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ABSTRACT

We study the scenario of baryogenesis through leptogenesis in higher-dimensional theories,

in which the scale of quantum gravity may be as low as few TeV. The minimal realization

of these theories includes an isosinglet neutrino which is considered to propagate in large

compact dimensions, whereas all the SM particles are localized on a (1 + 3)-dimensional

wall. In the formulation of minimal leptogenesis models, we pay particular attention to the

existence of Majorana spinors in higher dimensions. After compactification of the extra di-

mensions, we obtain a tower of Majorana Kaluza-Klein excitations which act as an infinite

series of CP-violating resonators, and derive the necessary conditions for their construc-

tive interference. Based on this CP-violating mechanism, we find that out-of-equilibrium

decays of heavy Majorana excitations having masses above the critical temperature of the

electroweak phase transition can produce a leptonic asymmetry which is reprocessed into

the observed baryonic asymmetry of the Universe via unsuppressed sphaleron interactions.
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1 Introduction

Superstring theories have been advocated to provide a consistent theoretical framework

that could lead to quantization of gravity, including its possible unification with all other

fundamental forces in nature. The quantum nature of gravity is expected to play a central

role at energy scales close to the Planck mass, MP = 1.2 × 1019 GeV. The formulation

of superstring theories requires the embedding of our well-established (1 + 3)-dimensional

world into a higher dimensional space, in which the new spatial dimensions must be highly

curved for both phenomenological and theoretical reasons. In typical string theories, the

fundamental string scale is generically of order MP. However, Witten [1], and Hořava and

Witten [2] presented an interesting alternative, in which the string scale may be consid-

erably lowered to ∼ 1016 GeV, thereby enabling the unification of all interactions within

the minimal supersymmetric model. An analogous scenario was subsequently discussed

by Lykken [3], in which the string scale was further lowered to the TeV range,∗ but the

fundamental Planck scale was kept intact to MP.

Recently, Arkani-Hamed, Dimopoulos and Dvali [5] have considered a more radical

scenario, in which the fundamental scale of quantum gravity, MF , may be as low as few

TeV, thereby proposing an appealing solution to the known gauge hierarchy problem [6].

The observed weakness of gravity may then be attributed to the presence of a number

δ of large extra spatial dimensions, within which only gravity can propagate and, most

probably, fields that are singlets under the Standard Model (SM) gauge group, such as

isosinglet neutrinos [7,8]. This higher [1 + (3 + δ)]-dimensional space is usually termed

bulk. On the other hand, all the ordinary SM particles live in the conventional (1 + 3)-

dimensional Minkowski subspace, which is called wall. In such a theoretical framework,

the ordinary Planck mass MP must be viewed as an effective parameter, which is related

to the genuinely fundamental scale MF via a kind of generalized Gauss’s law

MP = MF (2πRMF )δ/2 , (1.1)

where we have assumed, for simplicity, that the additional δ-dimensional volume has the

configuration of a torus, with all of its radii being equal. Many astrophysical [9–16] and

phenomenological [17] analyses have already appeared in the recent literature for such low

string-scale theories.

As has been mentioned already, it is conceivable to assume that isosinglet neutrinos

exist in addition to gravitons, and that also feel the presence of large extra space dimensions.

∗In a different context, Antoniadis [4] had made an earlier suggestion of a low compactification scale of
order TeV in the context of string theories.
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In particular, we wish to study novel scenarios, in which the existence of higher-dimensional

singlet fields may account for the observed baryonic asymmetry of the Universe (BAU)

by means of the Fukugita–Yanagida mechanism of leptogenesis [18]. According to this

mechanism, an excess of the lepton number (L) is first generated by out-of-equilibrium L-

violating decays of heavy Majorana neutrinos, which is then converted into an asymmetry

of the baryon number (B) through (B + L)-violating sphaleron interactions [19]. Such

an L-to-B conversion of asymmetries stays unsuppressed, as long as the heavy Majorana-

neutrino masses lie above the critical temperature Tc of the electroweak phase transition

where sphalerons are supposed to be in thermal equilibrium. Such a scenario of explaining

the BAU is often called baryogenesis through leptogenesis.

The presence of extra large dimensions introduces a number of alternatives for lep-

togenesis which may even have no analog in the conventional 4-dimensional theories. We

shall focus our attention on minimal realizations of higher-dimensional leptogenesis models

which, after compactification of the extra dimensions, lead to scenarios that admit renor-

malization assuming a finite number of Kaluza–Klein (KK) excitations. Such models of

leptogenesis are therefore endowed with enhanced predictive power. For definiteness, we

will consider minimal 4-dimensional extensions of the SM, augmented by one singlet Dirac

neutrino, which propagates in the bulk. Parenthetically, we should notice that massive

Majorana neutrinos are not defined for spaces with any space-time dimensions but only for

those with 2, 3 and 4 mod 8 dimensions [20,21]. For instance, unlike in 4 dimensions, true

Majorana spinors cannot be defined in 5 dimensions. This topic will be discussed in detail

in Section 2.

After compactification of the extra dimensions, the kinetic term of the bulk neutrino

gives rise to an infinite series of massive KK excitations, with equally spaced Dirac masses,

i.e. the mass difference between two neighbouring KK states is of order 1/R. In order to

make the mechanism of leptogenesis work, it is necessary that the model under consideration

violates both the lepton number L and the product of symmetries of charge conjugation

(C) and (parity) space reflection (P), also known as CP symmetry. The violation of L

can be introduced into the theory by simultaneously coupling the different spinorial states

of the higher-dimensional Dirac neutrino to the lepton doublets of the SM and to their

C-conjugate counterparts. As we will see in Section 3 however, this is not sufficient for the

theory to be CP violating. CP nonconservation can be minimally realized in two different

ways: one has to either (i) include additional higher-dimensional fermionic bilinears or (ii)

extend the Higgs sector of the SM. Obviously, one may also consider more involved models

based on combinations of these two minimal scenarios. The first scenario may be regarded

as a higher-dimensional extension of the ordinary leptogenesis model [18]. Of most interest
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is, however, the second alternative which has no analog in 4 dimensions, as it does not

require the inclusion of any heavy Majorana or isosinglet mass scale in the Lagrangian.

The characteristic feature of these extensions is that each of the Dirac KK neutrino states

splits into two nearly degenerate Majorana neutrinos either at the tree level in the first

scenario or at one loop in the second one.

The observed BAU can only arise from those Majorana KK states that are heavier

than the critical temperature Tc, namely the temperature at which the electroweak phase

transition occurs. The reason is that the (B+L)-violating sphalerons are in thermal equilib-

rium above Tc and the excess in the lepton number, produced by out-of-equilibrium decays

of KK states, can rapidly be reprocessed into the desired baryonic asymmetry. Thus, the

KK states that are lighter than Tc ≈ 100–200 GeV are irrelevant for the BAU. Furthermore,

there are generically two distinct mechanisms that give rise to CP nonconservation in the

decays of heavy Majorana KK states. In the first mechanism, CP violation is induced by

the interference of the tree-level decay graph with the absorptive part of a one-loop vertex

diagram [18,22]; we call the latter ε′-type CP violation in connection with the established

terminology of the kaon system. In the second mechanism, which we call it ε-type CP vio-

lation, the tree-level diagram interferes with the absorptive part of the one-loop self-energy

transition between two heavy Majorana neutrinos [23–25], i.e. between heavy Majorana KK

states. If the mass difference of two heavy Majorana states is of the order of their respective

widths, the description of ε-type CP violation becomes more subtle field-theoretically [24].

In this case, finite-order perturbation theory does no longer apply, and one is therefore

compelled to resort to a resummation approach which consistently takes the instability of

the mixed heavy Majorana states into account. This issue has extensively been discussed

in [24].

Furthermore, it was shown [24] that ε-type CP violation induced by the mixing of

two nearly degenerate heavy Majorana states can be resonantly enhanced up to order of

unity. As we shall discuss in more detail in Section 4, an analogous dynamics exhibits

the system of the Majorana KK excitations. In fact, each KK pair of the two nearly

degenerate Majorana states behaves as an individual CP-violating resonator. In this way,

we shall characterize a two-level system that satisfies the resonant conditions of order-unity

CP violation. We find that the spacing in mass for two adjacent KK pairs of Majorana

states governs the dynamics for constructive or destructive interference of the complete

tower of the CP-violating resonators. Owing to cancellations among the different CP-

violating vertex contributions, we can explicitly demonstrate that ε′-type CP violation is

almost vanishing.

A crucial requirement for successful baryogenesis through leptogenesis is that the
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temperature of reheating Tr [26] due to the late decays of gravitons into photons be not

much smaller than the critical temperature Tc. Otherwise, the final baryon asymmetry will

be dramatically diluted by the entropy released by the decaying gravitons. In particular,

it has been argued [12] that it may be difficult to obtain a reheat temperature above Tc

in theories with a low scale of quantum gravity MF , such that sphalerons can effectively

reprocess an excess in L into B. For 2 extra large dimensions, the authors [12] derive

the mass limit MF
>∼ 100 TeV, assuming that the reheat temperature is larger than few

MeV, so as to ensure that primordial nucleosynthesis proceeds as usual. This bound is

also in qualitative agreement with recent constraints derived from considerations of rapid

supernovae cooling due to graviton emission [13] and of the cosmic diffuse gamma radiation

[14]. Nevertheless, several possibilities have already been reported in the literature that one

might think of to avoid possible difficulties associated with a low Tr. For example, one could

imagine that the bulk singlet neutrino only resides in a subspace of a multidimensional space

spanned by a number δ = 6 of extra dimensions and higher, in which gravity propagates

[7]. This could lead to rather suppressed production rates of gravitons, thus allowing much

larger reheat temperatures [12]. Another way of resolving the problem of a low Tr is to

assume that the compactification radii [15,16] of gravity are not all equal but possess a

large hierarchy. Such a possibility would completely change the usual cosmological picture

of the previous analyses. In this context, it has been further advocated that gravitons might

decay faster on a hidden wall than on the observable wall we live [9] or even a novel type

of rapid asymmetric inflation could take place [11]. Because of the variety of the solutions

suggested in the literature, in our analysis we shall not put forward a specific mechanism

of increasing the reheat temperature but will simply assume that Tr
>∼ Tc. Especially, we

shall see how the resonantly enhanced CP asymmetries in the decays of the KK states may

help to overcome part of the low-Tr problem.

The paper is organized as follows: Section 2 reviews the topic related to the ability of

defining true Majorana spinors in higher-dimensional theories. In Section 3, we formulate

minimal renormalizable higher-dimensional models that can lead to successful scenarios of

leptogenesis. In Section 4, we derive the necessary conditions for order-unity CP asymme-

tries due to the constructive interference of the tower of the KK CP-violating resonators,

and show the vanishing of all the ε′-type CP-violating contributions. In Section 5, we give

an estimate of the baryonic asymmetry which arises from a sphaleron-converted leptonic

asymmetry. Finally, Section 6 presents our conclusions.
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2 Majorana spinors in higher dimensions

The violation of the lepton-number in leptogenesis models or supersymmetric theories is

naturally mediated by Majorana fields, e.g. heavy Majorana neutrinos, neutralinos etc.

The KK formulation of these theories necessitates an analogous extension of the notion of

the Majorana spinor to higher dimensions [20,21]. The ability of defining true Majorana

neutrinos in any dimensions plays a key role in the construction of higher-dimensional

leptogenesis models. Here we shall review this topic from a more practical, for our purposes,

point of view.

We shall consider d-dimensional theories with one time component and d− 1 spatial

ones. We assume that the Lagrangian describing these theories is invariant under the

generalized Lorentz transformations of the SO(1, d − 1) group. In such an extended d-

dimensional Minkowski space, the corresponding Clifford algebra reads

{γ(d)
µ , γ(d)

ν } = 2 g(d)
µν 1 , (2.1)

where g(d)
µν = diag (+1,−1, . . . ,−1), for µ, ν = 0, 1, . . . , d− 1, and γ(d)

µ are the generalized

Dirac’s gamma matrices. The construction of these matrices to any number of dimensions

may be found recursively. Our starting point is the representation of gamma matrices for

d = 2 and d = 3, i.e.

γ
(2,3)
0 =

 0 1

1 0

 , γ
(2,3)
1 =

 0 −1

1 0

 , γ
(3)
2 =

 i 0

0 −i

 . (2.2)

The procedure for constructing gamma matrices to higher dimensions is then as follows. If

d = 2m (m = 1, 2, . . .), we may then define

γ
(d)
0 =

 0 1m

1m 0

 , γ
(d)
k =

 0 γ
(d−1)
0 γ

(d−1)
k

−γ(d−1)
0 γ

(d−1)
k 0

 ; k = 1, . . . , d− 2 ,(2.3)

γ
(d)
d−1 =

 0 γ
(d−1)
0

−γ(d−1)
0 0

 , and γ
(d)
P =

 1m 0

0 −1m

 , (2.4)

where 1m is the unity matrix in m dimensions. Note that the dimensionality of the repre-

sentation of the gamma matrices for d = 2m+1 coincides with that of d = 2m. The matrix

γ
(d)
P is the generalization of the usual γ5 matrix in four dimensions, i.e. γ

(d)
P = c

∏d−1
µ=0 γ

(d)
µ ,

where the constant c is defined such that γ
(d) 2
P = 1. The matrix γ

(d)
P anticommutes with

all γ(d)
µ for d = 2m, whereas it commutes with all γ(d)

µ for d = 2m+ 1, i.e. it is proportional
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to the unity matrix. If we know the represenation of gamma matrices for d = 2m, we can

easily construct the respective one for d = 2m+ 1, just by including

γ
(d+1)
d = i γ

(d)
P . (2.5)

In fact, Eqs. (2.3)–(2.5) are sufficient to construct all γ(d)
µ in any number d of dimensions,

starting from the known expressions (2.2) for d = 2, 3. In addition, we should notice that

the adopted representations of γ(d)
µ are of the Weyl type, having the properties

γ
(d)
0 = γ

(d) †
0 , γ

(d)
k = − γ(d) †

k ; k = 1, . . . , d− 1 . (2.6)

Finally, a useful property of the above construction is the fact that γ(d)
µ are self-adjoint

under the known bar operation, i.e.

γ(d)
µ ≡ γ

(d)
0 γ(d) †

µ γ
(d)
0 = γ(d)

µ , (2.7)

and iγ
(d)
P = iγ

(d)
P .

Let us now define by ψ(x) a massive fermionic free field in a multidimensional

Minkowski space, which satisfies the free Dirac equation of motion, i.e. (iγµ∂µ −m)ψ = 0.

Here and henceforth, we shall drop the superscript ‘(d)’ on the gamma matrices to simplify

notation. The Lorentz adjoint of ψ is then given by ψ̄ = ψ†γ0, while invariance of the Dirac

equation under generalized Lorentz tranformations requires

S̄ = γ0S
†γ0 = S−1 , (2.8)

where

S = exp
(
− i

4

∑
n

ωnσµνI
µν
n

)
, (2.9)

with σµν = i
2
[γµ, γν], is the d-dimensional spinorial representation of an arbitrary Lorentz

rotation with angles ωn, and Iµν
n are the generators of SO(1, d − 1). It is easy to see that

Eq. (2.8) is equivalent to γ0σ
†
µνγ0 = σµν . The last equality is true by virtue of Eq. (2.7).

To define charge-conjugate fermionic fields in theories with many dimensions, we

proceed as follows. We start with the classical Dirac equation by including a background

electromagnetic field Aµ coupled to ψ, i.e. [iγµ(∂µ + eAµ)−m]ψ = 0, and then seek for a

solution of the respective Dirac equation for the antiparticle field, denoted as ψC , which is

of the form [iγµ(∂µ − eAµ) −m]ψC = 0. In case ψ is a neutral field, e.g. a neutrino, one

should initially assume that e 6= 0 and then take the limit e → 0 at the very end of the

consideration. In this way, we find that ψC may be determined in terms of ψ as follows:

ψC = C ψ̄T = C γ0 ψ
∗ , (2.10)
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where C is the charge-conjugation operator that satisfies the property

C−1 γµC = − γT
µ , (2.11)

for massive fermionic fields. For massless fermions, we may also allow the equality

C−1 γµC = γT
µ . (2.12)

Furthermore, consistency of charge conjugation with Lorentz invariance implies that

C−1 S C = (S−1)T , (2.13)

or equivalently that C−1σµνC = −σT
µν , which holds true because of Eqs. (2.11) or (2.12).

At this point, we should remark that the transformations

γ′µ = U γµ U
−1 , C ′ = U C UT (2.14)

preserve all the relations of gamma matrices given above, including Eqs. (2.8) and (2.13).

The necessary and sufficient condition for the existence of a Majorana spinor in any

number of dimensions reads

ψ = ψC , (2.15)

which amounts to

C γT
0 (CγT

0 )∗ = 1 . (2.16)

This last equality may be rewritten as

C−1 γ0C = (C∗C) γT
0 . (2.17)

Consequently, massive (massless) Majorana spinors in d dimensions are admitted, if both

the construction of a C matrix satisfying Eq. (2.11) (Eq. (2.12)) and C∗C = −1 (C∗C = +1)

is possible. As we will see below, this is not always the case.

For this purpose, it is important to be able to construct a matrix that obeys the

identity (2.11) or (2.12). There are only two candidates that could be of interest:

CA =
p∏
i

γi ; with γi = −γT
i = −γ†i , (2.18)

CS =
s∏
r

γr ; with γr = γT
r , γ0 = γ†0 , γr = −γ†r (r 6= 0) . (2.19)

Specifically, CA (CS) is formed by the product of all p (s) in number gamma matrices that

are pure antisymmetric (symmetric). Employing the identity: γµγ
†
µ = 1, we can easily find

the following relations for the two C-conjugation matrices:

C−1
A = C†

A = (−1)p ε(p)CA , CT
A = (C†

A)∗ = (−1)p ε(p)C∗
A , CA = C∗

A , (2.20)

C−1
S = C†

S = (−1)s−1 ε(s)CS , CT
S = (C†

S)∗ = (−1)s−1 ε(s)C∗
S , C∗

S = (−1)s−1CS ,(2.21)
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d s ε(s) = −1 p ε(p) = 1 Existence of massive

even odd Majorana spinor

2 1 1 1 1 yes

3 2 –1 1 1 yes

4 2 –1 2 –1 yes

5 3 –1 2 –1 no

6 3 –1 3 –1 no

7 4 1 3 –1 no

8 4 1 4 1 no

9 5 1 4 1 no

10 5 1 5 1 yes

11 6 –1 5 1 yes

12 6 –1 6 –1 yes

13 7 –1 6 –1 no

Table 1: Existence of massive Majorana spinors in d dimensions.

with ε(z) = (−1)z(z−1)/2. As advertised, it can be shown that the two C-conjugation

matrices satisfy the relations

C−1
A γµCA = (−1)p γT

µ , C−1
S γµCS = (−1)s+1 γT

µ . (2.22)

On the other hand, the Majorana condition given by Eq. (2.17) may now be translated

into

C−1
A γ0CA = (−1)p ε(p) γT

0 , C−1
S γ0CS = ε(s) γT

0 . (2.23)

As a consequence, the existence of a massive Majorana spinor in any number of dimensions

is ensured, if

ε(p) = 1 and p is odd , (2.24)

or if

ε(s) = −1 and s is even . (2.25)

Based on Eqs. (2.24) and Eqs. (2.25), we can generate Table 1. As can be seen from this

Table, true massive Majorana neutrinos exist only in 2, 3 and 4 mod 8 dimensions [20].

If we also allow the possibility of massless Majorana-Weyl spinors, we only need to

impose the restrictions:

ε(p) = +1 or ε(s) = (−1)s+1 . (2.26)
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d ε(p) = 1 ε(s) = (−1)s+1 Existence of massless

Majorana spinor

5 –1 –1 1 no

6 –1 –1 1 no

7 –1 1 –1 no

8 1 1 –1 yes

9 1 1 1 yes

Table 2: Existence of massless Majorana-Weyl spinors in d dimensions.

The so-generated Table 2 shows that in addition to the result found in the massive case, the

definition of massless Majorana fields can be extended to 8 and 9 mod 8 dimensions [21].

For example, our analysis explicitly demonstrates that, as opposed to 4 dimensions, true

Majorana neutrinos cannot be defined in theories with 5, 6, and 7 dimensions. In fact, in

the latter theories, C looses its very same meaning of being a genuine charge-conjugation

matrix. We shall pay special attention to this issue in the next section, while formulating

different minimal models of leptogenesis.

3 Higher-dimensional models of leptogenesis

If the SM contains a singlet neutrino that feels extra large dimensions, this additional

volume factor of the new spatial dimensions introduces a new possibility to naturally sup-

press the Higgs Yukawa coupling to neutrinos [7,8]. After spontaneous symmetry breaking

(SSB) of the SM Higgs potential, the resulting neutrino masses may naturally be of the

order of 10−2 eV, which turns out to be in the right ball park for explaining the solar and

atmospheric neutrino data [16]. Here we shall formulate minimal models of leptogenesis

which, after compactification of the extra dimensions, give rise to theories containing 4-

dimensional operators only, and are therefore renormalizable for finitely many KK states.

Even though the number of KK excitations is formally infinite, on theoretical grounds,

however, one expects the presence of an ultra-violet (UV) cutoff close to the string scale

where gravity is supposed to set in. The issue of renormalization will become more clear

while describing the leptogenesis models.

For simplicity, we shall consider a 5-dimensional model. The generalization of the

results to higher dimensions is then straightforward. Following [7,8], we assume that all

particles with non-zero SM charges live in a subspace of (1+3) dimensions. Also, we intro-
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duce one Dirac isosinglet neutrino N(xµ, y) that propagates in the bulk of all 5 dimensions.

We denote by xµ = (x0, x1, x2, x3) the one time and the three spatial coordinates of our

observable world and by y ≡ x4 the new spatial dimension. The y-coordinate is to be

compactified on a circle of radius R by applying the periodic identification: y ≡ y + 2πR.

Specifically, the minimal field content of a one-generation model of leptogenesis is

L(x) =

 νL(x)

lL(x)

 , lR(x), N(x, y) =

 ξ(x, y)

η̄(x, y)

 , (3.1)

where νL, lL and lR are 4-dimensional Weyl spinors, and ξ and η are two-component spinors

in 5 dimensions. Depending on the model, we shall also assume that ξ (η) is symmetric

(antisymmetric) under a y reflection: ξ(x, y) = ξ(x,−y) and η(x, y) = −η(x,−y).† Fol-

lowing the procedure outlined in Section 2, the gamma matrices in 5 dimensions may be

represented by

γµ =

 0 σ̄µ

σµ 0

 , and γ4 =

 i12 0

0 −i12

 , (3.2)

where σµ = (12, ~σ) and σ̄µ = (12,−~σ), with ~σ1,2,3 being the usual Pauli matrices.

As we have mentioned in the introduction, there are two representative minimal

scenarios of leptogenesis:

(i) The first scenario may be viewed as a higher-dimensional generalization of the usual

leptogenesis model of Ref. [18], in which the Lorentz- and gauge- invariant fermionic

bilinears N̄N and NTC(5)−1N are included. As we will see, however, if a Z2 discrete

symmetry is imposed on N(x, y), the former bilinear mass term N̄N does not con-

tribute to the effective action. According to Eqs. (2.18) and (2.19), the matrix C(5)

satisfies Eqs. (2.12) and (2.13), but not Eq. (2.11) that defines the true C-conjugation

matrix for a massive Dirac field. Despite its close analogy to 4 dimensions, the oper-

ator NTC(5)−1N does not represent a genuine bare Majorana mass in 5 dimensions.

Nevertheless, after KK compactification, the effective Lagrangian of this scenario

displays a dynamics rather analogous to the known scenario of leptogenesis due to

Fukugita and Yanagida [18].

(ii) The second scenario of leptogenesis requires, in addition to the bulk Dirac singlet field

N(x, y), that the Higgs sector of the SM be extended by two more Higgs doublets.

The first Higgs doublet, denoted as Φ1, couples to the lepton isodoublet L, the second

†With the imposition of such a symmetry which might be justified within the context of a Z2 orbifold
compactification [8], one may avoid a twofold mass degeneracy in the spectrum of the KK states for the
leptogenesis models under study.
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Higgs doublet Φ2 couples to its charge-conjugate counterpart, CL̄T , while the last

one Φ3 has no coupling to matter. The so-extended Higgs potential admits CP

nonconservation which originates from the bilinear mixing of the three Higgs doublets.

In fact, in this model, both the Majorana masses of the KK excitations and CP

violation are generated via loop effects. Most interestingly, as we will detail below,

this scenario of leptogenesis has no analog in 4 dimensions.

Of course, one may consider more involved models of leptogenesis that are based on

combinations of the basic scenarios (i) and (ii), including their possible supersymmetric

extensions. Therefore, it is very instructive to analyze in more detail these two representa-

tive models of leptogenesis, as well as an hybrid scenario that includes both the extensions

mentioned above, i.e. fermionic bilinears and two additional Higgs doublets.

3.1 The leptogenesis model with fermionic bilinears

In this scenario, the SM is augmented by a higher-dimensional Dirac singlet neutrino

N(x, y), while the SM particles are considered to be confined to a 4-dimensional hypersur-

face which describes our world and is often termed as a 3-brane.‡ In this picture, the bulk

Dirac neutrino field N(x, y) intersects the 3-brane at a position y = a, which naturally

gives rise to small Yukawa couplings suppressed by the volume of the extra dimensions.

This suppression mechanism is very analogous to the one that gravity owes its weakness

at long distances in theories with a low scale of quantum gravity [5]. The most general

effective Lagrangian of the scenario under discussion is given by

Leff =

2πR∫
0

dy
{
N̄
(
iγµ∂µ + iγ4∂y

)
N − mN̄N − 1

2

(
MNTC(5)−1N + H.c.

)
+ δ(y − a)

[
h̄1 L̄Φξ + h̄2 L̄Φη + H.c.

]
+ δ(y − a)LSM

}
, (3.3)

where LSM denotes the SM Lagrangian and

C(5) = −γ1γ3 = γ0γ2γ4 =

 −iσ2 0

0 −iσ2

 . (3.4)

In Eq. (3.3), Φ is the SM Higgs doublet and the higher-dimensional two-component spinors

ξ and η are defined in Eq. (3.1). Note that h̄1 and h̄2 are dimensionful kinematic parameters,

‡In a field-theoretic context, Rubakov and Shaposhnikov [27] presented the possibility of dynamically lo-
calizing 4-dimensional fermions on a solitonic brane embedded in a higher-dimensional space, by employing
the index theorem in a solitonic background [28]
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which may be related to the usual 4-dimensional Yukawa couplings h1 and h2 through

h̄1,2 =
h1,2

(MF )δ/2
, (3.5)

with δ = 1. Here, one must remark that the fundamental scale of quantum gravity MF oc-

curs naturally in Eq. (3.5), as it is the only available energy scale of the effective Lagrangian

to normalize these higher-dimensional Yukawa couplings.

Given that N(x, y) is a periodic function of y, with a period 2πR and with its two-

component spinorial modes being constrained by the afore-mentioned Z2 discrete symmetry

[8], we may expand the two-component spinors ξ and η in a Fourier series as follows:

ξ(x, y) =
1√
2πR

ξ0(x) +
1√
πR

∞∑
n=1

ξn(x) cos
(
ny

R

)
, (3.6)

η(x, y) =
1√
πR

∞∑
n=1

ηn(x) sin
(
ny

R

)
, (3.7)

where the chiral spinors ξn(x) and ηn(x) form an infinite tower of KK modes. After inte-

grating out the y coordinate, the effective Lagrangian takes on the form

Leff = LSM + ξ̄0(iσ̄
µ∂µ)ξ0 +

1

2
M ξ0ξ0 +

(
h̄

(0)
1 L̄Φξ0 + H.c.

)
+

∞∑
n=1

[
ξ̄n(iσ̄

µ∂µ)ξn

+ η̄n(iσ̄
µ∂µ)ηn +

n

R

(
ξnηn + ξ̄nη̄n

)
− 1

2
M
(
ξnξn + η̄nη̄n + H.c.

)
+
√

2
(
h̄

(n)
1 L̄Φξn + h̄

(n)
2 L̄Φηn + H.c.

) ]
, (3.8)

where we have chosen the weak basis in which M is positive, and

h̄
(n)
1 =

h1

(2πMFR)δ/2
cos

(
na

R

)
=

MF

MP
h1 cos

(
na

R

)
(n ≥ 0) , (3.9)

h̄
(n)
2 =

h2

(2πMFR)δ/2
sin

(
na

R

)
=

MF

MP
h2 sin

(
na

R

)
(n ≥ 1) . (3.10)

In deriving the last equalities on the RHS’s of Eqs. (3.9) and (3.10), we have employed the

basic relation given in Eq. (1.1). In agreement with [7,8], we find that independently of

the number δ of the extra dimensions, the 4-dimensional Yukawa couplings h̄
(n)
1 and h̄

(n)
2

are naturally suppressed by an extra volume factor MF/MP
<∼ 10−10. We also observe that

the mass term mN̄N drops out from the effective Lagrangian, as a result of the Z2 discrete

symmetry.

In the symmetric (unbroken) phase of the theory, the part of the Lagrangian describing

the KK masses is given by

−LKK
mass =

1

2
M ξ0ξ0 +

1

2

∞∑
n=1

(
ξn , ηn

) M −n/R
−n/R M

 ξn

ηn

 + H.c. (3.11)
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=
1

2
µχ

(0)
1 χ

(0)
1 +

1

2

∞∑
n=1

(
χ

(n)
1 , χ

(n)
2

) n/R− µ 0

0 n/R+ µ

 χ
(n)
1

χ
(n)
2

 + H.c.,

where χ
(n)
1(2) = 1√

2
exp(iφn

1(2)) [ ξn + (−) ηn ]. As in Ref. [8], we have defined that µ =

min (|M − k
R
|) be the smallest mass eigenvalue for some given value of k, and have re-

labelled the remaining KK mass eigenstates χ
(n)
1 and χ

(n)
2 with respect to k. Thus, after

compactification, we see how the heavy isosinglet mass M gets replaced by the small Ma-

jorana mass µ, with µ ≤ 1/R. Further technical details and discussion may be found in [8].

After expressing the effective Lagrangian in Eq. (3.8) in the newly introduced Majorana-

mass basis, we obtain

Leff = LSM + LKK
mass + χ̄

(0)
1 (iσ̄µ∂µ)χ

(0)
1 +

(
h

(0)
1 L̄Φχ

(0)
1 + H.c.

)
+

∞∑
n=1

[
χ̄

(n)
1 (iσ̄µ∂µ)χ

(n)
1

+ χ̄
(n)
2 (iσ̄µ∂µ)χ

(n)
2 +

(
h

(n)
1 L̄Φχ

(n)
1 + h

(n)
2 L̄Φχ

(n)
2 + H.c.

) ]
, (3.12)

where

h
(n)
1(2) = eiφn

1 h̄
(n)
1 + (−) eiφn

2 h̄
(n)
2 , (3.13)

and the Yukawa couplings h̄
(n)
1,2 are given in Eqs. (3.9) and (3.10).

It is now easy to recognize that the Lagrangian in Eq. (3.12) is the known 4-

dimensional model of leptogenesis with an infinite number of pairs of Majorana neutrinos

χ
(n)
1 and χ

(n)
2 [18]. With the help of a method based on generalized CP transformations

[29], we can derive the sufficient and necessary condition for the theory to be CP invariant.

Adapting the result found in [24] to the model under discussion, we find the condition

Im Tr
(
h† h M̂ †

χ M̂χ M̂
†
χ h

T h∗ M̂χ

)
= 0 , (3.14)

where h = (h
(0)
1 , h

(1)
1 , h

(1)
2 , . . . , h

(n)
1 , h

(n)
2 , . . .) and M̂χ = diag (µ, 1

R
−µ, 1

R
+µ, . . . , n

R
−µ, n

R
+

µ, . . .) are formally infinite-dimensional matrices that contain the Higgs Yukawa couplings

and the KK mass-eigenvalues, respectively. It is a formidable task to analytically calculate

the LHS of Eq. (3.14). Instead, we notice that if one of the following equalities holds true:

µ = 0 , a =
(

0 or πR
)
, Im (h1h

∗
2)

2 = 0 , (3.15)

the theory is then invariant under CP transformations. Consequently, CP violation requires

to have µ 6= 0 and a non-zero shifting of the brane, a 6= 0, apart from a relative CP-violating

phase between the original Yukawa couplings h1 and h2. Finally, we should remark that

if the Z2 discrete symmetry were not imposed on N(x, y), the resulting Lagrangian would

predict a dangerous twofold mass degeneracy in the spectrum of the would-be Majorana

KK states that would effectively correspond to the µ = 0 case, and hence would lead to

the absence of CP violation as well.
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3.2 The leptogenesis model with extended Higgs sector

The second scenario that we will be discussing does not involve the inclusion of any heavy

isosinglet mass scale. Instead, in addition to the higher-dimensional Dirac field N(x, y)

supplemented by the Z2 discrete symmetry, we shall extend the Higgs sector by two more

Higgs doublets that carry the same hypercharge as the SM Higgs doublet. As we will

demonstrate below, such an extension of the Higgs potential by three Higgs doublets,

denoted hereafter as Φ1, Φ2 and Φ3, is dictated by the necessity of introducing sufficient

L and CP violation into the theory. Specifically, this scenario is governed by the effective

Lagrangian

Leff =

2πR∫
0

dy
{
N̄
(
iγµ∂µ + iγ4∂y

)
N + δ(y − a)

[
h̄1 L̄Φ1ξ + h̄2 L̄Φ2η + H.c.

]
+ δ(y − a)

[
L′SM(Φ1) + LV (Φ1,Φ2,Φ3)

] }
, (3.16)

where LV (Φ1,Φ2,Φ3) and L′SM(Φ1) describe the Higgs potential and the residual standard

part of the model, respectively. Furthermore, the model is invariant under the transforma-

tions:

N → iN , Φ1 → −iΦ1 , Φ2 → iΦ2 , Φ3 → Φ3 ,

lR → −ilR , uR → iuR , dR → −idR , (3.17)

where lR, uR and dR denote the right-handed charged-leptons, the up- and down-type

quarks, respectively. Obviously, only Φ1 couples to the observed SM particles, whereas Φ3

does not couple to matter at all. The discrete symmetry in Eq. (3.17) is very crucial, as it

ensures the renormalizability of the model; the discrete symmetry is only broken softly by

operators of dimension two:

Lsoft
V =

3∑
i<j=1

m2
ij Φ†

iΦj + H.c. ⊂ LV (Φ1,Φ2,Φ3) . (3.18)

Notice that the Higgs potential of this scenario is very similar to that of Weinberg’s three

Higgs-doublet model [30].

One might now naively argue that the third Higgs doublet Φ3 is not compelling for

introducing CP violation into the theory, e.g. Im (h̄1h̄
∗
2m

2
12) 6= 0. However, this is not true.

Notwithstanding h̄1 and h̄2 might initially be complex in the basis in which m2
12 is real,

one can always rephase L → eiφlL and N → eiφN to make both real. If φh1 and φh2

denote the phases of the two Higgs Yukawa couplings, these phases can be eliminated by

choosing φl = (φh1 + φh2)/2 and φ = (φh2 − φh1)/2. In this scenario, CP violation gets
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Figure 1: Feynman graphs giving rise to UV-finite KK kinetic terms.

communicated radiatively to the neutrino sector via bilinear Higgs-mixing effects. To be

precise, CP nonconservation in the symmetric phase of the Higgs potential LV is manifested

by the non-vanishing of the following rephasing-invariant quantity [31]:

Im
(
m2

12m
2
23m

∗2
13

)
6= 0 . (3.19)

In addition, CP violation can only occur on a shifted brane, i.e. a 6= 0. The latter amounts

to non-zero values for both compactified Higgs Yukawa couplings h̄
(n)
1 and h̄

(n)
2 .

Proceeding as in Section 3.1, we integrate out the compact coordinate y in Eq. (3.16)

to eventually arrive at

Leff = L′SM(Φ1) + LV (Φ1,Φ2,Φ3) + ξ̄0(iσ̄
µ∂µ)ξ0 +

(
h̄

(0)
1 L̄Φ1ξ0 + H.c.

)
+

∞∑
n=1

[
ξ̄n(iσ̄

µ∂µ)ξn + η̄n(iσ̄µ∂µ)ηn − n

R

(
ξnηn + ξ̄nη̄n

)
+
√

2
(
ih̄

(n)
1 L̄Φ1ξn + ih̄

(n)
2 L̄Φ2ηn + H.c.

) ]
, (3.20)

where h̄
(n)
1 and h̄

(n)
2 are given by Eqs. (3.9) and (3.10), respectively. Observe that the

effective Lagrangian in Eq. (3.20) still preserves the original discrete symmetry in Eq.

(3.17), where the KK components of N(x, y) transform as: ξn → iξn and ηn → −iηn. At

the tree level, the model predicts an infinite number of KK Dirac states that have masses

which are equally spaced by an interval 1/R. Once radiative corrections are included,

however, as shown in Fig. 1, each KK Dirac state splits into a pair of nearly degenerate

Majorana neutrinos. In fact, radiative effects induce new UV-finite kinetic terms involving

the KK states. The new KK kinetic terms are given by

Lrad =
∞∑

n,m=1

κnm η̄n(iσ̄µ∂µ)ξm + H.c., (3.21)
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where simple dimensional analysis of the Feynman graphs displayed in Fig. 1 suggests§

κnm ∼ h̄
(n)∗
2 h̄

(m)
1

8π2

[
m2

12

m2
11 +m2

22

+
m2

13m
∗2
23

m2
33 (m2

11 +m2
22)

]
. (3.22)

Since κnm � 1/(RMF ), we find that to a good approximation, only the diagonal kinetic

transitions ξn → ηn contribute predominantly to the splitting of a KK Dirac state into a

pair of Majorana states. After canonically normalizing the KK kinetic terms, the KK mass

spectrum is determined by

−LKK
mass =

∞∑
n=1

n

2R

(
χ

(n)
1 , χ

(n)
2

) 1
1 + |εn| 0

0 1
1− |εn|


 χ

(n)
1

χ
(n)
2

 + H.c., (3.23)

where εn ≈ κnn and

 ξn

ηn

 =
1√
2

 e−iφn
ε /2 −e−iφn

ε /2

eiφn
ε /2 eiφn

ε /2




1√
1 + |εn|

0

0 1√
1− |εn|


 χ

(n)
1

χ
(n)
2

 , (3.24)

with φn
ε = arg (εn). From Eq. (3.24), we readily see that the radiatively-induced KK

Majorana states, χ
(n)
1 and χ

(n)
2 , mix strongly with one another, and so form a two-level

CP-violating system, namely a CP-violating resonator. The striking feature of the present

scenario is that both the lifting of the dangerous mass degeneracy of the KK Majorana

states and CP violation occurs through loop effects. This model of leptogenesis has no

analog in 4 dimensions, since the inclusion of a heavy Majorana mass is theoretically not

necessary.

3.3 The hybrid leptogenesis model

We shall now consider a model based on the two scenarios discussed in Sections 3.1 and 3.2,

in which we include the fermionic bilinears mN̄N and MNTC(5)−1N , as well as the three

Higgs doublets Φ1, Φ2 and Φ3. As opposed to the previous two cases, we shall not impose

the Z2 discrete symmetry on the bulk Dirac neutrino N(x, y). As we will see, the absence

of the Z2 symmetry yields a distinct prediction for the mass spectrum of the KK states. In

§We should remark that our renormalization procedure consists of two steps. In the first step, all UV
infinities are absorbed by off-diagonal wave-function and mixing renormalizations of the KK states in the
on-shell scheme [32]. To leading order, such a rescaling does not generally affect the original form of the
tree-level effective action. The second step, which is of our interest here, consists of a finite renormalization
of the kinetic terms.
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particular, we find that the heavy mass scales m and M neither decouple completely from

the KK mass spectrum nor get replaced by other small quantities of order 1/R.

The effective Lagrangian of the hybrid model reads

Leff =

2πR∫
0

dy
{
N̄
(
iγµ∂µ + iγ4∂y

)
N − mN̄N − 1

2

(
MNTC(5)−1N + H.c.

)
+ δ(y − a)

[
h̄1 L̄Φ1ξ + h̄2 L̄Φ2η + H.c.

]
+ δ(y − a)

[
L′SM(Φ1)

+LV (Φ1,Φ2,Φ3)
] }

. (3.25)

The above Lagrangian possesses a global symmetry given by Eq. (3.17) which is only broken

softly by the Higgs mass terms in Eq. (3.18) and by MNTC(5)−1N . This is a crucial fact

that ensures the renormalizability of the model.

Since periodicity is the only constraint that applies to N(x, y), the 5-dimensional two-

component spinors ξ and η may then be expressed in terms of a Fourier series expansion

as follows:

ξ(x, y) =
1√
2πR

∞∑
n=−∞

ξn(x) exp
(
iny

R

)
, (3.26)

η(x, y) =
1√
2πR

∞∑
n=−∞

ηn(x) exp
(
iny

R

)
. (3.27)

Substituting Eqs. (3.26) and (3.27) into the effective Lagrangian (3.25), we find after y

integration

Leff = L′SM(Φ1) + LV (Φ1,Φ2,Φ3) + Lrad +
∞∑

n=−∞

{
ξ̄n(iσ̄

µ∂µ)ξn + η̄n(iσ̄µ∂µ)ηn

−
[ (
m+

in

R

)
ξnη−n + H.c.

]
− 1

2
M
(
ξ−nξn + η̄−nη̄n + H.c.

)
+
(
h̄

(n)
1 L̄Φ1ξn + h̄

(n)
2 L̄Φ2ηn + H.c.

)}
, (3.28)

where

h̄
(n)
1 =

MF

MP

h1 exp
(
ina

R

)
, h̄

(n)
2 =

MF

MP

h2 exp
(
ina

R

)
. (3.29)

In Eq. (3.28), Lrad indicates the UV-finite radiative contributions to the KK kinetic terms,

i.e.

Lrad =
∞∑

n,m=−∞
κn,m η̄n(iσ̄µ∂µ)ξm + H.c., (3.30)

where κn,m is given by a formula very analogous to Eq. (3.22). To avoid excessive compli-

cation in the calculation, we consider only those radiative terms κn,m that are expected to
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have a dominant effect on the KK mass spectrum. More explicitly, we have

Lrad ≈ κ0,0 η̄0(iσ̄
µ∂µ)ξ0 +

∞∑
n=1

[
κn,n η̄n(iσ̄µ∂µ)ξn + κ−n,−n η̄−n(iσ̄µ∂µ)ξ−n

+ κn,−n η̄n(iσ̄µ∂µ)ξ−n + κ−n,n η̄−n(iσ̄µ∂µ)ξn
]

+ H.c. (3.31)

Notice that all |κn,m| have the same absolute value and do not depend on the indices n and

m.

To evaluate the masses of the KK neutrino states, it is convenient to write the kinetic

part of the KK sector as a sum of two terms:

LKK
kin = LKK

n=0 + LKK
n≥1 , (3.32)

where

LKK
n=0 =

(
ξ̄0, η̄0

)
(iσ̄µ∂µ)

 1 κ0,0

κ0,0 1

 ξ0

η0

 − 1

2

(
ξ0, η0

) M m

m M

 ξ0

η0


+ H.c. , (3.33)

LKK
n≥1 =

∞∑
n=1

[ (
ξ̄n, η̄n, ξ̄−n, η̄−n

)
(iσ̄µ∂µ)


1 κ∗n,n 0 κ∗n,−n

κn,n 1 κn,−n 0

0 κ∗n,−n 1 κ∗−n,−n

κn,−n 0 κ−n,−n 1




ξn

ηn

ξ−n

η−n



− 1

2

(
ξn, ηn, ξ−n, η−n

)


0 0 M m̃n

0 0 m̃∗
n M

M m̃∗
n 0 0

m̃n M 0 0




ξn

ηn

ξ−n

η−n

 + H.c.

]
, (3.34)

with m̃n = m+(in/R) (i.e. m̃0 = m). From the Lagrangian LKK
n=0 in Eq. (3.33), one obtains

two Majorana neutrinos, χ
(0)
1 and χ

(0)
2 , with masses

m(0)
χ1

=
|M −m|
|1− κ0,0|

≈ |M −m|, m(0)
χ2

=
M +m

|1 + κ0,0|
≈ M +m. (3.35)

We now turn to the evaluation of the KK neutrino masses, for the more involved case with

n ≥ 1. To this end, we first go to a weak basis in which the mass matrix is real by rephasing

the KK fields:

ξn → e−iφn/2 ξn , ηn → eiφn/2 ηn , ξ−n → eiφn/2 ξ−n , η−n → e−iφn/2 η−n , (3.36)

with φn = arg m̃n. Even though one could always work out the most general case, it

is, however, very illuminating to make a further assumption that leads to much simpler
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analytic results. We assume that all radiative kinetic terms are predominantly real in the

new weak basis in Eq. (3.36), i.e. Imκn,m � Reκn,m ≈ ε. Then, considering m ≥ M

for definiteness, we can diagonalize the Lagrangian in Eq. (3.34) through the canonical

transformation


ξn

ηn

ξ−n

η−n

 =
1

2


i 1 −i 1

−i −1 −i 1

−i 1 i 1

i −1 i 1





i 0 0 0

0 i√
1− 2ε

0 0

0 0 1 0

0 0 0 1√
1 + 2ε




χ

(n)
1

χ
(n)
2

χ
(−n)
1

χ
(−n)
2

 , (3.37)

which leads to the KK Majorana masses

m(n)
χ1

=

√
m2 +

n2

R2
− M , m(n)

χ2
=

1

1− 2ε

(√
m2 +

n2

R2
− M

)
,

m(−n)
χ1

= M +

√
m2 +

n2

R2
, m(−n)

χ2
=

1

1 + 2ε

(
M +

√
m2 +

n2

R2

)
. (3.38)

Evidently, Eq. (3.38) shows that the immediate effect of radiative corrections is to lift the

dangerous twofold mass degeneracy among the KK states χ
(±n)
1 and χ

(±n)
2 , thus rendering

the theory CP violating. If one considers that m > M , the mass of the lowest lying KK

state is m(0)
χ1
≈ m − M , which can naturally be much bigger than the compactification

scale 1/R. This is a distinctive feature of the present model, since, unlike the previous

two scenarios, the heavy mass scale m−M neither decouples from the complete KK mass

spectrum nor gets replaced by quantities of order 1/R.

4 Resonant CP violation

In addition to lepton-number violation, CP nonconservation constitutes another important

ingredient for leptogenesis. These two necessary conditions satisfy, by construction, the

three models of leptogenesis, discussed in the previous section. However, these conditions

may not be sufficient to guarantee an appreciable leptonic asymmetry that results from

decays of KK Majorana states according to the standard scenario of leptogenesis [18].

In particular, in theories with low scale of quantum gravity, we have to ensure that the

total net effect of the individual CP-violating contributions coming from the tower of the

nearly degenerate KK Majorana states does not vanish because of some kind of a GIM [33]

cancellation mechanism. In fact, by making use of such a GIM-type mechanism, we can

show that all the CP-violating vertex (ε′-type) terms almost cancel pairwise. On the other
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Figure 2: Schematic representation of the mass spectrum of the KK states.

hand, we find that the interference of the CP-violating self-energy (ε-type) contributions

is constructive or destructive, depending on the mass spacing of the KK Majorana states.

The mass spectrum of the higher-dimensional models of leptogenesis under discussion

consists of an infinite series of pairs of nearly degenerate Majorana neutrinos, which we

denote by χ
(n)
1 and χ

(n)
2 . The generic pattern of the KK mass spectrum may be represented

by Fig. 2. As we have discussed in Section 3, the mass difference between χ
(n)
1 and χ

(n)
2

may be induced either at the tree level:

∆m(n)
χ ≡ m(n)

χ2
− m(n)

χ1
= 2µ , (4.1)

or through radiative kinetic terms:

∆m(n)
χ ∼ κnmm

(n)
χ ∼ h∗2h1

8π2

M2
F

M2
P

m(n)
χ , (4.2)

with

m(n)
χ ≡ 1

2

(
m(n)

χ1
+ m(n)

χ2

)
. (4.3)

Furthermore, the mass difference between two adjacent KK pairs is determined by

∆M (n)
χ ≡ m(n+1)

χ − m(n)
χ ≈ 1

R
=

(
MF

MP

)2/δ

MF . (4.4)

In deriving the approximate equality in Eq. (4.4), we have implicitly assumed that

m >∼ n/R >∼ Tc, for the hybrid scenario outlined in Section 3.3. As we will discuss in the

next section, this is a reasonable assumption, since only the KK states χ
(n)
1,2 with masses

above the critical temperature Tc of the electroweak phase transition are relevant for baryo-

genesis. Clearly, if the origin of a non-zero ∆m(n)
χ is due to loop effects, one naturally has
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∆M (n)
χ � ∆m(n)

χ for any number δ of extra dimensions. However, if ∆m(n)
χ occurs in the

Born approximation, then ∆m(n)
χ and ∆M (n)

χ could be of equal order. As we will see below,

the last two quantities determine the magnitude of CP violation that originates from the

interference of the tower of the KK states.

Let us first consider ε′-type CP violation in the decays of KK states. For our illustra-

tions, it is sufficient to assume that the KK states decay predominantly to the SM Higgs

doublet Φ or to the Higgs doublet with the smallest (thermal) mass in the model with the

extended Higgs sector. Since ∆m(n)
χ < ∆M (n)

χ � m(n)
χ , the CP-violating parameter of our

interest is

ε′(n)
χ =

|T (n)ε′
χ1

|2 + |T (n)ε′
χ2

|2 − |T (n)ε′
χ1

|2 − |T (n)ε′
χ2

|2

|T (n)ε′
χ1 |2 + |T (n)ε′

χ2 |2 + |T (n)ε′
χ1

|2 + |T (n)ε′
χ2

|2
, (4.5)

where we used the short-hand notations for the transition amplitudes: T (n)ε′
χ1

= T ε′
(χ

(n)
1 →

LΦ†), T (n)ε′
χ1

= T ε′
(χ

(n)
1 → LCΦ), and likewise for χ

(n)
2 . In all these amplitudes, only vertex

diagrams are included. The parameter ε′(n)
χ is then found to be

ε′(n)
χ =

1

8π (|h(n)
1 |2 + |h(n)

2 |2)
∑
k

Im (h
(n)∗
1 h

(k)
2 )2

[
f

(
m(k) 2

χ2

m
(n) 2
χ1

)
− f

(
m(k) 2

χ1

m
(n) 2
χ2

) ]
, (4.6)

with

f(x) =
√
x
[
1 −

(
1 + x

)
ln
(
1 +

1

x

) ]
. (4.7)

Note that the range of summation over the KK states explicitly depends on the model.

Equation (4.6) may further be approximated as

ε′(n)
χ ≈ 1

4π (|h(n)
1 |2 + |h(n)

2 |2)
∑
k

Im (h
(n)∗
1 h

(k)
2 )2

(
∆m(n)

χ

m
(n)
χ

+
∆m(k)

χ

m
(k)
χ

)
m(k) 2

χ

m
(n) 2
χ

f ′
(
m(k) 2

χ

m
(n) 2
χ

)
,

(4.8)

where f ′(x) is the derivative of the function f(x), i.e.

f ′(x) =
3

2
√
x

[
1 −

(
2

3
+ x

)
ln
(
1 +

1

x

) ]
. (4.9)

It is obvious that each individual KK term in Eq. (4.8) is suppressed by a factor ∆m(k)
χ /m(k)

χ

as a result of a GIM-type cancellation mechanism.

To explicitly demonstrate that ε′-type contributions to CP violation are indeed small,

it is instructive to offer an estimate for the sum over the KK states in Eq. (4.8), after making

few plausible assumptions. For simplicity, we consider a theory with one additional spatial

dimension (δ = 1), and further assume that all the Yukawa couplings h
(k)
1 and h

(k)
2 as well as

the mass differences, ∆m(k)
χ (or ∆m(k)

χ /m(k)
χ ) and ∆M (k)

χ , are independent of k. In addition,
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we convert the sum over the KK states ‘k’ to an energy integral which has an UV cutoff

at the fundamental scale of quantum gravity MF . With these considerations, we obtain

ε′(n)
χ ≈ − Im (h

(n)∗
1 h

(n)
2 )2

16π (|h(n)
1 |2 + |h(n)

2 |2)
∆m(n)

χ

∆M
(n)
χ

≈ − Im (h∗1h2)
2

16π (|h1|2 + |h2|2)
M2

F

M2
P

∆m(n)
χ

∆M
(n)
χ

, (4.10)

where we have used that f ′(x) ≈ −1/(2x3/2), for x � 1. The above exercise shows that

ε′(n)
χ is extremely suppressed by the extra-dimensional volume factor M2

F/M
2
P and, in certain

scenarios, by the ratio ∆m(n)
χ /∆M (n)

χ � 1. Consequently, we can safely neglect ε′-type CP

violation in the decays of the KK Majorana states.

In the following, we shall focus our attention on the self-energy (ε-type) contribution

to CP violation. In analogy to Eq. (4.5), the relevant measure of ε-type CP violation may

be defined by

ε(n)
χ =

|T (n)ε
χ1

|2 + |T (n)ε
χ2

|2 − |T (n)ε
χ1

|2 − |T (n)ε
χ2

|2

|T (n)ε
χ1 |2 + |T (n)ε

χ2 |2 + |T (n)ε
χ1

|2 + |T (n)ε
χ2

|2
. (4.11)

Correspondingly, T (n)ε
χ1,2

(T (n)ε
χ1,2

) indicate the decays χ
(n)
1,2 → LΦ† (χ

(n)
1,2 → LCΦ), where only

the self-energy graph has been taken into account. Since each ε-type term is proportional

to the mass difference of the KK states involved, one has to avoid that self-energy transi-

tions χ
(n+1)
1 → χ

(n+1)
2 cancel against the transitions χ

(n+1)
1 → χ

(n)
2 . From Fig. 2, we may

schematically deduce the condition for destructive interference among adjacent KK states,

which translates into the relation

∆m(n)
χ ∼ 1

2
∆M (n)

χ . (4.12)

Instead, if

∆M (n)
χ � ∆m(n)

χ , (4.13)

the interference of two neighbouring KK states is constructive. Employing the resummation

approach to the mixing of unstable particles which was developed in [24,34], we find that

ε(n)
χ =

2 Im (h
(n)
1 h

(n)∗
2 )2

(|h(n)
1 |2 + |h(n)

2 |2)2

∆m(n)
χ (Γ(n)

χ1
+ Γ(n)

χ2
)

(∆m
(n)
χ )2 + 1

4
Γ

(n)2
χ2

[
1 +

(∆m(n)
χ )2 + 1

4
Γ(n)2

χ2

(∆m
(n)
χ )2 + 1

4
Γ

(n)2
χ1

]
, (4.14)

where

Γ(n)
χ1

=
1

8π
|h(n)

1 |2m(n)
χ1

and Γ(n)
χ2

=
1

8π
|h(n)

2 |2m(n)
χ2

(4.15)

are the decay widths of χ
(n)
1 and χ

(n)
2 , respectively. In Eq. (4.14), we have neglected con-

tributions to ε(n)
χ of order ∆m(n)

χ /∆M (n)
χ (cf. Eq. (4.13)) and ∆m(n)

χ /m(n)
χ .
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In agreement with Ref. [24], we observe that the CP-violating parameter ε(n)
χ given

by Eq. (4.14) can be of order one, if the two conditions:

(i) δ
(n)
CP ≡ |Im (h

(n)
1 h

(n)∗
2 )2|

|h(n)
1 |2|h(n)

2 |2
∼ 1 and (ii) ∆m(n)

χ ∼
Γ(n)

χ1

2
or

Γ(n)
χ2

2
(4.16)

are satisfied. The first condition is rather model-dependent. A priori there is no reason

to believe that the phases of the original Yukawa couplings h1 and h2 should somehow be

aligned and, as a result of this, the parameter δ
(n)
CP must be suppressed. Thus, we consider

δ
(n)
CP ∼ 1.

In a general model, more difficult is, however, to theoretically justify the second con-

dition, as the mass splitting of the mixed particles involved must be of the order of their

widths. For the scenarios discussed in Sections 3.2 and 3.3, the mass splitting ∆m(n)
χ is

radiatively induced by integrating out the Higgs interactions and then canonically normal-

izing the resulting kinetic terms. Thus, the width of the KK Majorana states and their

respective mass difference formally occur at the same electroweak loop order. Therefore,

the second condition is naturally implemented for these two models. For the leptogenesis

model described in Section 3.1, one has to assume that µ ∼ Γ(n)
χ1

or Γ(n)
χ2

. As a consequence

of compactification of the extra large dimensions, the mass parameter µ always comes out

to be smaller than ∆M (n)
χ , so some degree of tuning µ to even smaller values is required in

this case.

The models of leptogenesis we have been studying share the generic feature that

each KK Dirac state decomposes into a pair of nearly degenerate Majorana neutrinos.

Such a pair of KK Majorana neutrinos forms a strongly mixed two-level system that ex-

hibits CP violation of order unity; such a system was called a CP-violating resonator. In

fact, it was shown in [24] that the resonant enhancement of CP violation is driven by the

non-diagonalizable (Jordan-like) form of the effective Hamiltonian (or equivalently the re-

summed propagator) of the two-level system, which satisfies conditions very analogous to

those of Eq. (4.16). Finally, we should stress that the constructive interference of all the in-

dividual KK CP-violating resonators is assured on the basis of the requirement given by Eq.

(4.13). This last requirement is more naturally implemented in the models of leptogenesis

with extended Higgs sector (see also discussion in Sections 3.2 and 3.3).

5 Baryonic asymmetry of the Universe

Astronomical observations give strong evidence that the present Universe mainly consists

of matter rather antimatter, viz. the Universe possesses an excess in the B number. The
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observed B asymmetry may be quantified by the nonzero baryon-number–to–entropy ratio

of densities [26]

Y∆B =
n∆B

s
= (0.6− 1)× 10−10 , (5.1)

where n∆B = nB − nB̄ ≈ nB and s is the entropy density. As we mentioned in the

introduction, an attractive solution that could account for the nonzero value of Y∆B by

making use of all the necessary conditions imposed by Sakharov [35] may be given by

means of the scenario of baryogenesis through leptogenesis [18]. Based on an analysis of

chemical potentials [36], one may derive that

YB(T > Tc) =
8NF + 4NH

22NF + 13NH
Y(B−L) . (5.2)

Almost independently of the numbers NF and NH of flavours and Higgs doublets, one finds

that approximately one-third of the initial B−L and/or L asymmetry will be reprocessed

by sphalerons into an asymmetry in B. This B asymmetry is not affected by the tower of

the right-handed KK states and so persists even after the electroweak phase transition.

Let us first consider the constraints on the parameter space of the leptogenesis models

coming from Sakharov’s requirement that L or B − L-violating processes, such as decays

of KK Majorana modes, must be out-of-thermal equilibrium in an expanding Universe.

As was discussed by Abel and Sarkar [37], the presence of low-lying KK states drastically

influences the evolution of the Universe, as the number of the relativistic degrees of freedom

increases with temperature T . To be more precise, if m(0)
χ1
≡ mmin represents the mass of

the lowest KK state in a given model of leptogenesis, the number of relativistic KK states

below T is then roughly given by [(T −mmin)R]δ, where δ is the number of large compact

dimensions. Thus, the number of the active degrees of freedom at a given temperature T

is determined by

g(T ) ≈ g∗ + Sδ θ(T −mmin) [(T −mmin)R]δ

≈ g∗ + Sδ θ(T −mmin)
(
MP

MF

)2 (T −mmin

MF

)δ

, (5.3)

where g∗ ≈ 100 is the number of active degrees of freedom in usual 4-dimensional extensions

of the SM, and Sδ = 2πδ/2/Γ( δ
2
) is the surface area of a (δ + 1)-dimensional sphere of unit

radius. From Eq. (5.3), we see that the part of g(T ) modified by the presence of KK

states, gKK(T ), can generally be much larger than g∗, unless mmin ∼ Tc, or MF and δ are

sufficiently high for some specific model. For instance, in the hybrid leptogenesis model,

one may have mmin ≈ m−M > Tc, and gKK(T ) is of order g∗ for T >∼ Tc.

Sakharov’s requirement that all B- and, because of equilibrated sphaleron interac-

tions, L-violating processes should be out-of-thermal equilibrium translates into the ap-
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proximate inequality for the total T -dependent decay rate of the KK states

Γχ(T ) ≡
int (TR)∑

n=int (mminR)

Γ(i)
χ

<∼ 2H(T ) , (5.4)

where n = (n1, n2, . . . , nδ), Γ(n)
χ = 1

2
(Γ(n)

χ1
+ Γ(n)

χ2
) is the average decay width of the nth

CP-violating resonator, and

H(T ) = 1.73 g1/2(T )
T 2

MP
≈ 1.73S

1/2
δ

(
T −mmin

MF

)δ/2 T 2

MF
. (5.5)

The last approximate equality holds true, provided gKK(T ) � g∗. Converting the multidi-

mensional sum over the KK modes in Eq. (5.4) into an integral, we find that

Γχ(T ) ≈ |h1|2 + |h2|2
16π2

Sδ

δ

(
T −mmin

MF

)δ+1

MF . (5.6)

An immediate result of the out-of equilibrium condition in Eq. (5.4) is the constraint

1

2

(
|h1|2 + |h2|2

)
<∼ 32π2 S

−1/2
δ

T 2

M2
F

(
T −mmin

MF

)−1−δ/2

, (5.7)

which does no longer depend on MP. From Eq. (5.7), it is interesting to see that no

serious arrangement of the parameters is necessary for all δ ≥ 1 and MF > T > Tc,

even if the original Yukawa couplings h1 and h2 in Eq. (3.5) are taken to be of order 1.

This should be contrasted with the extremely tight limits on the Yukawa couplings in the

conventional 4-dimensional models [24], namely h1,2
<∼ 10−6. These limits are obtained if

one sets mmin = δ = 0, T = 0.2–1 TeV and MF = MP, and replaces Sδ by 1/g∗ in Eq. (5.7).

It is interesting to derive the time evolution of the Universe as a function of its

temperature in higher-dimensional theories. We assume that the Friedmann–Robertson–

Walker metric governs the expansion of the Universe after inflation [26], and that all active

relativistic degrees of freedom are in chemical equilibrium and therefore have the same

temperature. Imposing entropy conservation, i.e.

sR3 ∝ g(T ) T 3R3 = const., (5.8)

and differentiating with respect to time t, we then find that

H ≡ 1

R

dR

dt
= − δ + 3

3

1

T

dT

dt
, (5.9)

for gKK(T ) � g∗. If we differentiate the Hubble variable in Eq. (5.5) with respect to t and

employ Eq. (5.9), we arrive at the differential equation

dH

dt
= − 3

2

δ + 4

δ + 3
H2 . (5.10)
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Considering as initial condition H(t→ 0) →∞, the solution of Eq. (5.10) reads

t(T ) =
2

3

δ + 3

δ + 4

1

H(T )
≈

(
7.6× 10−28 sec

) 1

S
1/2
δ

δ + 3

δ + 4

(
TeV

MF

)(
T

MF

)−2− 1
2
δ

. (5.11)

If gKK(T ) ∼ g∗, which happens for temperatures T <∼ mmin + (MF/MP)2/δg
1/δ
∗ MF , the

time-temperature relation (5.11) goes over into the canonical 4-dimensional form

t(T ) =
1

2H(T )
≈ (2.3 sec)× g−1/2

∗

(
MeV

T

)2

. (5.12)

Comparing the T -dependence in Eqs. (5.11) and (5.12), one readily sees that the presence

of large compact dimensions makes Universe cool more rapidly.

We shall now attempt to give a conservative estimate of the baryonic asymmetry

that results from a sphaleron-converted leptonic asymmetry at T > Tc, including possible

dilution factors due to a low reheat temperature Tr. As a starting point, we assume that

n(n)
χ (T ) ≈ nγ(T ), for m(n)

χ
<∼ T <∼ MF , where n(n)

χ (T ) is the number density of the nth

KK pair of Majorana states and nγ(T ) ≈ 2.4 T 3/π2 is the respective number density for

photons. The dominant contribution to the B asymmetry is expected to be encoded in the

nth CP-violating resonator at T ≈ m(n)
χ for m(n)

χ > Tc, mmin, when the equilibrium number

density of the nth KK pair is of the order of n(n)
χ (T ) [26]. Thus, the nth CP-violating

resonator gives rise to the baryonic excess

Y
(n)
∆B ≈ −1

3

ε(n)
χ n(n)

χ (m(n)
χ )

s(m
(n)
χ )

≈ −
ε(n)

χ

3 g(m
(n)
χ )

. (5.13)

In deriving the last step of Eq. (5.13), we have used that s(T ) ≈ g(T )nγ. Because Γχ(T ) �
H(T ), the neutrino KK states will decay at much later times and reheat the Universe at

Tr � Tc. We shall assume that this happens for Tr
>∼ 1 MeV to avoid problems with

nucleosynthesis. In this qualitative picture, the entropy release due to the late decays of

the KK neutrinos can usually be taken into account by a multiplicative suppression factor

Tr/m
(n)
χ on the RHS of Eq. (5.13) [26]. The total B asymmetry may then be estimated by

Y∆B ≈
int (MF R)∑

n=int (TminR)

Tr

m
(n)
χ

Y
(n)
∆B , (5.14)

with Tmin = max (Tc, mmin). In the leptogenesis models under discussion, all the individual

CP-violating asymmetries ε(n)
χ are of the same order, i.e. ε(n)

χ = −εχ for all n, and their

net effect is constructive, as long as the condition in Eq. (4.13) is satisfied. For generality,

let us assume that the interference of the CP-violating resonators is constructive up to an
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energy scale M ′
F ≤MF . Approximating the sum over the n-KK states in Eq. (5.14) by an

integral, we then obtain

Y∆B ≈ 1

3

(
1 − Tmin

M ′
F

)
Tr

Tmin

εχ . (5.15)

From Eq. (5.15), we see that the generated BAU, Y∆B, is generally independent of the

number δ of extra dimensions and can assume its observed value, even if the parameters

involved take rather modest values. For example, if Tr = 1 MeV, Tmin = 1 TeV, and

εχ ≈ 10−3, one then easily arrives at the observed level for the BAU, namely Y∆B ≈ 10−10.

One difficulty of the leptogenesis models we have been discussing is that the late

decays of the low KK neutrinos may distort the abundances related to the light elements
4He, D, 7Li, etc. Of course, for sufficiently large MF and/or δ values, the lowest KK state,

with mass of order 1/R ∼ (MF/MP )2/δMF , will be heavy enough to decay just before

nucleosynthesis. This may reintroduce a mild hierarchy problem in the parameters of the

theory, in case we wish to identify MF with the scale of soft-supersymmetry breaking [5].

Therefore, among the leptogenesis models which were discussed in Section 3, the hybrid

scenario represents the most attractive solution to this problem, as the lowest KK state,

with mass mmin = m − M , can be made heavy enough, e.g. of order Tc, in order to

decay sufficiently rapidly. Whether such a scenario can be embedded to a more general

supersymmetric theory is an issue which we shall not address in the present work.

6 Conclusions

We have studied the scenario of baryogenesis through leptogenesis in theories with large

compact dimensions. The formulation of these theories requires the extension of the notion

of the Majorana spinor to multidimensional Minkowski spaces. We have reviewed this topic

in Section 2. In particular, it was shown that genuine massive Majorana neutrinos exist

in 2, 3 and 4 mod 8 dimensions only. This limitation is due to the lack of finding Clifford-

algebra representations that satisfy the Majorana properties in any number of dimensions.

In Section 3, we have formulated minimal models of leptogenesis which are renormalizable

if a finite number of KK states are considered. Such a truncation of the number of the

KK states may not be very unrealistic, as the fundamental scale of quantum gravity MF

is expected to play the role of an UV cutoff.

The leptogenesis models that we have been discussing initially furnish the field content

of the theory with an infinite series of KK Dirac states. Subsequently, each KK Dirac state

splits into pairs of nearly degenerate Majorana neutrinos. Such a mass splitting occurs

either at the tree level after compactification of the extra dimensions, or more interestingly,
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at the one-loop level by integrating out the Higgs interactions of an extended Higgs sector.

As a consequence, each pair of the Majorana neutrinos behaves as a CP-violating resonator,

i.e. it becomes a strongly mixed two-level system producing a leptonic CP asymmetry of

order unity. Depending on the mass difference between two adjacent pairs of KK Majorana

neutrinos, the tower of the CP-violating resonators may have a constructive or destructive

interference. In Section 4, we have found that such an interference is constructive, if the

level spacing between any two nearby pairs of KK Majorana neutrinos is much bigger than

the mass difference of the Majorana neutrinos within each pair (cf. Eq. (4.13)).

At temperatures above Tc, the large leptonic asymmetry resulting from the afore-

mentioned mechanism gets converted, through equilibrated sphaleron interactions, into a

corresponding large excess in the B number. As has been described in Section 5, long after

the electroweak phase transition, the decay products of the KK Majorana neutrinos and

possibly those of gravitons may reheat the Universe and so dilute the B asymmetry to

reach the presently observed value. In such a cosmological framework, the upper bound

on the reheat temperature compatible with baryogenesis may be dramatically weakened in

theories with low scale of quantum gravity. For this reason, we believe that embedding the

minimal scenarios of leptogenesis that we have studied here into more realistic models of

inflation constitutes an interesting issue for future investigations.
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