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A recently proposed mechanism for large-scale structure in string cosmology –based on massless
axionic seeds– is further analyzed and extended to the acoustic-peak region. Existence, structure,
and height of the peaks turn out to depend crucially on the overall evolution of extra dimensions
during the pre-big bang phase: conversely, precise cosmic microwave background anisotropy data
in the acoustic-peak region will provide a window on string-theory’s extra dimensions before their
eventual compactification.
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One of the most stringent tests of inflationary cosmol-
ogy will come when new precise satellite data on cos-
mic microwave background (CMB) anisotropies down to
small angular scales will become available during the next
years [1]. Hopefully, these data will allow not only to
check whether the generic paradigm of inflation is valid,
but also to make a strong selection among the multitude
of models of inflation which are presently on the market.
Models differ, in particular, on the presence or absence
of a sizeable tensor component (to be detected by polar-
ization experiments), on the possible non-Gaussianity of
the fluctuations (to be tested through higher-order cor-
relations) and, finally, on the height, and position of the
so-called acoustic peaks in the multipole coefficients C`

in the region ` > 100.
The pre-big bang (PBB) scenario [2], a particular

model of inflation inspired by the duality properties of
string theory, was thought for sometime to be unable to
provide a quasi-scale-invariant (Harrison-Zeldovich, HZ)
spectrum of perturbations. Indeed, first-order tensor and
scalar perturbations were found to be characterized by
extremely ‘blue’ spectra [2]. The large tilt, together with
a natural normalization imposed by the string cut-off at
the shortest amplified scales (∼ 1mm), makes their con-
tribution to large-scale structure completely negligible.

It was later realized [3], however, that the spectral tilt
of the supersymmetric partner of the dilaton, the univer-
sal axion of string theory (not to be confused with the
Peccei-Quinn axion!), σ, can have a whole range of values,
depending on the overall behaviour of the six compacti-
fied internal dimensions. It is most useful to express the
result in terms of the axion energy spectrum during the
radiation era [4,5]. Let us define the tilt α by:

Ωσ(k, η) ≡ ρ−1
c dρσ(k, η)/d log k ∝ (k/k1)α , (1)

where, as usual, ρc is the critical energy density, and k1,
related to the string scale, represents the end-point of the
spectrum. Assuming, as an example, separate isotropic
behaviour for the three external and the six internal di-
mensions, one finds:

α =
3 + 3r2 − 2

√
3 + 6r2

1 + 3r2
, (2)

where r ≡ 1
2 (V̇6 V3)/(V6 V̇3) is a measure of the relative

evolution of the internal and external volumes.
Eq. (2) allows for a range of values for the tilt α. For

static internal dimensions (r = 0) one finds a negative
tilt, a ‘red’ spectrum with α = 3−2

√
3 ∼ −.46; for static

external dimensions (r = ∞) one finds a ‘blue’ spectrum
with α = 1 while, finally, for a globally isotropic evolution
(modulo T-duality), i.e. for r = ±1, one obtains a flat HZ
spectrum, α = 0 [4]. As we shall show in this paper, CMB
anisotropy data prefer a slightly blue spectrum with α ∼
0.4 leading to r ∼ 2.2 so that the internal dimensions
contract somewhat faster than the external dimensions
expand. We note also that the pure power-law behaviour
in (2) is only valid if PBB evolution is not itself composed
of various phases: it is conceivable, e.g., that some of
the internal dimensions may ‘freeze’ sometime during the
PBB phase, in which case α will undergo a (negative)
jump at some characteristic scale k∗ related to the freeze-
out time. We will come to this possibility below.

The results of [3–5] reopened the possibility that PBB
cosmology may contain a natural mechanism for gener-
ating large-scale anisotropy via the ’seed’ mechanism [6].
This possibility, which belongs to the generic class of
isocurvature perturbations, is analyzed in [7] for mass-
less axions, to which we shall limit our attention in this
letter, and in [8] for very light axions. Isocurvature per-
turbations from scalar fields have also been discussed in
Ref. [9], but there the scalar field perturbations just de-
termine the initial conditions. In our model the axion
pays the role of a ’seed’ like in scenarios with topological
defects. The power spectrum of the seed is however not
determined by causality, but the spectral index can vary
(within the above limits). This reflects the fact that the
axion field is generated during an inflationary phase.

In the above papers a strong correlation between the
tilt (the value of ns − 1 in standard notations) and nor-
malization of the C`’s was noticed. A range of values
around ns = 1.2 (slightly blue spectra) appeared to be
favored by a simultaneous fit to the tilt and normaliza-
tion on the large angular scales observed by COBE [10]
to which the analysis in [7] was actually confined. In this
paper we extent this study down to the small angular
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scales which have been explored observationally with lim-
ited precision so far [11] but which will become precisely
determined during the next decade. We also supplement
the analytic study of [7] with numerical calculations.

As in previous work [7,8] we suppose that the contri-
bution of the axions to the cosmic fluid can be neglected
and that they interact with it only gravitationally. They
then play the role of ’seeds’ which generate fluctuations
in the cosmic fluid [6].

The evolution of axion perturbations is determined by
the well-known axion-free background of string cosmol-
ogy. One finds [7]

ψ̈ +
(
k2 − äA

aA

)
ψ = 0 , (3)

where we have introduced the ‘canonical’ axion field ψ =
aAσ. The function aA = aeφ/2 is the axion pump field, a
denotes the scale factor in the string frame, and φ is the
dilaton, which is supposed to be frozen after the pre-big
bang/post-big bang transition. Dots denote derivation
w.r.t. conformal time η. The initial condition for Eq. (3)
is obtained from the pre-big bang solution and is then
evolved numerically with aA = a during the post big
bang. The pre-big bang initial conditions require [7]

σ(k, η) =
c(k)
a
√
k
ϕ(k, η), ϕ(k, η) = sin kη, η � ηeq. (4)

The deterministic variable ϕ is a solution of Eq. (3), and
c(k) is a stochastic Gaussian field with power spectrum

〈|c(k)|2〉 = (k/k1)−2|µ|−1 = (k/k1)α−4 , (5)

where we have related the tilt α introduced before to the
parameter |µ| used in [7]. In order not to over-produce
axions, we have to require |µ| ≤ 3/2 i.e. α ≥ 0. The lim-
iting value α = 0 corresponds precisely to a HZ spectrum
of CMB anisotropies on large scales [7].

The energy momentum tensor of the axionic seeds is
given by

T ν
µ = ∂µσ∂

νσ − 1
2
δν
µ (∂ασ)2 . (6)

Like σ also the energy momentum tensor is a stochas-
tic variable which is however not Gaussian. (The non-
Gaussianity of the model has to be computed and com-
pared with observations. But this is not the topic of the
present work.)

For a universe with a given cosmic fluid, the linear
perturbation equations in Fourier space are of the form

DX = S , (7)

whereX is a long vector containing all the fluid perturba-
tion variables which depends on the wave number k and
conformal time η. S is a source vector which vanishes in
the absence of seeds. S consists of linear combinations
of the seed energy momentum tensor and D is a linear

ordinary differential operator. More concretely, we con-
sider a universe consisting of cold dark matter, baryons,
photons and three types of massless neutrino with a total
density parameter Ω = 1, with or without a cosmologi-
cal constant (ΩΛ = 0.7 or 0.0). We choose the baryonic
density parameter ΩB = 0.05 and the value of the Hub-
ble parameter H0 = 100hkm/sMpc with h = 0.5. More
details on the linear system of differential equations (7)
can be found in Ref. [13] and references therein.

Since S is a stochastic variable, so will be the solution
X(η0) of Eq. (7). We want to determine power spectra
or, more generally, quadratic expectation values of the
form (with sums over repeated indices understood)

〈XiX
∗
j 〉 =

∫ η0

ηin

Gil(η)G∗
jm(η′)〈S l(η)S∗

m(η′)〉dηdη′ , (8)

where G is a Green’s function for D.
We therefore have to compute the unequal time cor-

relators, 〈S l(η)S∗
m(η′)〉, of the seed energy momentum

tensor. This problem can, in general, be solved by an
eigenvector expansion method [12]. If the source evolu-
tion is linear, the problem becomes particularly simple.
In this ’coherent’ case, we have

Sj(η) = fji(η, ηin)Si(ηin)

with a deterministic transfer function fij . By a sim-
ple change of variables we can diagonalize the hermi-
tian, positive initial equal time correlation matrix, so
that 〈S l(ηin)S∗

m(ηin)〉 = λlδlm. Inserting this in Eq. (8)
we obtain exactly the same result as by replacing the
stochastic variable Sj by the deterministic source term
S

(det)
j given by

S
(det)
j (η)S(det)∗

i (η′) = exp(θji)
√
〈|Sj(η)|2〉〈|Si(η)|2〉 ,

where the phase θji has to be determined case by case.
For our problem, the evolution of the pseudo-scalar

field σ is linear, but the source, the energy momentum
tensor of σ, is quadratic in the field. The same sit-
uation is met for the large-N approximation of global
O(N) models. There one finds that the full incoher-
ent result is not very different from the perfectly co-
herent approximation [13]. We hence are confident that
we obtain relatively accurate results (to about 15%) in
the perfectly coherent approximation which we apply in
our numerical calculation. A more thorough discussion
of the accuracy of the coherent approximation will be
given in a forthcoming paper [14]. Within the coher-
ent approximation, we just need to determine the equal
time correlators of the axion energy momentum tensor,
〈Tµν(k, η)T ∗

ρλ(k′, η)〉, which are fourth order in σ.
We then split the perturbations into scalar, vector, and

tensor parts which completely decouple within linear per-
turbation theory.

We determine the CMB anisotropies by numerically
solving Eq. (3), and inserting the resulting source func-
tions in a Boltzmann solver.
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As discussed in [7], the amplitude of the CMB
anisotropies depends on the small scale cutoff, k1, of the
axion spectrum and the ratio between the string scale Ms

and the Planck mass MP in the way

`(`+ 1)C` ' (Ms/MP )4(`/k1ηdec)2α . (9)

The simplest assumption, k1/a1 ∼ Ms ' 10−2MP '
1017GeV only leads to the correct normalization if α ∼<
0.1. Otherwise the tilt factor (k1ηdec)−2α ∼ 10−60α en-
tirely suppresses fluctuations on large scales. The huge
factor k1ηdec comes from extrapolating the spectrum over
30 orders of magnitude. If the tilt is larger than α ∼ 0.1,
as suggested by the data (see below), we need either a
slightly scale dependent tilt or some cutoff in the small
scale fluctuations at later times. These possibilities are
both physically plausible. The first one is realized if the
compactified dimensions evolve more rapidly at the be-
ginning of the dilaton-driven inflationary phase than to-
wards its end. In other words the parameter r and α in
Eq.(2), instead of being constant, will be a (slowly) de-
creasing function of time. One could thus have a rather
blue spectrum at large scales, as necessary in order to
have pronounced peaks, and a much flatter spectrum
at small scales which helps avoiding normalization prob-
lems. We explore these questions in more detail in the
forthcoming paper [14].
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FIG. 1. The CMB anisotropy power spectrum for fluctua-
tions induced from axionic seeds with a tilt α = 0.1. We show
the scalar (dot-dashed), vector (dashed) and tensor (dotted)
contributions separately as well as their sum (solid).

In Fig. 1 we show the scalar, vector and tensor contri-
butions to the resulting CMB anisotropies for an axion
spectrum with tilt α = 0.1. The ’hump’ at ` ∼ 40 is due
to the isocurvature nature of the perturbations. They
are also the main reason why the acoustic peaks are very
low. The result is remarkably similar to the large-N case
studied in Ref. [13]. The main difference here is that,
like for usual inflationary models, we dispose of a spec-
tral index which is basically free. By choosing slightly
bluer spectra, we enhance the power on smaller scales.
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FIG. 2. The CMB anisotropy power spectrum for fluctu-
ations induced by axionic seeds. We show the sum of the
scalar, vector and tensor contributions for 5 different tilts,
with ΩΛ = 0 (solid) and ΩΛ = 0.7 (long dashed). The tilt is
raising from bottom to top, α = 0.1, 0.2, 0.3, 0.4, 0.5.

α = 0.1 0.2 0.3 0.4 0.5
χ2 for Λ = 0 302 214 119 66 82
χ2 for Λ = 0.7 249 152 111 70 119

TABLE I. The value of χ2 (with 15% theoretical er-
rors) from all the CMB anisotropy experiments compiled in
Refs. [11] are presented for all the models. We compare with
N = 60 data points. Clearly, α ∼ 0.4 with Λ = 0 or 0.7 is a
reasonable fit to the data.

In Fig. 2 we compare the results from different tilts
with and without cosmological constant. The CMB
power spectra obtained can have considerable acoustic
peaks at ` ∼ 250 to 300. Increasing the tilt α raises
the acoustic peaks and moves them slightly to smaller
scales. As found in Ref. [7], the power spectrum of the
scalar component is always blue. The tensor and vector
components counterbalance the increase of the tilt, main-
taining a nearly scale invariant spectrum on large scales.
The models can be discriminated from the common in-
flationary spectra by their isocurvature hump and by the
position of the first peak. We have compared our results
with the latest experiments [11]. All the models agree
quite well with the large scale experiments, while on de-
gree and sub-degree scales, models with 0.3 ∼< α ∼< 0.5
are favored by the data as can be seen from the χ2 anal-
ysis presented in Table I. For comparison, the χ2 of a
standard Λ-CDM model, with theoretical errors given by
cosmic variance, is 120. However, we have to be aware
that the χ2-test with present observations is a very rough
indication of the goodness of a model, since the C`s do
not obey a Gaussian distribution [15]. This is especially
serious for experiments with low sky coverage!

In Fig. 3, the theoretical dark matter power spec-

3



tra are compared with the data as compiled by Pea-
cock and Dodds [16]. Models without a cosmologi-
cal constant disagree in shape and amplitude with the
data. The root mean square mass fluctuation within
a ball of radius 8h−1Mpc for these models is σ8 =
0.36, 0.56, 0.88, 1.36, 2.05 for the tilts from α = 0.1 to
α = 0.5 respectively. Models with a cosmological con-
stant are in reasonable agreement with the shape of the
spectrum (see Fig. 3). The values of σ8 for these mod-
els are 0.21, 0.38, 0.53, 0.82, 1.25 respectively. We esti-
mate a (normalization) error of up to ∼ 30% in these
numbers, due to the perfectly coherent approximation.
Analysis of the abundance of galaxy clusters suggest
σ8 ∼ 0.5(1 − ΩΛ)−0.5 [17]. Since we can choose a blue,
tilted spectrum in our model, we have more power on
small scales and are able to fit large scale structure data
much better than defect models for which the spectral
index is fixed by causality.
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FIG. 3. The linear dark matter power spectrum for fluc-
tuations induced by axionic seeds is compared with data for
same values of the tilt as in Fig. 2. The spectra for the ΩΛ 6= 0
models (dashed lines) are shown with a bias factor of b = 1.2.
The value of the tilt raises from bottom to top as in Fig. 2.

In this letter we have presented preliminary results for
the CMB anisotropies and linear matter power spectra
in a pre-big bang scenario with axionic seeds. Due to
the isocurvature nature of the perturbations, a positive
tilt 0.3 ∼< α ∼< 0.5 is required to fit the measured CMB
anisotropy. Including a cosmological constant of ΩΛ ∼
0.7, as suggested by the recent supernovae results [18],
the matter power spectrum is also in good agreement
with measurements.

If improved data confirms the need of a significant tilt,
α > 0.1, the most simple scenario (k1/a1 = Ms and
α = const.) will be ruled out. This shows that CMB
anisotropies may contain information about the evolu-
tion of extra dimensions! But clearly, also in this case
the model remains highly predictive. It is easily distin-
guished from the more standard adiabatic models by its
’isocurvature hump’ at ` < 100 and the position of the

first acoustic peak at ` ∼ 300. These values depend only
slightly on the tilt (see Fig. 2). Furthermore the ratios
between the scalar, vector and tensor contributions are
entirely fixed by the model.
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