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Abstract

Assuming that the lightest supersymmetric particle (LSP) is the lightest neutralino χ̃, we

present a detailed exploration of neutralino-stau (χ̃− τ̃ ) coannihilation channels, including

analytical expressions and numerical results. We also include χ̃ coannihilations with the ẽ

and µ̃. We evaluate the implications of coannihilations for the cosmological relic density of

the LSP, which is assumed to be stable, in the constrained minimal supersymmetric extension

of the Standard Model (CMSSM), in which the soft supersymmetry-breaking parameters are

universal at the supergravity GUT scale. We evaluate the changes due to coannihilations

in the region of the MSSM parameter space that is consistent with the cosmological upper

limit on the relic LSP density. In particular, we find that the upper limit on mχ̃ is increased

from about 200 GeV to about 600 GeV in the CMSSM, and estimate a qualitatively similar

increase for gauginos in the general MSSM.
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1 Introduction

One of the most appealing candidates for the cold dark matter in the Universe is the lightest

supersymmetric particle (LSP). This is stable if the quantum number R ≡ (−1)3B+L+2S is

conserved [1], as in the minimal supersymmetric extension of the Standard Model (MSSM)

[2], and hence a candidate relic from the Big Bang. Stringent upper limits on the relative

abundances of anomalous heavy isotopes suggest that the relic LSP should be electrically

neutral with no strong interactions, so as to ensure that it does not bind to nuclei. Weakly-

interacting candidates for the LSP, within the MSSM, include the sneutrinos ν̃i and the light-

est neutralino χ̃. LEP limits on Z0 → invisible neutral particles suggest that mν̃i
>∼ MZ0/2,

in which case direct searches for dark matter particles along with cosmological constraints,

remove any sneutrino from consideration1 as the dark matter in the MSSM [4]. Thus super-

symmetric dark matter is commonly thought to consist of χ̃ neutralino particles [5, 6].

It is a remarkable feature of χ̃ dark matter that its cosmological relic density naturally [7]

falls in the range allowed by cosmology and preferred by astrophysics in generic domains of

MSSM parameter space [6]. This is in agreement with general arguments that the mass of a

cold dark matter particle whose relic density is fixed at freeze-out from thermal equilibrium

should not be more than ∼
√

T0 ×MP ∼ 1 TeV, where T0 ∼ 2.73 K is the present cosmic

microwave background temperature and MP ∼ 1.2 × 1019 GeV. This general argument

suggests that such a dark matter particle should be detectable in experiments at the LHC [8],

which is also the conclusion reached by studies of the physics reach of the LHC in the

parameter space of the MSSM [9].

It has been appreciated for some time that the relic density at freeze-out may be sensitive

to coannihilation processes involving the LSP and heavier sparticles, /̃χ [10, 11]. The relative

importance of such coannihilation effects is controlled essentially by the ratio of coannihi-

lation and annihilation cross sections: σ
χ̃/̃χ/σχ̃χ̃, σ/̃χ/̃χ/σχ̃χ̃ and the ratio of number densities,

which is determined by a Boltzmann factor: exp(m/̃χ − mχ̃)/Tf , where Tf is the freeze-out

temperature. Since, typically, Tf = O(mχ̃/20), this latter factor might suggest that coanni-

hilation effects would normally be important only for m/̃χ−mχ̃ ∼ Tf ∼ mχ̃/20. However, σχ̃χ̃

is often suppressed by mass and/or phase-space factors in the non-relativistic limit, in which

case coannihilation processes with larger σ
χ̃/̃χ, σ/̃χ/̃χ may assume greater relative importance.

This was indeed found to be the case for coannihilations in the region of MSSM parameter

space where the LSP is mainly a neutral higgsino that is only slightly lighter than the lighter

1However, sneutrinos may be acceptable as dark matter if the MSSM is extended to include additional
lepton number violating superpotential terms [3].
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chargino and the second-lightest neutral higgsino [10, 11].

This is also what we found in a large domain of the MSSM parameter region where the

LSP is approximately a bino B̃ and the next-to-lightest supersymmetric particle (NLSP) is

the τ̃R [12]. Moreover, coannihilations with slightly heavier sparticles such as the ẽR and

µ̃R are also important. The essential reason is that the non-relativistic threshold S-wave

contributions to many of the χ̃˜̀
R and ˜̀

R
˜̀∗
R coannihilation channels are not suppressed by

fermion mass factors, so that σ
χ̃/̃χ, σ/̃χ/̃χ � σχ̃χ̃. This is in contrast to higgsino coannihilation

where σ
χ̃/̃χ, σ/̃χ/̃χ ∼ σχ̃χ̃ above the W± threshold.

In a previous paper [12], we listed many of the important coannihilation channels, re-

ported on calculations of their cross sections, and emphasized their significance for the

cosmologically-allowed region of MSSM parameter space. In particular, we highlighted the

fact that the cosmological upper limit on mχ̃ is increased from ∼ 200 GeV, as previously

estimated [13], to ∼ 600 GeV. This was demonstrated explicitly in the constrained MSSM

(CMSSM), in which all the soft supersymmetry-breaking mass parameters m0, m1/2 and Aare

universal at some input supergravity GUT scale.

In this paper, we amplify and extend this previous discussion by detailing the method

we have used to calculate coannihilation cross sections and providing simplified analytic

expressions. These and the numerical results we present serve to explain which coannihilation

channels are the most important. We also go beyond our previous discussion by discussing

the dependence of coannihilation effects on such MSSM parameters as A and tan β. We

use these results to analyze in more detail not only the impact of coannihilation effects

on the cosmological upper limit on mχ̃, but also the concomitant bounds on other MSSM

parameters [14, 15, 16], such as that on tanβ, which follows in particular from the lower

limit on the Higgs mass provided by direct searches at LEP.

The layout of this paper is as follows. In Section 2, we provide a general discussion of relic-

density calculations, which serves as a framework for our analysis of coannihilation effects.

Then, in Section 3, we review the standard relic density analysis neglecting neutralino-stau

coannihilation in the MSSM and CMSSM. In Section 4, we discuss in some detail coannihila-

tion effects in the CMSSM. Section 5 explores the implications of our coannihilation results

for the cosmological upper limit on the mass of the LSP and other MSSM parameters, and

Section 6 draws some conclusions. Useful analytic formulae resulting from our calculations

are listed in an Appendix.
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2 Basic Aspects of Relic Density Calculations

In many cases of interest, the density of relics left over from the early Universe may be de-

termined relatively simply, once the relevant annihilation cross sections have been calculated

and used to obtain an annihilation rate. As the Universe expands, a rate or Boltzmann equa-

tion is solved to determine a freeze-out density, and the relic density subsequently scales with

the inverse of the comoving volume, and hence with the entropy density. In the case of Dirac

neutrinos, it is sufficient to calculate an S-wave cross section to obtain a good approxima-

tion to the exact result [17]. In the MSSM framework discussed here, however, the LSP is a

neutralino. Since neutralinos are Majorana fermions, the S-wave annihilation cross sections

into fermion-antifermion pairs are suppressed by the masses of the final-state fermions, and

it is therefore necessary to compute the P -wave contribution to the cross section [5, 6].

The rate equation for a stable particle with density n is

dn

dt
= −3

Ṙ

R
n− 〈σvrel〉(n2 − n2

eq) , (1)

where neq is the equilibrium number density and 〈σvrel〉 is the thermally averaged product of

the annihilation cross section σ and the relative velocity vrel. In the early Universe, we can

write Ṙ/R = (8πGNρ/3)1/2, where ρ = π2g(T )T 4/30 is the energy density in radiation and

g(T ) is the number of relativistic degrees of freedom. Conservation of the entropy density

s = 2π2h(T )T 4/45 implies that Ṙ/R = −Ṫ /T − h′Ṫ /3h where h′ ≡ dh/dT . Generally, we

have h(T ) ≈ g(T ). Defining x ≡ T/m and q ≡ n/T 3h, we can write

dq

dx
= m

(
4π3

45
GNg

)−1/2 (
h + 1

3
mxh′

)
〈σvrel〉(q2 − q2

eq) . (2)

The effect of the h′ term was discussed in detail in [18], and is most important when the

mass m is between 2 and 10 GeV. Since we only consider neutralinos that are significantly

more massive, we neglect it below.

For x � 1, neutralinos are in thermal and chemical equilibrium and q = qeq ∼ constant,

since neq ∼ T 3. When x = O(1), q ' qeq ∼ e−1/x/x3/2 until freeze-out, after which q is

again approximately constant. For annihilations governed by weak-strength interactions,

freeze-out occurs when x ∼ 1/20. The final relic density is determined by integrating (1)

down to x = 0, and is given by

ρχ = mq(0)h(0)T 3
0 (3)

More generally, when coannihilations are important, there are several particle species i, with

different masses, and each with its own number density ni and equilibrium number density
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neq,i. In this case [10], the rate equation (1) still applies, provided n is interpreted as the

total number density,

n ≡
∑

i

ni , (4)

neq as the total equilibrium number density,

neq ≡
∑

i

neq,i , (5)

and the effective annihilation cross section as

〈σeffvrel〉 ≡
∑
ij

neq,ineq,j

n2
eq

〈σijvrel〉 . (6)

In eq. (2), m is now understood as the mass of the lightest particle under consideration.

For T <∼ mi, the equilibrium number density of each species is given by [18, 19]

neq,i = gi

∫
d3p

(2π)3
e−E/T

=
gim

2
i T

2π2
K2(mi/T ) ,

= gi

(
miT

2π

)3/2

exp(−mi/T )
(
1 +

15T

8mi
+ . . .

)
, (7)

where gi is a spin degeneracy factor and K2(x) is a modified Bessel function. We have made

the approximation of Boltzmann statistics for the annihilating particles, which is excellent

in practice.

We now wish to compute 〈σ12vrel〉 for the process 1 + 2 → 3 + 4 in an efficient manner.

Suppose we have determined the squared transition matrix element |T |2 (summed over final

spins and averaged over initial spins) and expressed it as a function of the Mandelstam

variables s, t, u. We now wish to express |T |2 in terms of s and the scattering angle θCM in

the center-of-mass frame. We have

t− u = −(m2
1 −m2

2)(m
2
3 −m2

4)

s
+ 4p1(s)p3(s) cos θCM , (8)

where pi(s) is the magnitude of the 3-momentum of particle i in the CM frame, given by

p1(s) = p2(s) =

[
s

4
− m2

1 + m2
2

2
+

(m2
1 −m2

2)
2

4s

]1/2

, (9)

p3(s) = p4(s) =

[
s

4
− m2

3 + m2
4

2
+

(m2
3 −m2

4)
2

4s

]1/2

. (10)
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We can then use s + t + u = m2
1 + m2

2 + m2
3 + m2

4 to write

t = 1
2
[m2

1 + m2
2 + m2

3 + m2
4 − s + (t− u)] , (11)

u = 1
2
[m2

1 + m2
2 + m2

3 + m2
4 − s− (t− u)] , (12)

Using (8)–(12), we can write |T |2 as a function of s and cos θCM.

We now define

w(s) ≡ 1

4

∫ d3p3

(2π)3E3

d3p4

(2π)3E4
(2π)4δ4(p1 + p2 − p3 − p4) |T |2

=
1

32π

p3(s)

s1/2

∫ +1

−1
d cos θCM |T |2 . (13)

In terms of w(s), the total annihilation cross section σ12(s) is given by σ12(s) = w(s)/s1/2p1(s).

Our w(s) is also the same as w(s) in [18, 4, 12], which is written as W/4 in [20].

So far all this is exact. To reproduce the usual partial wave expansion, we expand |T |2

in powers of p1(s)/m1. The odd powers vanish upon integration over θCM, while the zeroth

and second order terms correspond to the usual S and P waves, respectively. We see from

(8) that each factor of p1(s) is accompanied by a factor of cos θCM, so we have∫ +1

−1
d cos θCM |T |2 =

(
|T |2cos θCM→+1/

√
3 + |T |2cos θCM→−1/

√
3

)
+O(p4

1) . (14)

We can therefore evaluate the S and P wave contributions to w(s) simply by evaluating |T |2

at two different values of cos θCM; no integrations are required.

The proper procedure for thermal averaging has been discussed in [18, 19] for the case of

m1 = m2, and in [4, 20] for the case of m1 6= m2, with the result

〈σ12vrel〉 =
1

2m2
1m

2
2TK2(m1/T )K2(m2/T )

∫ ∞

(m1+m2)2
ds K1(

√
s/T )p1(s)w(s) . (15)

Using the asymptotic expansion Kn(x) = (2x/π)−1/2e−x[1+(4n2−1)/(8x)+ . . .] of the Bessel

functions, changing the integration variable from s to y = (s1/2 − m1 − m2)/T , and then

expanding in powers of T , we find

〈σ12vrel〉 =
w(s0)

m1m2
− 3(m1 + m2)

2m1m2

[
w(s0)

m1m2
− 2w′(s0)

]
T +O(T 2)

=
1

m1m2

[
1− 3(m1 + m2)T

2m1m2

]
w(s)|s→(m1+m2)2+3(m1+m2)T +O(T 2) ,

≡ a12 + b12 x +O(x2) , (16)

where x = T/m1 (assuming m1 < m2), and, in the first line, s0 = (m1+m2)
2. We extract a12

and b12 from the transition amplitudes listed in the Appendix by performing the substitutions
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(8)-(16) for each final state. We set x = 0 to get a12, and then compute b12 by setting x

to a numerical value small enough to render the O(x2) terms negligible. We compute aeff

and beff by performing the sum over initial states as in eq. (6). We then integrate the rate

equation (2) numerically to obtain the relic LSP abundance. To a fair approximation, the

relic density can simply be written as [6, 10]

Ωh2 ≈ 109 GeV−1

g
1/2
f Mpl(aeff + beffxf/2)xf

, (17)

where the freeze-out temperature Tf ∼ mχ̃/20, and gf is the number of relativistic degrees

of freedom at Tf . Note that this implies that the ratio of relic densities computed with and

without coannihilations is, roughly,

R ≡ Ω0

Ω
≈
(

σ̂eff

σ̂0

)(
xf

x0
f

)
, (18)

where σ̂ ≡ a+bx/2 and sub- and superscripts 0 denote quantities computed ignoring coanni-

hilations. The ratio x0
f
/xf ≈ 1+x0

f
ln(geffσeff/g1σ0), where geff ≡

∑
i gi(mi/m1)

3/2e−(mi−m1)/T .

For the case of three degenerate slepton NLSPs, geff =
∑

i gi = 8 and x0
f /xf ≈ 1.2.

The non-relativistic expansion (14) is known to be inaccurate near s-channel poles and

final-state thresholds [10, 19], where the cross section can depend strongly on the initial

LSP momenta, and where LSPs in the Boltzmann tail can access resonances and final states

forbidden to zero-momentum LSPs. In the CMSSM, well-studied examples are neutralino

annihilation on the Z and light Higgs poles, where a detailed treatment of the thermal aver-

aging [10, 19] is necessary to compute accurately the neutralino relic abundance. Examples

of final-state thresholds include t̄t and hZ.

However, none of these effects are significant for the analysis of this paper. The regions

with mχ̃ <∼ mZ/2 and mχ̃ <∼ mh/2 have now been excluded by LEP chargino searches.

Annihilation on the H and A poles can be important for tan β >∼ 40 [21], where the heavy

Higgs masses can be close to 2mχ̃ for very large ranges of m1/2 (since the heavy Higgs and

bino masses scale similarly with m1/2). However, we do not consider in this paper such large

values of tan β, where stau mixing may be important as well. In the CMSSM, the only

non-negligible threshhold occurs at mχ̃ ∼ mt, which is visible as a kink near m1/2 = 400 GeV

in Figs.1-4. However, as can be seen there, the effect of the top threshhold (and hence also

that of sub-threshhold neutralino annihiliation into tops) on the total annihilation rate is

tiny, because the contribution from the t̄t final state is suppressed by the large stop masses.

Likewise, the H and A masses are much too large in the CMSSM for heavy Higgs final

states to be of relevance, except perhaps again for the very large values of tan β > 40 (not
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considered here), where the heavy Higgs masses are smaller. Finally, other thresholds such

as hZ are suppressed by the smallness of the Higgsino component of the LSP, which is a

very pure bino in the CMSSM.

As for such effects in coannihilations (via sleptons in our case), we find that coannihila-

tions are important in the CMSSM for fairly large values of m1/2 ≥ 300 GeV. The relevant

CMSSM regions are thus above the light thresholds (e.g., ˜̀i
R
˜̀i∗
R
→ W+W−) and still well be-

low the heavy threshholds (e.g., ˜̀i
R
˜̀i∗
R
→ γH) for slepton annihilation and slepton-neutralino

coannihilation, since only staus with masses mτ̃R
∼ mχ̃ affect the neutralino relic density.

The process ˜̀i
R
˜̀i∗
R
→ tt̄ is numerically irrelevant (see Figs.1-4). Therefore the partial-wave

expansion (14) is a valid approximation in our analysis.

3 The MSSM Without Coannihilations

In the MSSM, the identity of the LSP is determined by the following tree-level parameters:

the supersymmetry-breaking gaugino mass m1/2 (assuming gaugino mass universality at

the GUT scale), the supersymmetric Higgs mixing mass µ, and the ratio of Higgs vacuum

expectation values (vev’s), tanβ. The annihilation cross section and hence the relic density

depend on the identity of the LSP. For m1/2 � µ, the LSP is mostly a higgsino state,

whilst in the opposite limit, µ � m1/2, the LSP is mostly a bino B̃. The negative results

of previous SUSY particle searches at LEP have been able to impose strong constraints on

the MSSM parameter space [14, 15, 16]. Roughly speaking, one may conclude that m1/2 and

|µ| > 80 GeV.

In the region of the MSSM parameter space where the LSP is mainly a B̃, annihilations

to fermion-antifermion pairs proceed mainly through sfermion exchange. As we discuss in

more detail below, this process is P -wave suppressed, which implies a great reduction in the

annihilation rate at the low temperatures at which the B̃’s freeze out. Over much of this

region, it is possible to obtain a cosmologically significant relic density, as we review below.

By contrast, in the region where the LSP is mainly a higgsino, annihilations to W± pairs

are dominant above threshold. This process is not P -wave suppressed, and, as a result, the

relic density is suppressed in this higgsino region, unless one considers either very heavy

higgsinos (mH̃
>∼ 500 GeV), or higgsinos with masses below the W threshold. Further, in

much of the higgsino region of parameter space, either the second-lightest neutralino or the

higgsino-like chargino is very close in mass to the LSP. In this case, it was shown [10, 11]

that coannihilations were important in determining the relic density of LSPs. Indeed, when

combined with the current LEP limits, there remains very little (if any) parameter space
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remaining where a light higgsino LSP could contribute a sufficient relic density (Ωh2 > 0.1)

to be of interest as the dominant component of astrophysical dark matter [16]. At very

low tan β (1.2-1.6), some solutions with Ωh2 > 0.1 may exist just below the W threshold

[20]. However, the LEP Higgs bounds (though dependent on quantities such as mt̃) make it

extremely difficult to achieve tan β this low, as discussed, for example, in [14, 15, 16].

It is also of interest to consider a constrained version of the MSSM (CMSSM), in which

all the soft supersymmetry-breaking scalar masses, m0, are unified at the GUT scale. In

this case, the conditions which determine electroweak symmetry breaking also fix |µ| and

the pseudoscalar MSSM Higgs mass at the weak scale. For all choices of m1/2 and m0

consistent with LEP mass bounds, the lightest neutralino is predicted to be a B̃, modulo thin

fringe strips of parameter space close to where the electroweak symmetry is not dynamically

broken2. Although B̃’s typically have an interesting relic density, this is no longer true if the

B̃ mass happens to lie near mZ/2 or mh/2, in which case there are large contributions to

the annihilation through direct S-channel resonance exchange. However, since LEP limits

on the chargino mass can be translated into bounds on m1/2, these resonant cases are now

all but excluded for small values of tanβ, as we discuss further in Section 4.

Since we are mainly interested the B̃ LSP candidate, we focus our discussion on this case,

in order to be more specific. The thermally-averaged cross section for B̃B̃ → f f̄ takes the

generic form

〈σv〉 =
g4

1

128π

1− m2
f

m2
B̃

1/2 [
(Y 2

L + Y 2
R)2

(
m2

f

∆2
f

)
+ (Y 4

L + Y 4
R)

(
4m2

B̃

∆2
f

)(
1 +O(m2

f
/m2

B̃
)
)
x

]
,

(19)

where YL(R) is the hypercharge of fL(R), ∆f ≡ m2
f̃

+ m2
B̃
−m2

f
, and we have shown only the

leading P -wave contribution proportional to x ≡ T/m
B̃
. As advertised, the S-wave piece

is proportional to the fermion mass-squared and hence is negligible, except perhaps for the

top quark, and this has the net effect of reducing the neutralino annihilation cross-section

by O(xf ). The general form of (19) leads to an upper bound on the possible mass of the

LSP within the MSSM, due to the cosmological relic density [13]. Specifically, in the case

of a bino LSP, the upper limit on mB̃ comes about as follows. The assumption that the B̃

is the LSP requires, in particular, that m
B̃

< mf̃ . In order to minimize the relic density,

we must maximize the cross section, which is done by setting mf̃ = m
B̃
. The cross section

is then approximately inversely proportional to m2
B̃
. The cosmological upper limit on ΩB̃h2

translates into a lower limit on 〈σv〉 which then, in turn, yields an upper limit to m
B̃
. In

2In fact, unification of the gaugino masses at the GUT scale by itself implies a B̃-like LSP over the bulk
of the parameter space [22].
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the MSSM, this limit is m
B̃

<∼ 300 GeV, when all sfermion masses are taken to be equal at

the weak scale, though the limit can be weakened when sfermion mixing [23] or CP-violating

phases are included [24].

In the CMSSM, the argument is somewhat similar, although m
B̃

and the sfermion masses

are now no longer entirely independent, because it is assumed in the CMSSM that there is

a common scalar mass m0 at the GUT scale. For a given value of the common gaugino

mass m1/2 at the GUT scale, the relic B̃ density falls with decreasing m0, since m2
f̃

=

m2
0 + Cfm

2
1/2 + O(m2

Z), where Cf is a positive numerical coefficient that is calculable via

the renormalization-group evolution of the sfermion masses. Therefore, the cosmological

upper limit on ΩB̃h2 translates at fixed m1/2 into an upper limit on m0. At low to moderate

tan β, this upper limit is typically not larger than m0 ∼ 170 GeV, unless one is sitting on a

direct-channel pole, i.e., when m
B̃
∼ mZ/2 or mh/2, in which case s-channel annihilation is

dominant and there is no upper limit on m0. However, we are interested in an upper bound

on m
B̃
, and hence in masses far from the light Higgs and Z poles. We recall that m

B̃
scales

with m1/2, and it transpires for m1/2 >∼ 400 GeV that m
B̃

exceeds the mass of the lightest

sfermion, which is typically the τ̃R, for m0 small enough to satisfy the cosmological bound

as traditionally computed (i.e., neglecting coannihilations) [25]. Thus, the LSP is no longer

a neutralino for such large values of m1/2, and hence an upper bound m
B̃

<∼ 200 GeV [25]

can be established. 3

In [15], it was shown that the LEP constraints on the mass of the supersymmetric Higgs

boson, when combined with the above cosmological upper limit on the LSP mass (or m1/2),

leads to an interesting bound on tanβ. The argument is as follows. At fixed tan β, due

to the radiative corrections to the Higgs mass in the MSSM [29], it is always possible to

satisfy a given experimental constraint on the lightest MSSM Higgs mass by going to large

values of either m1/2 or m0. At large m0, however, the cosmological bound forces one to low

|µ|, so that the LSP is higgsino-like and annihilations are not suppressed by large sfermion

masses. In the CMSSM, this is not possible, since µ is fixed by the condition of electroweak

symmetry breaking. Even when universality among the soft Higgs masses is not assumed, if

m0 is large, obtaining a reasonable relic density requires |µ| to be low enough to ensure that

the LSP is a higgsino. However, unless m1/2 is very large, lowering |µ| this far results in a

lower Higgs mass. At a given value of tanβ, the Higgs mass bound can be translated into

a lower bound on m1/2. If this lower bound is greater than the cosmological upper bound

on m1/2 discussed above, the corresponding value of tan β considered is excluded. Since the

3This upper bound can be strengthened by requiring that the global minimum of the effective potential
of the MSSM conserve electric charge and color [26, 27].
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lower bound on m1/2 due to the Higgs mass bound is very dependent on tan β, we can derive

a lower bound on tan β by combining the LEP and cosmological bounds [14, 15, 16].

4 Coannihilations in the CMSSM

As discussed earlier, if the masses of the next-to-lightest sparticles (NLSPs) are close to the

LSP mass: ∆M = O(xf )M , the number densities of the NLSPs have only slight Boltzmann

suppressions with respect to the LSP number density when the LSP freezes out of chemical

equilibrium with the thermal bath4. Moreover, it is well known [10] that, in such circum-

stances, coannihilations of NLSPs with the LSP, along with NLSP-NLSP annihilations, may

play an important rôle in keeping the LSPs in chemical equilibrium with the bath [10], and

the number density of neutralinos can be significantly reduced by such coannihilations. These

processes can be particularly important when the LSP annihilation rate itself is suppressed,

as is the case for neutralinos, as discussed above. The case of heavy higgsinos is a well

studied example [30]. Analogously to that case, the B̃ relic density can be reduced through

coannihilation with slightly heavier τ̃R’s or other sleptons, as we now discuss in detail.

In the CMSSM, when m
B̃

attains the upper bound discussed in the previous section, the

B̃ is degenerate in mass with the τ̃R, and quite close in mass to the ẽR and µ̃R. In [12],

we showed that the effects of coannihilations between the neutralino LSP and the τ̃R (also

including the µ̃R and ẽR) can have have a dramatic effect on the derived upper bound on

m1/2 and the mass of the LSP. Such coannihilation effects thereby also affect the derived

bound on tan β.

To compute the effective annihilation cross sections for light sparticles in the CMSSM,

we allow the index i in (4) to run over τ̃R, τ̃ ∗
R
, ẽR, ẽ∗

R
, µ̃R and µ̃∗

R
, as well as χ̃. Many of the

resulting 49 σij in (6) are related, so we can write

σeff = σχχrχrχ + 4 σχτrχrτ + 8 σχerχre + 2 (σττ + σττ∗)rτrτ + 8 (στe + στe∗)rτre +

4 (σee + σee∗)rere + 4 (σeµ + σeµ∗)rere, (20)

where ri ≡ neq,i/neq, we have taken the ẽR and µ̃R to be degenerate in mass, and we have

neglected the electron and muon masses. We list in Table 1 the sets of initial and final

states for which we compute the annihilation cross sections. We list in the Appendix the

transition amplitudes for the scattering processes, which are sufficient to compute the a

4We recall that 2-2 scatterings with particles in the thermal bath keep the NLSPs in chemical equilibrium
with each other and with the LSP, down to temperatures well below the temperature at which the comoving
LSP number density freezes out.

10



and b coefficients, following the discussion in Section 2. We have verified that the τ mass

is numerically irrelevant in our analysis, and the formulae we present are simplified to the

mτ → 0 limit, although our numerical results do include a non-zero τ mass, including extra

diagrams which are present only when mτ 6= 0, but which are not listed in the Appendix.

We ignore the effect of τ̃ mixing on the cross-sections, which may be important at large

tan β. The final states involving heavy Higgses are kinematically unavailable in the regions

of CMSSM parameter space relevant to our analysis. However, for completeness, their tran-

sition amplitudes are also tabulated in the Appendix. As χ̃τ̃ coannihilation is important at

large m1/2, where the B̃ purity is very high, we compute the three χ̃τ̃ amplitudes in the B̃

limit, where t-channel neutralino exchange is suppressed. We also have not included three

body final state processes, such as s-channel Higgs exchange to a Higgs + gauge boson pair,

via a two Higgs/two gauge boson vertex. In addition to being phase-space supressed, the

magnitude of these contrubtions to the total cross section is down by a factor of α relative

to the two body final states we have included.

Table 1: Initial and Final States for Coannihilation: {i, j = τ, e, µ}

Initial State Final States

˜̀i
R
˜̀i∗
R γγ, ZZ , γZ, W+W−, Zh , γh , h h, f f̄ ,

ZH, γH, ZA, W+H−, hH, hA, HH, HA, AA, H+H−˜̀i
R
˜̀j
R ` i` j˜̀i

R
˜̀j∗
R , i 6= j ` i ¯̀j˜̀i

R χ̃ ` iγ, ` iZ, ` ih

We display in Fig. 1 numerical values of the contributions to σ̂ ≡ a + bx/2 (see (17)),

for the representative values m0 = 120 GeV, A0 = 0, x = 1/23, tanβ = 3, and µ > 0, as

a function of m1/2. For comparison, the total cross section for χ̃χ̃ annihilation to all final

states is shown as a thick dotted line. Due to the P -wave suppression of the cross section

for χ̃χ̃ annihilation to fermion pairs, the χ̃χ̃ cross section tends to be an order of magnitude

smaller than the others, which is why coannihilation effects are so important. In practice,

we find that the dominant contributions to σ̂eff generally come from annihilations of ˜̀i
R
˜̀i∗
R

to gauge bosons, ˜̀i
R
˜̀j
R to lepton pairs, and ˜̀i

R χ̃ to `i + gauge boson. Due to the momentum

dependence of the τ̃ τ̃ ∗Z and τ̃ τ̃ ∗γ couplings, the cross sections for τ̃ τ̃ ∗ annihilation into

Zh, γh and ff̄ are also P -wave suppressed. The Zh and γh cross sections are thus off the

11



Figure 1: The separate contributions to the cross sections σ̂ ≡ a+ 1
2
bx for x = T/mχ̃ = 1/23

and m0 = 120 GeV, as functions of m1/2: a)τ̃ τ̃ ∗, b)τ̃ χ̃, and c) other interactions. For
comparison, the thick dotted line is the χ̃χ̃ cross section.
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Figure 2: As in Fig. 1, but for the choice m0 = 200 GeV.
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Figure 3: As in Fig. 1, but for the choice tan β = 10.
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Figure 4: As in Fig. 1, but for the choice tan β = 10, and A0 = −3m1/2.
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bottom of the figure, and ff̄ is significant only by dint of the large number of final states.

The top threshold is visible as a small bump on the ff̄ line between m1/2 of 300 and 400 GeV.

The curve for τ̃ τ̃ ∗ → W + W− in the first panel is obscured by the thick dotted line. As

can be seen by comparing Figs. 1 and 2, there is a dependence of the cross-sections on

m0, and the variation is largest at low m1/2, where the slepton masses are most sensitive to

m0. The sharp rise near m1/2 = 200GeV in Fig. 2a is due to heavy Higgs poles. Figures for

tan β = 10 are very similar to those for tan β = 3, as can be seen in Fig 3. There is hardly

any dependence on A0 for tanβ = 3, whilst, for tan β = 10, a mild dependence can be seen

in Fig 4, where we have taken A0 = −3m1/2.

The contributions of the various annihilation channels to σeff are weighted by the rel-

ative abundances of the τ̃R, ẽR, µ̃R and χ̃. For sleptons degenerate with the χ̃, slepton

annihilation and slepton-neutralino coannihilation clearly dominate the contributions to

σeff in (6), and the final neutralino relic density is greatly reduced. As the sleptons be-

come heavier than the neutralinos, their number densities are exponentially suppressed,

and when the mass differences are no longer small, the slepton contributions to σeff are

negligible. Fig. 5 shows the sizes of the separate contributions to σ̂eff from neutralino an-

nihilation, neutralino-slepton coannihilation and slepton-slepton annihilation and coannihi-

lation, as functions of the mass difference between the τ̃ and χ̃. In Fig. 5a, we have fixed

m1/2 = 500 GeV, tanβ = 3, A0 = 0, µ > 0, and computed σ̂eff for varying m0, which amounts

to varying the mass difference ∆M . In this case, all the sleptons are closely degenerate with

each other and hence contribute equally to σ̂eff . The thin solid line is the σ̂ which one would

compute if one ignored the slepton states, i.e., aχχ + bχχx/2. Note that, in the case of close

degeneracy between the χ̃ and τ̃R, it is in fact slepton annihilation by itself which dominates

σ̂eff . Since this contribution is suppressed by two powers of neq,τ̃R , it drops rapidly with

∆M , and neutralino-slepton coannihilation takes over at ∆M >∼ 0.07. This contribution in

turn falls with one power of neq,τ̃R , and neutralino annihilation re-emerges as the dominant

reaction for ∆M >∼ 0.17. When ∆M >∼ 0.25, the two solid lines and dotted line all merge,

and coannihilation can be neglected. Figures for other m1/2 and tanβ are shown in Fig. 5b-d:

the underlying physics is similar, and they are similar in shape to Fig. 5a, but with differ-

ent normalizations. In Fig. 5b, we take tan β = 10, in Fig. 5c,d we take tan β = 3, with

m1/2 = 300 and 1000 respectively. The values of mχ shown on the figures is determined by

the choice of m1/2.
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Figure 5: The separate contributions to the cross sections σ̂eff for x = T/mχ̃ = 1/23, as
functions of ∆M ≡ (mτ̃R

−mχ̃)/mχ̃, with a) (m1/2, tanβ) = (500 GeV, 3), b) =(500 GeV, 10),
c) =(300 GeV, 3), and d) =(1000 GeV, 3).
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5 Implications of Coannihilations for the Upper Limit

on the LSP Mass

We now explore the consequences of coannihilation for cosmological bounds in the CMSSM.

In Fig. 6, we display the cosmologically and experimentally permitted regions of the (m1/2, m0)

plane. We have chosen the representative points tanβ = 3 and 10, and present results for

both µ < 0 and µ > 0. The light shaded regions correspond to 0.1 < Ωχ̃ h2 < 0.3. The dark

shaded regions have mτ̃R
< mχ̃ and are excluded by the very stringent bounds on charged

dark matter[6] 5. The light dashed contours indicate the corresponding regions in Ωχ̃ h2 if

one ignores the effect of coannihilations. Neglecting coannihilations, one would find an upper

bound of ∼ 450 GeV on m1/2, corresponding to an upper bound of roughly 200 GeV on mB̃.

The effect of coannihilations is to create an allowed band about 25-50 GeV wide in m0 for

m1/2 <∼ 1400 GeV, which tracks above the mτ̃R
= mχ̃ contour. Along the line mτ̃R

= mχ̃, we

find R ≈ 10, as shown numerically in Fig. 5 and (18). As m0 increases, ∆M increases and

the slepton contribution to σ̂eff falls, as in Fig. 5, and the relic density rises abruptly.

We also display bounds from LEP particle searches [31] in Fig. 6. The chargino mass

bound from LEP essentially saturates the kinematic limit of ∼ 95 GeV, modulo a small

gap which occurs when the chargino is just slightly heavier than the sneutrino [31]. The

chargino 95 GeV isomass contour is displayed as a dark dashed contour, and it cuts off most

of the annihilation pole zone, which appears as a chimney in the cosmologically preferred

regions at low m1/2 for the values of tanβ considered. Representations of slepton limits from

searches [31] for acoplanar lepton pairs at LEP 183 appear as light dotted contours. The

most severe experimental constraint at low tan β comes from LEP Higgs searches. At low

tan β, the tree level light Higgs mass mh ≈ mZ | cos 2β| lies well below the experimental bound

>∼ 95 GeV. Radiative corrections to mh are known to be large [29] and increase logarithmically

with the stop masses, and hence with m1/2. Thus, for sufficiently large m1/2, the Higgs bound

may be satisfied. However, if the minimum m1/2 exceeds its cosmological upper bound for

a given tanβ, this value of tan β is excluded. In the absence of coannihilations, the lower

bound on tanβ was computed [16] to be 2.0 for µ > 0 and 1.65 for µ < 0, using mass

limits from LEP 183. Higgs isomass contours of 95,100,105, and 110 GeV are displayed as

dot-dashed lines in Fig. 6.

When we include coannihilations, the cosmological upper bound on m1/2 weakens con-

5To be more precise: here and subsequently, we have included consistently the effects of τ̃R− τ̃L mixing on
the mass of the lighter τ̃ (which is mainly τ̃R), both in delineating the cosmological exclusion domain and in
the kinematics of coannihilation. However, we have not included mixing angle effects in the (co)annihilation
amplitudes, since these are small for the values of tanβ studied in this paper.
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Figure 6: The light-shaded area is the cosmologically preferred region with 0.1 ≤ Ωχ̃ h2 ≤ 0.3.
The light dashed lines show the location of the cosmologically preferred region if one ignores
coannihilations with the light sleptons. In the dark shaded regions in the bottom right of each
panel, the LSP is the τ̃R, leading to an unacceptable abundance of charged dark matter. Also
shown are the isomass contours mχ± = 95 GeV and mh = 95, 100, 105, 110 GeV, as well as
an indication of the slepton bound from LEP [31]. In the area below the solid contour, the
scalar potential contains charge and/or colour breaking minima.
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siderably, as we have already mentioned. In Fig. 7, we extend the m1/2 coverage to larger

scales, to show the cross-over point between the regions with Ωχ̃ h2 < 0.3 and mτ̃R
< mχ̃.

The two constraints together require m1/2 <∼ 1450, corresponding to an upper bound on the

neutralino mass of mχ̃
<∼ 600 GeV. We take 93 GeV as our experimental lower limit on the

Higgs mass, to allow for a 2 GeV uncertainty in the extraction of the radiative corrections

to the Higgs mass [29]. The combined lower bound on tan β from the Higgs search and

cosmology, including the recent LEP 189 limits, indicates that tanβ >∼ 2.2 for µ < 0 and

>∼ 1.8 for µ > 0 6.

Figs. 6 and 7 were generated for the particular choice A0 = −m1/2, for reasons described

below. Since the stau mass depends weakly on A0, particularly at larger values of tan β,

the position of the mτ̃R
= mχ̃ contour shifts somewhat with A0. In Fig. 8, we show figures

corresponding to Figs. 6a and 6c for A0 = −3m1/2. For tan β = 3, the width of the cosmolog-

ically allowed band is the same as in Fig. 6a, but the band becomes smaller for tanβ = 10.

The effect for positive A0 is qualitatively similar. Likewise, varying A0 has a tiny effect on

the cosmological upper bound on m1/2 for tan β = 3, but can produce a small (∼ 100 GeV)

reduction in the upper bound for tan β = 10.

Lastly, we show as a dark solid contour the constraint coming from the requirement that

the global minimum of the scalar potential not break charge and colour (CCB) [26, 28, 27].

The areas below the light solid line in Figs. 6 and 7 contain charge and/or colour breaking

minima, while the regions above the lines are free of such minima7, modulo a thin (∼ 10 GeV

wide) strip on top of the solid contour, where local (but not global) CCB minima exist [27].

We have chosen A0 = −m1/2, where the CCB bounds are weakest [26]. The bounds are not

strongly dependent on the sign of µ and are strongest for low tanβ, where the top Yukawa

coupling is largest. In the absence of coannihilations, it is clear from Fig. 6 that a fair

fraction of the cosmologically allowed regions contain charge and colour breaking minima.

In the presence of coannihilations, the cosmologically allowed region is extended, and as the

CCB eventually falls with m1/2, CCB free regions with small relic densities may occur in the

proboscis region as well, particularly at the larger values of tan β considered. In Fig. 7a,

we see that, for tan β = 2, the entire cosmologically allowed region of parameter space also

contains CCB minima, even for the conservative choice A0 = −m1/2. For larger tan β, the

CCB contour bends over and, for A0 = −m1/2, exposes a small strip of the shaded region

above the mτ̃R
= mχ̃ line. For comparison, we also show the corresponding CCB contours for

6The LEP bounds on the CMSSM parameter space will be considered in more detail in [32], as well as a
comparison with the supersymmetric reach of the Fermilab Tevatron collider.

7The difference between the CCB curves of Fig. 6 and [27] is due to our choice here of mt = 175 GeV,
rather than 170 GeV.
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Figure 7: The same as Fig. 6, for µ < 0, but extended to larger m1/2. The dashed contours
in panels b) and c) correspond to the solid CCB line for A0 = 0,−2m1/2, and the dotted
contour for mt = 170 GeV.
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Figure 8: The same as Fig. 6a and Fig. 6c, for A0 = −3m1/2.

A0 = −2m1/2 and 0. For these choices of A0, there is again no region which satisfies both the

CCB and cosmological constraints. The CCB bounds are also sensitive to the top mass. In

Figs. 6 and 7 we have taken mt = 175 GeV; taking mt = 170 GeV produces the dotted CCB

curves in Fig.7a-c, which expose a much larger piece of the cosmologically allowed band. We

recall, however, that a low value of mt also reduces the radiative corrections to the Higgs

mass, and therefore makes the Higgs constraint more severe. However, this does not cause

a conflict with the cosmological constraints, even for tanβ as low as 3.

There is one caveat which one must bear in mind when interpreting the CCB bounds:

the tunneling rate from the charge and colour conserving minimum to the CCB minimum

is very slow, to such an extent that the conserving minimum is essentially stable over the

current lifetime of the universe. Therefore the presence of CCB minima may present more of

a cosmological problem of how to populate the physical minimum in preference to the CCB

minimum than a constraint on the particle physics [33].

We expect qualitatively similar effects on the corresponding bounds in the MSSM, that is,

when we drop the condition of universality of scalar mass at the GUT scale. Though there is

an upper limit of O(a few TeV) for Higgsinos in the MSSM, the limits due to coannihilation

that we have been concerned with apply only to the gaugino limit. In this case, one must

in general take all the squarks and sleptons degenerate with the neutralino and compute
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the annihilation and coannihilation cross sections for all possible combinations of sfermions.

However, if the rates are the same as for the sleptons, the effect is about a 10-15% decrease

in (Ωχ̃ h2)0/R, leading to a similar bound on mχ̃ as in the CMSSM. In practice, of course

the result will depend on which state is the NLSP.

6 Conclusions and Open Issues

We have documented in this paper the importance of coannihilation effects on the relic den-

sity of B̃ dark matter. We have presented a general formalism for including their effects in

relic density calculations, and have provided (in the Appendix) analytic approximate formu-

lae for many coannihilation processes involving τ̃R, ẽR and µ̃R sparticles. We have given in

the Figures numerical examples that exhibit their relevance for various values of the CMSSM

parameters m1/2, m0, A and tanβ. We have explained why coannihilation effects are so im-

portant, principally because of the P -wave suppression of non-relativistic χ̃χ̃ annihilation.

One immediate physical consequence of these coannihilation effects is to relax signifi-

cantly the previous cosmological upper bound [13] on the LSP mass, from >∼ 200 GeV to

>∼ 600 GeV. This relaxed upper limit could have significant implications for strategies to

search for supersymmetric cold dark matter, which have yet to be explored systematically.

Coannihilations also allow the LSP mass to approach the boundary of the CMSSM param-

eter space within which LHC searches for supersymmetry are expected to be sensitive [9].

At first glance, it seems likely that the LHC should still be able to cover all of the CMSSM

parameter space that is consistent with supersymmetric cold dark matter, but this point

merits further consideration.

Another point to be studied in more detail is the interplay between coannihilation effects

and LEP lower limits on sparticle and higgs masses. Previously, limits on mχ̃ and tanβ have

been derived from a combination of previous LEP data sets and cosmology [14, 15, 16], but

neglecting coannihilation effects. These limits should now be revisited in the light of more

recent LEP data [31], as well as coannihilations. We have commented on these questions in

this paper, but a complete study lies beyond the scope of the present analysis.

We hope that this paper has not only documented the importance of coannihilation

effects, but also provided the reader with the tools needed to join in the exploration of their

implications for the interesting open issues raised in the previous paragraph.
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Appendix

This section contains simplified formulae for the τ̃ τ̃ ∗, τ̃χ, τ̃ τ̃ , τ̃ ˜̀ and τ̃ ˜̀∗ annihilation ampli-
tudes, in the mτ̃ → 0 limit. Expressions for the ˜̀̀̃ ∗, ˜̀̀̃ and ˜̀χ amplitudes can be obtained
by taking τ → ` in the τ̃ τ̃∗, τ̃χ, τ̃ τ̃ formulae below, and µ̃ẽ and ẽµ̃∗ by taking τ → e, ` → µ
in the τ̃ ˜̀ and τ̃ ˜̀∗ expressions. The a and b coefficients can be simply numerically extracted
from the amplitudes, as described in section 2 of the text.

τ̃ τ̃ ∗ −→ W+W−

I. s-channel H annihilation
II. s-channel h annihilation
V. s-channel Z annihilation
VI. s-channel γ annihilation

f1 = (−g2mW cos(β − α))(g2mZ sin2θW cos(α + β)/ cos θW )

f2 = (−g2mW sin(β − α))(−g2mZ sin2θW sin(α + β)/ cos θW )

f5 = (−g2 sin2θW / cos θW )(g2 cos θW )

f6 = e2

TI×TI = (12m4
W − 4m2

Ws + s2)/(4m4
W (m2

H − s)2)

TII×TII = (12m4
W − 4m2

Ws + s2)/(4m4
W (m2

h − s)2)

TV×TV = (128m2
τ̃R

m4
W m4

Zs− 32m2
τ̃R

m2
W m4

Zs2 − 32m4
W m4

Zs2 + 8m2
W m4

Zs3 + 12m4
W m4

Zt2 −
4m2

Wm4
Zst2 + m4

Zs2t2 − 24m4
Wm4

Ztu + 8m2
W m4

Zstu− 2m4
Zs2tu + 12m4

W m4
Zu2 −

4m2
Wm4

Zsu2 + m4
Zs2u2)/(4m4

Wm4
Z(m2

Z − s)2)

TVI×TVI = (128m2
τ̃R

m4
W s− 32m2

τ̃R
m2

W s2 − 32m4
W s2 + 8m2

W s3 + 12m4
W t2 − 4m2

W st2 +

s2t2 − 24m4
W tu + 8m2

Wstu− 2s2tu + 12m4
Wu2 − 4m2

W su2 + s2u2)/(4m4
Ws2)

TI×TII = (12m4
W − 4m2

Ws + s2)/(4m4
W (m2

H − s)(m2
h − s))

TI×TV = (−12m4
Wm2

Zt + m2
Zs2t + 12m4

Wm2
Zu−m2

Zs2u)/(4m4
Wm2

Z(m2
H − s)(m2

Z − s))

TII×TV = (−12m4
Wm2

Zt + m2
Zs2t + 12m4

Wm2
Zu−m2

Zs2u)/(4m4
Wm2

Z(m2
h − s)(m2

Z − s))

TI×TVI = −(−12m4
W t + s2t + 12m4

W u− s2u)/(4m4
W (m2

H − s)s)

TII×TVI = −(−12m4
W t + s2t + 12m4

W u− s2u)/(4m4
W (m2

h − s)s)

TV×TVI = (−128m2
τ̃R

m4
W m2

Zs + 32m2
τ̃R

m2
W m2

Zs2 + 32m4
W m2

Zs2 − 8m2
W m2

Zs3 −
12m4

Wm2
Zt2 + 4m2

Wm2
Zst2 −m2

Zs2t2 + 24m4
Wm2

Ztu− 8m2
W m2

Zstu +

2m2
Zs2tu− 12m4

W m2
Zu2 + 4m2

Wm2
Zsu2 −m2

Zs2u2)/(4m4
W m2

Z(m2
Z − s)s)

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
5TV×TV + f 2

6TVI×TVI + 2f1f2TI×TII + 2f1f5TI×TV +

2f1f6TI×TVI + 2f2f5TII×TV + 2f2f6TII×TVI + 2f5f6TV×TVI (A1)
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τ̃ τ̃ ∗ −→ ZZ

I. s-channel H annihilation
II. s-channel h annihilation
III. t-channel τ̃ exchange
IV. u-channel τ̃ exchange
V. point interaction

f1 = (−g2mZ cos(β − α)/ cos θW )(g2mZ sin2θW cos(α + β)/ cos θW )

f2 = (−g2mZ sin(β − α)/ cos θW )(−g2mZ sin2θW sin(α + β)/ cos θW )

f3 = (−g2 sin2θW / cos θW )2

f4 = (−g2 sin2θW / cos θW )2

f5 = −2g2
2 sin4θW / cos2θW

TI×TI = (12m4
Z − 4m2

Zs + s2)/(4m4
Z(m2

H − s)2)

TII×TII = (12m4
Z − 4m2

Zs + s2)/(4m4
Z(m2

h − s)2)

TIII×TIII = (m8
τ̃R
− 4m6

τ̃R
m2

Z + 6m4
τ̃R

m4
Z − 4m2

τ̃R
m6

Z + m8
Z − 4m6

τ̃R
t + 4m4

τ̃R
m2

Zt +

4m2
τ̃R

m4
Zt− 4m6

Zt + 6m4
τ̃R

t2 + 4m2
τ̃R

m2
Zt2 + 6m4

Zt2 − 4m2
τ̃R

t3 − 4m2
Zt3 + t4)/

(m4
Z(m2

τ̃R
− t)2)

TIV×TIV = (m8
τ̃R
− 4m6

τ̃R
m2

Z + 6m4
τ̃R

m4
Z − 4m2

τ̃R
m6

Z + m8
Z − 4m6

τ̃R
u + 4m4

τ̃R
m2

Zu +

4m2
τ̃R

m4
Zu− 4m6

Zu + 6m4
τ̃R

u2 + 4m2
τ̃R

m2
Zu2 + 6m4

Zu2 − 4m2
τ̃R

u3 − 4m2
Zu3 + u4)/

(m4
Z(m2

τ̃R
− u)2)

TV×TV = (12m4
Z − 4m2

Zs + s2)/(4m4
Z)

TI×TII = (12m4
Z − 4m2

Zs + s2)/(4m4
Z(m2

H − s)(m2
h − s))

TI×TIII = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 8m2

τ̃R
m2

Zt +

8m4
Zt− 2m2

τ̃R
st− 2m2

Zst− 2m2
Zt2 + st2 + 4m2

τ̃R
m2

Zu + 4m4
Zu− 4m2

Ztu)/

(2m4
Z(m2

H − s)(m2
τ̃R
− t))

TI×TIV = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 4m2

τ̃R
m2

Zt +

4m4
Zt + 8m2

τ̃R
m2

Zu + 8m4
Zu− 2m2

τ̃R
su− 2m2

Zsu− 4m2
Ztu− 2m2

Zu2 + su2)/

(2m4
Z(m2

H − s)(m2
τ̃R
− u))

TI×TV = (12m4
Z − 4m2

Zs + s2)/(4m4
Z(m2

H − s))

TII×TIII = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 8m2

τ̃R
m2

Zt +

8m4
Zt− 2m2

τ̃R
st− 2m2

Zst− 2m2
Zt2 + st2 + 4m2

τ̃R
m2

Zu + 4m4
Zu− 4m2

Ztu)/

(2m4
Z(m2

h − s)(m2
τ̃R
− t))

TII×TIV = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 4m2

τ̃R
m2

Zt +

4m4
Zt + 8m2

τ̃R
m2

Zu + 8m4
Zu− 2m2

τ̃R
su− 2m2

Zsu− 4m2
Ztu− 2m2

Zu2 + su2)/

(2m4
Z(m2

h − s)(m2
τ̃R
− u))

TII×TV = (12m4
Z − 4m2

Zs + s2)/(4m4
Z(m2

h − s))
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TIII×TIV = (m8
τ̃R

+ 12m6
τ̃R

m2
Z + 38m4

τ̃R
m4

Z + 12m2
τ̃R

m6
Z + m8

Z − 4m4
τ̃R

m2
Zs− 24m2

τ̃R
m4

Zs−
4m6

Zs + 4m4
Zs2 − 2m6

τ̃R
t− 14m4

τ̃R
m2

Zt− 14m2
τ̃R

m4
Zt− 2m6

Zt + 4m2
τ̃R

m2
Zst +

4m4
Zst + m4

τ̃R
t2 + 2m2

τ̃R
m2

Zt2 + m4
Zt2 − 2m6

τ̃R
u− 14m4

τ̃R
m2

Zu− 14m2
τ̃R

m4
Zu−

2m6
Zu + 4m2

τ̃R
m2

Zsu + 4m4
Zsu + 4m4

τ̃R
tu + 16m2

τ̃R
m2

Ztu + 4m4
Ztu− 4m2

Zstu−
2m2

τ̃R
t2u− 2m2

Zt2u + m4
τ̃R

u2 + 2m2
τ̃R

m2
Zu2 + m4

Zu2 − 2m2
τ̃R

tu2 − 2m2
Ztu2 +

t2u2)/(m4
Z(m2

τ̃R
− t)(m2

τ̃R
− u))

TIII×TV = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 8m2

τ̃R
m2

Zt +

8m4
Zt− 2m2

τ̃R
st− 2m2

Zst− 2m2
Zt2 + st2 + 4m2

τ̃R
m2

Zu + 4m4
Zu− 4m2

Ztu)/

(2m4
Z(m2

τ̃R
− t))

TIV×TV = (−6m4
τ̃R

m2
Z − 20m2

τ̃R
m4

Z − 6m6
Z + m4

τ̃R
s + 2m2

τ̃R
m2

Zs + 5m4
Zs + 4m2

τ̃R
m2

Zt +

4m4
Zt + 8m2

τ̃R
m2

Zu + 8m4
Zu− 2m2

τ̃R
su− 2m2

Zsu− 4m2
Ztu− 2m2

Zu2 + su2)/

(2m4
Z(m2

τ̃R
− u))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + f 2

4TIV×TIV + f 2
5TV×TV + 2f1f2TI×TII +

2f1f3TI×TIII + 2f1f4TI×TIV + 2f1f5TI×TV + 2f2f3TII×TIII + 2f2f4TII×TIV +

2f2f5TII×TV + 2f3f4TIII×TIV + 2f3f5TIII×TV + 2f4f5TIV×TV (A2)

τ̃ τ̃ ∗ −→ Zγ

I. t-channel τ̃ exchange
II. u-channel τ̃ exchange
III. point interaction

f1 = e(−g2 sin2θW / cos θW )

f2 = e(−g2 sin2θW / cos θW )

f3 = 2eg2 sin2θW / cos θW

TI×TI = (−2m6
τ̃R

+ 4m4
τ̃R

m2
Z − 2m2

τ̃R
m4

Z + 2m4
τ̃R

t + 8m2
τ̃R

m2
Zt− 2m4

Zt + 2m2
τ̃R

t2 +

4m2
Zt2 − 2t3)/(m2

Z(m2
τ̃R
− t)2)

TII×TII = (−2m6
τ̃R

+ 4m4
τ̃R

m2
Z − 2m2

τ̃R
m4

Z + 2m4
τ̃R

u− 8m2
τ̃R

m2
Zu− 2m4

Zu + 2m2
τ̃R

u2 +

4m2
Zu2 − 2u3)/(m2

Z(m2
τ̃R
− u)2)

TIII×TIII = 3

TI×TII = (6m6
τ̃R

+ 36m4
τ̃R

m2
Z + 6m2

τ̃R
m4

Z − 2m4
τ̃R

s− 24m2
τ̃R

m2
Zs− 2m4

Zs + 4m2
Zs2 −

7m4
τ̃R

t− 12m2
τ̃R

m2
Zt−m4

Zt + 2m2
τ̃R

st + 4m2
Zst + m2

τ̃R
t2 + m2

Zt2 − 7m4
τ̃R

u−
12m2

τ̃R
m2

Zu−m4
Zu + 2m2

τ̃R
su + 4m2

Zsu + 8m2
τ̃R

tu + 2m2
Ztu− 2stu− t2u

+m2
τ̃R

u2 + m2
Zu2 − tu2)/(m2

Z(m2
τ̃R
− t)(m2

τ̃R
− u))

TI×TIII = (−2m4
τ̃R
− 15m2

τ̃R
m2

Z − 3m4
Z + m2

τ̃R
s + 5m2

Zs + 2m2
τ̃R

t + 3m2
Zt− st +

2m2
τ̃R

u + 4m2
Zu− 2tu)/(2m2

Z(m2
τ̃R
− t))
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TII×TIII = (−2m4
τ̃R
− 15m2

τ̃R
m2

Z − 3m4
Z + m2

τ̃R
s + 5m2

Zs + 2m2
τ̃R

t + 4m2
Zt + 2m2

τ̃R
u +

3m2
Zu− su− 2tu)/(2m2

Z(m2
τ̃R
− u))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + 2f1f2TI×TII + 2f1f3TI×TIII +

2f2f3TII×TIII (A3)

τ̃ τ̃ ∗ −→ γγ

I. t-channel τ̃ exchange
II. u-channel τ̃ exchange
III. point interaction

f1 = e2

f2 = e2

f3 = −2e2

TI×TI = (4m4
τ̃R

+ 8m2
τ̃R

t + 4t2)/(m2
τ̃R
− t)2

TII×TII = (4m4
τ̃R

+ 8m2
τ̃R

u + 4u2)/(m2
τ̃R
− u)2

TIII×TIII = 4

TI×TII = (36m4
τ̃R
− 24m2

τ̃R
s + 4s2 − 12m2

τ̃R
t + 4st + t2 − 12m2

τ̃R
u + 4su + 2tu + u2)/

((m2
τ̃R
− t)(m2

τ̃R
− u))

TI×TIII = (−12m2
τ̃R

+ 5s + 4u)/(2(m2
τ̃R
− t))

TII×TIII = (−12m2
τ̃R

+ 5s + 4t)/(2(m2
τ̃R
− u))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + 2f1f2TI×TII + 2f1f3TI×TIII +

2f2f3TII×TIII (A4)

τ̃ τ̃ ∗ −→ Zh[H]

I. t-channel τ̃ exchange
II. u-channel τ̃ exchange
III. s-channel Z annihilation

f1 = (−g2 sin2θW / cos θW )(−g2mZ sin2θW sin[− cos](α + β)/ cos θW )

f2 = −(−g2 sin2θW / cos θW )(−g2mZ sin2θW sin[− cos](α + β)/ cos θW )

f3 = (−g2 sin2θW / cos θW )(−g2mZ sin[cos](β − α)/ cos θW )

TI×TI = (m4
τ̃R

+ (m2
Z − t)2 − 2m2

τ̃R
(m2

Z + t))/(m2
Z(m2

τ̃R
− t)2)

TII×TII = (m4
τ̃R

+ (m2
Z − u)2 − 2m2

τ̃R
(m2

Z + u))/(m2
Z(m2

τ̃R
− u)2)

TI×TII = (m4
τ̃R

+ m4
Z + m2

τ̃R
(6m2

Z − t− u) + tu−m2
Z(2s + t + u))/

(m2
Z(m2

τ̃R
− t)(m2

τ̃R
− u))

TI×TIII = (t(t− u) + m2
τ̃R

(−8m2
Z − t + u) + m2

Z(2s− t + u))/
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(2m2
Z(m2

Z − s)(m2
τ̃R
− t))

TII×TIII = ((t− u)u + m2
τ̃R

(8m2
Z − t + u) + m2

Z(−2s− t + u))/

(2m2
Z(m2

Z − s)(m2
τ̃R
− u))

TIII×TIII = (−16m2
τ̃R

m2
Z + 4m2

Zs + (t− u)2)/(4m2
Z(m2

Z − s)2)

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + 2f1f2TI×TII + 2f1f3TI×TIII +

2f2f3TII×TIII (A5)

τ̃ τ̃ ∗ −→ γh[H]

I. t-channel τ̃ exchange
II. u-channel τ̃ exchange

f1 = (e)(−g2mZ sin2θW sin[− cos](α + β)/ cos θW )

f2 = −(e)(−g2mZ sin2θW sin[− cos](α + β)/ cos θW )

TI×TI = −2(m2
τ̃R

+ t)/(m2
τ̃R
− t)2

TI×TII = −(−6m2
τ̃R

+ 2s + t + u)/((m2
τ̃R
− t)(m2

τ̃R
− u))

TII×TII = −2(m2
τ̃R

+ u)/(m2
τ̃R
− u)2

|T |2 = f 2
1TI×TI + f 2

2TII×TII + 2f1f2TI×TII (A6)

τ̃ τ̃ ∗ −→ ZA

I. s-channel h exchange
II. s-channel H exchange

f1 = (g2 cos(α− β)/(2 cos θW )(−g2mZ sin2θW sin(α + β)/ cos θW )

f2 = (g2 sin(α− β)/(2 cos θW )(g2mZ sin2θW cos(α + β)/ cos θW )

TI×TI = (m4
A + (m2

Z − s)2 − 2m2
A(m2

Z + s))/(m2
Z(m2

h − s)2)

TII×TII = (m4
A + (m2

Z − s)2 − 2m2
A(m2

Z + s))/(m2
Z(m2

H − s)2)

TI×TII = (m4
A + (m2

Z − s)2 − 2m2
A(m2

Z + s)/(m2
Z(m2

H − s)(m2
h − s)))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + 2f1f2TI×TII (A7)

τ̃ τ̃ ∗ −→ τ τ̄

III. s-channel Z annihilation
IV. s-channel γ annihilation
V. t-channel χ exchange

f3c = (−g2 sin2θW / cos θW )(g2(1− 4 sin2θW )/(4 cos2θW ))
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f3d = (−g2 sin2θW / cos θW )(−g2/(4 cos2θW ))

f4c = e2

K = g1Ni1/
√

2

K ′ = g1Nj1/
√

2

TIII×TIII = 2(−4f 2
3cm

2
τ̃R

s− 4f 2
3dm

2
τ̃R

sf 2
3cs

2 + f 2
3ds

2 − f 2
3ct

2 − f 2
3dt

2 + 2f 2
3ctu + 2f 2

3dtu−
f 2

3cu
2 − f 2

3du
2)/(m2

Z − s)2

TIII×TIV = 2f3cf4c(4m
2
τ̃R

s− s2 + t2 − 2tu + u2)/((m2
Z − s)s)

TIV×TIV = 2f 2
4c(−4m2

τ̃R
s + s2 − t2 + 2tu− u2)/s2

TIII×TV = −2(f3c + f3d)K
2(4m2

τ̃R
s− s2 + (t− u)2)/((m2

Z − s)(mχ̃
2
i − t))

TIV×TV = 2(f4c)K
2(4m2

τ̃R
s− s2 + (t− u)2)/(s(mχ̃

2
i − t))

TV×TV = (16K2K ′2(m4
τ̃R
− tu))/((mχ̃

2
i − t)(−mχ̃

2
j + t))

|T |2 = TIII×TIII + TIV×TIV + 2TIII×TIV +
4∑

i,j=1

((TI×TV + TII×TV + TIII×TV + TIV×TV)/2 + TV×TV) (A8)

τ̃ τ̃ ∗ −→ ff̄

III. s-channel Z annihilation
IV. s-channel γ annihilation

f3c = (−g2 sin2θW / cos θW )(g2(−2T f
3 + 4Qf sin2θW )/(4 cos2θW ))

f3d = (−g2 sin2θW / cos θW )(g2(2T
f
3 )/(4 cos2θW ))

f4c = −efe
2

TIII×TIII = 2(16f 2
3dm

2
τ̃R

m2
f − 4f 2

3cm
2
τ̃R

s− 4f 2
3dm

2
τ̃R

s− 4f 2
3dm

2
fs + f 2

3cs
2 + f 2

3ds
2 −

f 2
3ct

2 − f 2
3dt

2 + 2f 2
3ctu + 2f 2

3dtu− f 2
3cu

2 − f 2
3du

2)/(m2
Z − s)2

TIII×TIV = 2f3cf4c(4m
2
τ̃R

s− s2 + t2 − 2tu + u2)/((m2
Z − s)s)

TIV×TIV = 2f 2
4c(−4m2

τ̃R
s + s2 − t2 + 2tu− u2)/s2

|T |2 = (TIII×TIII + TIV×TIV + 2TIII×TIV)(×3 for quarks) (A9)

τ̃ τ̃ ∗ −→ tt̄

I . s-channel H annihilation
II. s-channel h annihilation
III. s-channel Z annihilation
IV. s-channel γ annihilation

f1a = (g2mZ sin2θW cos(α + β)/ cos θW )(−g2mt sin α/(2mW sin β))
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f2a = (−g2mZ sin2θW sin(α + β)/ cos θW )(−g2mt cos α/(2mW sin β))

f3c = (−g2 sin2θW / cos θW )(g2(−1 + 4Qt sin2θW )/(4 cos2θW ))

f3d = (−g2 sin2θW / cos θW )(g2/(4 cos2θW ))

f4c = −ete
2

TI×TI = 2f 2
1a(−4m2

t + s)/(−m2
H + s)2

TII×TII = 2f 2
2a(−4m2

t + s)/(−m2
h + s)2

TIII×TIII = 2(16f 2
3dm

2
τ̃R

m2
t − 4f 2

3cm
2
τ̃R

s− 4f 2
3dm

2
τ̃R

s− 4f 2
3dm

2
t s + f 2

3cs
2 + f 2

3ds
2 −

f 2
3ct

2 − f 2
3dt

2 + 2f 2
3ctu + 2f 2

3dtu− f 2
3cu

2 − f 2
3du

2)/(m2
Z − s)2

TI×TII = 2f1af2a(−4m2
t + s)/((−m2

H + s)(−m2
h + s))

TI×TIII = 4f1af3cmt(t− u)/((m2
H − s)(−m2

Z + s))

TII×TIII = 4f2af3cmt(t− u)/((m2
h − s)(−m2

Z + s))

TI×TIV = 4f1af4cmt(t− u)/((m2
H − s)s)

TII×TIV = 4f2af4cmt(t− u)/((m2
h − s)s)

TIII×TIV = 2f3cf4c(4m
2
τ̃R

s− s2 + t2 − 2tu + u2)/((m2
Z − s)s)

TIV×TIV = 2f 2
4c(−4m2

τ̃R
s + s2 − t2 + 2tu− u2)/s2

|T |2 = 3 (TI×TI + TII×TII + TIII×TIII + TIV×TIV + 2TI×TII + 2TI×TIII + 2TI×TIV +

2TII×TIII + 2TII×TIV + 2TIII×TIV) (A10)

τ̃ τ̃ ∗ −→ hh

I. s-channel h annihilation
II. s-channel H annihilation
III. point interaction
IV. t-channel τ̃ exchange
V. u-channel τ̃ exchange

f1 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−3g2mZ cos 2α sin(α + β)/(2 cos θW ))

f2 = (g2mZ sin2θW sin(α + β)/ cos θW )(g2mZ(cos 2α cos(α + β)−
2 sin(2α) sin(α + β))/(2 cos θW ))

f3 = −g2
2 cos 2α sin2θW /(2 cos2θW )

f4 = (−g2mZ sin2θW sin(α + β)/ cos θW )2

f5 = (−g2mZ sin2θW sin(α + β)/ cos θW )2

TI×TI = (m2
h − s)−2

TII×TII = (m2
H − s)−2

TIII×TIII = 1

TIV×TIV = (m2
τ̃R
− t)−2

TV×TV = (m2
τ̃R
− u)−2

TI×TII = 1/((m2
H − s)(m2

h − s))
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TI×TIII = 1/(m2
h − s)

TI×TIV = 1/((m2
h − s)(m2

τ̃R
− t))

TI×TV = 1/((m2
h − s)(m2

τ̃R
− u))

TII×TIII = 1/(m2
H − s)

TII×TIV = 1/((m2
H − s)(m2

τ̃R
− t))

TII×TV = 1/((m2
H − s)(m2

τ̃R
− u))

TIII×TIV = 1/(m2
τ̃R
− t)

TIII×TV = 1/(m2
τ̃R
− u)

TIV×TV = 1/((m2
τ̃R
− t)(m2

τ̃R
− u))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + f 2

4TIV×TIV + f 2
5TV×TV + 2f1f2TI×TII +

2f1f3TI×TIII + 2f1f4TI×TIV + 2f1f5TI×TV + 2f2f3TII×TIII + 2f2f4TII×TIV +

2f2f5TII×TV + 2f3f4TIII×TIV + 2f3f5TIII×TV + 2f4f5TIV×TV (A11)

τ̃ τ̃ ∗ −→ hA[HA]

I. s-channel Z annihilation

f1 = (−g2 sin2θW / cos θW )(g2 cos[sin](α− β)/(2 cos θW ))

TI×TI = (t− u)2/(m2
Z − s)2

|T |2 = f 2
1TI×TI (A12)

τ̃ τ̃ ∗ −→ W+H−

I. s-channel H annihilation
II. s-channel h annihilation

f1 = (g2mZ sin2θW cos(α + β)/ cos θW )(−g2 sin(α− β)/2)

f2 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−g2 cos(α− β)/2)

TI×TI = (m4
H+ + (m2

W − s)2 − 2m2
H+(m2

W + s))/(m2
W (m2

H − s)2)

TI×TII = (m4
H+ + (m2

W − s)2 − 2m2
H+(m2

W + s))/(m2
W (m2

H − s)(m2
h − s)))

TII×TII = (m4
H+ + (m2

W − s)2 − 2m2
H+(m2

W + s))/(m2
W (m2

h − s)2)

|T |2 = f 2
1TI×TI + f 2

2TI×TI + 2f1f2TI×TII (A13)

τ̃ τ̃ ∗ −→ AA

I. s-channel H annihilation
II. s-channel h annihilation
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III. point interaction

f1 = (g2mZ sin2θW cos(α + β)/ cos θW )(g2mZ cos 2β cos(β + α)/(2 cos θW )

f2 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−g2mZ cos 2β sin(β + α)/(2 cos θW )

f3 = −g2
2 cos 2β sin2 θW /(2 cos2 θW )

TI×TI = (m2
H − s)−2

TII×TII = (m2
h − s)−2

TIII×TIII = 1

TI×TII = 1/((m2
H − s)(m2

h − s))

TI×TIII = 1/(m2
H − s)

TII×TIII = 1/(m2
h − s)

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + 2f1f2TI×TII + 2f1f3TI×TIII +

2f2f3TII×TIII (A14)

τ̃ τ̃ ∗ −→ hH

I. s-channel H annihilation
II. s-channel h annihilation
III. point interaction
IV. t-channel τ̃ exchange

f1 = (g2mZ sin2θW cos(α + β)/ cos θW )(g2mZ(2 sin 2α cos(β + α) +

sin(β + α) cos 2α)/(2 cos θW ))

f2 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−g2mZ(2 sin 2α sin(β + α)−
cos(β + α) cos 2α)/(2 cos θW ))

f3 = −g2
2 sin 2α sin2 θW /(4 cos2 θW )

f4 = (g2mZ sin2θW cos(α + β)/ cos θW )(−g2mZ sin2θW sin(α + β)/ cos θW )

TI×TI = (m2
H − s)−2

TI×TII = 1/((m2
H − s)(m2

h − s))

TI×TIII = 1/(m2
H − s)

TI×TIV = 1/((m2
H − s)(m2

τ̃R
− t))

TII×TII = (m2
h − s)−2

TII×TIII = 1/(m2
h − s)

TII×TIV = 1/((m2
h − s)(m2

τ̃R
− t))

TIII×TIII = 1

TIII×TIV = 1/(m2
τ̃R
− t)

TIV×TIV = (m2
τ̃R
− t)−2

|T |2 = TI×TI + TII×TII + TIII×TIII + TIV×TIV + 2TI×TII + 2TI×TIII + 2TI×TIV +
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2TII×TIII + 2TII×TIV + 2TIII×TIV (A15)

τ̃ τ̃ ∗ −→ HH

I. s-channel H annihilation
II. s-channel h annihilation
III. point interaction
IV. t-channel τ̃ exchange
V. u-channel τ̃ exchange

f1 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−3g2mZ cos 2α cos(α + β)/(2 cos θW ))

f2 = (g2mZ sin2θW sin(α + β)/ cos θW )(g2mZ(cos 2α sin(α + β) +

2 sin 2α cos(α + β))/(2 cos θW ))

f3 = g2
2 cos 2α sin2θW /(2 cos2θW )

f4 = (g2mZ sin2θW cos(α + β)/ cos θW )2

f5 = (g2mZ sin2θW cos(α + β)/ cos θW )2

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + f 2

4TIV×TIV + f 2
5TV×TV + 2f1f2TI×TII +

2f1f3TI×TIII + 2f1f4TI×TIV + 2f1f5TI×TV + 2f2f3TII×TIII + 2f2f4TII×TIV +

2f2f5TII×TV + 2f3f4TIII×TIV + 2f3f5TIII×TV + 2f4f5TIV×TV (A16)

The TI×TI . . . are the same as for τ̃ τ̃ ∗ −→ hh, with (mh ↔ mH).

τ̃ τ̃ ∗ −→ H+H−

I. s-channel H annihilation
II. s-channel h annihilation
III. s-channel Z annihilation
IV. s-channel γ annihilation
V. point interaction

f1 = (−g2mZ sin2θW sin(α + β)/ cos θW )(−g2(mW cos(β − α)−
mZ cos 2β cos(β + α)/(2 cos θW )))

f2 = (g2mZ sin2θW sin(α + β)/ cos θW )(−g2(mW sin(β − α)−
mZ cos 2β sin(β + α)/(2 cos θW )))

f3 = (−g2 sin2θW / cos θW )(−g2 cos 2θW /(2 cos θW ))

f4 = −e2

f5 = −g2
2 cos 2β sin2θW /(2 cos2θW )

TI×TI = (m2
H − s)−2

TI×TII = 1/((m2
H − s)(m2

h − s))

TI×TIII = (t− u)/((m2
H − s)(m2

Z − s))
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TI×TIV = (t− u)/(−(m2
Hs) + s2)

TI×TV = 1/(m2
H − s)

TII×TII = (m2
h − s)−2

TII×TIII = (t− u)/((m2
h − s)(m2

Z − s))

TII×TIV = (t− u)/(−(m2
hs) + s2)

TII×TV = 1/(m2
h − s)

TIII×TIII = (t− u)2/(m2
Z − s)2

TIII×TIV = −((t− u)2/((m2
Z − s)s))

TIII×TV = (t− u)/(m2
Z − s)

TIV×TIV = (t− u)2/s2

TIV×TV = (−t + u)/s

TV×TV = 1

|T |2 = f 2
1TI×TI + f 2

2TII×TII + f 2
3TIII×TIII + f 2

4TIV×TIV + f 2
5TV×TV + 2f1f2TI×TII +

2f1f3TI×TIII + 2f1f4TI×TIV + 2f1f5TI×TV + 2f2f3TII×TIII + 2f2f4TII×TIV +

2f2f5TII×TV + 2f3f4TIII×TIV + 2f3f5TIII×TV + 2f4f5TIV×TV (A17)

τ̃ τ̃ −→ ττ

I. t-channel χ exchange
II. u-channel χ exchange

K = g1Ni1/
√

2

K ′ = g1Nj1/
√

2

TI×TI = (16K2K ′2mχ̃imχ̃js)/((mχ̃
2
i − t)(mχ̃

2
j − t))

TII×TII = (16K2K ′2mχ̃imχ̃js)/((mχ̃
2
i − u)(mχ̃

2
j − u))

TI×TII = (16K2K ′2mχ̃imχ̃js)/((mχ̃
2
i − t)(mχ̃

2
j − u))

|T |2 =
4∑

i,j=1

(TI×TI + TII×TII + 2TI×TII) (A18)

τ̃ ˜̀∗ −→ τ ¯̀

I. t-channel χ exchange

K = g1Ni1/
√

2

K ′ = g1Nj1/
√

2

TI×TI = −16K2K ′2(m2
τ̃R

m2
˜̀
R
− tu)/((mχ̃

2
i − t)(mχ̃

2
j − t))
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|T |2 =
4∑

i,j=1

TI×TI (A19)

τ̃ ˜̀−→ τ`

I. t-channel χ exchange

K = g1Ni1/
√

2

K ′ = g1Nj1/
√

2

TI×TI = (16K2K ′2mχ̃imχ̃js)/((mχ̃
2
i − t)(mχ̃

2
j − t))

|T |2 =
4∑

i,j=1

TI×TI (A20)

τ̃χ −→ Zτ

I. s-channel τ annihilation
II. t-channel τ̃ exchange

f1 = −(g1Nj1/
√

2)(−g2/(2 cos θW ))

f2 = (g1Nj1/
√

2)(−g2 sin2θW / cos θW )

TI×TI = 2(2 sin2θW )2(m4
χ̃s−m4

τ̃R
s + s(−m4

Z + m2
Zs + m2

Zt− st−m2
Zu) +

m2
τ̃R

(2m4
Z − 2m2

Zs + s2 + st + su)−m2
χ̃(2m4

Z − 2m2
Zs + s(t + u)))/(m2

Zs2)

TII×TII = 2(m2
χ̃ − t)(m4

τ̃R
+ (m2

Z − t)2 − 2m2
τ̃R

(m2
Z + t))/(m2

Z(m2
τ̃R
− t)2)

TI×TII = −(2 sin2θW )(m4
τ̃R

(s + t− u) + m2
χ̃(−(m2

Zs) + m2
Zt + st− t2 +

m2
τ̃R

(8m2
Z − s + t− u)− 5m2

Zu + tu) + (m2
Z − t)(m2

Zs− s2 + m2
Zt− t2 −

m2
Zu + u2) + m2

τ̃R
(2m2

Zs− s2 − 2m2
Zt− st− 2t2 − 2m2

Zu + tu + u2))/

(m2
Zs(m2

τ̃R
− t))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + 2f1f2TI×TII (A21)

τ̃χ −→ γτ

I. s-channel τ annihilation
II. t-channel τ̃ exchange

f1 = −(g1Nj1/
√

2)(e)

f2 = (g1Nj1/
√

2)(e)

TI×TI = 4(m4
χ̃ −m4

τ̃R
− su−m2

χ̃(t + u) + m2
τ̃R

(s + t + u))/s2
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TII×TII = −4(m2
χ̃ − t)(m2

τ̃R
+ t)/(m2

τ̃R
− t)2

TI×TII = (s2 + t2 − u2 + m2
τ̃R

(−s + 3t + u) + m2
χ̃(−8m2

τ̃R
+ s− t + 5u))/(s(m2

τ̃R
− t))

|T |2 = f 2
1TI×TI + f 2

2TII×TII + 2f1f2TI×TII (A22)

τ̃χ −→ τh[H]

II. t-channel τ̃ exchange

f2 = −(g1Nj1/
√

2)(−g2mZ sin2θW sin[− cos](α + β)/ cos θW )

TII×TII = 2(m2
χ̃ − t)/(m2

τ̃R
− t)2

|T |2 = f 2
2TII×TII (A23)
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