is used as the basis for obtaining Ry (yey:) from KORALZ, where

the number pt ™ and pp~+ events are obtained using Monte Carlo truth.

The predictions of Stirling, Summers and KORALZ for R;(y..:) are shown in
fig. 3.13. The following cuts were implemented in the programs used to obtain
the three theoretical results so that the region of phase space considered is the

same as that of the data.

o |cosf| < 0.95 for all generated four-vectors;

o the energy of the four-vector representing the photon is required to be

greater than or equal to 3 GeV;

o the total transverse momentum of the four-vectors representing the muons

is required to be greater than 1 GeV/c;

o the modulus of the total momentum of the generated track four-vectors is

required to be greater than 0.5 GeV/c.

It is possible to deduce from fig. 3.13 that Stirling’s result is lower than both
Summers and KORALZ for large y.,;. This deficiency is because of the assump-
tions made by Stirling that initial state radiation and s channel photon exchange
are negligible in this instance. If these assumptions are not made then the fact
that there is a pole in the cross-section for s channel photon exchange when a
large energy initial state photon forces the final state muons to be collinear cre-
ates a large proportion of the events at large y.,;. This explains why Stirling’s

prediction is low for large ye.y:.

The plot of fig. 3.14 enables a comparison to be made between the Rq(yeut)
distribution of the data and the theoretical predictions. It can be seen that the
data is much lower than the theory over most of the range of y., values. A
possible explanation of the poor agreement is that the theoretical results have
not been fully corrected for the effects of the data selection process; only simple
geometric cuts have been implemented in the programs which produce the the-
oretical results whilst no allowance has been made for the inefficiencies of muon

or photon identification.
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Figure 3.13: A plot showing Ri(y..:) for KORALZ, Stirling and Summers.
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Figure 3.14: A plot showing Ri(y..:) for data, KORALZ, Stirling and Summers.
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A method of correcting the Ry(y..:) distributions of Stirling and Summers so
that all of the effects of the data selection process have been taken into account
is to use a scaling factor provided by the ratio of the Ry(y..:) distributions of
the Monte Carlo and KORALZ. This is a valid procedure as both distributions
are produced by the same generator, and therefore any systematic effects should

cancel in the ratio, leaving a y.,; dependent efficiency.

Fig. 3.15 contains the R;(y..:) distributions for the data and corrected theo-
retical predictions. Figs. 3.16 and 3.17 show the ratio of the data and corrected
Summers and Stirling distributions respectively. The agreement between data
and the theoretical predictions is improved by the correction for the effects of
selection efficiency but the theory is still systematically high for low values of
Yeur- A possible source of this systematic shift is the contamination of the data
by events which are not from 7 — ptpu~+ decays. This effect is small, but if
coupled with other small effects, such as the fact that the theoretical predictions
use the uncorrected Born matrix element to determine o(ete™ — Z — ptp™)
whereas the method for the data uses u*p~ +m~y (m > 0) events, a systematic

effect could be possible.

The ratio of data and corrected Summers shown in Fig. 3.16 appears to be
almost independent of y.,;, showing that allowing for a constant systematic ef-
fect there is extremely good agreement between these two distributions. The
absence of both initial state radiation and s channel photon exchange in Stirlings

calculation is the reason for the excess of data at large y.,; in fig. 3.17.

The plots of Ra(y..:) for the data, Monte Carlo and Stirling can be seen in
fig. 3.18. The Monte Carlo is systematically lower than the data because, as stated
before, the Monte Carlo used to generate ™~~~ events is not fully second order
in «; the possibility of two final state photons being missing. The only theoretical
prediction for Rz(yey:) available is provided by Stirling. It is possible to conclude
from fig. 3.18 that there is good agreement between data and Stirling. However
the low number of data events involved means that no subtle differences can be

observed.
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Figure 3.16: A plot of the ratio of Ry(y..t) for data and corrected Summers.
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Figure 3.17: A plot of the ratio of Ry(y.ut) for data and corrected Stirling.
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Figure 3.18: A plot of the ratio of Ry(y..t) for data, Monte Carlo and Stirling.
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3.5 Conclusion

This analysis shows that the number of u*u™ 4+ m~ (m > 0) events in data and
Monte Carlo are in good agreement; the data is larger than the Monte Carlo by
2.1 standard deviations. If, however, the number of u*u~ + ny (n > 1) events
in data and Monte Carlo are compared then there is a difference of 5.7 standard
deviations. Therefore it is possible to conclude that the Monte Carlo predicts too

many events where photons are radiated and too few without photons.

The Monte Carlo used to generate ee™ — Z — utu™ +m~y (m > 0) events is
not fully second order in o. Thus an excess of ut =~ events in the Monte Carlo
is understandable, but if the u™ = and p*p~~~ events are added together the
Monte Carlo is still higher than the data. This indicates that the Monte Carlo
generates too many ut v events even after allowing for the fact that it is not
fully second order in a. An analysis of the energy of the photon versus the
isolation angle of the photon for such events shows that the Monte Carlo predicts
too many events where the photon has a low isolation angle and/or low energy.
This effect is not often seen by analyses because it is usually required that for the
photons in an event to be considered they must have a reasonably large isolation

angle, which removes the problem area of phase space.

The data, however, has more events containing high energy isolated photons.
This may be due to the deficiencies of the Monte Carlo, but could also be a sign
of new physics. However, given that there is extremely good agreement for the
total number of p* = 4+m~y (m > 0) events in data and Monte Carlo, it is unlikely
that this data excess is due to new physics, but the possibility can not be ruled

out.

The agreement between the theoretical prediction of Summers and data is
much better than that between Stirling and data. This suggests that the as-
sumptions made by Stirling, that is that the effects of both initial state radiation
and s channel photon exchange can be ignored for centre of mass energies equal
to Mz, are not valid when considering events containing isolated high energy pho-

tons. This is because there is a pole in the matrix element for s channel photon
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exchange when an initial state photon has half the centre of mass energy and the

muons are collinear.
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Chapter 4

A Monte Carlo for the process

ete™ = Z — 1t

4.1 Introduction

If events originating from a specific interaction are being searched for in data then
it is necessary to have Monte Carlo generators for all processes that contribute
events to the data sample. Then, after subjecting the events produced by these
Monte Carlo generators to detector simulation, it is possible to compare and
contrast the distributions of quantities obtained from the detected particles of
the different generators and devise a set of cuts which produces a subset of the

data sample which contains the relevant events.

The aim of the analysis carried out in Chapter 5 is to constrain the anomalous
magnetic moment of the tau. The method employed to achieve this uses the

te” — Z — 7777~ where the tau couples to the photon through its

process e
magnetic moment. There did not exist a Monte Carlo generator for this process
and thus one has been produced. The stages involved in this procedure (i.e.

calculation of the matrix element, creating a three body phase space generator

and implementing the tau decays) are detailed in this chapter.
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4.2 The matrix element

To produce a Monte Carlo generator for a given reaction the appropriate spin
averaged matrix element squared, denoted by IMP, is required. This contains
information about both the angular and energy distributions of the final state
particles. The calculation of W for the process ete™ — Z — 7777~ where the
coupling between the tau and the photon is due to the tau’s magnetic moment has
never been published, and therefore it was necessary to perform this calculation

within the framework of the standard model.

There are four Feynman diagrams for the process ete™ — 7 — 77777, as
any of the external charged fermions can radiate the photon. These diagrams
are illustrated in fig. 4.1. The couplings between the fields which are required
to convert the diagrams into matrix elements are shown in fig. 4.2. The form
and origin of the coupling used between the tau and the photon is explained in
section 1.5, but it is important to note that F3(0) is the Pauli form factor that is
used to represent the anomalous magnetic moment of the tau when it couples to

a zero mass photon.

The matrix elements for diagrams 1, 2, 3 and 4 of fig. 4.1 are

— 1
M, = v(m)( g

cos Oy 2(

& =) ¢

(L (et (T )

_ _Zg p,lT_TE))
o) (=51t = i) ) ola)

(=t )

M,y = ﬁ(p+)6§(—i€75)i(_p+_l_k)2

( 9 v”%(cev - 0275)) u(p-) (%) X

cos Oy

w0) (o2 — 7)) olas)

cos Oy ' 2



My = olpy) (g e = ™)) o) (F22) =

oo e v+ 0 ) LA

( =9 wlig 02’75)) v(a+)

cosfy ' 2
M = (C;Zéqw Lk ) o) (T
R e ) %5 -
(e (s + gt )}v<q+>
where
1

R =

(py +p-)? — Mz +iMzlz

and py, p_, g1, g— and k are the four-momenta of the positron, electron, positive

tau, negative tau and photon respectively. The masses of the external fermions

have been assumed to be zero compared to the centre of mass energy.

The total matrix element, Mtor, is the sum of the matrix elements obtained

from the four Feynman diagrams, i.e.
Mror = My + My + M3+ My

and therefore the spin averaged matrix element squared is

|(Mror|? = [My]? + [My|> + |[Ms]* + [My]2 +

IRe (MlM; L MM+ MM

MM+ MM+ MgMz) .
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Figure 4.1: The Feynman diagrams used to calculate the matrix element.
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The initial stage in calculating an element of equation 4.1 is to derive the
hermitian conjugate of the appropriate matrix element, and thus construct the
required matrix element squared or interference term. Next the spins of the initial
state particles are averaged whilst those of the final state particles are summed.
This produces an expression that is a collection of trace operations. The results
given in appendix A are used to simplify these traces and provide the final results

which are expressed in terms of the four-momenta of the participating particles.

The Pauli form factor F3(0) is not present in the three terms of equation 4.1
which are constructed from the matrix elements obtained when the photon is
radiated from an initial state particle. Therefore these terms (JM;[2, [M]? and
m) do not have to be explicitly calculated as they will not contribute to
the cross-section for the magnetic coupling and a Monte Carlo generator already

exists for the case when there is a non-magnetic tau-photon coupling.

Both the magnetic and non-magnetic tau-photon couplings are included in

the vertex term which was used to obtain M3 and AM,. There is no interference

between these two couplings when |Ms]?2 and |My|? are calculated as the terms
which are linear in F3(0) are all identically zero. This is explicitly shown below

for |M;]2.

The first stage in calculating |M3]2 is to obtain the matrix element squared,
which is
2.4 %

e“giese, - e . )
61(q R cost Oy R P (S = €y Julp-Julp-) >

MsML =

2
=3
S
o
<o
|
o
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ot
S—’
<
S
=3
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(g-) {75 — ZLA;T)(VS J— %75)} X
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Averaging the spins of the initial state particles and summing the spins of the
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final state particles gives

—e2gt

256(q- - k)? cos* Oy RR* 8

(Ms[* =
{(c® 4+ )Tr [Br” Por"] = 260eaTr [3° By Br7]}

{2+ Tr (42t B0 dovald+ )] -

260 AT |37 4 -+ B dpva(dt K)vs) —

(2 + e LT [ 0F = )t i
(d-+ Brv] +

2¢7.¢} ZQJ\(;T)TT 7 4 F= Bt B A X

(d-+ Frv] -

(€ + DV APT [ ot B it )

(Fvs — s §)] —

2 T [ Ak K et R
(frs — s K)] +

2

(@7 + N [ (5 - ) B

(d-+ B)(Frs — s K] +

2

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

2Tt T [3° 07 K- Bt K fond o+ )

(fvs — s F)1}-

(4.9)

The terms 4.2 and 4.3 in the above equation are due to the non-magnetic cou-
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pling and thus do not include F5(0). Terms 4.4 to 4.7 are due to the interference
between the two types of tau-photon coupling and are all identically zero. This is
because they all contain the trace of either an odd number of gamma matrices or
v® multiplied by an odd number of gamma matrices (appendix A). The last two
terms (4.8 and 4.9) are due to the magnetic coupling and are the only non-zero
terms containing F5(0). Thus there is no interference between the magnetic and

non-magnetic tau-photon couplings.

The absence of interference between the different tau-photon couplings is be-
cause the magnetic coupling is due to a dipole which therefore flips the helicity
of the fermion line. Thus the helicity configuration of the final state particles
when there is a dipole coupling is different from the configuration when there is
a non-magnetic coupling, making interference impossible [42] [43]. The same is

true for | M4|?, where, again, there are no terms linear in F3(0).

All of the interference terms which contain M; or M, and M3 or M, do not
have any non-zero contribution with F3(0) as a factor. All the non-zero elements
of these terms are due to the non-magnetic coupling between the tau and the
photon. To illustrate this consider the interference between M; and Msj, which

is given by

—e2gt

256(p— - k)(g- - k) cos* O RR* .

{(et? 4+ &) Tr [Py (B= 7 "] -

26T [ By (= 0 "]} >

{( Q2+ T [dov dyvald+ K] — (4.10)
2603 Tr ¥ dv Ayl F)vs] — (4.11)
F5(0)

(c7* + i)

ST [ dnld+ B =3 ] +(1.12)
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2 AL T [ o et (s = B} (113

In the above equation the terms 4.10 and 4.11 are due to the non-magnetic cou-
pling and therefore do not contain F5(0). The last two terms (4.12 and 4.13) are
where there is interference between the magnetic and non-magnetic tau-photon
couplings, and both are identically zero due to the odd number of gamma matri-
ces (appendix A). Therefore the only interference term which contains a non-zero

element with the Pauli magnetic coupling factor is MsM],.

Calculating all of the terms in equation 4.1 leads to
2e’gt 15(0)?
M? cos* 0w R~

|-MTOT|2 = |M0|2—|-

{(d + A (pe - ae)(p= - =) + (p+ - a=)(p= - q4)] +

Ac 4 (4 - ae)(p= - q=) + (P4 - q=)(p- - q4)] —

(qfc-élvk)_(qc_i.)k) (P4 - a)(p= - qi)(g- - k)* +

(P4 - B)(p= - k) (as - a=)" + (P4 - 4= )(p- - g-)(as - k)" —

(P4 - a)(p- - k)(gy - a-)(q- - k) —

(P4 - F)(p- - a4 )(qy - a-)(q- - k) —

(P4 - q-)(p- - k)(gy - a-)(qy - k) —

(P4 - F)(p- - a-)(qy - a-)(qy - K} (4.14)

where |./\/lo|2 is the result obtained for the non-magnetic tau-photon coupling,

and the universality of the couplings between the Z and all three generations of
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leptons has been used to give ¢, = ¢, = ¢y and ¢ = ¢, = c4. To produce a
P 4 14 A A p

Monte Carlo generator for the magnetic tau-photon coupling the terms without

F5(0) as a factor, which are all contained in |./\/lo|2, are not required.

The Feynman diagrams with an exchanged photon, rather than a Z, have not
been considered because of the lack of interference between the magnetic and non-
magnetic tau-photon couplings. This means that all non-zero terms containing
F5(0) that would be created by including photon exchange are either 7' or /T
smaller than the terms in equation 4.14, where T is given by

(et po = M3+ METY
(py +p-)*

The data used for the analysis in Chapter 5 has (p; + p—)? = MZ, which means

(4.15)

that T'=T'%/MZ ~ 0.003. Thus it is valid to ignore the contribution from photon

exchange.

Once |M|? has been calculated then the cross-section can be obtained using

1 d’qy &q- Ik

= (4) N VI
2507 ) 2400 2000 2y 0 (Pt P = g g HR) M (416)

g

Thus by substituting ¢y = —1/2+2sin? fy and ¢4 = —1/2 into equation 4.14 and
using the values of constants given by the particle data group [44] it is possible
to obtain a cross-section where the only unknown quantity is F5(0). This result
has been compared to the one obtained by Grifols and Méndez [45], where the
width Z — 7177+ for the magnetic tau-photon coupling was calculated and the

cross-section obtained using

127 Tos T
olete™ = 7 = X)| jsonr, = FZ% (4.17)
4 4

The two results agree to three significant figures.

4.3 A three body phase space generator

By using Monte Carlo integration to evaluate equation 4.16 it is possible to obtain
an event generator for a process where |[M|2 is known. A phase space generator

is usually employed to carry out the integration. These generators cover all of
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the phase space available for the process, once four-momentum conservation and
the masses of the final state particles have been taken into account, and select
a random choice of four-momenta for the final state particles, thus creating an
event. A weight is assigned to this event which is a measure of the probability
of this geometric configuration of particles occuring for the given process. If
the maximum achievable weight is known then it is possible, by using a random

number generator, to obtain unweighted events.

For three body phase space it is possible to express all the four-momenta in
terms of five independent variables. To illustrate this, and show the variables
which are required, consider the decay X — A + B 4 (', where the particles
have masses My, M4, Mg and Mg respectively. This decay can be viewed as
consisting of three consecutive stages - the decay X — A 4 D in the lab frame,
the decay D — B + C' in the rest frame of the D, and the boosting of the decay
products of the D into the lab frame. These processes are shown schematically

in fig. 4.3.

The first decay, X — A + D, requires three of the five independent variables.
The mass of the D is one of those required, as it can vary between bounds
obtained by the following kinematic constraints. The total energy after the decay
can not exceed the rest mass energy of the X and therefore the upper limit
Mp < My — My is necessary. The lower limit of Mp > Mp + M¢ is required
so that the D decay is energetically allowed. Momentum conservation must be
applied for each different Mp to ensure that p, = —p,. The other two variables
necessary for the decay to cover all of the available phase space are the polar angle

f and the azimuthal angle ¢, which are used to determine the spatial positions

of the A and the D. These have the usual ranges of 0 < 8§ < 7 and 0 < ¢ < 27.

The other two variables are needed for the second decay. Here the masses of
the decay products are fixed and thus the only variables are the angles required
to calculate the directions of the B and the C' in the rest frame of the D. Once
again there is a polar angle, #', and an azimuthal angle, ¢’, which have the ranges

0<0 <mand 0 < ¢ <2r.
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Figure 4.3: A schematic explanation of three body phase space.
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Following the boost applied to B and ', the production of three random
four-momenta whose sum is (Mx,0) is complete. Therefore by using Mx = My,
My = Mp = M, and My = 0 it is possible to obtain randomly varying four-

momenta for the particles resulting from the decay 7 — 7777 7.

A formula to calculate the event weight is provided by rewriting equation 4.16

in the form [46]

1 /MD:MZ—M-,—

T / W dQ dQ dM)
S s

MD:MT

where ) )
AE(MZ, M2, MB) M (M, A2, 0)
SM?2 SM?

W = 2Mp M2 (4.18)

dQ = dcos 0 do, dY = dcos§'dd’

AMa,b,c) = a’+b*+ 2 — 2(ab + ac+ be).

Thus the calculation of equation 4.18 for each random selection of four-momenta
by the phase space generator provides the required event weight. If the maximum
value W can attain is known then the hit and miss method [41] can be employed

to produce unweighted events. Using this method an event is only kept if

w
Wmax

> R

where R is chosen randomly between 0 and 1.

The above procedures have been implemented to create a Monte Carlo gener-
ator that produces unweighted events for the reaction ete™ — 7 — 777+ with

a magnetic tau-photon coupling.

There is a dichotomy in the Monte Carlo as the tau mass is assumed to
be zero for the matrix element calculation but its correct value is used in the
phase space generator. This is resolved by considering the following argument.
Reinstating the tau mass in the matrix element calculation gives rise to terms

which are typically a factor M, /My ~ 0.02 smaller than those already present [47]
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and therefore it is valid to neglect it, whereas it is essential for correct detector
simulation that the tau mass is correct when the four-momenta of the event are

generated.

The weighted energies of the particles generated by the phase space generator
are shown in fig. 4.4. The weighting that has been used is the phase space part
of equation 4.18, i.e. equation 4.18 / |M[|*. The distributions of the particles is

identical if the tau mass is taken into account.

The plot in fig. 4.5 shows the photon energy spectrum from the Monte Carlo
where the form factor F3(0) has been set to one. The spectrum from the Monte
Carlo which is used by ALEPH to produce a 7777+ final state is also included

to illustrate the difference which arises when the magnetic coupling is used.

4.4 Implementing the 7 decays

The short lifetime of the tau means that their decays must be carried out by the
Monte Carlo generator before the event is passed onto detector simulation. The
machinery required to implement these decays correctly is large and complicated

and therefore an existing program was modified and added to the above Monte

Carlo.

The Monte Carlo generator KORALZ [33] [34] [35] is used by all the LEP
experiments to simulate the decay ete™ — Z — 7t77 4+ ny, n = 0,1,2,3, and
implements most tau decay modes with branching ratios which will be acheived
by LEP. Therefore the relevant sections of KORALYZ were used to decay the taus
produced by the Monte Carlo generator with the magnetic coupling. The events
which are generated can now be subjected to detector simulation and used in the

analysis conducted in Chapter 5.
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Chapter 5

Constraining the anomalous

magnetic moment of the tau

5.1 Introduction

Accurate experimental measurements of the intrinsic parameters of the leptons
provide a window to study the subtle effects that higher order corrections have
on the physically observable quantities of the standard model (section 1.4). The
intrinsic parameters of the quark sector do not generally provide such accurate
tests of higher order effects because the asymptotic freedom present in QCD

makes obtaining accurate experimental results difficult.

Given that the tau was the last charged lepton to be experimentally discov-
ered [48] along with the fact that of all three charged leptons it has the shortest
lifetime, it is possible to understand why most of its intrinsic parameters have
not been as accurately measured as those of the electron and muon. An illus-
trative example is afforded by considering the experimental accuracy obtained in

measuring the anomalous magnetic moments of the three charged leptons.

A detailed explanation of the origin of the magnetic moments of the charged
fermions, and how they acquire anomalous magnetic moments within the frame-
work of the standard model, can be found in section 1.5. It is shown in this

section that the coupling between a fermion of flavour f and a photon caused by

109



the anomalous magnetic moment of the fermion f is proportional to the Pauli
form factor F;(kz), where k* is the four-momentum of the photon. The anoma-

lous magnetic moment of the fermion is identified as being equal to sz(())

If the effects of higher order corrections are excluded then the anomalous
magnetic moments of all three charged leptons is equal to zero (section 1.5).
This value changes, however, with the inclusion of radiative corrections, and this
effect is dependent on the mass of the lepton. This means that all three leptons

have different anomalous magnetic moments.

Whilst the anomalous magnetic moment of the electron has been measured to
ten significant figures and that of the muon to eight significant figures, the value

of the anomalous magnetic moment of the tau is only constrained [49)].

It is possible for some compositeness models to greatly enhance the standard
model prediction for the anomalous magnetic moment of the tau [50], and as such
enhanced values have not yet been excluded by experiment, it is possible that the
tau is a composite object. Therefore it is the aim of this chapter to constrain
further the range of values available for the anomalous magnetic moment of the

tau, with the possibility of observing an indication of compositeness.

This analysis produces a limit for FJ(0) by comparing the geometric char-
acteristics of events with a 7777~ final state in the ALEPH data with those
predicted by a Monte Carlo generator which has a coupling between the taus and

the photon that is entirely due to the anomalous magnetic moment of the tau.

5.2 Data selection

The aim of this chapter is to constrain the anomalous magnetic moment of the
tau by analysing how it couples to a real photon. Therefore a series of cuts are
required which will produce a subset of the ALEPH data that contains events
with a 7777+ final state. It is, however, only possible for ALEPH to detect the
decay products of the taus. This makes identifying the required final state a
complicated process, and a high purity is hard to obtain if the efficiency of the
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selection process is to be kept at a reasonable level.

The proportion of tau decays producing one and three charged particles, along
with n neutral particles (n > 0), is approximately 85% and 14% respectively [49].
Therefore greater than 99% of 7777~ final states have two, four or six charged
tracks detected. For this analysis only events where the taus decay to two or
four tracks are searched for. Such configurations constitute over 97% of the total
allowed final states. FEvents where the taus produce six charged tracks are not
included in the analysis in order to reduce the background from Z — ¢¢' [23].
Therefore only events with a final state topology of two or four charged tracks

and one photon are required for this analysis.

The subset of ALEPH data produced by this topological selection will in-
clude events from radiative Bhabha events, 7 — u*p~v decays, gamma-gamma
annihilations and Z — ¢¢’ in addition to the required Z — 777+ events. There-
fore the second stage of the data selection process is to remove the majority of
these background events so that the final subset of data from which the limit is

extracted consists mainly of Z — 7177+ events.

The data used for this analysis consists of events collected by ALEPH in 1990,
1991, 1992 and 1993. Only events where LEP was running exactly on the peak,
that is /s = My, are used, leaving a sample of 48.8 pb~!.

Data collected whilst LEP was running below the Z peak are not used because
for such centre of mass energies s channel photon exchange is important, and the
matrix element of the signal Monte Carlo (see next section) does not include

Feynman diagrams where a photon is exchanged in the s channel.

The reason for not using ALEPH data collected whilst LEP was running
above the Z peak is because at such energies it is quite likely that a photon will
be radiated from one of the initial state particles, leaving a centre of mass energy
for the electron-positron annihilation which is equal to the rest mass energy of the
7 boson. The increased likelihood of initial state radiation can cause a problem
because if a non-tau event contains an initial state photon that is not detected

because it has a small polar angle along with two or four tracks and a photon
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which are detected, the event is likely to be misidentified as a Z — 7777+ decay.
This is because the sum of detected energy for such an event is less than the
centre of mass energy due to the undetected photon, and missing energy is the

signature of a Z — 7177+ decay.

5.2.1 The signal Monte Carlo generator

Whilst the data selection process produces a set of events consisting mainly of
7 — 7777~ decays, the average geometry of these events is quite different for the
instances where the tau-photon coupling is due to the tau’s anomalous magnetic
moment rather than its electric charge [45]. Given that it is the analysis of the
former type of tau-photon coupling which will constrain the Pauli form factor
F7(0), it is necessary to develop geometric cuts which will enhance the number
of events in the final data sample with an anomalous tau-photon coupling. This
process requires having Monte Carlo generators for both types of tau-photon
coupling. Events from both generators are also required to obtain a limit for
F7(0) by ascertaining how many of the events in the final data sample have been

caused by the anomalous magnetic moment of the tau.

None of the Monte Carlo generators which are used to simulate the decay
Z — 77777 include the possibility of having the tau-photon coupling being
due to the anomalous magnetic moment of the tau. For this reason the writing
of a generator to simulate the reaction ete™ — Z — 77777, where the tau-
photon coupling is entirely due to the anomalous magnetic moment of the tau,

was undertaken. An explanation of the stages involved in this process is given in

chapter 4.

Therefore there are two separate Monte Carlo generators used in this analysis
to simulate the decay Z — 7t77+. In one the tau-photon coupling only occurs
because of the electric charge of the tau (the tau background Monte Carlo), whilst
in the other the tau-photon coupling is entirely due to the anomalous magnetic

moment of the tau (the signal Monte Carlo).

To extract a limit for F7(0) it is necessary to normalise the integrated lumi-
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nosity of the set of events generated using the signal Monte Carlo to that of the
data sample. The method employed to obtain a normalisation factor for a set of

Monte Carlo events is explained in section 3.3.1.

The set of signal events used in this analysis has a normalisation factor of
6.53 F7%(0). Whilst it may appear that not enough signal events have been gen-
erated, i.e. the normalisation factor should be less than one so that the statistical
fluctuations of the Monte Carlo tend to be smaller than those of the data, if the
standard model prediction for Fy(0) [18] is used then the normalisation factor is
equal to 0.00769. Thus the number of signal events generated is sufficient unless

a large enhancement of the standard model value of F;(0) is found.

5.2.2 The background Monte Carlo generators

To isolate a sample of data which contains a high purity of signal events it is
necessary to have Monte Carlo generators that simulate most of the non-signal
(or background) processes that contribute events to the data sample. Then the
distributions produced by the signal Monte Carlo can be compared to those of
the background Monte Carlo generators so that cuts can be developed to produce

the required sample.

The background Monte Carlo generators which are required for this analysis

are shown below along with the processes they simulate.

e BABAMC [30] [31] [32] generates eTe™ — ete™(v) events. It includes
full O(«a) electroweak corrections, but does not include full exponentiation,

higher order corrections to the Z width and the energy dependence of the
7 width;

e KORALZ [33] [34] [35] generates eTe™ — ptu™ and ete™ — 7777 events.
It contains second order initial state radiation with full exponentiation, but

there is only first order final state radiation;

o HVFL generates eTe™ — gq’ events within the JETSET73 [36] framework;
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e PHOPHO [37] generates eTe™ — e¢te™ X events, where X is created by
gamma-gamma annihilation and can be either a multihadronic state via
the VDM process, a pair of leptons produced through QED or a single

resonance;

e GGMJET [38] is an implementation of the multijet QCD processes in
gamma-gamma collisions, where two primary high pr jets are produced

along with one or two beam pipe jets from the photon;

o GGG [51]is a one loop QED Monte Carlo for the production of two photons

including the radiation of a third photon (soft or hard).

The GGG Monte Carlo generator has been included as there is a possibility that
one of the photons will interact with the material of the detector and convert to
two electrons. Therefore this Monte Carlo can produce events which will survive

the topological selection.

The method used to normalise the results of the Monte Carlo generated event
samples to those of the data is to scale the former by the ratio of the integrated lu-
minosities of the data and Monte Carlo samples (section 3.3.1). The normalisaton
factors for the Monte Carlo generated events used in this analysis are shown in
table 5.1. It should be noted that the process with a normalisation factor larger

than one makes an insignificant contribution to the final result.

5.2.3 Topological selection

This procedure selects events with two or four good tracks and one good photon,
all other final state configurations are discarded. For this analysis a good track is
defined to be a charged track identified during event reconstruction (section 2.13)

where

e the number of TPC hits associated with the track is > 4 (if the track has
momentum > 15 GeV/c then there must be at least 8 TPC hits and 1 I'TC
hit);
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Process Normalisation factor
ete™ — ete” 0.652
ete™ — putu~ 0.233
ete™ — 7t~ 0.0706
ete™ — q¢ 0.25
vy — ete” 0.488
vy = ptps 0.462
vy =TT 0.243
vy = qq 1.72
ete” = vy(v) 0.272

Table 5.1: The normalisation factors for the sets of events produced by the back-

ground Monte Carlo generators which are used in this analysis.

o the radial distance of closest approach to the beam axis < 2 c¢m;
o the z coordinate of the closest approach to the beam axis < 7.5 cm;

o the angle between the charged track and the beam axis > 18.2°.

These ensure that only tracks originating from the region where there are beam
crossings and that have accurately measured four-momentum are used in the

analysis.

If an event is found to have two or four good tracks then it is also required

that

o the sum of the charges of the good tracks must be zero;

o the total transverse momentum of the good tracks must be greater than 1

GeV/c;

o if there are four good tracks then one combination of three of these tracks

must have an invariant mass less than or equal to the tau mass.

The first of these cuts enforces the requirement that electric charge must be

conserved whilst the second rejects events where the four-momenta of the good
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tracks are not likely to have been well measured by the apparatus. The third
cut is included to make sure that three of the tracks in a four track event are
from a tau decay. Events where two or more combinations of three tracks have
an invariant mass less than or equal to the tau mass are discarded as in the
later stages of this analysis it is necessary to combine the three tracks which are

thought to originate from a tau into one track.

The set of photons identified by the algorithm explained in section 2.14.2
are used as the initial candidates in the search for a good photon. The algo-
rithm of section 2.14.2 attempts to find photons in the energy depositions of the
electromagnetic calorimeter which are not associated to a charged track. For this

analysis a good photon is defined to be a photon from the set of initial candidates

which

e is the only identified photon from its parent electromagnetic calorimeter

deposition;
e is not in a crack or dead storey of the electromagnetic calorimeter;

e has a polar angle greater than 18.2°.

The first of these requirements reduces the contamination of 7%. These nearly
always decay to two photons almost immediately after they are produced, and
the photons, due to relativistic collimation, generally produce only one cluster
in the electromagnetic calorimeter. Given that 7% are routinely produced by
tau decays, this cut is necessary so that the decay photons are not used as good
photon candidates. The last two criteria ensure that the four-momentum of the

photon is well measured.

There are two additional constraints that must be satisfied by good photons,
and are introduced so that signal events are preferentially selected over back-
ground tau events. To motivate these constraints consider the plots in fig. 5.1
which show the photon energy versus the smaller of the two angles between
the photon and the taus (called the isolation angle and denoted by 6..,) for

_|_

ete™ — 7 — 77774 events from the signal and tau background Monte Carlo
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e

Figure 5.2: The ratio of the signal and tau background Monte Carlo plots for the

photon energy versus the isolation angle of the photon for ete™ — Z — 777~

events.

generators before the taus have decayed. The distribution for the signal has been

(0) set to one.

T
2

normalised to that of the tau background with the value of

It is possible to

The plot of fig. 5.2 shows the ratio of these two distributions.

observe that the photon in a signal event is more likely to have a large energy

and isolation angle than those in the events of the background Monte Carlo. Due

to the fact that the decay products of the tau are normally subjected to severe

relativistic collimation [52], meaning that the decay products travel in the same

o the isolation angle between the photon and the good tracks is greater than
30°;

direction as the parent tau, the definition of a good photon also requires that

o the energy of the photon is greater than 3 GeV.
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These cuts increase the ratio of signal to tau background. By imposing harsher
cuts the signal to background ratio would be further increased, but the aim of
the data selection is not to reject all of the tau background events as one of
the methods for extracting a limit involves fitting the data to the signal and
background. This is impossible if there are no data or background Monte Carlo

events.

If the number of photons satisfying all the above constraints is greater than

one then the good photon is taken to be the photon with the largest energy.

The results of the topological selection are displayed in tables 5.2, 5.3 and 5.4.
These show that 4845 data and 4751 background Monte Carlo events survive the
cuts. Taking into account the errors on the data and the background Monte Carlo,
this is a difference of 1.2 standard deviations. A breakdown of the contributions
of each of the background Monte Carlo generators to the total of 4751 events can
be found in tables 5.3 and 5.4.

Table 5.2 also shows that 161907 %(0) signal events survive the selection. This
is a combined acceptance and efficiency of 49.6%. The cut which causes the main
loss of signal events is the requirement that all charged tracks and the photon
have a polar angle greater than 18.2°. This is because, as fig. 5.1 (b) indicates,
it is quite likely for the final state particles of signal events to be well separated
from each other, and therefore there is an increased probability that some of the

final state particles will not pass the polar angle cut.

5.2.4 Rejection of non-tau events

The process of extracting a limit for F(0) requires a data sample that consists
mainly of Z — 7777+ decays. Tables 5.2 and 5.3 show that the tau background
Monte Carlo events constitute only 22.6% of the background Monte Carlo total.
Therefore it is necessary to implement further cuts to enhance the contribution

of the tau Monte Carlo to the total number of Monte Carlo events.

The reduction of non-tau backgrounds is done in two stages. In the first stage

a cut is introduced which eliminates the majority of vy — X events, whilst the
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Background | MC — data
Cut Data | MCsum | /o3, + o | Signal MC
None ALL | 2261106 32629 F7%(0)
Topological selection || 4845 4751 -1.2 16190 F7%(0)
v — X rejection || 1183 1173 -0.3 13710F7%(0)
Missing mass cut 691 656 -1.4 12679F7%(0)

Monte Carlo.

Table 5.2: Effect of the cuts on data, summed background Monte Carlo and signal

ete™ = ete™ | ete™ — M+M_ ete™ — 7tr~
Number of

events generated 166600 312394 1024567
Normalised number of

events generated 108690 72788 72334
Topological selection 1864 1326 1075

vy — X rejection 239 96 769

Missing mass cut 7 3 634

Table 5.3: Breakdown of numbers for the background Monte Carlo generators
which produce charged leptons.

e 2 qd |y =2 X | efem 2 1(0)
Number of

events generated 5854976 546619 80000
Normalised number of

events generated 1465500 520010 21784
Topological selection 213 121 152

vy — X rejection 40 1 28

Missing mass cut 8 1 3

Table 5.4: Breakdown of numbers for the other background Monte Carlo gener-

ators.
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second stage utilises the fact that, because of undetected neutrinos, 7 — 7777y
events always have missing mass. The combined effect of these two cuts is to
increase the purity of the data sample whilst decreasing the efficiency of the
signal. Hence the exact positioning of the cuts was optimised so that the lowest

limit for F7(0) was obtained.

The method used to reduce the vy — X contribution is identical to that
employed in the search for the Higgs boson peformed by ALEPH where events
containing a pair of acoplanar charged particles were analysed [53]. This method
makes use of the fact that the beam particles which radiate the photons are
usually not detected because of their low polar angle, meaning that the total
transverse momentum of the detected particles produced by gamma fusion is
small. Therefore to remove such events it is required that the magnitude of the
transverse component of both the momentum of the combined good tracks and

the total visible momentum is greater than 3.75% of the centre of mass energy.

It is possible that one of the beam particles radiating a photon is in the
acceptance of LCAL (section 2.11) but that its azimuthal angle is such that it
passes through an LCAL crack and is not detected. Thus the detected particles
of such an event will tend to have a total transverse momentum which is larger
than the average. Hence if the missing momentum vector of the event is both in
the acceptance of LCAL and within +10° of an LCAL crack then it is required
that both transverse momentum components are greater than 5% of the centre

of mass energy.

The plots in fig. 5.3 show the distributions of the tranverse momentum of the
good tracks divided by Mz (which is equal to the centre of mass energy for all of
the events in this analysis) in data and Monte Carlo. Similar plots are obtained
for the distributions of the tranverse component of the total visible momentum
divided by Myz. The vertical lines on the plots indicate the exact positioning of
the cut. It is possible to observe that virtually all yv — X events are rejected
(fig. 5.3 (a)) whilst only a small fraction of the signal and tau background events
are discarded (fig. 5.3 (d) and (e) respectively).
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Figure 5.3: Plots showing the total tranverse momentum of the good tracks
divided by My for (a) vy — X Monte Carlo, (b) tau background Monte Carlo,
(c) the remaining background Monte Carlo, (d) signal Monte Carlo and (e) the
data. The line in each plot shows where the cut to reject vy — X events was

placed.
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The number of data and Monte Carlo events surviving this cut are 1183 and

1173 respectively (table 5.2). This is a difference of 0.3 standard deviations.

This cut reduces the number of signal events to 13710F7%(0), a combined

acceptance and efficiency of 42.0%.

Following the rejection of the vy — X events the purity of the Monte Carlo
sample is too low for a good limit for FJ(0) to be extracted; only 65.6% of
the Monte Carlo total is due to the tau background contribution. The most
significant contamination comes from Bhabha and dimuon events (20.4% and
8.2% respectively). An effective way of reducing the contribution of these two
channels to the Monte Carlo total, whilst increasing that of both the signal and
the tau background, is to demand that all events have missing mass. This achieves
the required aim as there is always at least one neutrino created when a tau

t774 events always have energy, or mass, which

decays, meaning that 7/ — 7
is undetected, whilst events from Bhabha and muon generators do not contain
neutrinos and therefore, allowing for the resolution and acceptance of the detector,

have a total detected energy which is equal to the centre of mass energy.

The missing mass squared of an event is usually defined as p?._, with
Pmiss = (Ecms - Evi57 _ﬁvis)

where . is the centre of mass energy and pl;, (= (Fyis, Pvis)) 18 the total detected
four-momentum. The latter quantity is obtained by summing the four-momenta

of all energy flow objects.

For this analysis, however, the missing mass squared is defined as p'Z._, with
p/miss = (Ecms - Evis + Ewa _ﬁvis + ﬁw)
where p (= (E,,p,)) is the four-momentum of the good photon.

To illustrate why this definition of missing mass squared is adopted consider
the values of p2.  and p'>.  for those events that contain final state neutrinos,
e.g. Z — 7t777, and those without final state neutrinos, e.g. radiative Bhabha
and Z — ptpu~~ events. In the latter case, allowing for the effects of acceptance

and resolution of the apparatus, all the particles are detected which means that

123



I
miss

Diniss A (0,6) and p/ ~ pt. Therefore both pZ..  and P2 are generally

approximately zero. However, for the Z — 7777~ events pi. = p#, where p* is
the total four-momentum of the neutrinos in the event, and thus p'} ;.. ~ pl + ph.

12 2
Therefore p'> . . > pi. .

Hence p’?niss is defined as the missing mass squared, rather than adopting the
conventional definition of p2. . because it enhances the ability to differentiate
Z — 7t77~ events from radiative Bhabha and 7 — u*pu~v events, enabling
a cut to be made which will increase the purity of the data sample without

dramatically reducing the efficiency of the signal.

The plots of fig. 5.4 show the distributions of missing mass squared for data
and Monte Carlo. It was found that the optimum final result is obtained if a
cut is made requiring events to have a missing mass squared greater than 500
(GeV/c*)2. The vertical lines on the plots are positioned at this value. It is
possible to observe from fig. 5.4 (a), (b) and (c) that the majority of non-tau
background is rejected without a significant loss from either the signal or the tau

background.

It appears from the plots of fig. 5.4 that the cut on missing mass squared
could be lowered, so that more signal is preserved, without incurring a dramatic
increase of the non-tau background. The reason for placing the cut at a higher
value is to increase the ratio of signal to tau background so that a better final

result is extracted, and the optimum placement of the cut was found to be 500
(GeV/c?)2

There are 691 data and 656 background Monte Carlo events remaining after
the missing mass squared cut has been imposed (table 5.2). This is a difference
of 1.4 standard deviations. The proportion of the Monte Carlo total which comes
from the tau background is now 96.6% (tables 5.2 and 5.3). There are 12679 F7*(0)
signal events surviving the cut, giving a combined acceptance and efficiency of

38.9%.

Further cuts to reduce the non-tau backgrounds were investigated (such as

the rejection of events with only two good tracks if both are electrons or muons)
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the data. The line in each plot shows where the cut was placed.
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but none were found which improved the final result.

5.3 Extracting a limit for the anomalous mag-

netic moment of the tau

The implementation of the cuts detailed above produces the data and Monte
Carlo samples required to obtain a limit for F3(0). The underlying principle of
any method which can be used to extract the limit is to determine the number of
events in the data which are caused by the signal process (ngignat). This is achieved
by comparing the data sample with that constructed by adding the signal and
background Monte Carlo events. Then, given that the integrated luminosity of
the data, Ldata, is known, and that the cross-section for the signal, oggnal, is

proportional to FJ?(0), it is possible to obtain the limit using
Nsignal = Edata Osignal- (51)

The two methods invoked by this analysis to obtain a limit for F3(0) are - to
apply the results of the theory of Poisson processes to the number of events in the
data, background and signal samples; and to use the method of least squares on
the distributions of quantities related to the geometry of the final state particles

of the three samples. The outline of these two methods is given below.

5.3.1 Obtaining a limit using the theory of Poisson pro-

Ccesses

If the theoretical prediction for the number of events present in a data sample
obtained from a Poisson process can be split into signal and background contri-
butions then, for a given confidence level, it is possible to set an upper limit on
the number of data events which are caused by the signal process. An illustration

of how this is achieved is given below.

Let ng be the number of events in the data sample, and u,; and p the predicted
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mean of the signal and background respectively. Whilst the actual number of
background in the data is not known, it is assumed that the error on p; is small.
If the upper limit for pg, denoted by N, is defined such that the probability of
s < N is greater than or equal to 1 — €, where € is the confidence coefficent,

then [54]

il

o~ s+ ZO: (st )

n!

l—e=1- A=y - (5.2)
e_ﬂbzu—b'
n=0

Hence it is possible to know with confidence level 1 — ¢ that there are at most N

signal events in the data, and thus equation 5.1 can be used to obtain the limit

on FJ(0) at 1 — € confidence level.

Throughout this analysis all limits for F3(0) obtained using equation 5.2 have
1 — € equal to 0.95, i.e. are at the 95% confidence level.

5.3.2 Obtaining a limit using the method of least squares

The method of least squares [55] with no free parameters is normally used to
measure the level of correlation between two sets of data, here labelled x; and ;.
This is achieved by using the y* / degree of freedom to obtain a confidence level

that the two sets of data were produced by the same process. In this instance,

Xz _ Z (xi — yi)z‘

7 09261‘ + 051‘

Free parameters can be introduced into the method of least squares to increase
the level of correlation between the data sets by allowing x? access to values lower
than that obtained with no free parameters. The effect of the decrease in y? may,
however, be counteracted by the fact that each free parameter decreases the
number of degrees of freedom by one. The minimum value of y? gives the best
fit of x; to y; (or y; to x; depending on how the free parameters are deployed)
for the given parameters and their allowed ranges. The values of the parameters

which give the minimum are known as the fitted values.

It is possible to obtain a limit for the anomalous magnetic moment of the tau

by subjecting the data and combined Monte Carlo samples to the method of least
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squares with FJ(0) as one of the free parameters. The fitted value of the Pauli
form factor, FJ g.q(0), along with its associated Gaussian error, op,, can be used

to produce the upper limit £, ..(0) at 95% confidence level by requiring

F2T limit (0) .
/0 G( 2 ﬁtted(0)7 UF2)

/0 G(F{ﬁtted(o)vaf‘E)

=0.95

where G(u, o) is a Gaussian of mean p and width o.

The y? function required for this analysis is

_ 5.3
X p= (5.3)

5 (1 = Tnorm)? B Z {data; — (Tpormtotal_bme; + F7*(0)signal;) }?

2
T horm

where

total_bmc; is the sum of all background Monte Carlo channels after they

have been normalised;
e signal; is the predicted number of signal events when F](0) is set to one;
® I,,m is the normalisation factor for the total Monte Carlo background;
® Ouorm 18 the error on x,0mm;

e 0, is the total error on {data; — (znormtotal_bme; + F7%(0)signal;)}.

The only free parameters in equation 5.3 are FJ(0) and yorm. The latter
parameter is introduced so that any systematic effects in the method used to
normalise the background Monte Carlo would not affect the limit obtained for

£5(0).

The error on the total Monte Carlo normalisation factor is conservatively
taken to be 1%. This value, which is larger than necessary, is adopted to avoid
having to consider the complex systematic errors which would arise if a lower
value were used. All of the limits obtained using equation 5.3 were found to be
stable if oporm was varied between 0.1% and 10%, showing that the error on the

normalisation is not a significant factor.
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A problem arises because the method of least squares requires the samples be-
ing used to have Gaussian errors whereas the data and Monte Carlo samples have
Poisson errors. This is overcome by requiring that the data; used in equation 5.3
are always greater than five, leading to the errors on the data; being approx-
imately Gaussian. The assumption that there are more unnormalised Monte
Carlo events than data means that if the data; have approximately Gaussian

errors then so will total_bmc; and signal;.

The maximum likelihood method is not considered because a large amount of

theoretical effort is required to obtain the necessary probability density function.

5.4 Results

The two distributions which are used to obtain the data;, total_bmec; and signal;
required by equation 5.3 are the energy of the good photon and the acollinearity
of the tracks. The acollinearity in an event with two good tracks is defined as
the angle between the tracks. For an event with four good tracks, however, it
is defined as the angle between the track created by the recombination of three
tracks which has an invariant mass less than or equal to the tau mass and the
remaining track. Why these distributions have been chosen is illustrated by the
plots of figs. 5.5 and 5.6, which show the good photon energy versus acollinearity
for the data, background Monte Carlo and signal Monte Carlo samples which sur-
vive the topological selection and rejection of non-tau background. It is possible
to observe that the distribution of the signal is significantly different from those
of either the data or the background, and that regions of both the good photon

energy and acollinearity distributions are sensitive to the presence of a signal.

The results obtained by using the method of least squares to minimise equa-
tion 5.3, where data;, total_bme; and signal; are obtained from the acollinearity
and good photon energy distributions, can be seen in table 5.5. The resolution
used for the acollinearity distribution is 0.05 radians and that of the good pho-
ton energy distribution is 0.5 GeV. Both of these are lower than the highest
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Figure 5.6: A plot of the energy of the good photon versus the acollinearity of
the tracks for the signal Monte Carlo after topological selection and rejection of

non-tau backgrounds.

detector resolution [23]. The 95% c.l. limit obtained by fitting acollinearity is
F7(0) < 0.060 and that from the good photon energy is F7(0) < 0.051. The
fitted values of the parameters have been used to obtain the plots in figs. 5.7 and
5.8, which show respectively the acollinearity and photon energy distributions of

the data, fitted background and fitted signal.

The limit obtained by applying the theory of Poisson processes to the sam-
ples surviving topological selection and the rejection of non-tau backgrounds is

F7(0) < 0.079 at 95% c.l.

The results contained in table 5.5 show that there is very high correlation

between data and background Monte Carlo for both distributions.

Having obtained the limits by applying the method of least squares to the

whole of the allowable ranges of acollinearity (0 < 0, < m) and good photon

131



10%- 4 Data o
¢ Background MC ¢ b
X Signal MC gﬁ?
+ éng‘F

it

iy

Number of events

15
‘Hgﬂ:“uu
_’_

ﬂo }L H 0
o
I 00009000 0" X £ X ’3?@6% 5
- P, To s o R X
L o ¢ X
X RK X
10 ' KK )9(* K
K b3
X
ol e e e
0 0.5 1 1.5 2 2.5 3

1‘9acol ( ra d S)

Figure 5.7: The result of fitting the acollinearity after topological selection and

rejection of non-tau backgrounds.

% 0% ¢ _<|>_ gg;(:?(ground MC
s N n X Signal MC
g $ ﬁ%ﬁ@m% 1 + b 1 ﬂng
€10 - o
: hseiot il
. A
r >K>K>K>K X
« X
10’k X
z "l
10_20 s 0 s 20 s 0 s a0 45 >~tjo
£, (CeV)

Figure 5.8: The result of fitting the good photon energy after topological selection

and rejection of non-tau backgrounds.
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Distribution used in the fit

Acollinearity | Good photon energy
FJ ieal0) || 0.0012 £0.0014 |  —0.0006 + 0.0015

Tnorm 0.999 4 0.010 0.999 4 0.010
v2 / dof 28.2 / 31 51.2 / 60
Y 1imie(0) 0.060 0.051

Table 5.5: The results obtained by fitting the acollinearity and good photon
energy of the Monte Carlo to the data after topological selection and rejection of

non-tau backgrounds.

energy (0 < FE, < 50), the next stage is to determine whether a better limit
can be achieved if only certain regions of these ranges are used. Fig. 5.9, which
contains the ratio of the acollinearity versus good photon energy distributions of
signal and data, indicates that implementing cuts on good photon energy and
acollinearity should produce lower limits, as certain regions of the distributions

of these quantities are more sensitive to the presence of a signal than others.

It is not good practice to use the data to obtain the optimum limits of the
distributions because of its inherent statistical fluctuations. If the data was used
to obtain the optimum limits then the reason why it is the best result may be
based on statistical, rather than physical, effects. Therefore, to avoid the prob-
lems created by statistical effects, it is necessary to construct a substitute data
sample using a set of Monte Carlo events with a normalisation factor much less
than one. The substitute data, however, is given the same Poisson errors as the

data; the only reason for introducing the fake data is to smooth the distributions.

Replacing the data with a set of events produced by the background Monte
Carlo generators used in this analysis appears justifiable as table 5.5 shows the
high correlation between data and background. The fake data sample used to
optimise the limits consists of a set of events produced by the background Monte

Carlo generators which has a normalisation factor of 0.0733.

The process of achieving the optimum limits of the distributions involves using
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Figure 5.9: A plot of the energy of the good photon versus the acollinearity of the
tracks for the ratio of the signal and data after topological selection and rejection

of non-tau backgrounds.

the method of least squares to compare the samples of fake data, background and
signal produced by applying cuts to either the good photon energy or acollinearity,
depending on which distribution is being considered. The cuts giving the lowest
limit for a distribution are imposed on the data, background and signal to produce

the samples which give the optimum limit of that distribution.

If the fake data is used and only topological and background rejection cuts
are implemented, that is no cuts are made on either good photon energy or
acollinearity, then the limits F(0) < 0.046 and Fy(0) < 0.048, both at 95% c.1.,
are obtained by fitting acollinearity and good photon energy respectively. The
limit predicted by Poisson theory is F7(0) < 0.067 at 95% c.l.

For the fake data the lowest limit of the good photon energy distribution is
obtained when its resolution is decreased to one GeV and 21 GeV< E, <46
GeV. Then the method of least squares gives F7(0) < 0.046 and Poisson theory
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F7(0) < 0.050, both at 95% c.I.

With fake data the acollinearity distribution has lowest limits of £ (0) < 0.043
by the method of least squares and F;(0) < 0.044 from Poisson theory, both at

95% c.l. These are obtained by imposing the constraint .., < 2.6 radians.

Table 5.6 shows the results of the fits and the optimum limits obtained when
the data is reinstated. The optimisation procedure has made all of the limits
higher rather than lower; for example, before optimisation the limit obtained

from fitting acollinearity was 0.060, whereas after optimisation this limit is 0.067.

One of the possible explanations as to why they have all increased is that the
optimisation did not significantly improve the limits of the fake data, e.g. for the
photon energy and acollinearity distributions the limits went from 0.048 to 0.046
and 0.046 to 0.043 respectively, and it could be that the statistical fluctuations

of the data partially cancel the improvement.

Another problem is if there are any very significant systematic differences
between the distributions of data and Monte Carlo then the optimisation process
is invalid. There do not appear to be major differences between the data and
Monte Carlo distributions, but if there are subtle systematic effects then the

result of the optimisation process could be arbitrary.

A further problem is that the optimisation cuts reduce the total number of
events in the samples which leads to the error on Fy g.4(0) being larger, and

hence a higher limit is obtained.

Therefore the best result obtained by this analysis is when the method of
least squares is applied to the photon energy distribution following topological
selection and rejection of non-tau backgrounds, where a limit of F5(0) < 0.051 is

achieved.

A two dimensional fit was not considered because of the low statistics and the

requirement that data; is greater than or equal to five.
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Distribution used in the fit

Acollinearity | Good photon energy
FJ giea(0) || 0.0020 4+ 0.0015 0.0005 £ 0.0016

Tnorm 1.000 £ 0.010 0.999 + 0.010
v2 / dof 21.3 / 20 24.0 / 21
F3 i (0) 0.067 0.059

F3 poisson(0) 0.089 0.072

Table 5.6: The results obtained by fitting the acollinearity and good photon
energy of the Monte Carlo to the data after topological selection, rejection of

non-tau backgrounds and optimisation.

5.5 Conclusion

The limit for the anomalous magnetic moment of the tau achieved by this analysis
is an order of magnitude larger than the value predicted by the standard model,
that is from this analysis F7(0) < 0.051 whilst the standard model predicts
F7(0) = 11773(3) x 1077 [18]. Therefore this analysis does not rule out the
possibility of physics beyond the standard model which enhances the anomalous
magnetic moment of the tau. However, no indications of such physics have been

observed, and the reason for the high limit is a lack of data.

To understand the significance of this result the existing experimental limits

are listed below, along with a brief explanation of how they were obtained.

e [7(0) < 0.02 [50] was obtained by using data from PETRA to analyse the

+o- -
process eteT =y =TT

e [7(0) <0.11 [45] was achieved when L3 data was used to analyse the decay

7 — 1T

e [7(0) < 0.39 [56] results from a ‘crude’ analysis of the angular distributions
of the final state particles in ete™ — 7/ — 717~ events present in SLAC

and DESY data;
e [7(0) < 0.0062 [57] was achieved by using all LEP data and considering
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the increase in Z width that results from the anomalous magnetic moment

of the tau.

The result obtained using PETRA data does not actually measure F(0) as
here the tau is coupling to an s channel photon which has a non-zero mass. Given
that FJ(k?), where k? is the mass of the photon, has a logarithmic k* dependence,

some complicated manipulations were required to obtain the limit for FJ(0).

The limit £7(0) < 0.0062 is obtained by making the assumption that the
anomalous magnetic moment of the tau creates a coupling to the weak bosons
in an analogous manner as it does with photons. Then, by studying the decay
Z — 7777, it is possible to put a limit on the additional Z width created by
the anomalous magnetic moment of the tau, and hence constrain Fy(0). This
assumption greatly increases the statistics as there is no need for a photon to
be present in the final state, explaining the extremely low limit achieved. This

analysis also assumes that the logarithmic k* dependence of F; can be ignored.

Therefore the result obtained by this analysis is the lowest limit for F;(0)

obtained by studying the coupling between taus and real photons.
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Appendix A

Trace results required for matrix

element calculation

The calculation of the spin averaged matrix element squared in Chapter 4 results
in traces of complex expressions. The following results are used to simplify these

traces.

Tr (¢} =a-b
Tr[f ¢ 4] =4{(a-b)(c-d)— (a-)b-d) + (a-d)(b-e)}
Tr [f ¥ ¢4+] = 4{(a-b)e" — (a- " + (b- c)a*}
Tr [fy o fhaars] =0 Y0 >0
Tr[°] =0
Tr 7% b =0

Tr [V d Y ] =dicusart’'d’
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Tr {’y%ff 3 ¢’y“} = 4ic, 50" b ¢

Tr [V da.. . fona] =0 Y0 >0

where ¢ is the totally anti-symmetric tensor with ¢p123 = 1.

The complex expressions inside the trace can often be simplified before the

trace is taken. The identities below are used to fulfil this purpose.

Yt = — gy, + 2a,

I

V=4
Vi =24
VA Py =4a-b
VY fvu=—2¢04d
VAV E =20 d Y+ ¢V d d)

o' = = (Y"y" = A"y")

The proof of some of the above results can be found in [58].
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