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that the issue can be resolved in supersymmetric theories at the level of the (quantum)
e�ective action (which does not vanish) and the Ward identities arising from supersymmetry.
The Ward identities have been found to play a crucial rôle in this selection in models
which have additional constraints [11, 12], but do not yield any extra information for the
unconstrained U(1) gauge �eld theory [10]. In this paper we propose a resolution of this
problem for the basic N{
avour N =1 U(1) theory at the level of the e�ective action: by
considering an appropriate set of Dyson{Schwinger equations we show that a mass can be
self{consistently generated without breaking supersymmetry, and that this mass stabilizes
the infrared e�ective gauge coupling which in the massless case oscillates without de�nite
sign.

We adopt a super�eld formalism throughout this paper, and work with a large number
N of matter 
avours. We consider the super�eld Dyson{Schwinger equation for the semi{
amputated full three{point vertex [13{15] which corresponds to the e�ective (running) gauge
coupling [16], and compute the infrared dynamics of this vertex in the presence of vanishing
and non{vanishing masses for the matter multiplet. In the massless case the dynamics are
described by a non{linear di�erential equation of Emden{Fowler type [17,18], which admits
only oscillatory solutions in the infrared; we interpret this as indicating instabilities in the
(quantum) e�ective action. Repeating the computation with the insertion (by hand) of
a �nite mass for the matter multiplet we �nd that these instabilities disappear, and the
solution shows the existence of a non{trivial infrared �xed point for the running coupling.
We then demonstrate that a mass for the matter super�eld can be dynamically generated
in a self{consistent way in this approach by appealing to the Dyson{Schwinger equation for
the full matter propagator cast in terms of the semi{amputated full vertex. In agreement
with reference [10] we �nd no evidence for a critical 
avour number, above which dynamical
mass generation does not occur.

In reference [10] the gap equation for the full matter propagator was studied incorpo-
rating a full vertex which by construction satis�ed the U(1) Ward identity; instead, in this
work, the form of the full vertex in the deep infrared will be determined self{consistently
from the Dyson{Schwinger equation. The truncated form of the Dyson{Schwinger equation
is not manifestly gauge invariant, i.e. it does not respect the Ward identity for general
incoming momenta and there is a residual explicit dependence on the covariant gauge �xing
parameter. However in the physical, on{shell limit of vanishing incoming momenta we �nd
that the Ward identity is satis�ed and that the dependence on the gauge �xing parameter
drops out. Since in the present work we are interested only in obtaining and analysing the
structure of the vertex in the deep infrared, the lack of gauge invariance away from vanishing
incoming momentum will not adversely a�ect our conclusions. The super�eld formalism we
adopt keeps supersymmetry manifest and thereby radically simpli�es the system of equa-
tions one would obtain for the full vertices in a component computation. The disadvantages
of the super�eld formalism [19,20] lie in the propagation of gauge artifacts in the connexion
super�eld which result in spurious infrared divergences. By working in a general (covariant)
gauge we will have enough 
exibility to remove these divergences by an appropriate gauge
choice.

This paper is organized as follows: in section II we construct the action functional for
N =1 supersymmetric QED3 in super�eld formalism and give the form of the dressed prop-
agators for the matter and connexion super�elds. In section III we introduce the super�eld
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semi{amputated vertex and construct its Dyson{Schwinger equation; we then solve the
Dyson{Schwinger equation in the presence of vanishing and non{vanishing masses for the
matter super�eld and interpret the results. In section IV we discuss the infrared proper-
ties of the matter and connexion super�eld propagators, in association with approximations
made in section III; we show in section V that when the previously computed vertex is in-
corporated in the gap equation for the matter propagator, a mass is dynamically generated
self{consistently. Finally we present our conclusions in section VI.

II. THE ACTION.

We consider a model with N = 1 supersymmetry, N matter 
avours and local U(1)
gauge invariance. The required action functional then comprises three parts: the gauge
invariant classical �eld strength term for the (spinor) connexion ��, a (Lorentz) gauge �xing
term, and a locally U(1) invariant kinetic term for the matter super�elds � and ��:

S = Sclass
g + SGF

g + Sm; (2.1)

Sclass
g =

Z
d3x d2� ��

�
�1

8
D�D�D�D�

�
��;

SGF
g =

Z
d3x d2� ��

�
1

4�
D�D2D�

�
��;

Sm =

Z
d3x d2�

�
�1

2

�
[r��]� [r��] : (2.2)

We have included in the matter part an implicit sum over N 
avours, which do not interact
with each other directly, but interact with the same connexion super�eld. The U(1) covariant
derivative r� is given by

r� :
= D� � ie��;

where e is the (dimensionful) gauge coupling. We work within large{N , in which the quantity

e2N

4
= �

is kept �xed (but large) as N becomes large. From the action (2.1) it is easy to derive the
dressed propagators for the matter and connexion super�elds:

�(p; 12) =
i

A(p)

D2(p)�M(p)

p2 +M2(p)
Æ2(12);

���(p; 12) = �i 1
p4

1

B(p)

�
(1+�) p�� D

2 � (1��)C�� p
2
�
Æ2(12): (2.3)

The matter super�eld contains a possible dynamically generated mass functionM(p) and the
scalar functions A and B parameterize the dressing of the matter and connexion super�elds
respectively. The unknown functions A, B, and M can at least in principle be determined
from the appropriate Dyson{Schwinger equations; we return to these in sections IV and V.
The dressed three{point vertex derived from the action above is shown in �gure 1.
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p q

p�q
� ��

��

: � e
2 G(p; p�q; q)C��D�(q)

FIG. 1. Structure and momentum assignments of the dressed three{point vertex; solid lines

represent matter super�elds and wavy lines the connexion super�eld.

In this paper we use a convenient spinor index notation for three{vectors, in which they
are represented as symmetric second rank spinors; spinor indices are raised and lowered by
the antisymmetric metric C. We collect here some useful identities which will be used in
what follows [21] (f@�; ��g = Æ��):

A� = C��A�;

A� = A�C��

A2 :
=

1

2
A�A�;

C��C
�� = Æ�[� Æ

�
�];

p��q
�� = Æ�� p � q;

D�(q) = @� + ��q��;

D2(q) = @2 + ��q��@
� + q2�2;

D�(q)D2(q) = q��D�(q);

D�(q)D�(q) = q�� + C��D2(q): (2.4)

In the next section we construct and analyse the truncated Dyson{Schwinger equation
for the full three{point vertex shown in �gure 1 with and without a mass for the matter
multiplet and demonstrate that oscillations present in the massless case disappear when a
mass for the matter multiplet is included.

III. DYSON{SCHWINGER EQUATION FOR THE VERTEX.

Throughout this paper we use a truncation to leading order in 1=N ; the truncated
Dyson{Schwinger equation for the full vertex is shown schematically in �gure 2.

= +

FIG. 2. Schematic form of the Dyson{Schwinger equation for the full vertex. Solid lines represent

matter super�elds, and wavy lines the connexion super�eld. Blobs indicate full non{perturbative

quantities.
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The graph on the left hand side of �gure 2 is written as follows

�
�e
2
G(p; p � q; q)

�Z
d2� �(�p; �)��(p � q; �)D�(q)��(q; �); (3.1)

where we have assumed that we can perform the factorization into a scalar function G
multiplying the superspace structure shown above; the �rst graph on the right of �gure 2
is of the same form but with G 7! 1. This factorization is similar in e�ect to the approach
taken in non{supersymmetric QED3 in which the vertex is assumed to be a scalar function
multiplying the usual Dirac matrix. This approximation is computationally convenient,
but does not satisfy the Ward identity except at vanishing incoming momentum, where
the full vertex becomes on{shell. Given this limitation we will only be interested in the
behaviour of the theory in this regime; as we will show, even with this restriction we can
obtain interesting information about the infrared �xed point structure. As we will see in
section V, the present approach gives rise to the same qualitative picture as that obtained
in reference [10], namely that a mass can be generated dynamically for the matter multiplet
without breaking supersymmetry.

Following references [13{15] we de�ne the semi{amputated full non{perturbative vertex
Ĝ as

Ĝ(p1; p2; p3)
:
= Z(p1; p2; p3)G(p1; p2; p3); (3.2)

where Z is de�ned in terms of the functions A and B appearing in the dressed propagators
(2.3) as

Z(p1; p2; p3)
:
= A�1=2(p1)B

�1=2(p2)A
�1=2(p3) > 0: (3.3)

The quantity eĜ is the appropriate and natural generalization of the running charge in super{
renormalizable gauge �eld theories [16]. This de�nition is the same as the generalization of
the running charge in non{supersymmetric QED3 [15]. As we will show, this de�nition also
simpli�es the structure of the integral equation for the vertex function considerably.

A. Vertex With Vanishing Mass.

The one{loop graph on the right of �gure 2 reads as follows:

� e

2

�
�ie

2

4

�Z
d3k d2�1d

2�2d
2�3 G

3

�
D�(p+ k)D2(p+ k)

A(p+ k) (p+ k)2
Æ2(12)

�
�

�
�
D�(q + k)D2(q + k)

A(q + k) (q + k)2
Æ2(23)

� �
(1+�)k�� � (1��)C��k

2

B(k) k4
Æ2(31)

�
�

��(�p; �1) ��(p � q; �2)D
� (q)��(q; �3); (3.4)

where

G3 = G(p;�k; p + k)G(p + k; p � q; q+ k)G(q + k; k; q): (3.5)
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Following [15] we consider the external connexion super�eld momentum to be vanishingly
small, leaving one external scale p in the problem; computing the superspace part of equa-
tion (3.4) using the identities (2.4) we obtain an integral equation for the full vertex G.
Multiplying this equation through by Z(p) we obtain the desired integral equation for the
semi{amputated vertex Ĝ from the Dyson{Schwinger equation in �gure 2:

Ĝ(p) = Z(p) +
1

4
e2
Z

d3k Ĝ3(k)
(1+�)k � (p + k) + (1��)k2

(p + k)2 k4
: (3.6)

We have made the approximation that Ĝ3 is the cube of one scalar function dependent on
the scale k only [15]: this is justi�ed by the self{consistency of our results. Note that in the
absence of the inhomogeneous term Z on the right hand side of equation (3.6) one obtains
a integral equation involving only Ĝ, which can in principle be solved. In the following we
will drop this inhomogeneous term, returning in section IV to a discussion of why this may
be done with safety.

The angular integration is easy to perform, leaving the following equation, which we have
recast in the dimensionless variables x

:
= p=�, y

:
= k=�:

Ĝ(x) =
1

4�2N

Z
dy

Ĝ3

y2

�
(1+�)

�
1 +

y2 � x2

2xy
ln

����y + x

y � x

����
�
+ (1��)y

x
ln

����y + x

y � x

����
�
: (3.7)

Since we are interested in the deep infrared we consider the limit x � 1, expand the
logarithms in the above equation to second order and obtain

x2Ĝ ' (2��)
3�2N

Z x

0

dy Ĝ3(y) +
x2

�2N

Z
1

x

dy
Ĝ3(y)

y2
+

x4�

3�2N

Z
1

x

dy
Ĝ3(y)

y4
: (3.8)

We drop the last term in the limit x� 1 and after appropriate di�erentiations with respect
to x we arrive the equivalent di�erential equation:

x3Ĝ00 +

�
3x2 +

x(1+�)

�2N
Ĝ2

�
Ĝ0 +

5� �

3�2N
Ĝ3 = 0: (3.9)

In the gauge � = �1 and changing variables x 7! w = x�2 the above equation can be recast
as a di�erential equation of Emden{Fowler type [17,18]:

d2

dw2
Ĝ +

1

2�2N
w�3=2Ĝ3 = 0; (3.10)

in the limit w !1 it has been shown [18] that the only (real and non{divergent) solutions
of this equation are oscillatory. We interpret this as indicating that in the absence of a
mass for the matter multiplet the gauge coupling is subject to instabilities which render it
unphysical. In the next subsection we study the e�ects of a mass introduced by hand and
show that these instabilities are removed, and that the coupling is driven to an non{trivial
infrared �xed point.
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B. Vertex With Non{Vanishing Mass.

In this subsection we repeat the computation above retaining the e�ects of a constant
mass M(p) ' M(0) = M 6= 0 in the propagators (2.3). Here we will put in the mass by
hand, in section V we will show that the semi{amputated full vertex we consider admits the
dynamical generation of a mass. The one{loop graph on the right of �gure 2 now reads

� e

2

�
�ie

2

4

�Z
d3k d2�1d

2�2d
2�3 G

3

�
D�(p + k) (D2(p+ k)�M)

A(p+ k) ((p+ k)2 +M2)
Æ2(12)

�
�

�
�
D�(q + k) (D2(q + k)�M)

A(q + k) ((q + k)2 +M2)
Æ2(23)

� �
(1+�)k�� � (1��)C��k

2

B(k) k4
Æ2(31)

�
�

��(�p; �1) ��(p� q; �2)D
� (q)��(q; �3); (3.11)

where as beforeG3 is given by equation (3.5). Again the superspace parts of this equation can
be evaluated using the identities (2.4); in contrast to the case of non{supersymmetric QED3,
where the inclusion of a mass for the fermions signi�cantly alters the structure of the integral
equation, here the mass terms only appear in the denominators of the matter propagators,
for the terms linear in M in the numerator cancel. In this respect, a mass for the matter
super�eld behaves like a trivial infrared regulator, similar to the e�ect of a photon mass
in the non{supersymmetric model [15]. On considering the external connexion momentum
vanishingly small and multiplying through by Z(p) as before, the integral equation to be
compared with (3.6) reads

Ĝ(p) = Z(p) +
1

4
e2
Z

d3k Ĝ3(k)
(1+�)k � (p + k) + (1��)k2

((p + k)2 +M2) k4
: (3.12)

As before, it is easy to perform the angular integration, the result of which reads (in dimen-
sionless variables x

:
= p=�, y

:
= k=� and m

:
= M=�)

Ĝ(x) =
1

4�2N

Z
dy

Ĝ3

y2

�
(1+�)

�
1 +

y2 � x2 �m2

4xy
ln

�
(y + x)2 +m2

(y � x)2 +m2

��

+ (1��) y
2x

ln

�
(y + x)2 +m2

(y � x)2 +m2

��
: (3.13)

We have again dropped the inhomogeneous term Z (see section IV); considering the deep
infrared limit x� 1, and now also x� m, we can expand the logarithms above to second
order to obtain the approximate form:

Ĝ ' (3��)
4�2N

1

m2

Z x

0

dy Ĝ3(y)� (1+�)

4�2N

x2

m2

Z x

0

dy
Ĝ3(y)

y2
+

1

�2N

Z
1

x

dy
Ĝ3(y)

y2 +m2

�(1+�)

4�2N
x2
Z

1

x

dy
Ĝ3(y)

y2 (y2 +m2)
: (3.14)

Di�erentiation with respect to x yields the integral{di�erential equation
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Ĝ0(x) =
(3��)
4�2N

Ĝ3(x)

m2
� 1

�2N

Ĝ3(x)

x2 +m2
� (1+�)

4�2N

Ĝ3(x)

m2
+
(1+�)

4�2N

Ĝ3(x)

x2 +m2

�(1+�)

2�2N

x

m2

Z x

0

dy
Ĝ3(y)

y2
� (1+�)

2�2N
x

Z
1

x

dy
Ĝ3(y)

y2 (y2 + x2)
: (3.15)

By the convenient choice of gauge � = �1 this can be reduced to a �rst order non{linear
di�erential equation, which can be integrated with ease to yield

Ĝ(x) =
1�

c + 2
�2Nm2

�
m arctan

�
x
m

�� x
��1=2 ; (3.16)

where c is an integration constant to be determined from the boundary condition obtained
from the original integral equation. In the limit x! 0 the renormalization group � function
vanishes:

lim
x!0

x
dĜ(x)

dx
= lim

x!0

1

�2N

Ĝ3(x)x3

m2 (x2 +m2)
! 0; (3.17)

and hence there is a non{trivial (N{independent) �xed point at x = 0 given by

Ĝ(0) = c�1=2: (3.18)

Returning to the integral equation (3.12) and taking the limit x! 0 we can investigate the
constraints on the integration constant c:

Ĝ(0) =
1

�2N

Z
1

0

dy
Ĝ3(y)

y2 +m2
: (3.19)

Since the right hand side of this equation is manifestly positive de�nite, the trivial solution
Ĝ(0) = 1=

p
c = 0 is ruled out, unless Ĝ is trivially zero. Noting that in the small x limit Ĝ

di�ers from its �xed point value by a quantity of order O(x3), we can crudely approximate
the integral in (3.19) as follows

Ĝ(0) =
1

�2N

Z m

0

dy
Ĝ3(0)

y2 +m2
+

1

�2N

Z
1

m

dy
1

y2 +m2
; (3.20)

where we have set Ĝ in the second integral to its ultraviolet asymptote of unity: both of
these approximations are underestimates, and therefore after performing the integrations we
have

4�mĜ(0) >
1

N

�
1 + Ĝ3(0)

�
: (3.21)

In principle for a given m this leads to a (small) critical coupling, below which there is no
mass generation. Note that even on restoring the inhomogeneous term Z (see section IV)
the inequality is only modi�ed to

4�m
�
Ĝ(0) � Z(0)

�
>

1

N

�
1 + Ĝ3(0)

�
: (3.22)
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Since at the level of the original integral equation (3.12) in the gauge � = �1 it is obvious
that Ĝ > Z, we obtain again a (small) critical coupling. Note that in the above analysis
there is no evidence for a critical 
avour number.

To conclude this section we should check our assertion that the value of Ĝ at vanishing
x is indeed �{independent. To accomplish this we return to the integral equation (3.14)
and retain the general gauge dependence. The equation can then readily be converted to a
di�erential equation:

xĜ00 +

�
�1� 3

2m2�2N
(1��)xĜ2 +

3

4�2N
(3��) x

x2 +m2
Ĝ2

�
Ĝ0

+
1

�2N

�
1

m2
� (5+�)

4

1

x2 +m2
� 2x2

(x2 +m2)2

�
Ĝ3 = 0: (3.23)

Considering the limit x! 0 this reduces to a �rst order di�erential equation (in which the
term xĜ00 has been dropped as subleading in x)

Ĝ0 +
(1+�)

4�2m2
Ĝ3 = 0

which can be integrated easily to give for small x

Ĝ(x) ' 1�
c+ (1+�)

4�2Nm2x
�1=2

; (3.24)

demonstrating that the term in Ĝ00 is indeed subleading and also that all the � dependence
vanishes at x = 0, so information about the �xed point is � independent as expected from
the on{shell nature of Ĝ(0).

We have shown in this section that in the presence of a mass for the matter multiplet
the full vertex is stabilized and driven to a non{trivial infrared �xed point. In the above
analysis the mass for the matter multiplet has been included by hand; however we will show
in section V that a mass can be dynamically generated self{consistently by coupling the
vertex equation to the corresponding Dyson{Schwinger equation for the matter propagator.
In the next section we turn to a discussion of the inhomogeneous term Z and why it can be
safely omitted.

IV. THE INHOMOGENEOUS TERM Z AND THE FUNCTIONS A AND B.

In this section we analyse the Dyson{Schwinger equations for the functions A and B with
which we have respectively dressed the matter and connexion super�eld propagators. First
we consider the Dyson{Schwinger equation for the matter propagator, shown schematically
in �gure 3.

The di�erence between the graphs on the left of �gure 3 is easily computed to be

� i(A(p)� 1)

Z
d2� �(�p; �)D2(p)��(p; �)� i

M(p)

A(p)

Z
d2� �(�p; �)��(p; �): (4.1)
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We adopt the one{loop dressed approximation to the Dyson{Schwinger equation in which
both vertices in �gure 3 are fully dressed and all two{particle irreducible corrections are
dropped [22]. In doing so the resulting integral equation can be cast in terms of Ĝ alone.

�
p

� ����1� � �
�1

p

� ��
=

q

p

� �� �

p� q

� ��

q

FIG. 3. Schematic form of the Dyson{Schwinger equation for the full matter propagator. Solid

lines represent matter super�eld propagators, and wavy lines gauge super�eld propagators; blobs

indicate full non{perturbative quantities.

The graphs on the right hand side of �gure 3 can be manipulated to obtain functions
multiplying the two superspace structuresZ

d2� �(�p; �)D2(p)��(p; �);Z
d2� �(�p; �)��(p; �); (4.2)

comparison with equation (4.1) shows that the function multiplying the �rst of these struc-
tures is to be identi�ed with the contribution to the wavefunction renormalization A(p) and
the function which multiplies the second corresponds to the self energyM(p)=A(p), to which
we will return in the next section. The �rst \seagull" graph on the right hand side gives
only an irrelevant p{independent contribution to the wavefunction renormalization while
the last graph on the right hand side of the �gure contributes both to the wavefunction
renormalization and the self energy. Evaluating the superspace parts of the last graph leads
to the following integral equation for A(p)

A(p) = 1 + (1+�)A(p)
ie2

2

Z
d3k

Ĝ2(k)

k2 +M2(k)

k � (k � p)

(k � p)4
: (4.3)

In the gauge � = �1 which we adopt throughout this paper, this reduces to unity, leav-
ing a constant A(p). Note that this is in line with the result of reference [10], where the
wavefunction renormalization was computed to be

A(p) =
� p
�

�2(1+�)=N�2

: (4.4)

We turn now to the connexion super�eld and the function B(p). In standard large{N
treatments [9,10] the function B includes the e�ects of massless matter loops resummed to
leading order in 1=N , giving

B(p) � 1 + �=p:

Therefore in the deep infrared we �nd
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Z(x) = A�1(x)B�1=2(x) � x1=2 (4.5)

and the inhomogeneous term goes to zero and can be safely dropped compared with a
non{vanishing Ĝ(0) in a large{N framework.

For completeness it is instructive to consider the function B outside this large{N resum-
mation, and consider the Dyson{Schwinger equation shown schematically in �gure 4. Again
we adopt the one{loop dressed approximation, which enables us to recast the equation in
terms of Ĝ alone.

� �
�1

p

� � �
� �

�1

p

� �
= k

� �

FIG. 4. Schematic form of the Dyson{Schwinger equation for the full connexion propagator.

Solid lines represent matter super�elds and wavy lines represent connexion super�elds; blobs indi-

cate full non{perturbative quantities.

The di�erence between the graphs on the left of �gure 4 is easily computed (in the gauge
� = �1) to be

(B(p)� 1)
1

2
C��p2

Z
d2� ��(�p; �) ��(p; �): (4.6)

In computing the graph on the right of �gure 4 the superspace structure in equation (4.6)
naturally appears, and the resulting integral equation for B is (in which we have already
performed the simple angular integration)

p3 (B(p)� 1) =
e2N

16�2
B(p)

Z
dk kĜ2(k) ln

�
(k + p)2 +M2

(k � p)2 +M2

�
: (4.7)

Converting to dimensionless variables, considering constant M and expanding the logarithm
as usual we can convert to an equivalent di�erential equation in which we have approximated
Ĝ by its constant value at x = 0, noting from equation (3.16) that in doing so we have only
dropped terms of order O(x3):

d

dx

�
x2B�1(x)

�
= 2x� Ĝ2(0)

�2

x2

m2
+
Ĝ2(0)

�2

x2

x2 +m2
: (4.8)

This can be integrated easily with result

B�1(x) = 1� 1

3

Ĝ2(0)

�2

x

m2
+
Ĝ2(0)

�2

1

x
� Ĝ2(0)

�2

m

x2
arctan

� x

m

�
; (4.9)

for �nite solutions the constant of integration must vanish. In the limit of small x there are
cancellations to order O(x3) and B reduces to

B(x) ' 1

1 +O(x3) : (4.10)

From this analysis it is clear that even when the connexion propagator is not resummed to
leading order in 1=N , the inhomogeneous term Z reduces to a �nite constant in the infrared
and can still be dropped with safety, justifying fully our assumption in section III.
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V. MASS.

In this section we demonstrate that a mass for the matter multiplet can be generated
dynamically when we feed the solution for the full vertex (3.16) into the Dyson{Schwinger
equation for the matter propagator. The latter is shown schematically in �gure 3, and now
we evaluate the terms in the graph on the right hand side which multiply the second of
the superspace structures in equation (4.2). Evaluating the superspace integrals leaves the
following integral equation for the mass function

M(p) =
ie2

2

Z
d3k

Ĝ2(k)M(k)

(k2 +M2(k)) (k � p)4
�
(1+�)k � (k � p) + (1��)(k � p)2

�
: (5.1)

Choosing again the gauge � = �1, we see that it removes the spurious infrared divergences
and simpli�es the equation considerably. After performing the angular integration and
expanding the resulting logarithms, we obtain in dimensionless variables

m(x) =
2

�2Nx2

Z x

0

dy
y2m(y) Ĝ2(y)

y2 +m2(y)
+

2

�2N

Z
1

x

dy
m(y) Ĝ2(y)

y2 +m2(y)
: (5.2)

Di�erentiating with respect to x this can be converted to an equivalent di�erential equation,

xm00 + 3m0 +
4

�2N

mĜ2

x2 +m2
= 0: (5.3)

In the deep infrared x � m, and approximating Ĝ(x) by Ĝ(0), noting again that the
corrections to this approximation are of order O(x3) (see equation (3.16)); equation (5.3)
then admits the following approximate solution:

m(x) ' m(0)
�
1� ax�O(x2)� a > 0 (5.4)

which exhibits a constant dynamical mass m(0) and has the correct (decreasing) behaviour
away from x = 0; note that this solution is similar to the small x expansion of the mass
found using the same method for non{supersymmetric QED3 in reference [15]. The solution
above is to be compared with the case when the vertex is chosen to satisfy the U(1) Ward
identity for general momenta [10], where the solution for the mass behaves as

m(x) = m(0)e�x
2 ' m(0)

�
1 � x2 +O(x4)� :

The semi{amputated vertex considered here only satis�es the Ward identity at x = 0 where
the vertex is on{shell, and therefore the small{x dependence may di�er from the more
complete solution, though the qualitative (decreasing) behaviour is retained.

VI. CONCLUSION.

In this paper we have proposed that the dynamical generation of a mass in N = 1
supersymmetric QED3 is selected by the dynamics over the massless alternative, for it sta-
bilizes the running gauge coupling against oscillations. In particular the picture which has
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emerged from our analysis is that in the absence of a mass for the matter multiplet, the full
vertex oscillates in the infrared, leading to instability in the e�ective action. When a �nite
dynamical mass is added, the infrared physics is stabilized and there exists a non{trivial in-
frared �xed point. We have demonstrated that the incorporation of our full vertex solution
into the Dyson{Schwinger equation for the matter propagator leads self{consistently to the
dynamical generation of a mass.

Supersymmetry has been kept manifest throughout by adopting a super�eld formalism
which has the additional advantage of simplifying considerably the system of equations and
Ward identities which would have to be solved in a component calculation. By working in a
general gauge we have retained enough freedom to remove infrared divergences which arise
from the propagation of spurious degrees of freedom in the connexion super�eld [19, 20],
and we have been able to simplify the analysis signi�cantly. We have employed a large{N
framework consistently throughout this paper; this in combination with the concept of a
semi{amputated full vertex allowed us to decouple the Dyson{Schwinger equations so that
the functions A and B used to dress the full propagators do not appear in the analysis of
the vertex.

There is the interesting possibility that the techniques employed in this paper and in
reference [15] could be extended to models in higher dimensions and with non{Abelian
gauge groups.
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