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We discuss specific observables that can be measured in deep inelastic leptopro-
duction in the case of 1-particle inclusive measurements, namely azimuthal asym-
metries. These asymmetries contain information on the intrinsic transverse mo-
mentum of partons, with close connection to the gluon dynamics in hadrons.

1 Introduction

The most obvious evidence of the structure of hadrons is the excitation spec-
trum, invariant masses and lifetimes. Because of the limited accessibility of
the spectrum this information is far from complete. Very direct information on
quarks or gluons is obtained by looking at jets or specific particles, e.g. J/ψ.
This requires high-energy scattering processes and relies on a careful analysis
of the jets. It is a good way to obtain information on the gluonic content and
as such part of the experimental program at DESY (HERMES, polarization
at HERA) or at CERN (COMPASS). The latter are actually already exam-
ples of electroweak processes which are particularly suitable to measure specific
well-defined quantities via the exchange of color-blind particles (γ, Z or W±).

The two most well-studied types of observable quantities in electroproduc-
tion are form factors and structure functions, obtained in elastic or inclusive
deep-inelastic measurements. The nice feature of these quantities is their clear
meaning. They provide us with charge and current densities and, within the
framework of Quantum Chromodynamics, parton distributions. Polarization
and 1-particle inclusive measurements turned out to be important refinements
extending our knowledge, in particular for parton distributions. The 1-particle
inclusive measurements and measurements of specific exclusive final states also
can provide us with new observable quantities such as fracture functions, az-
imuthal asymmetries and off-forward parton distributions. These quantities
are presently focus of much theoretical work in order to find out how use-
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ful they are to answer certain questions on the quark and gluon structure of
hadrons. For instance, off-forward parton distributions contain information on
the orbital angular momentum of quarks in hadrons, azimuthal asymmetries
contain information on the intrinsic transverse momentum of partons, which
is closely connected to the gluon dynamics in hadrons. The emphasis of this
talk is on the latter.

2 Structure functions

We start our discussion with the object of interest for 1-particle inclusive lep-
toproduction, the hadronic tensor, given by

2MW(`H)
µν (q;PS;PhSh) =

1
(2π)4

∫
d3PX

(2π)32P 0
X

(2π)4δ4(q + P − PX − Ph)

×〈PS|Jµ(0)|PX ;PhSh〉〈PX ;PhSh|Jν(0)|PS〉, (1)

where P, S and Ph, Sh are the momenta and spin vectors of target hadron
and produced hadron, q is the (spacelike) momentum transfer with −q2 =
Q2 sufficiently large. The kinematics is illustrated in Fig. 1, where also the
scaling variables are introduced. For inclusive scattering (unpolarized lepton

^

P
h h⊥

z

^

lepton scattering plane

q
k

k’ Ph
φ

`H −→ `′hX

x
B

=
Q2

2P · q
y =

P · q
P · k

zh =
P · Ph

P · q

Figure 1: Kinematics for 1-particle inclusive leptoproduction.

and hadron, γ-exchange) the most general symmetric part of the hadronic
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Figure 2: The simplest (parton-level) diagrams representing the squared amplitude in lepton
hadron inclusive scattering (left) en semi-inclusive scattering (right).

tensor isb

2MWµν
S (q, P ) =

−gµν + q̂µq̂ν − t̂µt̂ν
︸ ︷︷ ︸

−gµν
⊥

F1 + t̂µ t̂ν
(
F2

2x
B

− F1

)
︸ ︷︷ ︸

FL

(2)

Combined with the leptonic part, one obtains the cross section

dσO

dx
B
dy

=
4π α2 x

B
s

Q4

{(
1− y +

1
2
y2

)
FT + (1− y)FL

}
. (3)

In order to calculate the hadronic tensor, a diagrammatic expansion is
written down starting with the well-known handbag diagram (see Fig. 2, left),
yielding the parton model results for the structure functions,

FT (xB , Q) = F1(xB , Q) =
1
2

∑
a,ā

e2a f
a
1 (xB ), (4)

FL(x
B
, Q) = 0, (5)

expressed in terms of the quark distribution fa
1 (a is the flavor index). The

summation runs over quarks and antiquarks. The most general antisymmetric
part of the hadronic tensor involves polarized leptons and hadrons and is for

b

q̂µ = qµ/Q, t̂µ = P̃ µ/

√
P̃ 2 =

(
P µ − P · q

q2
qµ

)
/

√
P̃ 2.
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γ-exchange given by

2MWµν
A (q, P, S) = −i λ ε

µνρσPρqσ
P · q︸ ︷︷ ︸

−i λ εµν
⊥

g1 + i
2Mx

B

Q
t̂ [µε

ν]ρ
⊥ S⊥ρ gT (6)

with λ ≡ q · S/q · P and S⊥ the transverse spin vector obtained with the help
of gµν

⊥ . The cross section becomes

dσL

dx
B
dy

= λe
4π α2

Q2

{
λ

(
1− y

2

)
g1 − |S⊥| cos φ`

S

2Mx
B

Q

√
1− y gT

}
, (7)

with the parton model results

g1(xB , Q) =
1
2

∑
a,ā

e2a g
a
1(xB ), (8)

gT (xB , Q) = (g1 + g2)(xB , Q) =
1
2

∑
a,ā

e2a g
a
T (xB ). (9)

The function ga
1 is the quark helicity distribution. The function ga

T is a higher
twist distribution.

Proceeding to the 1-particle inclusive case for unpolarized lepton and
hadronc we obtain generally for the symmetric part of the hadronic tensor

2MWµν
S (q, P, Ph) = −gµν

⊥ HT + t̂µt̂ν HL

+t̂ {µĥν}HLT +
2 ĥµĥν + gµν

⊥
HTT , (10)

leading to the unpolarized cross section

dσO

dx
B
dy dzhd2qT

=
4π α2 s

Q4
x

B
zh

{(
1− y +

1
2
y2

)
HT + (1− y)HL

−(2− y)
√

1− y cosφ`
h HLT + (1− y) cos 2φ`

h HTT

}
.(11)

c

q̂µ = qµ/Q, t̂µ = (qµ + 2xB P µ)/Q,

qµ
T = qµ + xB P µ − P µ

h
/zh = −P µ

h⊥/zh ≡ −QT ĥµ.
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We will come back to the parton expressions for these structure functions later
with emphasis on the azimuthal dependence, the cosφ`

h and cos 2φ`
h parts

depending on the azimuthal angle between the lepton scattering plane and the
production plane (see Fig. 1). Limiting ourselves to unpolarized hadrons, the
antisymmetric part of the hadronic tensor is

2MWµν
A (q, P, Ph) = −it̂ [µĥν]H′

LT , (12)

leading to the cross section

dσL

dx
B
dy dzhd2qT

= λe
4π α2

Q2
zh

√
1− y sinφ`

h H′
LT . (13)

Our aim in studying leptoproduction is the study of the quark and gluon
structure of the hadronic target using the known framework of Quantum chro-
modynamics (QCD). Thus, as a theorist the aim is to calculate the hadronic
tensor Wµν by making a diagrammatic expansion. Already at the simplest
level (Fig. 2) a problem is encountered, namely there are hadrons involved for
which QCD does not provide rules. Thus, soft parts are identified that allow
inclusion of hadrons in the field theoretical framework. Furthermore it will
turn out that for Q2 →∞ only a limited number of diagrams is needed.

3 Soft parts

3.1 Definition as quark operators

Next, we look in more detail to the soft parts, such as appear for instance in the
parton diagram. They can be written down in terms of quark and gluon fields
as illustrated below. They are characterized by the fact that the momenta are
soft with respect to each other. We have for the distribution part 1,2

Φ(p;P,S)

p p

P P

with p2 ∼ p · P ∼ P 2 = M2 � Q2

represented by

Φij(p, P, S) =
1

(2π)4

∫
d4x eip·x 〈P, S|ψj(0)ψi(x)|P, S〉, (14)

and the fragmentation part 3
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(k;P  ,S  )hh∆

hPhP

k k

with k2 ∼ k · Ph ∼ P 2
h = M2

h � Q2

represented by

∆ij(k, Ph, Sh) =
∑
X

1
(2π)4

∫
d4x eik·x〈0|ψi(x)|Ph, Sh;X〉〈Ph, Sh;X |ψj(0)|0〉.

(15)
In order to find out which information in the soft parts Φ and ∆ is important
in a hard process one needs to realize that the hard scale Q leads in a natural
way to the use of lightlike vectors n+ and n− satisfying n2

+ = n2
− = 0 and

n+ ·n− = 1. For 1-particle inclusive scattering one parametrizes the momenta

q2 = −Q2

P 2 = M2

P 2
h = M2

h

2P · q = Q2

x
B

2Ph · q = −zhQ
2

←→


Ph = zh Q√
2
n− + M2

h

zh Q
√

2
n+

q = Q√
2
n− − Q√

2
n+ + qT

P = x
B

M2

Q
√

2
n− + Q

x
B

√
2
n+

Comparing the power of Q with which the momenta in the soft and hard part
appear one immediately is led to

∫
dp− Φ(p, P, S) and

∫
dk+ ∆(k, Ph, Sh) as

the relevant quantities to investigate.

Ph Ph

P P

k

p p

k
q

part ’components’
− +

q → h ∼ Q ∼ 1/Q → ∫
dk+ . . .

HARD ∼ Q ∼ Q
H → q ∼ 1/Q ∼ Q → ∫

dp− . . .
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3.2 Analysis of soft parts: distribution and fragmentation functions

Hermiticity, parity and time reversal invariance (T) constrain the quantity
Φ(p, P, S) and therefore also the Dirac projections Φ[Γ] defined as

Φ[Γ](x,pT ) =
∫
dp−

Tr[ΦΓ]
2

=
∫
dξ−d2ξT

2 (2π)3
eip·ξ 〈P, S|ψ(0)Γψ(ξ)|P, S〉

∣∣∣∣
ξ+=0

, (16)

which is a lightfront (ξ+ = 0) correlation function. The relevant projections
in Φ that are important in leading order in 1/Q in hard processes are

Φ[γ+](x,p
T
) = f1(x,p2

T
)− εijT pTiSTj

M
f⊥1T (x,p2

T
), (17)

Φ[γ+γ5](x,p
T
) = λ g1L(x,p2

T
) +

(p
T
· S

T
)

M
g1T (x,p2

T
) (18)

Φ[iσi+γ5](x,p
T
) = Si

T h1(x,p2
T
) +

λ pi
T

M
h⊥1L(x,p2

T
)

−
(
pi

T p
j
T + 1

2p2
T
gij

T

)
STj

M2
h⊥1T (x,p2

T
)

− εijT pTj

M
h⊥1 (x,p2

T
). (19)

Here x = p+/P+, λ = MS+/P+ and ST is the spin-component projected out
by gµν

T = gµν − n{µ
+ n

ν}
− . They satisfy λ2 + S2

T = 0.
All functions appearing above can be interpreted as momentum space den-

sities, as illustrated in Fig. 3. The ones denoted 4 f ...
... involve the operator

structure ψγ+ψ = ψ†+ψ+, where ψ+ = P+ψ with P+ = γ−γ+/2. This opera-
tor projects on the socalled good component of the Dirac field, which can be
considered as a free dynamical degree of freedom in front form quantization.
It is precisely in this sense that partons measured in hard processes are free.
The functions g...

... and h...
... appearing above are differences of densities involv-

ing good fields, but in addition projection operators PR/L = (1 ± γ5)/2 and
P↑/↓ = (1 ± γ1γ5)/2, all of which commute with P+. To be precise for the
functions g...

... one has ψγ+γ5ψ = ψ†+Rψ+R − ψ†+Lψ+L while in the case of h...
...

one has ψσ1+γ5ψ = ψ†+↑ψ+↑ − ψ†+↓ψ+↓.
The functions f⊥1T and h⊥1 are special. Applying time-reversal shows that

these functions should disappear from the parametrization of the matrix el-
ement Φ. However, application of time-reversal invariance for kT -dependent
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1f = =1T -f ⊥

g =1L - =g1T -

1h = - =h1L -

-=h1T -=1h

Figure 3: Interpretation of the functions in the leading Dirac projections of Φ.

functions involves a few tricky points related to poles in gluonic matrix ele-
ments 5 and we decided here to take the purely phenomenological approach
and keep these socalled T-odd functions. The functions describe the possible
appearance of unpolarized quarks in a transversely polarized nucleon (f⊥1T )
or transversely polarized quarks in an unpolarized hadron (h⊥1 ) and lead to
single-spin asymmetries in various processes 6,7.

It is useful to remark here that flavor indices have been omitted, i.e. one
has fu

1 , fd
1 , etc. At this point it may also be good to mention other notations

used frequently such as fu
1 (x) = u(x), gu

1 (x) = ∆u(x), hu
1 (x) = ∆Tu(x), etc.

These x-dependent functions are the ones obtained after integration over p
T
.

The analysis of the soft part Φ can be extended to other Dirac projections.
Limiting ourselves to p

T
-averaged functions and applying constraints from T-

reversal symmetry, one finds

Φ[1](x) =
M

P+
e(x), (20)

Φ[γiγ5](x) =
M Si

T

P+
gT (x), (21)

Φ[iσ+−γ5](x) =
M

P+
λhL(x). (22)

Lorentz covariance requires for these projections on the right hand side a fac-
tor M/P+, which as can be seen from the earlier given parametrization of
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momenta produces a suppression factor M/Q and thus these functions appear
at subleading order in cross sections. The constraints on Φ lead to relations
between the above higher twist functions and p

T
/M -weighted functions 8,9,

e.g.

g2 = gT − g1 =
d

dx
g
(1)
1T , (23)

where

g
(1)
1T (x) =

∫
d2p

T

p2
T

2M2
g1T (x,p

T
). (24)

We will use the index (1) to indicate a p2
T
-moment of the above type. A second

similar relation of this type connects h⊥1L and hL,

hL = h1 − d

dx
h
⊥(1)
1L , (25)

Just as for the distribution functions one can perform an analysis of the
soft part describing the quark fragmentation 9. The Dirac projections are

∆[Γ](z,k
T
) =

∫
dk+ Tr[∆Γ]

4z

=
∑
X

∫
dξ+d2ξT

4z (2π)3
eik·ξ Tr〈0|ψ(x)|Ph, X〉〈Ph, X |ψ(0)Γ|0〉

∣∣∣∣∣
ξ−=0

.(26)

The relevant projections in ∆ that appear in leading order in 1/Q in hard
processes are for the case of no final state polarization,

∆[γ−](z,k
T
) = D1(z,−zkT

), (27)

∆[iσi−γ5](z,k
T
) =

εijT kTj

Mh
H⊥

1 (z,−zk
T
). [T-odd] (28)

The arguments of the fragmentation functions D1 and H⊥
1 are chosen to be z

= P−
h /k

− and P h⊥ = −zk
T
. The first is the (lightcone) momentum fraction of

the produced hadron, the second is the transverse momentum of the produced
hadron with respect to the quark. The fragmentation function D1 is the equiv-
alent of the distribution function f1. It can be interpreted as the probability
of finding a hadron h in a quark. Noteworthy is the appearance of the func-
tion H⊥

1 , interpretable as the different production probability of unpolarized
hadrons from a transversely polarized quark (see Fig. 4). This functions has
no equivalent in the distribution functions and is allowed because of the non-
applicability of time reversal invariance because of the appearance of out-states
|Ph, X〉 in ∆, rather than the plane wave states in Φ.
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D =1 H 1 = -

Figure 4: Interpretating the leading Dirac projections of ∆ for unpolarized hadrons.

After k
T
-averaging one is left with the functions D1(z) and the k

T
/M -

weighted result H⊥(1)
1 (z). We summarize the full analysis of the soft part with

a table of distribution and fragmentation functions for unpolarized (U), longi-
tudinally polarized (L) and transversely polarized (T) targets, distinguishing
leading (twist two) and subleading (twist three, appearing at order 1/Q) func-
tions and furthermore distinguishing the chirality 4. The functions printed in
boldface survive after integration over transverse momenta. We have for the
distributions included a separate table with distribution functions that can ex-
ist without the T constraint, suggested to explain single spin asymmetries6,7,10.
We have included them in our complete classification scheme.

Classification of distribution and fragmentation functions:

DISTRIBUTIONS (T-even)
chirality

Φ[Γ] even odd
U f1

twist 2 L g1L h⊥1L

T g1T h1 h⊥1T

U f⊥ e
twist 3 L g⊥L hL

T gT g⊥T hT h⊥T

DISTRIBUTIONS (T-odd)
chirality

Φ[Γ](x,k
T
) even odd
U − h⊥1

twist 2 L − −
T f⊥1T −
U − h

twist 3 L f⊥L eL

T fT eT

FRAGMENTATION
chirality

∆[Γ] even odd
U D1 H⊥

1

twist 2 L G1L H⊥
1L

T G1T D⊥
1T H1 H⊥

1T

U D⊥ E H
twist 3 L G⊥

L D⊥
L EL HL

T GT G⊥
T DT ET HT H⊥

T

10



4 Cross sections for lepton-hadron scattering

After the analysis of the soft parts, the next step is to find out how one ob-
tains the information on the various correlation functions from experiments,
in this case in particular lepton-hadron scattering via one-photon exchange as
discussed in section 1. To get the leading order result for semi-inclusive scat-
tering it is sufficient to compute the diagram in Fig. 2 (right) by using QCD
and QED Feynman rules in the hard part and the matrix elements Φ and ∆
for the soft parts, parametrized in terms of distribution and fragmentation
functions. The most well-known results for leptoproduction are:

Cross sections (leading in 1/Q)

dσOO

dxB dy dzh
=

2πα2 s

Q4

∑
a,ā

e2a

1 + (1− y)2
 xBf

a
1 (xB )Da

1 (zh)(29)

dσLL

dxB dy dzh
=

2πα2 s

Q4
λe λ

∑
a,ā

e2a y(2− y) xBg
a
1 (xB )Da

1(zh) (30)

The indices attached to the cross section refer to polarization of lepton (O
is unpolarized, L is longitudinally polarized) and hadron (O is unpolarized, L
is longitudinally polarized, T is transversely polarized). Comparing with the
expressions in section 1, one can identify the structure function HT and deduce
that in leading order α0

s the function HL = 0.

It is not difficult to give some general rules on how the distribution and
fragmentation functions are encountered in experiments. I will just give a few
examples.

In 1-particle inclusive processes, one actually becomes sensitive to quark
transverse momentum dependent distribution functions. One finds at order
1/Q the following nonvanishing azimuthal asymmetries 11:
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Azimuthal asymmetries for unpolarized targets (higher twist)∫
d2qT

QT

M
cos(φ`

h)
dσOO

dx
B
dy dzh d2qT

≡
〈
QT

M
cos(φ`

h)
〉

OO

= −2πα2 s

Q4
2(2− y)√1− y

∑
a,ā

e2a

{
2M
Q

x2
B
f⊥(1)a(x

B
)Da

1(zh)

+
2Mh

Q
x

B
fa
1 (x

B
)
D̃⊥(1)a(zh)

zh

}
(31)

note: D̃⊥a(z) = D⊥a(z)− zDa
1(z),

This weighted cross section involves the structure function HLT and contains
the twist three distribution function f⊥ and the fragmentation function D⊥.
They appear only in the subleading (∝M/P+) part of Φ and the corresponding
cross section is suppressed by 1/Q.

Using the same notation as in the previous example, another example is
the following weighted cross section 11:

〈
QT

M
sin(φ`

h)
〉

OO

=
2πα2 s

Q4
λe 2y

√
1− y

×
∑
a,ā

e2a
2M
Q

x2
B
ẽa(x

B
)H⊥(1)a

1 (zh) (32)

note: ẽa(x) = ea(x)− ma

M

fa
1 (x)
x

.

This cross section involves the structure function containing the distribution
function e and the time-reversal odd fragmentation function H⊥

1 . The tilde
functions that appear in the cross sections are in fact precisely the socalled
interaction dependent parts of the twist three functions. They would vanish
in any naive parton model calculation in which cross sections are obtained
by folding electron-parton cross sections with parton densities. Considering
the relation for ẽ one can state it as x e(x) = (m/M) f1(x) in the absence
of quark-quark-gluon correlations. The inclusion of the latter also requires
diagrams dressed with gluons.

In the introduction we already mentioned the cos 2φ`
h asymmetry in un-

polarized leptoproduction. This asymmetry requires the presence of a T-odd
distribution function. But note that the effect is leading order in 1/Q, i.e.
nonvanishing at large Q.

12



Azimuthal asymmetries for unpolarized targets (leading twist)〈
Q2

T

MMh
cos(2φ`

h)
〉

OO

=
4πα2 s

Q4
4(1− y)

∑
a,ā

e2a xB
h
⊥(1)a
1 (x

B
)H⊥(1)a

1 .

(33)

As a final example we mention the possibility to use leptoproduction to resolve
issues in other processes. For example, the single spin (left-right) asymmetry
observed in p↑p → πX could be attributed to a T-odd effect in the initial
state (Sivers effect) or a similar effect in the final state (Collins effect). These
two effects or the relative importance of them could be decided by considering
two different asymmetries in leptoproduction. Let’s consider for simplicity the
two effects separately. In case one blames the single spin asymmetry fully on
the initial state 6,7 it only involves the distribution function f⊥1T , while if it is
blamed on the final state 12,13 it only involves the fragmentation function H⊥

1 .
By considering the following asymmetries in leptoproduction, one could decide
which effect is actually responsible 14.

Single spin azimuthal asymmetries for transversely polarized tar-
gets 〈

QT

Mh
sin(φ`

h − φ`
S)

〉
OTO

=
2πα2 s

Q4
|ST |

(
1− y − 1

2
y2

)
×

∑
a,ā

e2a xB
f
⊥(1)a
1T (x

B
)Da

1 (zh). (34)

〈
QT

Mh
sin(φ`

h + φ`
S)

〉
OTO

=
4πα2 s

Q4
|ST |(1− y)

×
∑
a,ā

e2a xB
ha

1(xB
)H⊥(1)a

1 (zh), (35)

As

shown in Figs. 5 and 6 the asymmetries in leptoproduction 14 are expected to
have quite characteristic behavior as a function of xB and zh.

5 Concluding remarks

In the previous section some results for 1-particle inclusive lepton-hadron scat-
tering have been presented. Several other effects are important in these cross
sections, such as target fragmentation, the inclusion of gluons in the calcula-
tion to obtain color-gauge invariant definitions of the correlation functions and
an electromagnetically gauge invariant result at order 1/Q and finally QCD

13
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Figure 5: A tri-dimensional view of the quantity
∑

a,a
e2
a x f

⊥(1)a
1T (x) Da

1 (zh), directly pro-

portional to the T-odd distribution function f⊥1T (x), for production of π+ on a transversely
polarized proton. Only valence contributions are taken into account. Here the function

becomes sizeable for small values of zh but intermediate values of x.

corrections which can be moved back and forth between hard and soft parts,
leading to the scale dependence of the soft parts and the DGLAP equations15.

In my talk I have tried to indicate why semi-inclusive, in particular 1-
particle inclusive lepton-hadron scattering, can be important. The goal is the
study of the quark and gluon structure of hadrons, emphasizing the dependence
on transverse momenta of quarks. The reason why this prospect is promising
is the existence of a field theoretical framework that allows a clean study in-
volving well-defined hadronic matrix elements. EPIC is needed to provide the
experimental requirements for a detailed study, such as polarized targets and
detection of final state hadrons and their polarization via study of decay con-
figurations over a sufficiently large range of energies and momentum transfer.
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Figure 6: A tri-dimensional view of
∑

a,a
e2
ax ha

1(x) H
⊥(1)a
1 (zh), directly proportional to the

T-odd fragmentation function H⊥1 (zh) production of π+ on a transversely polarized proton.
Once again, only valence contributions are taken into account. As opposed to the above

case, here the function reaches its maximum for considerably larger values of zh.
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