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Abstract

Starting from classical transport theory, we derive a set of covariant equations de-
scribing the dynamics of mean fields and their statistical fluctuations in a non-
Abelian plasma in or out of equilibrium. A general procedure is detailed for
integrating-out the fluctuations as to obtain the effective transport equations for
the mean fields. In this manner, collision integrals for Boltzmann equations are ob-
tained as correlators of fluctuations. The formalism is applied to a hot non-Abelian
plasma close to equilibrium. We integrate-out explicitly the fluctuations with typical
momenta of the Debye mass, and obtain the collision integral in a leading logarith-
mic approximation. We also identify a source for stochastic noise. The resulting
dynamical equations are of the Boltzmann-Langevin type. While our approach is
based on classical physics, we also give the necessary generalizations to study the
quantum plasmas. Ultimately, the dynamical equations for soft and ultra-soft fields
change only in the value for the Debye mass.
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I. INTRODUCTION

This article presents in full detail an approach to the dynamics of non-Abelian plasmas
based on classical transport theory, the main results of which have been summarized in [1].

In the recent years, there has been an increasing interest in the dynamics of non-Abelian
plasmas at very high temperatures or high densities. Due to the asymptotic freedom of
quantum chromodynamics, one expects that quarks and gluons are no longer confined under
such extreme conditions, but rather behave as free entities forming the so-called quark-gluon
plasma. Within the next few years, a lot of efforts will be given to detect experimentally this
new state of matter using heavy-ion colliders. Another domain of application concerns the
physics of the early universe. If baryogenesis can finally be understood within an electroweak
scenario, an understanding of the physics of the electroweak model in the high temperature
regime where the spontaneous broken symmetry is restored, is essential for a computation
of the rate of baryon number violation.

It is therefore mandatory to devise reliable theoretical tools for a quantitative description
of non-Abelian plasmas both in or out of equilibrium. While some progress has been achieved
in the recent years [2,3], we are still far away from having a satisfactory understanding of
the relevant relaxation and transport processes in non-Abelian plasmas, in particular when
it comes to out-of-equilibrium situations.

There are different approaches in the literature to study non-Abelian plasmas, ranging
from thermal field theory to quantum transport equations or lattice studies. Even in the
close-to-equilibrium plasma, and for small gauge coupling, the situation is complicated due
to the non-perturbative character of long-wavelength excitations in the plasma. Most at-
tempts to tackle this problem are based on a quantum field theoretical description of the
non-Abelian interactions [4,5]. It has been conjectured that the plasma close to equilibrium
allows for a description in terms of soft classical fields, as the occupation number for the soft
excitations are large. Surprisingly, a classical transport theory approach, as developed in
[6], has never been exploited in full detail for the non-Abelian case. The opposite holds true
for Coulomb plasmas, where all the essential transport phenomena have been studied longly
using techniques developed within (semi-)classical kinetic theory [7], while a quantum field
theoretical approach has been undertaken only recently.

Our approach aims at filling this gap in the literature of classical non-Abelian plas-
mas. Here, we follow the philosophy of Klimontovitch [7], and our equations can be seen
as the generalization of classical kinetic theory for Abelian plasmas to non-Abelian ones.
Our essential contribution is considering the non-Abelian colour charges as dynamical vari-
ables and introducing the concept of ensemble average to the non-Abelian kinetic equations.
Equally important is the consistent treatment of the intrinsic non-linearities of non-Abelian
gauge interactions. The observation that Klimontovitch’s procedure leads to the Balescu-
Lenard collision integral for Coulomb plasmas has motivated earlier derivations of similar
(semi-)classical kinetic equations for non-Abelian plasmas [8–10]. However, these imple-
mentations are not fully consistent, and have never been worked out in all generality.

The starting point for a classical transport theory of non-Abelian plasmas is consider-
ing an ensemble of classical point particles carrying a non-Abelian charge. They interact
through self-consistent fields, that is, the fields generated by the particles themselves. The
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microscopic dynamics is governed by the classical equations of motion given by the Wong
equations [11]. When the number of particles is large, one has to abandon a microscopic
description of the system in favour of a macroscopical one based on an ensemble average
of all the microscopic quantities. This leads naturally to a description in terms of aver-
aged quantities, and their statistical fluctuations. By averaging the microscopic dynamical
equations, we obtain effective transport equations for mean quantities. These contain the
collision integrals of the macroscopic Boltzmann equation, which appear in this formula-
tion as statistical correlators of fluctuating quantities. By subtracting the exact microscopic
equations from the mean ones, we obtain the dynamical equations for the fluctuations them-
selves. In principle, these two set of equations should be enough to consider all the transport
phenomena in the plasma.

This method is then applied in full detail to a thermal non-Abelian plasma close to equi-
librium, which allows to employ some approximations. For a small plasma parameter, the
two-particle correlators are small and can be neglected. In the case of small fluctuations,
the dynamical equations simplify considerably. These conditions are always met for a small
gauge coupling parameter, which, for simplicity, will be assumed throughout. Our approxi-
mate equations are the leading order ones in a consistent expansion in the gauge coupling.
However, we shall also see that the condition for a kinetic description to be valid could also
be met for large gauge couplings. After taking statistical averages, we are able to explicitly
integrate-out the fluctuations with momenta about the Debye mass. This gives the collision
integrals which appear in the transport equations for the mean fields. In addition to the
dissipative processes in the plasma described by the collision term, we are able to deduce
the stochastic source which prevents the system from abandoning equilibrium. This is an
important result, because it allows to prove explicitly that the fluctuation-dissipation theo-
rem holds, when switching from a microscopic to a macroscopic description of the system.
These findings for classical plasmas can be generalized to the case of quantum ones. The
resulting dynamical equation match perfectly the effective theory for the ultra-soft modes
as found by other approaches [12–14].

The lesson to be learned is thus two-fold: There exists a fully self-contained formalism to
study classical non-Abelian plasmas in the first place, which opens in particular a door for
applications to out-of-equilibrium situations. Second, this approach is -technically speaking-
much easier than approaches based on the full QFT. Some of the intrinsic complications of
a quantum field theoretical description (like gauge-fixing, ghost degrees of freedom) can be
avoided, and in the close to equilibrium plasma, the same effective dynamical equations are
obtained.

The paper is organized as follows. We begin with a review of the microscopic picture,
based on the classical equations of motions for coloured point particles (sect. II). Changing
to a macroscopic description needs the introduction of a statistical average, which also allows
the computation of correlators of fluctuations (sect. III). This procedure is then applied to
the fields and the distribution function as to obtain dynamical equations for their mean
values and their fluctuations. The dynamical equations are given in its most general form.
Possible approximation schemes are detailed, and the interpretation of statistical correlators
in terms of collision integrals is given (sect. IV). The consistency of the procedure with the
requirements of gauge invariance is shown for the complete set of equations, and some
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approximations to them (sect. V). In order to apply the formalism to a plasma close
to equilibrium, we discuss first the relevant physical scales for both classical and quantum
plasmas (sect. VI). This is followed by a fully detailed derivation of the mean field dynamical
equation for classical plasmas, which includes the integrating-out of the fluctuations with
momenta about the Debye mass, and the computation of the collision integral and the
related noise variable in a leading logarithmic approximation. Explicit expressions for the
non-local ultra-soft current and the colour conductivity are given as well (sect. VII). We
argue that these results can be translated to the case of quantum plasmas and detail the
necessary changes. Some comments on related work are added as well (sect. VIII). Finally,
we present our conclusions (sect. IX), deferring to the appendices some technical details
regarding the Darboux variables for SU(N) colour charges (appendix A), and the derivation
of a useful algebraic identity (appendix B).

II. MICROSCOPIC EQUATIONS FOR NON-ABELIAN CHARGED PARTICLES

Let us consider a system of particles carrying a colour charge Qa, where the colour index
runs from a = 1 to N2 − 1 for a SU(N) gauge group. Within a microscopic description,
the trajectories in phase space are known exactly. The trajectories x̂(τ), p̂(τ) and Q̂(τ) for
every particle are solutions of their classical equations of motions, the Wong equations [11]

m
dx̂µ

dτ
= p̂µ , (2.1a)

m
dp̂µ

dτ
= gQ̂aF µν

a p̂ν , (2.1b)

m
dQ̂a

dτ
= −gfabcp̂µAb

µQ̂
c . (2.1c)

Here, Aµ denotes the microscopic gauge field. The corresponding microscopic field strength
F a

µν and the energy momentum tensor of the gauge fields Θµν are given by

F a
µν [A] = ∂µAa

µ − ∂νA
a
µ + gfabcAb

µA
c
ν , (2.2)

Θµν [A] = 1
4g

µνF a
ρσF ρσ

a + F µρ
a F a ν

ρ (2.3)

and fabc are the structure constants of SU(N). We set c = kB = h̄ = 1 and work in natural
units, unless otherwise indicated. Note that the non-Abelian charges are also subject to
dynamical evolution. Equation (2.1c) can be rewritten as DτQ = 0, where Dτ = dx̂µ

dτ
Dµ is

the covariant derivative along the world line, and Dac
µ [A] = ∂µδac + gfabcAb

µ the covariant
derivative in the adjoint representation. With Qa and F a

µν transforming in the adjoint rep-
resentation, the Wong equations can be shown to be invariant under gauge transformations.
The equation (2.1c) ensures the conservation under dynamical evolution of the set of N − 1
Casimir of the SU(N) group.‡

‡For SU(2), it is easy to verify explicitly the conservation of the quadratic Casimir QaQa. For
SU(3), both the quadratic and cubic Casimir dabcQaQbQc, where dabc are the symmetric structure
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The colour current associated to each particle can be constructed once the solutions of
the Wong equations are known. For every single particle it reads

jµ
a (x) = g

∫
dτ

dx̂µ

dτ
Q̂a(τ) δ(4)(x− x̂(τ)) . (2.4)

Employing the Wong equations (2.1) we find that jµ is covariantly conserved, Dµjµ = 0
[11]. Similarly, the energy momentum tensor associated to a single particle is given by [11]

tµν(x) =
∫

dτ
dx̂µ

dτ
p̂ν(τ) δ(4)(x− x̂(τ)) , (2.5)

It is convenient to describe the ensemble of particles introducing a phase space density
which depends on the whole set of coordinates xµ, pµ and Qa. We define the function

n(x, p, Q) =
∑

i

∫
dτ δ(4)(x− x̂i(τ)) δ(4)(p− p̂i(τ)) δ(N2−1)(Q− Q̂i(τ)) , (2.6)

where the index i labels the particles. This distribution function is constructed in such a
way that the colour current

Jµ
a (x) = g

∫
d4p d(N2−1)Q

pµ

m
Qa n(x, p, Q) (2.7)

coincides with the sum over all currents associated to the individual particles, Jµ
a =

∑
i j

µ
a ,

and is covariantly conserved, DµJ
µ = 0. It is convenient to make the following changes in

the choice of the distribution function. We will define a new function f(x, p, Q) such that
the physical constraints like the on-mass shell condition, positive energy and conservation
of the group Casimirs are factored out into the phase space measure. We introduce the
momentum measure§

dP = d4p 2θ(p0)δ(p
2 −m2) , (2.8)

and the measure for the colour charges

dQ = d3Q cRδ(QaQa − q2) , (2.9)

in the case of SU(2). For SU(3) the measure is

dQ = d8Q cRδ(QaQa − q2)δ(dabcQ
aQbQc − q3) . (2.10)

constants of the group, are conserved under the dynamical evolution. The last conservation can be
checked using (2.1c) and a Jacobi-like identity which involves the symmetric dabc and antisymmetric
fabc constants.

§Note that in [1], we used a slightly different normalization of the measure. Here, the measure
has an additional factor of (2π)3.
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For SU(N), N−1 δ-functions ensuring the conservation of the set of N−1 Casimirs have to
be introduced into the measure dQ. We have also introduced the representation-dependent
normalization constant cR into the measure dQ, which is fixed by requiring

∫
dQ = 1 (see

appendix A). The constant C2 is defined as∫
dQQaQb = C2δab , (2.11)

and depends on the group representation of the particles.
With these conventions the colour current (2.7) reads now

Jµ
a (x) = g

∫
dPdQ pµ Qa f(x, p, Q) , (2.12)

while the energy momentum tensor associated to the particles obtains as

tµν(x) =
∫

dPdQ pµpν f(x, p, Q) . (2.13)

We will now come to the dynamical equation of the microscopic distribution functions
n(x, p, Q) and f(x, p, Q), which will serve as the starting point for the subsequent formalism.
The dynamical equation for n(x, p, Q) is the same as for f(x, p, Q). This is so because the
physical constraints which we have factored out as to obtain f(x, p, Q) are not affected by
the Wong equations. Employing (2.1), we find

pµ

(
∂

∂xµ
− gfabcAb

µQc ∂

∂Qa
− gQaF

a
µν

∂

∂pν

)
f(x, p, Q) = 0 , (2.14a)

which can be checked explicitly by direct inspection of (2.6) into (2.14a) (see appendix A of
[5]). In a self-consistent picture this equation is completed with the Yang-Mills equation,

(DµF
µν)a(x) = Jν

a (x) , (2.14b)

and the current being given by (2.12). It is worth noticing that (2.14) is exact in the
sense that no approximations have been made so far. The effects of collisions are included
inasmuch as the Wong equations do account for them, although (2.14a) looks formally like
a collisionless Boltzmann equation.

For the energy momentum tensor of the gauge fields we find

∂µΘµν = −F νµ
a Ja

µ . (2.15)

On the other hand, using (2.14a) and the definition (2.13) we find that

∂µtµν = F νµ
a Ja

µ . (2.16)

which establishes that the total energy momentum tensor is conserved, ∂µ(Θµν + tµν) = 0.
To finish the review of the microscopic description of the system, let us recall the gauge

symmetry properties of the set of equations (2.14) (see [5] for more details). From the
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definition of f(x, p, Q) it follows that it transforms as a scalar under a (finite) gauge trans-
formation, f ′(x, p, Q′) = f(x, p, Q). This implies the gauge covariance of (2.14b) because
the current (2.7) transforms like the vector Qa in the adjoint. The non-trivial dependence
of f on the non-Abelian colour charges implies that the partial derivative ∂µf does not yet
transform as a scalar, but rather its covariant derivative Dµf , which is given by

Dµ[A]f(x, p, Q) ≡ [∂µ − gfabcQcAµ,b∂
Q
a ]f(x, p, Q) . (2.17)

Notice that (2.17) combines the first two terms of (2.14a). (Here, and in the sequel we use
the shorthand notation ∂µ ≡ ∂/∂xµ, ∂p

µ ≡ ∂/∂pµ and ∂Q
a ≡ ∂/∂Qa.) The invariance of

the third term in (2.14a) follows from the trivial observation that QaF
a
µν is invariant under

gauge transformations. This establishes the gauge invariance of (2.14a).

III. STATISTICAL AVERAGES

If the system under study contains a large number of particles it is impossible to follow
their individual trajectories. One has then to switch to a statistical description of the
system.

In this section, we describe in detail the statistical average to be used in the sequel.
As we are studying classical point particles in phase space, the appropriate statistical av-
erage corresponds to the Gibbs ensemble average for classical systems. We will review the
main features of this procedure, defined in phase space. Let us remark that this deriva-
tion is completely general, valid for any classical system, and does not require equilibrium
situations.

We will introduce two basic functions. The first one is the phase space density function
N which gives, after integration over a phase space volume element, the number of particles
contained in that volume. In a microscopic description it is just a deterministic quantity,
and a function of the time t, the vectors x and p, and the set of canonical (Darboux)
variables φ and π associated to the colour charges Q (see appendix A). For SU(N), there
are N(N − 1)/2 pairs of canonical variables, which we denote as φ = (φ1, . . . , φN(N−1)/2)
and π = (π1, . . . , πN(N−1)/2). The microscopic phase space density is given by

N (x,p, φ, π) =
∑

i

δ(3)(x− x̂i(t)) δ(3)(p− p̂i(t)) δ(φ− φ̂i(t)) δ(π − π̂i(t)) , (3.1)

where the sum runs over all particles of the system, and (x̂i, p̂i, φ̂i, π̂i) refers to the trajectory
of the i-th particle in phase space. Then N dx dp dφdπ gives the number of particles at time
t in an infinitesimal volume element of phase space around the point z = (x,p, φ, π)

Let us now define the distribution function F of the microstates of a system of L identical
classical particles. Due to Liouville’s theorem, dF/dt = 0. Thus, it can be normalized as∫

dz1dz2 . . . dzLF(z1, z2, . . . , zL, t) = 1 . (3.2)

Here zi denotes all the phase space variables associated to the particle i. For simplicity
we have considered that there is only one species of particles in the system, although the
generalization to several species of particles is rather straightforward.
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The statistical average of any function G defined in phase space is given by

〈G〉 =
∫

dz1dz2, . . . dzL G(z1, z2, . . . , zL)F(z1, z2, . . . , zL, t) . (3.3)

The one-particle distribution function is obtained from F as

f1(z1, t) = V
∫

dz2 . . . dzLF(z1, z2, . . . , zL, t) , (3.4)

where V denotes the phase space volume. Correspondingly, the two-particle distribution
function is

f2(z1, . . . , zk, t) = V 2
∫

dz3 . . . dzLF(z1, z2, . . . , zL, t) , (3.5)

and similarly for the k-particle correlators. A complete knowledge of F would allow us to
obtain all the set of (f1, f2, . . . , fL) functions; this is, however, not necessary for our present
purposes.

Notice that we have allowed for an explicit dependence on the time t of the function
F , as this would be typically the case in out of equilibrium situations. We will drop this t
dependence from now on to simplify the formulas.

Using the above definition one can obtain the mean value of the microscopic phase space
density. Microscopically N (z) =

∑L
i=1 δ(z − ẑi), where ẑi describes the trajectory in phase

space of the particle i. The statistical average of this function is

〈N (z)〉 =
∫

dz1dz2, . . . , dzLF(z1, z2, . . . , zL)
L∑

i=1

δ(z − ẑi) =
L

V
f1(z) . (3.6)

The second moment 〈N (z)N (z′)〉 can equally be computed, and it is not difficult to see
that gives

〈N (z)N (z′)〉 =
L

V
δ(z − z′)f1(z) +

L(L− 1)

V 2
f2(z, z

′) . (3.7)

Let us now define a deviation of the phase space density from its mean value

δN (z) ≡ N (z)− 〈N (z)〉 . (3.8)

By definition 〈δN (z)〉 = 0, although the second moment of this statistical fluctuation does
not vanish in general, since

〈δN (z)δN (z′)〉 = 〈N (z)N (z′)〉 − 〈N (z)〉〈N (z′)〉 . (3.9)

If the number of particles is large L � 1 then one then finds

〈δN (z)δN (z′)〉 =
(

L

V

)
δ(z − z′)f1(z) +

(
L

V

)2

g2(z, z
′) , (3.10)

where the function g2(z, z
′) = f2(z, z

′) − f1(z)f1(z
′) measures the two-particle correlations

in the system. For a completely uncorrelated system g2 = 0.
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Notice that the above statistical averages are well defined in the thermodynamic limit,
L, V →∞ but L/V remaining constant. Higher order moments and higher order correlators
can as well be defined.

We finally point out that the the function N (x,p, φ, π) agrees with the microscopic
function f(x, p, Q) introduced earlier, except for a representation-dependent normalization
constant cR as introduced in sect. II. We will also swallow the density factors L/V into the
mean functions f̄ . Those small changes in the normalizations allow to simplify slightly the
notations of the equations.

IV. AVERAGING THE MICROSCOPIC EQUATIONS

A. The mean fields and the fluctuations

In this section we perform the step from a microscopic to a macroscopic formulation of
the problem. Using the prescription explained in sect. III, we take statistical averages of the
microscopic equations (2.14). This implies that the distribution function f(x, p, Q), which
in the microscopic picture is a deterministic quantity, has now a probabilistic nature and
can be considered as a random function, given by its mean value and statistical (random)
fluctuation about it. Let us define the quantities

f(x, p, Q) = f̄(x, p, Q) + δf(x, p, Q) , (4.1a)

Jµ
a (x) = J̄µ

a (x) + δJµ
a (x) , (4.1b)

Aa
µ(x) = Āa

µ(x) + aa
µ(x) , (4.1c)

where the quantities carrying a bar denote the mean values, e.g. f̄ = 〈f〉, J̄ = 〈J〉 and
Ā = 〈A〉, while the mean value of the statistical fluctuations vanish by definition, 〈δf〉 = 0,
〈δJ〉 = 0 and 〈a〉 = 0. This separation into mean fields and statistical, random fluctua-
tions corresponds effectively to a split into low frequency (long wavelength) modes asso-
ciated to the mean fields, and high frequency (short wavelength) modes associated to the
fluctuations.∗∗ We also split the field strength tensor as

F a
µν = F̄ a

µν + fa
µν , (4.2a)

F̄ a
µν = F a

µν [Ā] , (4.2b)

fa
µν = (D̄µaν − D̄νaµ)a + gfabcab

µa
c
ν , (4.2c)

using also D̄µ ≡ Dµ[Ā]. The term fa
µν contains terms linear and quadratic in the fluctuations.

Note that the statistical average of the field strength 〈F a
µν〉 is given by 〈F a

µν〉 = F̄ a
µν +

gfabc〈ab
µac

ν〉, due to quadratic terms contained in fa
µν .

In the same light, we split the energy momentum tensor of the gauge fields into the part
from the mean fields and the fluctuations, according to

∗∗In the close-to-equilibrium plasma (sect. VII), we identify the relevant momentum scales
explicitly.
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Θµν = Θ̄µν + θµν (4.3a)

Θ̄µν = 1
4g

µνF̄ a
ρσF̄ ρσ

a + F̄ µρ
a F̄ a ν

ρ , (4.3b)

θµν = 1
2g

µνF̄ a
ρσf ρσ

a + F̄ µρ
a fa

ρν + F̄ νρ
a fa

ρµ + 1
4g

µνfρσ,af
ρσ,a + fµρ

a fa ν
ρ , (4.3c)

The term θµν contains the fluctuations up to quartic order. Due to the non-linear character
of the theory, we find that the ensemble average of the energy momentum tensor reads
〈Θµν〉 = Θ̄µν + 〈θµν〉.

B. Dynamical equations for the mean fields and the fluctuations

We perform now the step from the microscopic to the macroscopic Boltzmann equation,
taking the statistical average of (2.14). This yields the dynamical equation for the mean
values,

pµ
(
D̄µ − gQaF̄

a
µν∂

ν
p

)
f̄ = 〈η〉+ 〈ξ〉 . (4.4a)

We have made use of the covariant derivative of f as introduced in (2.17). The macroscopic
Yang-Mills equations are obtained as

D̄µF̄
µν + 〈Jν

fluc〉 = J̄ν . (4.4b)

In (4.4), we collected all terms quadratic or cubic in the fluctuations into the functions
η(x, p, Q), ξ(x, p, Q) and Jfluc(x). They read explicitly

η(x, p, Q) ≡ gQa pµ∂ν
p fa

µν δf(x, p, Q) , (4.5a)

ξ(x, p, Q) ≡ gpµfabcQc
(
∂Q

a ab
µ δf(x, p, Q) + gaa

µa
b
ν∂

ν
p f̄(x, p, Q)

)
, (4.5b)

Ja,ν
fluc

(x) ≡ g
{
f dbcD̄µ

adab,µa
ν
c + fabcab,µ

(
(D̄µaν − D̄νaµ)c + gf cdeaµ

da
ν
e

)}
(x). (4.5c)

The corresponding equations for the fluctuations are obtained by subtracting (4.4) from
(2.14). The result is

pµ
(
D̄µ − gQaF̄

a
µν∂

ν
p

)
δf = gQa(D̄µaν − D̄νaµ)

apµ∂p
ν f̄ ,

+gpµab,µf
abcQc∂

Q
a f̄ + η + ξ − 〈η + ξ〉 (4.6a)(

D̄2aµ − D̄µ(D̄νa
ν)
)a

+ 2gfabcF̄ µν
b ac,ν + Ja,µ

fluc − 〈Ja,µ
fluc 〉 = δJa,µ . (4.6b)

The above set of dynamical equations is enough to describe all transport phenomena in the
plasma.

While the dynamics of the mean fields (4.4) depends on correlators quadratic and cubic
in the fluctuations, the dynamical equations for the fluctuations (4.6) do in addition depend
on higher order terms (up to cubic order) in the fluctuations themselves. The dynamical
equations for the higher order correlation functions are contained in (4.6). To see this,
consider for example the dynamical equation for the correlators 〈δf δf〉. After multiplying
(4.6a) with δf and taking the statistical average, we obtain
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pµ
(
D̄µ − gQaF̄

a
µν∂

ν
p

)
〈δf δf〉 = gQap

µ∂p
ν f̄

〈
(D̄µaν − D̄νaµ)aδf

〉
+gpµfabcQc∂

Q
a f̄ 〈ab,µ δf〉+ 〈(η + ξ) δf〉 . (4.7)

In the same way, we find for 〈δf δf δf〉 the dynamical equation

pµ
(
D̄µ − gQaF̄

a
µν∂

ν
p

)
〈δf δf δf〉 = gQap

µ∂p
ν f̄

〈
(D̄µaν − D̄νaµ)a δf δf

〉
− 〈η + ξ〉 〈δf δf〉

+gpµfabcQc∂
Q
a f̄ 〈ab,µ δf δf〉+ 〈(η + ξ) δf δf〉 , (4.8)

and similarly for higher order correlators. Typically, the dynamical equations for correlators
of n fluctuations will couple to correlators ranging from the order (n−1) up to order (n+2)
in the fluctuations. From cubic order onwards, the back-coupling contains terms non-linear
in the correlation functions.††

The dynamical equation for the energy momentum tensor of the gauge fields obtains
from the average of (2.15). The corresponding one for the particles is found after integrating
(2.14a) over dPdQ pµ. They read

∂νΘ̄
µν + ∂ν 〈θµν〉 = −F̄ µν

a J̄νa − 〈fµν
a δJνa〉 − 〈fµν

a 〉 J̄a
ν , (4.9)

∂ν t̄
µν = F̄ µν

a J̄νa + 〈fµν
a δJνa〉+ 〈fµν

a 〉 J̄a
ν , (4.10)

such that the total energy momentum tensor is conserved.
Finally, the condition for the microscopic current conservation translates, after averaging,

into two equations, one for the mean fields, and another one for the fluctuation fields. From
〈DµJ

µ〉 = 0 we obtain

(D̄µJ̄
µ)a + gfabc〈ab

µδJc,µ〉 = 0 . (4.11)

For the fluctuation current, we learn from DµJ
µ − 〈DµJ

µ〉 = 0 that

(D̄µδJµ)a + gfabc

(
ab

µJ̄
µ
c + ab

µδJµ
c − 〈ab

µδJµ
c 〉
)

= 0 . (4.12)

In sect. VB, it is shown that (4.11) and (4.12) are consistent with the corresponding equa-
tions as obtained from the Yang-Mills equations.

C. Second moment approximation and small coupling expansion

The dynamical equations, as derived and presented here, are exact. No approximations
have been performed. In order to solve them, it will be essential to apply some approx-
imations, or to find a reasonable truncation for the hierarchy of dynamical equations for
correlator functions. Here, we will indicate two approximation schemes, the second moment

††The resulting hierarchy of dynamical equations for the correlators is very similar to the BBGKY
hierarchy. While the BBGKY hierarchy links the dynamical equations for n-particle distribution
functions with each other, here, we rather have a hierarchy for the correlator functions.
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approximation and the small coupling expansion. Although they have a distinct origin
in the first place, we will see below (sect. V) that they are intimately linked due to the
requirements of gauge invariance.

The so-called second moment approximation (sometimes also referred to as the polariza-
tion approximation [7]) is employed in order to simplify the dynamics of the fluctuations.
In consists in equating

η = 〈η〉 , ξ = 〈ξ〉 , Jfluc = 〈Jfluc〉 . (4.13)

The essence of this approximation is that the dynamical equations for the correlators be-
comes homogeneous. It is easy to see that (4.7) or (4.8) depend only on quadratic or cubic
correlators, respectively, once (4.13) is imposed. This approximation allows to cut the infi-
nite hierarchy of equations down to a closed system of differential equations for both mean
quantities and statistical fluctuations. The mean fields couple to quadratic correlators, and
all correlators of degree n couple amongst each others. This turns the dynamical equation
for the fluctuations (4.6) into a differential equation linear in the fluctuations. This ap-
proximation is viable if the fluctuations and the two-particle correlators are small (see also
sect. VI).

A seemingly different approximations concerns the non-Abelian sector of the theory.
We shall perform a systematic perturbative expansion in powers of the gauge coupling g,
keeping only the leading order terms. This can be done, because the differential operator
appearing in the Boltzmann equation (2.14a) or (4.4a) admits such an expansion. In a small
coupling expansion, the term gQaF̄

a
µν∂

ν
p is suppressed by a power in g as compared to the

leading order term pµD̄µ. Notice, that expanding the g appearing within pµD̄µ of (2.17) is
not allowed as it will break gauge invariance. In this spirit, we expand as well

f̄ = f̄ (0) + g f̄ (1) + g2 f̄ (2) + . . . (4.14)

and similarly for δf . This is at the basis for a systematic organization of the dynamical
equations in powers of g. To leading order, this concerns in particular the cubic correlators
in 〈η〉 and 〈Jfluc〉, which are suppressed by a power of g as compared to the quadratic ones.

In principle, after these approximations are done, it should be possible to express the
correlators of fluctuations appearing in (4.4) through known functions. This requires finding
a solution of the fluctuation dynamics first.

D. Collision integrals

Let us comment on the interpretation of 〈η〉 and 〈ξ〉 as collision integrals of the macro-
scopic Boltzmann equation. The functions 〈η〉 and 〈ξ〉 appear only after the splitting (4.1)
has been performed. This introduces new terms in the corresponding Boltzmann equa-
tion (4.4) for the mean fields, which are interpreted as effective collision integrals for the
macroscopic transport equation. In this formalism, the collision integrals appear naturally
as correlators of statistical fluctuations. The fluctuations in the gauge fields cause random
changes in the motion of the particles, while random changes in the distribution function of
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the particles induce changes in the gauge fields. This is having the same effect as collisions,
and yields a precise recipe as to obtain collision integrals from the microscopic theory.

In this light, the second moment approximation (4.13) can be interpreted as neglecting
the back-coupling of collisions to the dynamics of the fluctuations. Also, neglecting cubic
correlators appearing in 〈η〉 or 〈Jfluc〉 in favour of quadratic ones, to leading order in an
expansion in the gauge coupling and for small fluctuations, is interpreted as neglecting the
three-particle collisions in favour of two-particle collisions.

In order to find explicitly the corresponding collision integrals for the non-Abelian
plasma, one has to solve first the dynamical equations for the fluctuations in the back-
ground of the mean fields. This step is interpreted as integrating-out the fluctuations. In
general, this is a difficult task, in particular due to the non-linear terms present in (4.6). As
argued above, this will only be possible when some approximations have been performed.

In the Abelian limit, (4.4) and (4.6) reduce to the known set of kinetic equations for
Abelian plasmas [7]. In this limit, only the collision integral 〈η〉 survives. Here it is known
that 〈η〉 can be expressed explicitly as the Balescu-Lenard collision integral, after solving
the dynamical equations for the fluctuations and computing the correlators involved [7].
This proofs in a rigorous way the correspondence between fluctuations and collisions in an
Abelian plasma.

V. CONSISTENCY WITH GAUGE SYMMETRY

In this section we shall discuss the consistency of the present approach with the require-
ments of the non-Abelian gauge symmetry. This discussion will concern the consistency
of the general set of equations. The question of consistent approximations will be raised
as well. In this section, we shall for convenience switch to a matrix notation, using the
conventions A ≡ Aata, Q ≡ Qata etc., as well as [ta, tb] = fabct

c and Tr tatb = −1
2δab.

A. Gauge covariance of the macroscopic equations

As a consequence of the Wong equations being gauge invariant, we already established
in sect. II that the microscopic set of equations (2.14) transforms covariantly under (finite)
gauge transformations

gA′
µ = U(x)(∂µ + gAµ)U

−1(x) , U(x) = exp−gεa(x)ta , (5.1)

with parameter εa(x). We also have f ′(x, p, Q′) = f(x, p, Q), and

Q′ = U(x) Q U−1(x) , ∂′
Q = U−1(x) ∂Q U(x) , F ′

µν = U(x) Fµν U−1(x) . (5.2)

The question raises as to which extend this symmetry is conserved under the statistical
average, performed when switching to a macroscopic description. This concerns in particular
the subsequent split of the gauge field into a mean (or background) field, and a fluctuation
field

Aµ = Āµ + aµ . (5.3)
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This separation is very similar to what is done in the background field method (BFM) [15].
Two symmetries are left after the splitting is performed, the background gauge symmetry,

gĀ′
µ = U(x)(∂µ + gĀµ)U

−1(x) , a′µ = U(x) aµ U−1(x) , (5.4)

and the fluctuation gauge symmetry,

gĀ′
µ = 0 , ga′µ = U(x)

(
∂µ + g(Āµ + aµ)

)
U−1(x) . (5.5)

Under the background gauge symmetry, the fluctuation field transforms covariantly (as a
vector in the adjoint). In the first step, we will split (2.14a) according to (5.3). It follows
trivially, that the resulting equation is invariant under both (5.4) and (5.5), if both f̄ and
δf transform as f , that is, as a scalar.

The next step involves the statistical average. We require that the statistical average of
the fluctuation vanishes, 〈a〉 = 0. This constraint is fully compatible with the background
gauge symmetry, as 〈a〉 = 0 is invariant under (5.4). Any inhomogeneous transformation
law for a, and in particular (5.5), can no longer be a symmetry of the macroscopic equations
as the constraint 〈a〉 = 0 is not invariant.‡‡

We rewrite now the transport equations in matrix convention. We have

pµ
(
D̄µ + 2g Tr (QF̄µν) ∂ν

p

)
f̄ = 〈η〉+ 〈ξ〉 . (5.6a)[

D̄µ, F̄ µν
]
+ 〈Jν

fluc
〉 = J̄ν . (5.6b)

with

η(x, p, Q) = −2g Tr (Q fµν) pµ∂ν
p δf(x, p, Q) , (5.7a)

ξ(x, p, Q) = −2gpµ Tr ([Q, ∂Q] aµ) δf(x, p, Q) − 2g2 Tr ([aµ, aν ]Q) pµ∂ν
p f̄(x, p, Q), (5.7b)

Jν
fluc(x) = g

[
D̄µ, [aµ, aν ]

]
+
[
aµ, [D̄

µ, aν ]− [D̄ν , aµ]
]
+ g2 [aµ, [aµ, aν ]] . (5.7c)

and

pµ
(
D̄µ − g Tr (QF̄µν) ∂ν

p

)
δf = −2 gTr (Q[D̄µ, aν ]−Q[D̄ν , aµ]) pµ∂p

ν f̄

−2g pµ Tr ([Q, ∂Q]aµ) f̄ + η + ξ − 〈η + ξ〉 , (5.8a)[
D̄ν , [D̄

ν , aµ]
]
−
[
D̄µ, [D̄ν , a

ν ]
]

+ 2g[F̄ µν , aν ] + Jµ
fluc − 〈Jµ

fluc〉 = δJµ . (5.8b)

It is now straightforward to realize that (5.6) – (5.8) transform covariantly under (5.4). It
suffices to employ the cyclicity of the trace, and to note that aµ and background covariant
derivatives of it transform covariantly.

‡‡This is similar to what happens in the BFM, where the fluctuation gauge symmetry can no
longer be seen once the expectation value of the fluctuation field is set to zero. However, the
symmetry (5.5) will be observed in both (4.4a) and (4.6a), as long as the terms linear in 〈a〉 are
retained.
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B. Consistent current conservation

In (4.11) and (4.12), we have given the equations which imply the covariant current
conservation of the mean and the fluctuation current. However, this information is contained
both in the transport and in the Yang-Mills equation. It remains to be shown that these
equations are self-consistent.

We start with the mean current J̄ . Performing g
∫

dPdQ Q of the transport equation
(5.6a), we find

0 = [D̄µ, J̄µ] + g〈[aµ, δJ
µ]〉 . (5.9)

This is (4.11). Here, we used that∫
dP η(x, p, Q) = 0 , (5.10a)∫

dP pµFµν∂
ν
pf(x, p, Q) = 0 , (5.10b)∫

dPdQ Q ξ(x, p, Q) = −[aµ, δJµ] , (5.10c)

g
∫

dPdQ Q pµD̄µf̄(x, p, Q) = [D̄µ, J̄
µ] . (5.10d)

Taking the background covariant derivative of (5.6b), we find

0 = [D̄µ, J̄
µ]− [D̄µ, 〈Jµ

fluc
〉] , (5.11)

which has to be consistent with (5.9). Thus, combining these two equations we end up with
the consistency condition

0 = [D̄µ, 〈Jµ
fluc〉] + g〈[aµ, δJ

µ]〉 . (5.12)

In the appendix B, we established the identity

0 = [D̄µ, J
µ
fluc] + g[aµ, δJ

µ] + g[aµ, 〈Jµ
fluc〉] , (5.13)

which follows using the explicit expressions for δJµ from (5.8b) and for Jfluc from (5.7c). Tak-
ing the average of (5.13) reduces it to (5.12), and establishes the self-consistent conservation
of the mean current.

The analogous consistency equation for the fluctuation current obtains from (5.8a) after
performing g

∫
dPdQ Q, and reads

0 = [D̄µ, δJµ] + g[aµ, δJµ] + g[aµ, J̄
µ]− g〈[aµ, δJ

µ]〉 . (5.14)

This is (4.12). Here, in addition to (5.10), we made use of

2 g
∫

dPdQ Q Tr ([Q, ∂Q] aµ) f̄(x, p, Q) = g[aµ, J̄
µ] . (5.15)

The background covariant derivative of (5.8b) is given as
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0 = [D̄µ, δJ
µ] + g

[
aν , [D̄µ, F̄ µν ]

]
− [D̄µ, Jµ

fluc] + [D̄µ, 〈Jµ
fluc〉] . (5.16)

Subtracting these equations yields the consistency condition

0 = [D̄µ, Jµ
fluc

] + g[aµ, δJ
µ]− [D̄µ, 〈Jµ

fluc
〉]− g〈[aµ, δJ

µ]〉+ g[aµ, J̄
µ]− g

[
aν , [D̄µ, F̄ µν ]

]
.

(5.17)

Using (5.6b), (5.12) and (5.13) we confirm (5.17) explicitly. This establishes the self-
consistent conservation of the fluctuation current.

C. Gauge-consistent approximations

We close this section with a comment on the gauge consistency of approximate solutions.
The consistent current conservation can no longer be taken for granted when it comes to
finding approximate solutions of the equations. On the other hand, finding an explicit
solution will require some type of approximations to be performed. The relevant question
in this context is to know which approximations will be consistent with gauge invariance.

Consistency with gauge invariance requires that approximations have to be consistent
with the background gauge symmetry. From the general discussion above we can already
conclude that dropping any of the explicitly written terms in (4.4) – (4.6) is consistent
with the background gauge symmetry (5.4). This holds in particular for the polarization or
second moment approximation (4.13).

Consistency of the second moment approximation (4.13) with covariant current conser-
vation turns out to be more restrictive. Employing Jfluc = 〈Jfluc〉 implies that (5.12) is only
satisfied, if in addition

0 =
[
D̄ν , 〈[aµ, [aµ, aν ]]〉

]
(5.18)

holds true. This is in accordance with neglecting cubic correlators for the collision integrals.
Similarly, the consistent conservation of the fluctuation current implies the consistency

condition (5.17), and holds if

0 = [aµ, 〈Jµ
fluc
〉] (5.19)

vanishes. It is interesting to note that the consistent current conservation relates the second
moment approximation with the neglection of correlators of gauge field fluctuations. We
conclude, that (4.13) with (5.18) and (5.19) form a gauge-consistent set of approximations.

VI. PHYSICAL SCALES: CLASSICAL VERSUS QUANTUM PLASMAS

In the remaining part of the paper, we study the classical and quantum non-Abelian
plasma close to equilibrium. Prior to this, we shall present a discussion of the relevant
physical scales of both relativistic classical and quantum plasmas, close to equilibrium. We
will restore here the fundamental constants h̄, c and kB in the formulas.
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To discuss the relevant physical scales in the classical non-Abelian plasma, it will turn out
convenient to discuss first the simpler Abelian case, which has been considered in detail in
the literature [7]. At equilibrium the classical distribution function is given by the relativistic
Maxwell distribution,

f̄ eq(p0) = Ae−p0/kBT , (6.1)

where A is a dimensionful constant which is fixed once the mean density of particles in the
system is known. For massless particles p0 = pc, and if no further internal degrees of freedom
are present, the mean density is given by N̄ = 8πA(kBT/c)3. The inter-particle distance is
then r̄ ∼ N̄−1/3. As we are considering a classical plasma, we are assuming r̄ � λdB, where
λdB is the de Broglie wave length, λdB ∼ h̄/p, with p some typical momenta associated to
the particles, thus p ∼ kBT/c. The previous inequality implies therefore A � 1/h̄3, which
is the condition under which quantum statistical effects can be neglected.

There is another typical scale in a plasma close to equilibrium, which is the Debye length
rD. The Debye length is the distance over which the screening effects of the electric fields
in the plasma are felt. For an electromagnetic plasma, the Debye length squared is given
by [7]

r2
D = kBT/4πN̄e2 . (6.2)

Notice that the electric charge contained in the above formula is a dimensionful parameter:
it is just the electric charge of the point particles of the system.

In the classical case, and in the absence of the fundamental constant h̄, the only dimen-
sionless quantity that can be constructed from the basic scales of the problem is the plasma
parameter ε. The plasma parameter is defined as the ratio [7]

ε = r̄3/r3
D . (6.3)

The quantity 1/ε gives the number of particles contained in a sphere of radius rD. If ε � 1
this implies that a large number of particles are in that sphere, and thus a large number
of particles are interacting in this volume, and the collective character of their interactions
in the plasma can not be neglected. For the kinetic description to make sense, ε has to
be small [7]. This does not require, in general, that the interactions have to be weak and
treated perturbatively.

Let us now consider the non-Abelian plasma. The inter-particle distance is defined as
in the previous case. The main differences with respect to the Abelian case concerns the
Debye length, defined as the distance over which the screening effects of the non-Abelian
electric fields in the plasma are noticed. It reads

r2
D = kBT/4πN̄g2C2 , (6.4)

where C2, defined in (2.11), is a dimensionful quantity, carrying the same dimensions as the
electric charge squared in (6.2). The coupling constant g is a dimensionless parameter. In
the non-Abelian plasma one can also construct the plasma parameter, defined as in (6.3).
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It is interesting to note that there are two natural dimensionless parameters in the non-
Abelian plasma: ε and g. The condition for the plasma parameter being small translates
into (

4πC2

kBT

)3/2

N̄1/2g3 � 1 , (6.5)

which is certainly satisfied for small gauge coupling constant g � 1. But it can also be
fulfilled for a rarefied plasma. Thus, one may have a small plasma parameter without having
a small gauge coupling constant. This is an interesting observation, since the inequalities
ε � 1 and g � 1 have different physical meanings. A small gauge coupling constant allows
for treating the non-Abelian interaction perturbatively, while ε � 1 just means having a
collective field description of the physics occurring in the plasma. In principle, these two
situations are different. If we knew how to treat the non-Abelian interactions exactly, we
could also have a kinetic description of the classical non-Abelian plasmas without requiring
g � 1.

Now we consider the quantum non-Abelian plasma, and consider the quantum coun-
terparts of all the above quantities, as derived from quantum field theory. For a quantum
plasma at equilibrium the one particle distribution function is

f̄ eq
B (p0) =

1

ep0/kBT − 1
, f̄ eq

F (p0) =
1

ep0/kBT + 1
, (6.6)

where the subscript B/F refers to the bosonic/fermionic statistics. For a plasma of massless
particles the mean density is N̄ ∼ (kBT/h̄c)3. The inter-particle distance r̄ ∼ N̄−1/3 becomes
of the same order that the de Broglie wavelength, which is why quantum statistics effects
can not be neglected in this case.

The value of the Debye mass is obtained from quantum field theory. It depends on the
specific quantum statistics of the particles and their representation of SU(N). From the
quantum Debye mass one can deduce the value of the Debye length, which is of order

r2
D ∼

1

g2

(
h̄c

kBT

)2

. (6.7)

It is not difficult to check that the plasma parameter, defined as in (6.3), becomes propor-
tional to g3. Thus ε is small if and only if g � 1. This is so, because in a quantum field
theoretical formulation one does not have the freedom to fix the mean density N̄ in an ar-
bitrary way, as in the classical case. This explains why the kinetic description of a quantum
non-Abelian plasma is deeply linked to the small gauge coupling regime of the theory.

VII. THE CLASSICAL PLASMA CLOSE TO EQUILIBRIUM

In this section we put the method to work for a hot non-Abelian plasma close to equi-
librium. A prerequisite for a kinetic description to be viable is a small plasma parameter
ε � 1. We shall ensure this by imposing a small gauge coupling constant g � 1. Then, all
further approximations as detailed in the sequel can be seen as a systematic expansion in
powers of the gauge coupling.
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A. Non-Abelian Vlasov equations

We begin with the set of mean field equations (4.4) and neglect the effect of statistical
fluctuations entirely, δf ≡ 0. In that case, (4.4) becomes the non-Abelian Vlasov equations
[6]

pµ
(
D̄µ − g QaF̄

a
µν ∂ν

p

)
f̄ = 0 , (7.1a)

D̄µF̄
µν = J̄ν , (7.1b)

where the colour current is given by

J̄µ
a (x) = g

∑
helicities
species

∫
dPdQ Qap

µf̄(x, p, Q) , (7.1c)

We will omit the species and helicity indices on the distribution functions, and in the sequel,
we will also omit the above sum, in order to keep the notation as simple as possible. We
will solve (7.1a) perturbatively, as it admits a consistent expansion in powers of g. Close
to equilibrium, we expand the distribution function as in (4.14) up to leading order in the
coupling constant

f̄(x, p, Q) = f̄ eq(p0) + gf̄ (1)(x, p, Q) . (7.2)

In the strictly classical approach, the relativistic Maxwell distribution (6.1) at equilibrium
is used. Here, we consider only massless particles, or massive particles with m � T , such
that the masses can be neglected in a first approximation. We will consider also internal
degrees of freedom, two helicities associated to every particle.

It is convenient to re-write the equations in terms of current densities. Consider the
current densities

Jρ
a1···an

(x, p) = g pρ
∫

dQ Qa1 · · ·Qanf(x, p, Q), (7.3a)

J ρ
a1···an

(x, v) =
∫

dP̃ Jρ
a1···an

(x, p) . (7.3b)

Here, vµ = (1,v) with v2 = 1. The measure dP̃ integrates over the radial components. It
is related to (2.8) by dP = dP̃dΩ/4π, and reads

dP̃ = 4π dp0 d|p| |p|2 2Θ(p0) δ(p2) (7.4)

for massless particles. The colour current is obtained performing the remaining angle inte-
gration J(x) =

∫
dΩ
4πJ (x, v). From now on we will omit the arguments of the current density

J , unless necessary to avoid confusion.
We now insert (7.2) into (7.1) and expand in powers of g. The leading order term

p · Df̄ eq.(p0) vanishes. After multiplying (4.4a) by gQap
ρ/p0, summing over two helicities,

and integrating over dP̃dQ, we obtain for the mean current density at order g

vµD̄µJ̄ ρ + m2
DvρvµF̄µ0 = 0 , (7.5a)

D̄µF̄
µν = J̄ν , (7.5b)
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with the Debye mass

m2
D = −2g2C2

∫
dP̃df̄ eq(p)/dp . (7.6)

The solution to (7.5a) is now constructed with the knowledge of the retarded Green’s func-
tion

ivµD̄µ Gret(x, y; v) = δ(4)(x− y) . (7.7)

It reads

Gret(x, y; v)ab = −iθ(x0 − y0)δ
(3) (x− y − v(x0 − y0)) Ūab(x, y) , (7.8)

where Ūab is the parallel transporter obeying vµD̄x
µ Ūab(x, y)|y=x−vt = 0, and Ūab(x, x) = δab.

One finds

J̄µ
a (x) = −m2

D

∫
dΩv

4π

∫ ∞

0
dτ Ūab(x, x− vτ)vµvνF̄ν0,b(x− vτ) . (7.9)

The above colour current agrees with the hard thermal loop (HTL) colour current [4,5],
except for the value of the Debye mass.

From (7.5a) it is easy to estimate the typical momentum scale of the mean fields. If
the effects of statistical fluctuations are neglected (and as we will see, this is equivalent to
neglecting collisions), the typical momentum scales associated to the mean current and the
mean field strength are of the order of the Debye mass mD. We will refer to those scales
as soft scales. The momentum scales with momenta � mD will be referred to as ultra-soft
from now on.

B. Leading order dynamics for mean fields and fluctuations

We now allow for small statistical fluctuations δf(x, p, Q) around (7.2), writing

f(x, p, Q) = f̄ eq.(p0) + gf̄ (1)(x, p, Q) + δf(x, p, Q) (7.10)

and re-write the approximations to (4.4) and (4.6) in terms of current densities and their
fluctuations. Note that the fluctuations δf(x, p, Q) in the close to equilibrium case are
already of the order of g. This observation is important for the consistent approximation in
powers of the gauge coupling. As a consequence, the term gf̄ (1) in (7.10) will now account
for the ultra-soft modes for momenta � mD. Integrating-out the fluctuations results in an
effective theory for the latter.

As before, we obtain the dynamical equation for the mean current density at leading
order in g, after multiplying (4.4a) by gQap

ρ/p0, summing over two helicities, and integrating
over dP̃dQ. The result is

vµD̄µJ̄ ρ + m2
DvρvµF̄µ0 = 〈ηρ〉+ 〈ξρ〉 , (7.11a)

D̄µF̄
µν + 〈Jν

fluc
〉 = J̄ν . (7.11b)
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In a systematic expansion in g, we have to neglect cubic correlator terms as compared to
quadratic ones, as they are suppressed explicitly by an additional power in g. Therefore, we
find to leading order

ηρ
a = −g

∫
dP̃

p0

(
(D̄µa

ρ − D̄ρaµ)b δJµ
ab(x, p)− pρ

p0
(D̄µa0 − D̄0aµ)b δJµ

ab(x, p)

)
, (7.12a)

ξρ
a = −gfabcv

µ ab
µ δJ c,ρ , (7.12b)

Jρ,a
fluc = gf dbc

(
D̄ad

µ aµ
b aρ

c + δadab
µ

(
D̄µaρ − D̄ρaµ

)c)
. (7.12c)

The same philosophy is applied to the dynamical equations for the fluctuations. To leading
order in g, the result reads(

vµD̄µ δJ ρ
)

a
= −m2

Dvρvµ
(
D̄µa0 − D̄0aµ

)
a
− gfabcv

µab
µJ̄ c,ρ , (7.13a)(

vµ∂̄µδacδbd + gĀm
µ (famc δbd + fbmdδac)

)
δJ ρ

cd = gvµam
µ (fmac δbd + fmbdδac) J̄ ρ

cd, (7.13b)(
D̄2aµ − D̄µ(D̄a)

)
a
+ 2gfabcF̄

µν
b ac,ν = δJµ

a . (7.13c)

The typical momentum scale associated to the fluctuations can be estimated from (7.13).
We find that it is of the order of the Debye mass ∼ mD, that is, of the same order as
the mean fields in (7.5). This confirms explicitly the discussion made above. The typical
momentum scales associated to the mean fields in (7.11) is therefore � mD.

C. Integrating-out the fluctuations

We solve the equations for the fluctuations (7.13) with an initial boundary condition for
δf , and aµ(t = 0) = 0. Exact solutions to (7.13a) and (7.13b) can be obtained.

Let us start by solving the homogeneous differential equation

vµD̄µ δJ ρ = 0 , (7.14)

with the initial condition δJ µ
a (t = 0,x, v). It is not difficult to check, by direct inspection,

that the solution to the homogeneous problem is

δJ ρ
a (x, v) = Ūab(x, x− vt) δJ ρ

b (t = 0,x− vt, v) . (7.15)

The solution of (7.13a) is now constructed using the retarded Green’s function (7.8). For
x0 ≡ t ≥ 0 the complete solution can be expressed as

δJ ρ
a (x, v) = −

∫ ∞

0
dτ Ūab(x, xτ )

(
m2

Dvρvµ
(
D̄µa0 − D̄0aµ

)b
(xτ ) + gfbdcv

µad
µ(xτ )J̄ ρ

c (xτ , v)
)

+Ūab(x, xt) δJ ρ
b (xt, v) . (7.16)

We have introduced xτ ≡ x − vτ , and thus xt = (0,x− vt). Since aµ(t = 0) = 0, one can
check that the above current obeys the correct initial condition.

The equation (7.13b) can be solved in a similar way. The solution is
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δJ ρ
ab(x, v) = Ūam(x, xt)Ūbn(x, xt) δJ ρ

mn(xt, v)

−g
∫ ∞

0
dτ Ūam(x, xτ )Ūbn(x, xτ ) (fmpcδnd + fnpdδmc) vµap

µ(xτ )J̄ ρ
cd(xτ , v) . (7.17)

Now we seek for solutions to the equation (7.13c) with the colour current of the fluctu-
ation as found above. However, notice that this equation is non-local in aµ, which makes
it difficult to find exact solutions. Nevertheless, one can solve the equation in an iterative
way, by making a double expansion in both gĀ and gJ̄ . This is possible since the parallel
transporter Ū admits an expansion in gĀ, so that the current δJ ρ can be expressed as a
power series in gĀ

δJ ρ = δJ ρ(0) + δJ ρ(1) + δJ ρ(2) + · · · , (7.18)

and thus (7.13c) can be solved for every order in gĀ. To lowest order in gĀ, using Ūab =
δab +O(gĀ), equation (7.13c) becomes

∂µ
(
∂µa(0)

ν,a − ∂νa
(0)
µ,a

)
= δJ (0)

ν,a . (7.19)

Using the one-sided Fourier transform [7] and (7.16) to find

δJ
µ (0)
a + (k) = Πµν

ab (k)a
(0)
ν,b(k)− gfabc

∫
dΩv

4π

1

−i k · v
∫

d4q

(2π)4
vρab(0)

ρ (q) J̄ µ,c(k − q, v)

+
∫

dΩv

4π

δJ µ
a (t = 0,k, v)

−i k · v , (7.20)

where Πµν
ab (k) is the polarization tensor in the plasma, which reads

Πµν
ab (k) = δabm

2
D

(
−gµ0gν0 + k0

∫ dΩv

4π

vµvν

k · v
)

, (7.21)

and agrees with the HTL polarization tensor of QCD [4,5], except in the value of the Debye
mass. Retarded boundary conditions are assumed above, with the prescription k0 → k0+i0+.

We solve (7.19) iteratively in momentum space for aµ as an infinite power series in gJ̄ ,

a(0)
µ = a(0,0)

µ + a(0,1)
µ + a(0,2)

µ + . . . (7.22)

where the second index counts the powers of the background current gJ̄ . Notice that in
this type of Abelianized approximation, the equation (7.19) has a (perturbative) Abelian
gauge symmetry associated to the fluctuation aµ. This symmetry is only broken by the
term proportional to J̄ in the current. It is an exact symmetry for the term a(0,0)

µ in the
above expansion. We will use this perturbative gauge symmetry in order to simplify the
computations, and finally check that the results of the approximate collision integrals do
not depend on the choice of the fluctuation gauge.

Using the one-sided Fourier transform, we find the following results for the longitudinal
fields, in the gauge k · a(0,0) = 0,
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a
(0,0)
0,a +(k) =

1

k2 −ΠL

∫
dΩv

4π

δJ0,a(t = 0,k, v)

−i k · v , (7.23a)

a
(0,1)
0,a +(k) =

−gfabc

k2 −ΠL

∫
dΩv

4π

1

−i k · v
∫

d4q

(2π)4
vµab(0,0)

µ (q) J̄ c
0 (k − q, v) , (7.23b)

while we find

a
T (0,0)
i,a + (k) =

1

−k2 + ΠT

∫ dΩv

4π

δJ T
i,a(t = 0,k, v)

−i k · v , (7.24a)

a
T (0,1)
i,a + (k) =

−gfabc

−k2 + ΠT
P T

ij (k)
∫ dΩv

4π

1

−i k · v
∫ d4q

(2π)4
vµab(0,0)

µ (q) J̄ c
j (k − q, v) , (7.24b)

for the transverse fields.§§ The functions ΠL/T (k) are the longitudinal/transverse polariza-
tion tensor of the plasma, P T

ij (k) = δij − kikj/k
2 the transverse projector, and aT

i ≡ P T
ij aj .

In the approximation g � 1, it will be enough to consider the solution of leading (zeroth)
order in gĀ, and the zeroth and first order in gJ̄ . The remaining terms are subleading in
the leading logarithmic approximation. However, notice that we have all the tools necessary
to compute the complete (perturbative) series. If we could solve equation (7.13c) exactly,
it would not be necessary to use this perturbative expansion.

D. The statistical correlator of fluctuations

With the explicit expressions obtained in (7.20), (7.23) and (7.24), we can express all
fluctuations in terms of initial conditions δJ µ

a (t = 0,x, v) and the mean fields.
In order to compute the correlator of initial conditions, we will make use of the result

obtained in sect. III. For each species of particles or internal degree of freedom, the statistical
average over initial conditions can be expressed as

〈δf(t = 0,x, p, Q) δf(t = 0,x′, p′, Q′)〉 = δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′)f̄(x, p, Q)

+g̃2(x, p, Q;x′, p′, Q′) , (7.25)

where the function g̃2 obtains from the two-particle correlator, and

δ(Q−Q′) =
1

cR
δ(φ− φ′) δ(π − π) , (7.26)

and φ, π are the Darboux variables associated to the colour charges Qa. The appearance
of the factor 1/cR in the above expression is due to the change of normalization factors
associated to the functions N and f , as we mentioned at the end of sect. III. The above
statistical average is all we need to evaluate the collision integrals below.

§§In [1], we used a more condensed notation. There, the functions a
(0,0)
i, + and a

(0,1)
i, + have been

denoted a
(0)
i, + and a

(1)
i, +.
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From (7.25) one deduces the statistical average over colour current densities δJ . We
expand the momentum δ−function in polar coordinates

δ(3)(p− p′) =
1

p2
δ(p− p′) δ(2)(Ωv − Ωv′) , (7.27)

where Ωv represents the angular variables associated to the vector v = p/|p|. After simple
integrations we arrive at〈

δJ a
µ (t = 0,x, v) δJ b

ν (t = 0,x′, v′)
〉

= 2g2BC C2 δab vµv′ν δ(3)(x− x′)δ(2)(Ωv − Ωv′)

+g̃ab
2,µν(x, v;x′, v′) , (7.28)

where vµ = (1,v), and

BC = 16π2
∫ ∞

0
dp p2 f̄ eq(p) . (7.29)

The function g̃ab
2,µν is obtained from the two-particle correlation function g̃2. Notice that we

have neglected the piece gf̄ (1) above, as this is subleading in an expansion in g.
Since we know the dynamical evolution of all fluctuations we can also deduce the dy-

namical evolution of the correlators of fluctuations, with the initial condition (7.25). This
corresponds to solving (4.7) in the present approximation. It is convenient to proceed as
follows [7]. We separate the colour current (7.16) into a source part and an induced part,

δJ µ = δJ µ
sou + δJ µ

ind . (7.30)

The induced piece is the part of the current which contains the dependence on aµ, and thus
takes the polarization effects of the plasma into account. The source piece is the part of
the current which depends only on the initial condition. This splitting will be useful since
ultimately all the relevant correlators can be expressed in terms of correlators of δJ µ

sou.
From the explicit solution (7.16) and the average (7.28) we then find, at leading order

in g and neglecting the non-local term in (7.28)〈
δJ a

µ,sou(x, v) δJ b
ν,sou(x

′, v′)
〉

(7.31)

= 2g2BC C2vµv′νδ
(3)(x− x′ − v(t− t′))δ(2)(Ωv − Ωv′)Ūac(x, x− vt)Ū bc(x′, x′ − v′t′) .

Here, and from now on, we neglect the non-local piece g̃ab
2,µν . It can be shown [7] that they

give contributions which decrease rapidly with time, so that for asymptotic large times, they
vanish.

Expanding the parallel transporter Ū , and switching to momentum space we find the
spectral density for the zeroth order in gĀ〈

δJ a
µ δJ b

ν

〉sou (0)

k,v,v′ = 2g2BC C2δ
abvµv′νδ

(2)(Ωv − Ωv′)(2π)δ(k · v) . (7.32)

As an illustrative example, let us compute the correlator of two transverse fields a. Using
(7.24a) and (7.32) one arrives at
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〈
a

T (0,0)
i,a (k)a

T (0,0)
j,b (q)

〉
= g2BC C2δ

ab(2π)4δ(4)(k + q)
P T

ik(k)P T
jl (k)

| − k2 + ΠT |2
∫

dΩv

4π
vkvl δ(k · v) . (7.33)

Since the imaginary part of the polarization tensor, which describes Landau damping, can
be expressed as [5]

Im Πµν
ab (k) = −δabm

2
Dπk0

∫
dΩv

4π
vµvν δ(k · v) , (7.34)

the statistical correlator can finally be written as

〈
a

T (0,0)
i,a (k)a

T (0,0)
j,b (q)

〉
=

4πT

k0

Im Πab
ij,T (k)

| − k2 + ΠT |2 (2π)3δ(4)(k + q) . (7.35)

Here, we have used the relation

2g2C2BC = 4πTm2
D . (7.36)

Equation (7.35) is a form of the fluctuation dissipation theorem (FDT), which links the
dissipative processes occurring in the plasma with statistical fluctuations.

E. The collision integral

We are now ready to compute at leading order in g the collision integrals appearing on
the r.h.s. of (7.11a). We shall combine the expansions introduced earlier to expand the
collision integrals in powers of J̄ (while retaining only the zeroth order in gĀ),

〈ξ〉 = 〈ξ(0)〉+ 〈ξ(1)〉+ 〈ξ(2)〉+ . . . , (7.37)

and similarly for 〈η〉 and 〈Jfluc〉. We find that the induced current 〈J (0)
fluc〉 vanishes, as do

the fluctuation integrals 〈η(0)〉 and 〈ξ(0)〉. The vanishing of 〈J (0)
fluc〉 is deduced trivially from

the fact that 〈a(0,0)
a a

(0,0)
b 〉 ∼ δab, while this correlator always appears contracted with the

antisymmetric constants fabc in Jfluc. To check that 〈η(0)〉 = 0, one needs the statistical
correlator 〈δJµ

a δJρ
ab〉, which is proportional to

∑
a daab = 0 for SU(N). The vanishing of

〈η(0)〉 is consistent with the fact that in the Abelian limit the counterpart of 〈η〉 vanishes at
equilibrium [7]. Finally, 〈ξ(0)〉 = 0 due to a contraction of fabc with a correlator symmetric
in the colour indices.

In the same spirit we evaluate the terms in the collision integrals containing one J̄ field
and no background gauge Ā fields. Consider〈
ξ(1)
ρ,a

〉
= gfabcv

µ
(
−
〈
a

(0,1)
µ,b (x) δJ (0)

ρ,c (x, v)
〉

+ gfcdev
ν
∫ ∞

0
dτ J̄ρ,e(xτ , v)

〈
a

(0,0)
µ,b (x) a

(0,0)
ν,d (xτ )

〉)
. (7.38)

Using the values for aµ and δJ (0) as found earlier, we obtain in momentum space

〈
ξ(1)
ρ,a(k, v)

〉
≈ −g4C2NBCvρ

∫ dΩv′

4π
C(v,v′)

(
J̄ 0

a (k, v)− J̄ 0
a (k, v′)

)
, (7.39)
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with

C(v,v′) =
∫

d4q

(2π)4

∣∣∣∣∣viP
T
ij (q)v

′
j

−q2 + ΠT

∣∣∣∣∣
2

(2π)δ(q · v)(2π)δ(q · v′) . (7.40)

Here, the symbol ≈ means that only the leading terms have been retained. To arrive at the
above expression we have used the SU(N) relation fabcfabd = Nδcd. Within the momentum
integral, we have neglected in the momenta of the mean fields, k, in front of the momenta of
the fluctuations, q. As we discussed above, the momenta associated to the background fields
is much smaller that that associated to the fluctuations. Notice that we have only written
the part arising from the transverse fields a, as the one associated to the longitudinal modes
is subleading. This is easy to see once one realizes that the above integral is logarithmic
divergent in the infrared (IR) region, while the longitudinal contribution is finite. At this
point, we can also note that the collision integral computed this way is independent on the
(perturbative) Abelian gauge used to solve equation (7.19). This is so because the collision
integral computed this way can always be expressed in terms of the imaginary parts of the
polarization tensors (7.34) in the plasma, which are known to be gauge-independent.

The integral (7.40) has also been obtained in [13], on the basis of a phenomenological
derivation of the Boltzmann collision integral for a quantum plasma. The only difference
consists in the value of the Debye mass appearing in the polarization tensor.

In any case, the transverse polarization tensor ΠT vanishes at q0 = 0, and the dynamical
screening is not enough to make (7.40) finite. An IR cutoff must be introduced by hand
in order to evaluate the integral. With a cutoff of order gmD we thus find at logarithmic
accuracy

C(v,v′) ≈ 2

π2m2
D

ln (1/g)
(v · v′)2√

1− (v · v′)2
(7.41)

Using also the relation (7.36) we finally arrive at the collision integral to leading logarithmic
accuracy,

〈
ξ(1)
ρ,a(x, v)

〉
= − g2

4π
NT ln (1/g) vρ

∫
dΩv′

4π
I(v, v′)J̄ 0

a (x, v′), (7.42)

I(v,v′) = δ(2)(v− v′)−K(v,v′) , K(v,v′) =
4

π

(v · v′)2√
1− (v · v′)2

, (7.43)

where we have introduced δ(2)(v − v′) ≡ 4πδ(2)(Ωv − Ω′
v),

∫ dΩv

4π
δ(2)(v − v′) = 1.

We can verify explicitly that the leading logarithmic solution is consistent with gauge
invariance. This should be so, as the approximations employed have been shown in sect. VC
on general grounds to be consistent with gauge invariance. Evaluating the correlator in
(4.11) in the leading logarithmic approximation yields

gfabc

〈
ab

µ(x)δJµ
c (x)

〉
= − g2

4π
NT ln (1/g)

∫
dΩv

4π

dΩv′

4π
I(v,v′)J̄ 0

a (x, v′) , (7.44)

which vanishes, because
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∫
dΩv

4π
I(v,v′) = 0 . (7.45)

We thus establish that D̄µJ̄
µ = 0, in accordance with (7.11b) in the present approximation.

F. The source for stochastic noise

The collision integral obtained above describes a dissipative process in the plasma, so
in principle, it could trigger the system to abandon equilibrium. Whenever dissipative
processes are encountered, it is important to identify as well the stochastic source related to
it. This is the essence of the fluctuation-dissipation theorem (FDT). Phenomenologically,
this is well known, and sometimes used the other way around: imposing the FDT allows to
add by hand a source for stochastic noise with the strength of its self-correlator fixed by the
dissipative processes.

In the present formalism, we are able to identify directly the source for stochastic noise
which prevents the system from abandoning equilibrium. This proves, that the FDT does
hold (analogous considerations have been presented in [12]). The relevant noise term is given
by the contributions from the transversal gauge fields in ξ(0). While its average vanishes,
〈ξ(0)〉 = 0, its correlator

〈
ξρ(0)
a (x, v) ξ

σ(0)
b (y, v′)

〉
= g2fapcfbdev

µvν
〈
ap

µ(x) δJ ρ,c
sou(x, v) ad

µ(y) δJ σ,e
sou(y, v′)

〉(0)
(7.46)

does not. In order to evaluate this correlator we switch to Fourier space. Within the second
moment approximation we expand the correlator 〈δfδfδfδf〉 into products of second order
correlators 〈δfδf〉〈δfδf〉 and find

〈
ξρ(0)
a (k, v) ξ

σ(0)
b (p, v′)

〉
= g2fapcfbdev

µvν
∫

d4q

(2π)4

∫
d4r

(2π)4{ 〈
a(0,0)

µp (q) a
(0,0)
νd (r)

〉 〈
δJ (0)ρ,c

sou (k − q, v) δJ (0)σ,e
sou (p− r, v′)

〉
+
〈
a(0,0)

µp (q) δJ (0)σ,e
sou (p− r, v′)

〉 〈
δJ (0)ρ,c

sou (k − q, v) a
(0,0)
νd (r)

〉}
(7.47)

In the leading logarithmic approximation (that is, retaining only the transverse modes) one
finally arrives at

〈
ξi(0)
a (x, v)ξ

j(0)
b (y, v′)

〉
=

g6NC2
2B

2
C

(2π)3m2
D

ln (1/g)viv′jI(v,v′)δabδ
(4)(x− y) . (7.48)

After integrating over the angular variables, and using (7.36), we obtain

〈
ξi(0)
a (x)ξ

j(0)
b (y)

〉
= 2Tm2

D

g2NT ln (1/g)

12π
δabδ

ijδ(4)(x− y) . (7.49)

which identifies ξ(0)(x) as a source of white noise.
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G. Mean Field Equations and Non-Abelian Ohm’s law

We have managed to obtain the following set of mean field equations, after integrating-
out the statistical fluctuations (from now on, we drop the bar to denote the mean fields)

vµDµJ ρ(x, v) + m2
DvρvµFµ0(x) = −γ vρ

∫ dΩv′

4π
I(v,v′)J 0(x, v′) + ζρ(x, v) , (7.50a)

DµF µν = Jν . (7.50b)

Here, we denote by ζ(x, v) the stochastic noise term identified in the preceding section, with
ζ0 = 0, 〈ζ i〉 = 0 and 〈ζ iζj〉 given by the r.h.s. of (7.48). We also introduced

γ =
g2

4π
NT ln (1/g) , (7.51)

which will be identified as (twice) the damping rate for the ultra-soft currents. We shall
refer to (7.50a) as a Boltzmann-Langevin equation, as it accounts for particle interactions
via a collision integral as well as for the stochastic character of the underlying fluctuations.

The mean field dynamical equation is an integro-differential equation for the current
density J ρ. Using (7.43), we rewrite the Boltzmann-Langevin equation (7.50a) as

(vµDµ + 2γ)J ρ(x, v) = −m2
DvρvµFµ0(x) + ζρ(x, v)

+γ vρ
∫ dΩv′

4π
K(v,v′) J 0(x, v′) . (7.52)

We first seek for the retarded Green’s function of the differential operator

i (vµDµ + γ) Gret(x, y; v) = δ(4)(x− y) , (7.53)

which reads, for t = x0 − y0

Gret(x, y; v)ab = −iθ(t)δ(3) (x− y− vt) exp(−γt) Uab(x, y) . (7.54)

The problem in finding a solution to (7.52) is that the last term in term (7.52) is a function of
the current density itself. A solution for (7.52) is obtained if we apply an iterative procedure.
Disregarding the last term (7.52) in a first step, we obtain

J ρ,a
(0) (x, v) =

∫ ∞

0
dτ exp(−γτ)Uab(x, x− vτ)

{
−m2

DvρvjFj0,b(x− vτ) + ζρ,a(x− vτ, v)
}

(7.55)

Then we re-insert the 0-component of J ρ
(0) into the r.h.s. of (7.52) to obtain a new solution

J ρ
(1), and so forth. This procedure induces corrections to (7.55). These additional terms

have however a simple v-dependence, namely proportional to

vρ K(v,v′) . (7.56)
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This implies that the terms induced during the iteration, that is, from the last term in
(7.52), will not contribute to the current J i(x), because∫ dΩv

4π
v K(v,v′) = 0 . (7.57)

We thus conclude that the non-local solution for the spatial component of the colour current
is obtained from (7.55) as

J i
a(x) = −m2

D

∫
dΩv

4π

∫ ∞

0
dτ
{
exp(−γτ)Uab(x, x− vτ)vivjFj0,b(x− vτ)

}
+ νi

a(x) , (7.58a)

where νi
a is a non-local function of ζ(x, v)

νi
a(x) = −

∫
dΩv

4π

∫ ∞

0
dτ exp(−γτ)Uab(x, x− vτ)ζ i

b(x− vτ, v) . (7.58b)

The 0-component of the colour current can be obtained as indicated above, only that the
contributions induced by the last term in (7.52) survive after angle averaging. Alternatively,
one can make use of the covariant current conservation DµJµ = 0, which follows from (7.50a)
after angle averaging the ρ = 0 component. Thus, we finally end up with J0 expressed as a
function of J i and Aµ.

It is worth noticing that, apart from the presence of the stochastic source ν in (7.58a),
the ultra-soft colour current we have found has the same functional dependence on Fi0 and
on U than the soft colour current (7.9); there is, however, an additional damping factor e−γτ

in the integrand.
Let us stress that (7.58a) defines the non-local version of the non-Abelian Ohm’s law.

It can be used to define the colour conductivity tensor

σij
ab(x, y) =

δJ i
a(x)

δEb
j (y)

. (7.59)

In momentum space, the colour conductivity tensor obtains as an infinite power series in
the vector gauge field A. The leading order term reads

σij
ab(k) = δabm

2
D

∫
dΩv′

4π

vivj

−i(k · v) + γ
. (7.60)

We shall now consider the local limit of the above equations. Consider the mean field
current (7.58a). The terms contributing to this current are exponentially suppressed for
times τ much larger than the characteristic time scale 1/γ. On the other hand, the fields
occurring in the integrand vary typically very slowly, that is on time scales � 1/mD. Thus,
the leading contribution consists in approximating

Uab(x, x− vτ) ≈ Uab(x, x) = δab , Fj0(x− vτ) ≈ Fj0(x) . (7.61)

In this case the remaining integration can be performed. The local limit of (7.58) is
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J i
a(x) = σEi

a + νi
a , σ =

4πm2
D

3Ng2T ln (1/g)
(7.62a)

while the noise term becomes

νi
a(x) =

1

γ

∫
dΩv

4π
ζ i
a(x, v) ,

〈
νi

a(x) νj
b (y)

〉
= 2 T σ δijδab δ(4)(x− y) (7.62b)

Within this last approximation, the noise term appearing in the Yang-Mills equation be-
comes white noise. The fluctuation-dissipation theorem is fulfilled because the strength of
the noise-noise correlator (7.62b) is precisely given by the dissipative term of (7.62a). This
is the simplest form of the FDT. The colour conductivity (7.60) becomes

σij
ab(k → 0) = σ δij δab (7.63)

in accordance with (7.62a). The colour conductivity in the local limit has been discussed
by several authors in the literature [13,16].

The complete set of gauge field equations in the local limit are thus

DµF
µi = σEi + νi , (7.64a)

DiE
i = J0 (7.64b)

D0J
0 = −σJ0 −Diν

i . (7.64c)

It is worth pointing out that already in the leading logarithmic approximation the noise
term appearing in the Yang Mills equation (7.58b) is not white, except in the local limit
(7.62b). The noise in the Boltzmann-Langevin equation, on the other hand, is white (see
(7.49)), when averaged over the directions of v.

For numerical computations, which can in principle take into account the non-localities
of the problem, it might be more convenient to work with the two set of equations (7.50),
rather than with a non-local stochastic gauge field equation.

VIII. THE QUANTUM PLASMA CLOSE TO EQUILIBRIUM

A. The quantum plasma from transport theory

Up to now we have made an entirely classical derivation of a Boltzmann equation with
collision integrals and stochastic sources, and we have finally derived the mean gauge field
equations. The basic ingredients for such a derivation were the classical equations of motion
and the classical statistical averages introduced in sect. III. The following natural step is
quantizing the whole procedure in order to obtain quantum Boltzmann equations and the
corresponding mean gauge field equations.

In order to quantize this formulation one has to abandon the concept of classical trajec-
tories, and introduce commutators for all the canonical conjugate pairs of variables. One
should also take into account that quantum particles are indistinguishable. The natural
formulation of the quantum problem is then given in terms of Wigner functions and den-
sity matrices. We will not present a rigorous discussion of the quantum counterpart of
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our formulation, but rather present a minimal set of changes in our equations which allow
to consider also quantum plasmas close to equilibrium. We leave for a future project a
much more rigorous discussion based on first principles of the quantum formulation of the
problem.

Our starting observation is that even in quantum plasmas the physics occurring at soft
and ultra-soft scales can be encoded into classical or semiclassical equations. The reason
for this is that the occupation number for soft modes close to equilibrium is very large,
suggesting that a description in terms of classical equations might also be valid to describe
the physics of the soft and ultra-soft scales in the quantum plasmas.

Therefore, in order to consider a quantum plasma, we shall need to make several changes.
The first step consists in expanding the mean distribution function around the appropriate
quantum statistical distribution function. For a plasma close to equilibrium, these are given
by (6.6). It is also common to change the phase space measure d3xd3p to the standard
quantum normalization d3xd3p/(2πh̄)3 (although we will keep on working in the units h̄ =
1)∗∗∗. If fluctuations are neglected, this is all that has to be changed. This suffices to
change the Debye mass appearing in the Vlasov equation to its quantum value, and thus to
reproduce fully the HTL effective theory in the leading order in g [5].

When fluctuations are considered as well, it is equally important to modify also the
classical correlator (7.25) to the corresponding quantum statistical one. For bosons, and for
every internal degree of freedom, one has

〈δfx,p,Q δfx′,p′,Q′〉 = δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′)f̄B(1 + f̄B)

+g̃B
2 (x, p, Q;x′, p′, Q′) , (8.1)

while the corresponding correlator for fermions is

〈δfx,p,Q δfx′,p′,Q′〉 = δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′)f̄F(1− f̄F)

+g̃F
2 (x, p, Q;x′, p′, Q′) . (8.2)

The functions g̃
B/F
2 are related to the bosonic/fermionic two-particle correlation function.

The above relations should be derived from first principles in a similar way as our equation
(7.25). In the limit f̄B/F � 1 they reduce to the correct classical value. It has also to
be pointed out that the correlators (8.1) and (8.2) have been derived for the case of both
an ideal gas of bosons and ideal gas of fermions close to equilibrium, matching the change
described above. This can be taken as the correct answer in the case that the non-Abelian
interactions can be treated perturbatively.

With the above in mind, we can now describe the minimal set of changes to our com-
putations of sect. VII which allows to treat the quark-gluon plasma close to equilibrium.
We will consider gluons in the adjoint representation with C2 = N , and NF quarks and
NF antiquarks in the fundamental representation, with C2 = 1/2. All particles carry two
helicities. We will neglect the masses of the quarks, m � T .

∗∗∗As done in the standard textbooks the factor (2πh̄)3 is introduced into the measure, although
some authors introduce it into the distribution function. We follow the first option.
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The value of the the quantum Debye mass squared becomes

m2
D = −g2

π2

∫ ∞

0
dpp2

(
N

df̄ eq
B

dp
+ NF

df̄ eq
F

dp

)
. (8.3)

Evaluating explicitly the integral, one finds m2
D = g2T 2(2N + NF )/6.

The correlator of colour currents densities are then modified, according to the changes
mentioned above. Since we now consider different species of particles in (7.28) C2BC is
replaced by a sum over different species of particles. For the quark gluon plasma, all our
equations of sect. VII remain valid if we replace C2BC by

∑
species

C2BC =
2N

π

∫ ∞

0
dpp2f̄ eq

B (1 + f̄ eq
B ) +

2NF

π

∫ ∞

0
dpp2f̄ eq

F (1− f̄ eq
F ) . (8.4)

It is curious that the relation (7.36) for the quantum values of the above quantities remains
unchanged, that is,

2g2
∑

species

C2BC = 4πTm2
D (8.5)

holds true also in the quark-gluon plasma. Since this combination appears in front of all
our collision integrals, we find a universal value for the coefficient of (7.42), γ for both the
classical and quantum plasmas. This is always the case in the leading log approximation, if
the IR cutoff used is of order gmD, where mD would correspond to the classical or quantum
Debye mass, respectively. The value γ/2 can be identified with the damping rate of a hard
transverse gluon [17].

With these observations, one does not need to repeat the computations that we per-
formed in sect. VII. In particular, the final mean field equations of sect. VIIG only change
in the value of the Debye mass.

B. Comparison to related work

Let us briefly comment on some related work. A similar philosophy to ours has already
been followed by Selikhov [8]. He used the semiclassical limit of quantum transport equations
for the Wigner functions associated to gluons and quarks, which reduce to our starting
classical transport equations. He used a procedure of splitting both the Wigner functions
and vector gauge fields into mean values and statistical fluctuations. A key point is how
the statistical correlator of fluctuations in a quantum framework can be derived. Selikhov
relied on the same type of statistical correlator as derived in (7.28). However, it should be
stressed that this statistical correlator is only correct in the pure classical framework, for
classical statistics. This can not reproduce the correct prefactors of the quantum collision
integral. Also, the FDT is not satisfied in this case. Instead, the correct correlators are given
by (8.1) and (8.2). Also, the colour current he found is not covariantly conserved. This is
so because the non-local term in the collision integral (7.42), proportional to K(v,v′), has
been neglected.

31



The first to derive the mean field equations (7.50) and the related noise correlator for
the quantum plasma was Bödeker [12]. His approach uses the local version of the HTL
action as starting point, and profits from the observation that the soft field modes behave
classically. This allows the definition of a statistical average. Although close in spirit, this
method seems technically quite different.

Arnold, Son and Yaffe [13] then realized that Bödeker’s effective theory has a physi-
cal interpretation in terms of kinetic equations, deriving the relevant collision term of the
Boltzmann equation on phenomenological grounds.

Very recently, the quantum collision integral has been derived within a quantum field
theoretical setting by Blaizot and Iancu [14]. The derivation relies on a gauge covariant
derivative expansion of the quantum field equations. While conceptually very different to
our approach [1], the approximations used in [14] are very similar to the ones we performed.
This is maybe not too surprising after all, as both approaches are based on a consistent
expansion in powers of the gauge coupling constant. It seems only that the concept of
statistical fluctuations has not been introduced in [14], which may be a reason for why the
source of stochastic noise, necessary for a correct macroscopic description of the plasma,
has not yet been identified. The stochastic noise can probably be derived by considering
the effects of higher order correlation functions [18].

Based on our approach [1], the quantum collision integral for the transport equation has
been obtained as well by Valle [19]. He started from the HTL effective theory and found
the correct coefficient after imposing a fluctuation-dissipation relation. The noise term in
his final equations is however missing, which again would entail that the system abandons
equilibrium.

Finally, it is interesting that the collision integral can be interpreted in terms of Feynman
diagrams [12,14]. Bödeker also made a diagrammatic derivation of his effective theory [12].
This is a much more lengthy and cumbersome task, and shows, on the other hand, the very
efficiency of a kinetic approach, as it corresponds to a re-organisation of the perturbative
series.

IX. DISCUSSION

We have presented a self-consistent approach to study classical non-Abelian plasmas.
Let us summarize here again our starting assumptions to derive the effective transport
equations. A system of point particles carrying non-Abelian charges is considered. Their
microscopic equations of motions are the Wong equations. In order to describe an ensemble
of these particles, we introduced an ensemble average, which takes also the colour charges
as dynamical variables into account. This yields finally a set of transport equations for
both mean quantities and statistical fluctuations, and gives a recipe to obtain explicitly the
collision integrals for macroscopic transport equations. This approach is consistent with
gauge invariance, and admits systematic approximations. Most particularly, it does not rely
on close-to-equilibrium situations. These techniques, applied since long to Abelian plasmas,
have never been fully exploited for the non-Abelian case. Our approach is aimed at closing
this gap in the literature of non-Abelian plasmas.
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We applied this method to non-Abelian plasmas close to thermal equilibrium. A suf-
ficiently small gauge coupling parameter is at the basis for a systematic expansion of the
dynamical equations. Neglecting fluctuations yields to leading order the known non-local
expression for the soft current in terms of the soft gauge fields (HTL approximation).
Integrating-out, in addition, the fluctuations to leading order, that is with momenta about
mD, results in a Boltzmann-Langevin equation for the ultra-soft modes,

vµDµJ ρ(x, v) = −m2
DvρvµFµ0(x)− γ vρ

∫
dΩv′

4π
I(v,v′)J 0(x, v′) + ζρ(x, v) .

It contains a collision term and a related noise term, with γ = g2NT ln (1/g)/4π, while the
stochastic source ζρ with ζ0 ≡ 0 obeys〈

ζ i
a(x, v) ζj

b (y, v′)
〉

= 2 γ T m2
D vi v′j I(v,v′) δab δ(4)(x− y) .

Solving the Boltzmann-Langevin equation (see sect. VIIG), one obtains the Yang-Mills
equation for the ultra-soft fields

DµF
µν =

∫ dΩv

4π
J ν(x, v) .

Surprisingly, the dynamical equations are the same for both classical and quantum plasmas,
the only difference being the value for the Debye mass. This conclusion relies also on the use
of an infrared cut-off of order gmD, where mD is the classical or quantum Debye mass. For
the quantum plasmas, our result agrees with the quantum collision integrals found in the
literature using different methods [12–14]. The main effect of the fluctuations with momenta
about the Debye mass is the introduction of a damping term and a source of stochastic noise
into the above expression. Note also that the damping coefficient γ is the same for classical
and quantum plasmas.

Our work establishes a link even beyond the one-loop level between the classical transport
theory approach as presented here, and a full quantum field theoretical treatment. It would
be most desirable if this connection could be further substantiated. This should also yield
a quantitative criterion for the applicability of the -technically speaking- much simpler
approach based on the classical point particle picture.

Let us finally emphasize that the same IR problems, which are due to the unscreened
magnetic modes, appear both for classical and quantum plasmas. This suggests that the
solution for these IR divergences might also be the same in the two cases. Therefore, it
seems profitable to seek for a solution to this problem in the much simpler framework of
classical transport theory, rather than in a quantum field theoretical approach.

APPENDIX A: DARBOUX VARIABLES

The statistical averages defined in sect. III have to be performed in phase space. The
colour charges Qa are not real phase space variables [5]. It is possible to define the set of
Darboux variables associated to the Qa charges.

For SU(2) we define the new set of variables φ, π, J by the transformation [5]
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Q1 = cos φ
√

J2 − π2 Q2 = sin φ
√

J2 − π2 Q3 = π (A1)

where π is bounded by −J ≤ π ≤ J . The variables φ, π form a canonically conjugate
pair, while J is fixed by the value of the quadratic Casimir, which is constant under the
dynamical evolution. One can define Poisson brackets with these canonical variables, under
which the colour charges form a representation of SU(2), {Qa, Qb}PB = fabcQc. With the
above change of variables, one can easily fix the value of the representation normalization
constant cR introduced in (2.9). From the condition

∫
dQ = 1 one finds cR = 1/4π

√
q2.

From the condition
∫

dQQaQb = C2δab one gets q2 = 3C2. This then entirely fixes the value
of cR as a function of C2.

The Darboux variables associated to SU(3) where defined in [5], and will not be discussed
explicitly here.

We should also comment that in the pure classical framework, C2 carries the same
dimensions of (h̄c)2. After quantization, the quadratic Casimirs should take quantized
values proportional to h̄2. The Poisson brackets then have to be replaced by commutators,
as well.

APPENDIX B: CONSISTENT CURRENT CONSERVATION

In this appendix we verify explicitly the identity

0 = [D̄µ, Jµ
fluc

] + g[aµ, δJ
µ] + g[aµ, 〈Jµ

fluc
〉] , (B1)

which is at the basis for the proof of the consistent current conservation of both the mean
field and the fluctuation current in sect. VB. The following check is entirely algebraic, and
it will make use of symmetry arguments like the antisymmetry of the commutator and the
tensors F̄µν , fµν , and of the cyclic identity [ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0. The
identity [D̄µ, D̄ν ] = gF̄µν is employed as well. To simplify the computation, we will seperate
the fluctuation part of the field strength (4.2c) into the term linear and quadratic in a,
according to

fµν = f1,µν + f2,µν , f1,µν = [D̄µ, aν ]− [D̄ν , aµ] , f2,µν = g[aµ, aν ] . (B2)

Recall furthermore, using (5.7c) and (5.8b), that

Jµ
fluc

= [D̄ν , f
νµ
2 ] + g[aν , f

νµ
1 + f νµ

2 ] (B3)

δJµ = [D̄ν , f
νµ
1 ] + g[aν , F̄

νµ] + Jµ
fluc − 〈Jµ

fluc〉 (B4)

are functions of the fluctuation field a. The first term of (B1) reads, after inserting Jfluc from
(B3),

[D̄µ, J
µ
fluc] = [D̄ν , [D̄µ, f

µν
2 ]] + g[D̄ν , [aµ, f

µν
1 ]] + g[D̄ν, [aµ, fµν

2 ]] . (B5)

Using δJ from (B4), it follows for the second term of (B1)

g[aµ, δJ
µ] = g2[aν , [aµ, F̄ µν ]] + g[aν , [D̄µ, f

µν
1 ]] + g [aν , J

ν
fluc

]− g [aν , 〈Jν
fluc
〉] (B6)
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The last term of (B6) will be canceled by the last term in (B1). We show now that the first
three terms of (B5) and (B6) do cancel one by one. The first term in (B5) can be re-written
as

[D̄ν , [D̄µ, fµν
2 ]] = [[D̄ν , D̄µ], fµν

2 ]− [D̄ν , [D̄µ, f
µν
2 ]] = 1

2g[F̄νµ, f
µν
2 ] (B7)

Similarly, the first term of (B6) yields

g2[aν , [aµ, F̄
µν ]] = −g2[F̄ µν , [aν , aµ]]− g2[aν , [aµ, F̄ µν ]] = −1

2g[F̄µν , f
νµ
2 ] . (B8)

For the second term in (B5) we have

g[D̄ν , [aµ, fµν
1 ]] = g[aµ, [D̄ν , f

µν
1 ]] + g[[D̄ν, aµ], fµν

1 ] = −g[aµ, [D̄ν , f
νµ
1 ]] , (B9)

which equals (minus) the second term of (B6). Finally, consider the third term of (B6),

g [aν , J
ν
fluc

] = g2[aν , [D̄µ, [aµ, aν ]]] + g2[aν , [aµ, fµν ]]

= 1
2g[fµν

2 , f1,µν ]− g[D̄µ, [f
µν
2 , aν ]]− 1

2g[fµν
2 , f1,µν ]

= −g[D̄µ, [aν , f
νµ
2 ]] (B10)

which equals (minus) the third term of (B5). This establishes (B1).
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