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Abstract

We present the contributions of new CP phases in CP asymmetries of two-

body neutral Bs decays coming from a left–right model with spontaneous CP

violation. Large deviations from the Standard Model predictions can be ac-

commodated in a natural way by this type of models. The new physics effects

on the mixing, width difference and decays are analysed. In particular, we

show how the measurement of the angle γ in electroweak penguin-dominated

processes can be largely affected.
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I. INTRODUCTION

CP violation in B decays and its measurement using CP asymmetries is one of the major

targets of B factories and of B experiments at hadron facilities. The Standard Model (SM)

has specific predictions on the size as well as on the pattern of CP violation in Bd,s meson

decays. Since these predictions can be tested in these experiments, deviations from them

would signal New Physics (NP). This justifies the big effort that is being done both on the

experimental and on the theoretical side.

Moreover, on the theoretical side, certain CP-violating asymmetries in neutral B decays

are particularly clean, i.e., free from hadronic uncertainties or with controlled ones using

complementary tools such as isospin analysis or other symmetries. In the context of the SM

they would allow for a clean extraction of the CKM phases, while if NP is at work they

would be quite sensitive. Clear signals of NP can be detected by measuring asymmetries

that are predicted to be zero in the SM or by comparing two asymmetries that measure the

same angle in the SM but that are differently affected by NP.

In the SM the Bd,s systems have been extensively studied [1]. There are also a number

of studies of the NP effects in Bd decays [2]. However, the Bs system has received some-

what less attention from the NP point of view [3]. Very fast oscillations of the Bs system

require outstanding experimental sensitivity (not yet achieved) to measure time-dependent

asymmetries. However, due to the large width difference ∆Γ(s), the Bs system offers new

possibilities for testing NP which do not exist in the Bd system.

In this talk we will present an example of how NP can affect the CP asymmetries in

two-body B0
s decays [4] using a specific model: a left–right-symmetric model (LRSM) with

spontaneous CP violation [5]. This model has, concerning CP violation, two very interesting

features. On the one hand, it is a natural extension to CP of the idea of parity as a

spontaneously broken symmetry, with no need for the Higgs sector to be enlarged. On the

other hand, due to the new phases that appear in the model, the LRSM with spontaneous CP

violation is able to accommodate in a natural way large deviations from the SM predictions,

if they are seen in future experiments.

II. THE MODEL: LRSM WITH SPONTANEOUS CP VIOLATION

This model is a gauge extension of the SM based on the gauge group: SU(2)L×SU(2)R×
U(1)B−L [5]. It contains, in addition to the standard gauge bosons, an extra W ′± and Z ′.

The two charged gauge bosons mix with a mixing angle ξ±.

The fermionic sector is organized in SU(2) left and right doublets with respect to the

corresponding gauge group. The Higgs sector contains a bidoublet φ that gives masses to

the extra gauge bosons and two triplets (∆R and ∆L), one of them with a large vR vacuum
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expectation value coupling primarily to the WR and the other that is included to preserve

the left–right symmetry. The choice of this scalar sector also allows us to give a natural

explanation of the smallness of the neutrino masses.

The gauge-symmetry breaking proceeds in two stages. In a first stage, the neutral

component of ∆R acquires a vev vR and breaks the symmetry group to SU(2)L × U(1)Y ,

breaking also the parity symmetry. In a second stage the vev’s of the bidoublet φ

〈φ〉 =

(

k1√
2

0

0 k2√
2

)

, (1)

completely break the gauge group down to U(1)Q. If one allows for the possibility of the

vev’s having phases, it is easy to see, using all the freedom in redefining fields, that we have

the choice of two phases at will. For instance, we can take k2 = |k2|eiα and vR = |vR|eiη,

breaking CP spontaneously. The phase α will be the relevant one when dealing with CP

violation in the quark sector. Also the neutral component of ∆L acquires a vev vL.

Finally, in order to discuss the CP-violation effects, it is useful to show explic-

itly the charged-current lagrangian in the quark mass eigenstate basis given by LCC =

g/
√

2(W †µ
L ūLKLγµdL +W †µ

R ūRKRγµdR) + h.c., where the left and right CKM matrices (KL

and KR respectively) are related by KL = K∗
R. The details of the implications in the phase

structure of the model of the previous relation between CKM matrices can be found in [6].

III. CP ASYMMETRIES IN THE BD/S SYSTEM

The time-dependent CP asymmetry for the decays that were tagged as pure B0
q or B̄0

q

into a common CP eigenstate defined by

a
(q)
CP (t) ≡ Γ(B0

q (t) → f) − Γ(B̄0
q (t) → f)

Γ(B0
q (t) → f) + Γ(B̄0

q (t) → f)
, (2)

is given explicitly by

a
(q)
CP (t) = −

(

|λ(q)|2 − 1
)

cos(∆M (q)t) − 2Imλ(q)sin(∆M (q)t)

(1 + |λ(q)|2)cosh(1
2
∆Γ(q)t) − 2Reλ(q)sinh(1

2
∆Γ(q)t)

, (3)

where

λ(q) =







√

√

√

√

√

M
(q)∗
12 − i

2
Γ

(q)∗
12

M
(q)
12 − i

2
Γ

(q)
12







Āq

Aq

∼ e−2iφq

M
Āq

Aq

, (4)

with Γ
(q)
12 and M

(q)
12 being the off-diagonal terms of the B0–B̄0 mixing matrix, φq

M the weak

mixing phase and ∆Γ(q) = Γ
(q)
H −Γ

(q)
L and ∆M (q) = M

(q)
H −M

(q)
L are the differences in decay

rates and masses between the physical eigenstates, respectively. In the previous expression
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CPT and |Γ(q)
12 | ≪ |M (q)

12 | have been assumed. Concerning the width differences while ∆Γ(d)

is very small in the SM, ∆Γ(s) is expected to be large providing us with another observable,

which could be measured using for instance the untagged Bs rates Γ(B0
q → f)+Γ(B̄0

q → f).

IV. NEW PHYSICS EFFECTS

Finally we will show how the LRSM affects the CP asymmetries described above. It will

give contributions to ∆M (q), ∆Γ(q), φq
M and Āq/Aq [4,7].

In order to compute the new contributions to ∆M (q) = 2|M (q)
12 | and ∆Γ(q) =

2|Γ(q)
12 || cos(2ξ)| [8] with 2ξ = arg(−M (q)

12 Γ
(q)∗
12 ) one needs to compute the dispersive and

absorptive parts of the box diagrams depicted in [9]. While M
(q)
12 gets a significant contri-

bution from the diagrams with an exchange of one W ′± and one W± or associated Gold-

stone boson, Γ
(q)
12 is practically keep untouched, since the new contribution is strongly sup-

pressed by β = M2
W/M

2
W ′. However, ξ that enters ∆Γ(q) and also the weak mixing phase

φM → φSM
M + 2ξ, can range between 0 and π depending on the values of α,MW ′ and the

mass MH of the two neutral flavour-changing Higgs-bosons whose masses are taken to be

equal. This implies that the weak mixing phase can also range between these values so that

the asymmetry can accommodate large deviations from the SM relation. Concerning ∆Γ(s),

since in the SM cos(2ξ) ∼ 1 the overall effect of the LRSM can only be to reduce ∆Γ(s).

Indeed if a drastic reduction is observed experimentally it could be explained quite naturally

by this model [4].

New Physics can also induce modifications in the decay amplitudes [4]. Mainly, two

situations can arise, depending on the type of CP asymmetry one is looking at: either there

exist CP asymmetries dominated by tree-level processes whose SM contribution vanishes

or is small (β ′) (i.e. Bs → ψφ,Bs → ψKs). All of them would be affected by the new

contribution coming from the B0–B̄0 mixing phase and therefore large departures from the

expected zero are possible. However, notice that all of them would be modified in the

same way β ′ → β ′ + δm, where δm = 2ξ stands for the new contribution to the mixing

phase. Or a completely different situation occurs when the CP asymmetries are dominated

by pure QCD penguin decays (such as Bs → φφ or Bs → K̄Ks) or electroweak penguins

(Bs → ηπ, Bs → φπ, ...). In that case, their decays may receive considerable contribution

from New Physics. Moreover, since the NP contribution could be different for each process,

CP asymmetries that were measuring the same angle no longer do.

In order to illustrate this second case we will analyse, as an example, the flavour-

changing decay b → ss̄s [4]. We will follow four steps. First, one should write the

Hamiltonian due to gluon exchange describing this decay at the scale MW : Heff =

−GF αs√
2π
V ts∗

L V tb
L (s̄[ΓLL

µ + ΓLR
µ ]T ab)(s̄γµT

as), where ΓLL
µ is the SM contribution and ΓLR

µ =

2imb

q2 Ẽ
′
0(x)[A

tbσµνq
νPR + Ats∗σµνq

νPL] is the new contribution induced by W exchange via
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the right handed current, PL and PR are the left and right projectors and Atb = ξ+mt/mbe
iσ1

and Ats = ξ±mt/mbe
iσ2 . This new contribution is suppressed by the mixing angle ξ± < 0.01,

but enhanced by mt/mb ∼ 60 and the numerical value of Ẽ ′
0(x) ∼ 4E ′

0(x). This enhancement

overcomes completely the suppression due to the mixing angle. Moreover two phases σ1 and

σ2, functions of α and the signs of the masses of the quarks, appear allowing for potential big

effects in the asymmetries. The second step consists in calculating the LO QCD corrections,

using an OPE to integrate out the top and calculate the Wilson coefficients Ci. In the basis

used to describe this decay NP effects will enter only into the photonic and gluonic magnetic

operators with the left and right structures (Cγ
7 , C

G
8 , C

γ′
7 and CG′

8 ). The third step consists

in running down the Wilson coefficients from the MW scale to mb. Finally, the last step is to

compute the hadronic matrix elements using some approximation (we used factorization).

It was found that the magnetic contributions are absorbed into penguin contributions by

redefining the Wilson coefficients. One can now apply this procedure to the evaluation of

processes such as Bs → φφ [4]. This process is dominated by QCD penguins and it receives

30% contribution from EW penguins. Its asymmetry, which is expected to be zero in the

SM, is largely affected by LRSM with spontaneous CP violation and can be as large as 0.85

depending on the values of the new phases σ1 and σ2. Another example is Bs → ηρ0. In that

case the current–current contribution is CKM-suppressed and the EW penguins dominate.

This process was proposed in [10] to measure γ. While the structure of the amplitude in the

SM is A(Bs → ηρ0) = ACCe
−iγ + AEW , where ACC and AEW are the current–current and

EW penguin contributions, respectively, if NP is present an extra piece ANP e
−iφ should be

added for each new phase, where ANP is the magnitude of the new contribution and φ its

phase. Then, in the presence of NP, the asymmetry does not measure anymore sin γ but

sin γ + z sinφ (for one extra phase), where z is defined by z = ANP/ACC . In the case of a

LRSM with spontaneous CP violation [4] z can be of order 1 and the two new phases, σ1

and σ2, distort completely the measurement of γ. If the extracted value of γ from a second

process differs, that would signal NP.

In conclusion, we have shown that if large departures from the SM are found in the width

and mass difference of the B0
s system they can be accommodated by a model of LRSM with

spontaneous CP violation. Also important effects can be induced in the asymmetries of the

decays that are predicted to be zero in the SM such as Bs → φφ or in EW penguin-dominated

decays such as B0
s → η(′)ρ0, φρ0.
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