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Abstract

We report a measurement of the CP violation parameterη+− from the time-dependent asymmetry
between the decay rates of initially taggedK0 andK0. The results are based on the complete data
sample collected by the CPLEAR collaboration. With∆m = (530.1 ± 1.4) × 107~s−1 andτS =
(89.32±0.08) ps, the values obtained are|η+−| = (2.264±0.023stat±0.026syst±0.007τS)×10−3

andφ+− = 43.19◦ ± 0.53◦stat ± 0.28◦syst ± 0.42◦∆m.
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1 Introduction
The CPLEAR experiment has successfully developed a method [1], using taggedK0 andK0, for

measuring the interference between theKL andKS amplitudes in the main neutral-kaon decay channels.
The parameters obtained from these measurements test, with high precision, discrete symmetries in the
neutral-kaon system. Among these, the phaseφ+− of η+−, when it is compared with the superweak
phaseφsw, provides a significant input to a test of CPT invariance [2]. Moreover, limits on parame-
ters describing the possible evolution of pure states into mixed states, sensitive to physics at ultra-high
energies [3], are obtained.

In this paper we present precise measurements of|η+−| andφ+− from the total data sample col-
lected by the CPLEAR collaboration up to the end of 1996. Results based on data taken up to mid 1994,
amounting to30% of the total statistics, have already been published [4]. At that time, there were no
measurements of the neutral-kaon forward-scattering amplitudes in the momentum range of the experi-
ment and this lead to the largest source of systematic error onφ+−. The present paper uses results from
a dedicated run performed during 1996 to measure these amplitudes [5], enabling this source of error to
be considerably reduced.

2 Experimental method
The neutral kaons are produced by antiproton annihilation at rest in gaseous hydrogen via the

reactions:

pp → K−π+K0

K+π−K0 (1)

each with a branching ratio of≈ 2 × 10−3. The neutral-kaon strangeness at production is tagged by
the charge of the accompanyingK±. The rates for an initialK0 or K0 decaying toπ+π−, R andR
respectively, can be expressed as a function of the decay timeτ by

R(τ)
R(τ)

∝ (1∓ 2Re(εL))(e−ΓSτ + |η+−|2e−ΓLτ ± 2|η+−|e−
1
2
(ΓS+ΓL)τ cos(∆mτ − φ+−)) (2)

where∆m is theKL − KS mass difference,ΓL(ΓS) the KL(KS) decay width, andεL describes the
CP-even impurity in theKL state. SinceR(τ) andR(τ) are the decay rates of CP conjugate processes,
any difference between them is a direct proof of CP violation. The decay rates for initialK0 andK0

determined from our measurement are displayed separately in Fig. 1, and clearly show the expected CP
violation effect (τS ≡ KS mean lifetime).

The KL − KS interference term in Eq. (2) is isolated by forming the asymmetry between the
measured number ofK0 andK0 decaying toπ+π−, N(τ) andN(τ) respectively, as a function of decay
time:

A+−(τ) =
N(τ)− αN(τ)
N(τ) + αN(τ)

(3)

= −2
|η+−|e 1

2
(ΓS−ΓL)τ cos(∆mτ − φ+−)
1 + |η+−|2e(ΓS−ΓL)τ

(4)

The normalization factor,α = [1+4Re(εL)]×ξ, corrects for the slight difference in the two decay
rates due to the parameterεL, as well as for the tagging efficiencyξ of K0 relative toK0. The use of this
asymmetry makes the measurement, to first order, independent of absolute acceptances and therefore of
Monte Carlo simulation, thus reducing systematic uncertainties.

3 The detector
The CPLEAR detector has been described elsewhere [6]. It had a cylindrical geometry and was

mounted inside a solenoid of length 3.6 m and internal radius 1 m, which produced a magnetic field of
0.44 T parallel to thep beam. The beam, extracted from the Low Energy Antiproton Ring (LEAR) at
CERN, had a momentum of 200MeV/c and stopped in the target at the centre of the detector. The target,
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Figure 1: The measured decay rates forK0 (open circles) andK0 (solid circles) after acceptance correc-
tion and background subtraction.

consisting of a 7 cm radius sphere filled with gaseous hydrogen at 16 bar pressure, was replaced in mid
1994 by a 1.1 cm radius, 27 bar, cylindrical target surrounded by a 1.5 cm radius, cylindrical proportional
chamber (PC0).

Tracking of the annihilation products was performed by two layers of proportional chambers,
six layers of drift chambers and two layers of streamer tubes. Kaon, pion and electron identification
(Cherenkov light, time of flight and energy loss) was provided by a threshold Cherenkov counter sand-
wiched between two layers of plastic scintillator. An 18-layer, lead/gas-sampling electromagnetic calori-
meter completed the detector.

Because of the small branching ratio of the desired annihilation channels, Eq. (1), and the high
beam-intensity (≈ 106 p/s), a multi-level trigger system [6], based on custom-made hardwired proces-
sors, was used to provide fast and efficient background rejection. The PC0 information was incorporated
into the trigger for all data taken during 1995 and 1996. Not more than two hits in this chamber were
required, thus ensuring that the neutral kaon decayed outside PC0. This eliminated a large number of
unwanted, very short lifetimeKS decays as well as background multikaon and multipion annihilations,
allowing the rate of useful recorded events to be significantly increased.
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4 Data analysis
Events corresponding to the desired annihilation channels, followed by the decay of the neutral

kaon toπ+π−, are selected by demanding four charged tracks with zero total charge. In order to be well
above the pion threshold in the Cherenkov detector, the charged kaon is required to have a momentum of
at least 350MeV/c. Furthermore, to be consistent with the trigger requirements, a momentum component
in the plane transverse to the beam axis of at least 300MeV/c is demanded. The events are then passed
through a geometrical and kinematical constrained fit, with a total of nine constraints. These are:

– overall conservation of energy and momentum (4C),
– missing mass at the annihilation vertex equal to theK0 mass (1C),
– at each vertex, corresponding to the intersection in the transverse plane of two tracks, same coor-

dinate along the beam axis for both tracks (2C),
– neutral-kaon momentum colinear with the line joining the two vertices in both the transverse and

longitudinal planes (2C).
Events are required to have a probability from the 9C fit of at least5%. At lifetimes beyond11 τS tighter
probability cuts are applied to reduce the residual background, such that the signal-to-background ratio
always exceeds unity. The dependence of the residual background on the neutral-kaon decay time is
determined by acceptance studies using simulated semileptonic andπ+π− events. The absolute level of
the background at any decay time is then determined by three independent methods:

– from a fit to the experimental decay rate for the sum ofK0 plusK0 after acceptance correction.
– from the relative acceptance of semileptonic andπ+π− data and the known branching ratios for

neutral kaons decaying to these final states.
– by modifying Eq. (4) to include a background term and leaving the absolute level as a free param-

eter in the fit to the asymmetryA+−(τ).
These three methods yield values in good agreement with each other. The magnitude of the background
depends only weakly on the neutral-kaon decay time and, between 15 and 20τS, its mean value is about
the same as the level of CP violatingKL → π+π− decays, with an uncertainty of6%.

A total of 7 × 107 events having a measured decay time above 1τS survive this selection. The
neutral-kaon decay time is calculated from its momentum component and the separation of its production
and decay vertices in the plane transverse to the beam axis. A simulation study of the detector shows
that, after the 9C fit, the neutral-kaon decay time resolution varies from 0.05τS to 0.11τS as the lifetime
increases, leading to very small corrections to the results (see Section 8).

5 Normalization of K0 and K0 rates
The detection efficiencies of(K+π−) and(K−π+) pairs, used to tagK0 andK0 production respec-

tively, are different. This difference arises partly from slight geometrical imperfections in the detector,
which cause the detection efficiency to depend on the curvature sign of a track, and partly from the
differences in the strong interaction probabilities of opposite-charge pions and kaons with the detector
material (mainly in the scintillators and the Cherenkov counter).

In order to eliminate biases caused by geometrical imperfections, the magnetic field polarity was
reversed three times per day. Figure 2 shows the taggedK0/K0 ratio as a function of the neutral-kaon
transverse momentum component for each curvature sign of the charged kaon, i.e.K0 for one field
polarity divided byK0 for the other. It can be seen that the two ratios are identical to within a few parts
per mil over the whole range of neutral-kaon transverse momentum. This shows that the geometrical
biases are the same forK0 andK0 and cancel in the ratio. Studies using high statistics simulated data
have shown that such biases can be completely eliminated by adding the data from the two field polarities.

As a result of the finite decay volume of the detector, there is a correlation between the neutral-
kaon kinematics and its decay time. This, in conjuction with the momentum dependence of the relative
tagging efficiency, Fig. 2, due to particles’ strong interactions with the detector material, leads to a de-
pendence of the relative tagging efficiency on the neutral-kaon decay time. This dependence is removed
by constructing a multi-dimensional table of event weights in the relevant variables of the primary K±π∓

kinematics [4]. Figure 3 shows, after event weighting, the ratio of the number ofK0 to K0 events, for the
sum of the two field polarities, as a function of the neutral-kaon transverse momentum component and of
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Figure 2: RatioK0/K0 vs neutral-kaon transverse momentum component for events in which theK±

has positive (open circles) and negative (solid circles) curvature.

the separation, in the transverse plane, of the production and decay vertices (these are the two variables
used in the calculation of the decay time).

The table of event weights is constructed using events at short decay times where high statistics
are available and CP-violation effects are small. Following this weighting procedure, the residual nor-
malization factor,α (Eq. (3)), is expected to be equal to unity when CP-violation at short decay times
is correctly taken into account. The value ofα is left free in the fit of Eq. (3) to the data over the whole
measured decay time range; the value returned by the fit is0.9997 ± 0.0004.

6 Regeneration
Coherent and incoherent regeneration arises from the interference between the inherentKS am-

plitude of the neutral kaon and that regenerated from theKL amplitude by scattering in the material of
the detector. In our earlier paper [4], we used the forward-scattering amplitudes ofK0 andK0 calcu-
lated by Eberhard and Uchiyama [7] because of the lack of experimental data in the momentum range
of our experiment (< 800 MeV/c). During the dedicated data-taking in 1996 a carbon regenerator was
inserted into the detector, enabling us to measure the forward kaon scattering amplitudes [5] from which
the regeneration corrections to the fitted values of|η+−| andφ+− were deduced. The results were in
good agreement with the predictions of Eberhard and Uchiyama and enabled us to reduce the systematic
uncertainties on the sizes of these corrections by more than a factor of three. Regeneration corrections
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Figure 3:K0/K0 ratio vs (a), neutral-kaon transverse momentum, and (b), vertex separation, after event
weighting.

are calculated on an event-by-event basis, depending on the magnitude and direction of the neutral kaon
momentum and on the positions of its production and decay vertices.

For data taken with the original, 16 bar target, the effect of the coherent regeneration correction is
to increase the value ofφ+− by 3.5◦ and to reduce the value of|η+−| by 0.08 × 10−3. For data taken
with the 27 bar target the corrections are smaller due to the smaller distance of the target wall from
the production vertex,φ+− being increased by2.6◦ and|η+−| reduced by0.05 × 10−3. The effects of
incoherent regeneration are much smaller, reducingφ+− by 0.11◦ and|η+−| by 0.003×10−3 . The errors
on the sizes of these corrections are discussed in Section 8.

7 Results
The residual background level and decay-time dependence were determined, as indicated in Sec-

tion 4. Equation (4), modified to allow for residual background, was then fitted to the data withφ+− ,
|η+−| andα as free parameters (see Fig. 4). The value obtained forφ+− depends on the value of∆m,
varying as

φ∆m
+− = φ<∆m>

+− + 0.300(∆m − < ∆m >),
with φ+− in degrees and∆m in units of107~s−1, but has negligible dependence on the value ofτS. The
value of|η+−| depends on the value ofτS as

|η+−|τS = |η+−|<τS> + 0.091(τS − < τS >)× 10−3,
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whereτS is in ps, and has negligible dependence on the value of∆m.

Figure 4: The time-dependent asymmetryA+− vs the neutral-kaon decay time. The solid circles represent
the data, including residual background, whereas the solid line is the result of our fit.

Using for< ∆m > and< τS > the world averages [8],< ∆m >= (530.1± 1.4)× 107~s−1 and
< τS >= (89.32 ± 0.08) ps, the results of the fit forφ+− and|η+−| are:

|η+−| = (2.264 ± 0.023) × 10−3

φ+− = 43.19◦ ± 0.53◦,

where the errors are purely statistical andχ2/d.o.f. = 1.2. Table 1 shows the correlation coefficients
betweenφ+−, |η+−| andα , given by the fit.

φ+− |η+−| α

φ+− 1 0.17 0.37
|η+−| - 1 0.65

α - 1

Table 1: Correlation coefficients for the fitted values in the case of fixed∆m

An alternative way of presenting the data is given by the ‘reduced asymmetry’Ared(τ) =
A+−(τ) × e−

1
2
(ΓS−ΓL)τ , as shown in Fig. 5. The physics content of this plot is identical to that of
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Fig. 4, but it emphasizes the low/medium lifetime region where statistics are high and to which the fit is
sensitive, at the expense of the high-lifetime region where statistics are low and to which the fit has little
or no sensitivity.

Figure 5: The ‘reduced asymmetry’Ared(τ) (see text) versus the neutral-kaon decay time. The solid line
is the result of our fit.

If the value of∆m is left free in the fit of Eq. (4) to the data, the result is∆m = (524.0±4.4stat±
3.3syst) × 107~s−1, in agreement with the value(529.5 ± 2.0stat ± 0.3syst) × 107~s−1 obtained from
the total sample of CPLEAR semileptonic data [9]; the correlation coefficient between∆m andφ+− is
0.92. The systematic errors of this∆m measurement are discussed in Section 8.

8 Systematic errors
The following sources of systematic error have been investigated:

– level of background and its dependence (shape) as a function of decay time,
– changes in cut values,
– neutral-kaon decay time resolution,
– normalization procedure,
– absolute time measurement,
– regeneration correction.

By varying both the level and decay time dependence of the background within their estimated
uncertainties, the corresponding systematic errors on the fitted parameters are determined.

The level and decay time dependence of the background at long lifetimes can be varied by chang-
ing the values of the 9C-fit probability cuts at these lifetimes (see Section 4). These changes in back-
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ground level and shape lead to small variations in the values of the fitted parameters. This is particularly
true for ∆m which has much greater sensitivity thanφ+− or |η+−| to data beyond10 − 12 τS. The
values of other cuts have also been varied and found to give very small changes in the values of the fitted
parameters. The magnitudes of the variations of the fitted parameter values due to changes in cuts are
taken as additional sources of systematic error.

The values ofφ+−, |η+−| and∆m quoted in the previous section have already been corrected for
the finite resolution of the neutral-kaon decay time. The sizes of these corrections, determined using high-
statistics simulated data, are−0.18◦, +0.042 × 10−3 and+0.7 × 107~s−1 respectively. The systematic
errors due to these corrections are obtained by varying the resolution correction, as a function of decay
time, by the uncertainty due to the finite statistics of the simulated data.

The normalization procedure of applying event weights changes the fitted value ofφ+− by 0.65◦,
of |η+−| by 0.02 × 10−3 and of∆m by −1.3 × 107~s−1. To determine the systematic errors induced
by the normalization procedure, a large number of different event-weight tables were constructed in
which the correction factors were varied randomly within their statistical uncertainties. The systematic
errors on the fitted parameters were then taken to be the standard deviations of the distributions of the
corresponding changes in their values due to the different event weighting.

Extensive studies have shown that after the kinematic constrained fit, the absolute time scale is
known with a precision of±0.2 parts per mil [6, 10]. Changing the absolute time scale by this factor,
produces the shifts in the fitted parameters shown in Table 2.

The systematic uncertainties on the regeneration corrections have been determined by varying
both the real and imaginary parts of the neutral kaon forward scattering amplitudes by their statistical
uncertainties. Contributions to the systematic errors due to uncertainties in the positions, thicknesses
and densities of the various elements of the detector traversed by the neutral kaons were found to be
negligible.

The values of all sources of systematic error onφ+− and|η+−| are shown in Table 2 for∆m fixed.
The errors arising from< ∆m > and< τS > are calculated from the quoted corresponding uncertainties
[8]. Table 2 also shows the systematic errors on∆m for φ+− fixed.

Source φ+− [◦] |η+−| × 103 ∆m [107~s−1]
Background level 0.09 0.010 0.9
Background shape 0.04 0.005 0.5
Changes in cuts 0.16 0.008 3.0

Decay time resolution 0.06 0.010 0.2
Normalization procedure 0.07 0.001 0.3

Absolute time scale 0.03 0.001 0.1
Regeneration 0.19 0.019 0.7

Total syst. error 0.28 0.026 3.3

σ(∆m) 0.42 0.001
σ(τS) 0.03 0.007

Table 2: Systematic errors on the fitted values ofφ+−, |η+−| and∆m.

9 Final results and conclusions
Our final results forη+−, with ∆m andτS fixed at the world average values from [8], are

|η+−| = (2.264 ± 0.023stat ± 0.026syst ± 0.007τS)× 10−3

φ+− = 43.19◦ ± 0.53◦stat ± 0.28◦syst ± 0.42◦∆m

These results have approximately the same errors as the averages of all previous experiments [8], en-
abling the precision on the world average values to be increased by almost a factor of

√
2. Our value for
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φ+− is in good agreement with the superweak phase [8]

φsw = arctan[
2∆m

∆Γ
] = 43.50◦ ± 0.08◦,

where∆Γ = ΓS − ΓL, and is hence consistent with CPT invariance.
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