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Abstract

The accurate measurement of the W Boson mass at LEP requires to determine
the beam energy to the highest possible precision. Present schemes rely on
accurate energy determination in the range of 40 to 60 GeV using resonant
depolarization and on precise extrapolations to high energy. Several methods
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ENERGY LOSS MEASUREMENTS AT LEP2

H. Burkhardt, A.-S. M¨uller∗, J. Wenninger, CERN, Geneva, Switzerland

Abstract

The accurate measurement of the W Boson mass at LEP re-
quires to determine the beam energy to the highest possible
precision. Present schemes rely on accurate energy deter-
minations in the range from 40 to 60 GeV using resonant
depolarization and on precise extrapolations to high energy.
Several methods based on measurements of the energy loss
due to synchrotron radiation have been studied. Different
approaches such as the study of the damping time of trans-
verse oscillations, the radio frequency sawtooth and the de-
pendence of the synchrotron tune on the total accelerating
voltage are described and results are discussed.

1 MOTIVATION

LEP2 provides a rather unique opportunity to study energy
loss and synchrotron frequency in an environment with ma-
jor energy losses and highQs. The main motivation for the
studies presented below however is the development of a
reliable energy determination at the highest energies with
an accuracy of 20 MeV or better. The presently used ex-
trapolation methods using magnetic measurements cross-
calibrated with resonant depolarization in the range from
40 to 60 GeV show systematic effects of the order of 20
MeV at highest energies [1]. The methods mentioned be-
low are alternatives, based mainly on determinations of the
energy loss and using existing LEP equipment.

2 MEASUREMENTS

2.1 Damping of Coherent Oscillations

A coherent horizontal oscillation is excited by a single kick
and the center-of-charge position of the bunch is observed
over 1024 consecutive turns. A fit to the data by a damped
oscillation with amplitude dependent frequency yields the
coherent damping timeτ as described in [2]. The coher-
ent damping at LEP is composed of radiation and head-tail
damping:

1/τcoh = 1/τ 0 + 1/τ head-tail with 1/τ head-tail∼ Q′

E 0

I b

whereQ′ is the chromaticity,I b the bunch current andE 0

the beam energy. An extrapolation toI b = 0 yields the
damping rate due to synchrotron radiationτ−1

0 from which
the energy loss or energy can be extracted. Table 1 gives the
results for measurements at 60 and 45.625 GeV. Although
the measurements are in good agreement with theMAD [3]
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energy loss [MeV]
energy [GeV]

MAD measured

45.625 127 126 ± 9

60.000 380 382 ± 4

Table 1:Results andMAD predictions of the energy loss due
to synchrotron radiation at 45.6 and 60 GeV beam energy.

predictions, the resulting relative energy uncertainty is of
the order ofO(1%).

2.2 The Energy Sawtooth

The horizontal beam position is a function of the local mo-
mentum. The continuous energy loss in the arc sections
leads to sawtooth-like horizontal orbits in the LEP ring.
The difference between the positron and electron orbits can
be used to determine the energy loss with the help of the
horizontal dispersion. Results of fits to the sawtooth are
shown in figure 1 where the energy loss is plotted as a func-
tion of the day in the year. Details on the fit method can be
found in [4]. The fit results seem to scatter around a central
value but there are clear “jumps” some of which correspond
to BPM calibrations (dashed lines). The other jumps could
not yet be accounted for. The RMS of the energy loss distri-
bution before day 275 is relatively small and corresponds to
a relative uncertainty of the energy of aroundO(5 · 10−4).
This method however is strongly limited by systematic ef-
fects. The fit results differ between the octants, depend on
the selection of rejected (faulty) BPMs and exhibit “jumps”
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Figure 1:Energy loss from the sawtooth fits in MeV as
function of day in year. The dashed lines denote BPM
calibrations.



sometimes correlated to BPM calibrations. The good in-
trinsic accuracy and the parasitic measurement favor this
method but the systematics are not yet under control.

2.3 Qs and total RF Voltage

As the synchrotron tune depends on the beam energy as
well as on energy lossU0 and total RF voltageVRF , mea-
surements of these dependencies can be used to determine
the beam energy. The upper plot of fig. 2 shows a measure-
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Figure 2: Upper plot: Synchrotron tune as function of
total RF voltage measured at 50.005 GeV. The curve is
a best fit according to eq.(1). Lower plot: Difference
between data and fit for the same range.

ment of the synchrotron tune as function of total RF voltage
at 50.005 GeV. The curve is a best fit according to

Q2
s =

(
αch

2πE

) √
V 2

RF − U2
0 (1)

with U0 = Cγ/ρ E4, αc being the momentum compaction
factor,h the harmonic number andρ the average magnetic
radius. This analytical model is only valid when the RF
voltage is homogenously distributed along the ring and for
slow synchrotron oscillations. It has to be refined to take
into account the large energy loss ofU0/E ∼ 2% at highest
energies. The bottom plot of fig. 2 shows the difference be-
tween data and fit. Residuals andχ2 show the sensitivity of
the data to additional corrections which can be determined
in the fit or included as constraints from separate measure-
ments and calculations. A first step is the correction of the
energy for differences between the central frequency and
the actual RF frequency

Ec = E

(
1 − 1

αc

(fRF − f c
RF )

fRF

)
(2)

and the introduction of a “voltage correction factor”
VRF → g VRF to take care of RF voltage calibration
and phasing errors. In addition to the synchrotron radia-
tion loss in dipoles other energy losses have to be taken
into account: energy loss from quadrupoles due to saw-
tooth and closed orbit distortions, energy loss from correc-
tors, parasitic mode losses, corrections due to finite beam

size and to the momentum offset due to central frequency
and tides. The finite beam size adds a contribution equiv-
alent to a shift of the beam by one RMS beam size. The
sum of these losses isK = 2.57 MeV at 50.005 GeV and
K = 2.65 MeV at 60.589 GeV with an overall uncertainty
of ∆K = ± 0.50 MeV. The total energy lossU0 used in
eq.(1) is finally

Ũ0 =
Cγ

ρ
E4 + K (3)

To study the fit quality and to find a correction for the un-
equally distributed RF voltage, the model was tested with
theMAD simulation program. Figure 3 showsQs generated
for a beam energy of 50.005 GeV with different RF config-
urations: a realistic case with the normal LEP RF distribu-
tion, a case where the same total voltage is concentrated in
one point and the limit of a homogenous distribution where
the voltage is distributed over the whole ring. To account
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Figure 3:Synchrotron tune as function of total RF volt-
age as calculated withMAD for different RF configura-
tions. The curve is a fit to the “realistic” RF distribution
using the fit model eq.(4) with appropriate input param-
eters.

for the RF distribution, a term proportional toV 4
RF has to

be added to eq.(1). The weight factorM is taken from the
fit to theMAD dataset. The final model reads as follows:

Q4
s =

(
αch

2π

)2 {
g2V 2

RF

E2
c

+ Mg4V 4
RF − 1

E2
c

Ũ2
0

}
(4)

with the relations from equations (2,3). The energy ex-
tracted from a fit to simulation data is in good agree-
ment with the input energy. A systematic uncertainty of
± 10 MeV is assigned to the fit results. Figure 4 shows the
measurements at 50.005 and 60.589 GeV. The curves are
best fits using the “final” model of eq.(4). The momentum
compaction factorαc and the voltage nonlinearity factorM
are taken fromMAD. All other parameters were allowed to
vary in the fit. Figure 5 shows the residuals of the fit to the
50.005 GeV data. It is clearly visible that the model is able
to reproduce the measurements quite accurately. External
knowledge was incorporated in the fit by introducing con-
straints of the type(a − anom)2/σ2

a wherea stands for a
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Figure 4: Measurements ofQs as function of total RF
voltage. The curves are the results of the fits according
to eq.(4).

fit parameter andσa for its estimated uncertainty to theχ2-
function.anom is the value the parameter is constrained to.
The beam energy was constrained to the nominal energy,
σE was set to± 50 MeV. The central value ofK was set to
the given values with an error of± 0.5 MeV. The voltage
correction factorg was constrained to the average value ob-
tained from the measurements.σg was estimated from the
spread of the results. The value ofg = 0.95415 ± 0.0005
implies that the effective voltage is about 5% less than the
nominal voltage. In table 2 fit results are compared to the

Enom Efit ∆E/E Epol

50.005 50.013± 0.026 5.2·10−4 50.020

60.589 60.576± 0.021 3.5·10−4 60.597

Table 2:Results of the fits using the model of eq.(4). All en-
ergies are given in GeV. The systematic uncertainty assigned
to the results from studies withMAD is± 10 MeV.

nominal machine energy (obtained from the magnet cali-
bration curves) and to the energies measured with resonant
depolarization in the following fill. The impact of the en-
ergy constraint on the final errors is small. For both mea-
surements the fitted energies are lower than the polarization
energies but still agree within their errors. The error is of
the required magnitude. Preliminary measurements at high
energy indicate that the absolute error is essentially energy
independent,∆E ≈ 25MeV . This value can be improved
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Figure 5:Difference between data and fit for the final fit
model.

if tighter bounds can be set onK andg. If the energy is
known from other measurements (resonant depolarization)
the same fits can be used to extract the momentum com-
paction factor. The relative uncertainty resulting from this
method is∆αc/αc ≈ 1 · 10−3 whereas conventional mea-
surements have relative uncertainties of 1 - 2%. All mea-
surements of the momentum compaction factor are in good
agreement with theMAD value.

3 SUMMARY

Several methods to measure the energy from the energy
loss using existing LEP equipment have been studied. To
be useful, the relative calibration uncertainty should not
exceed a few times10−4. The determination of the en-
ergy loss from the damping of coherent oscillations gives
a relative error ofO(1%). The measurement of the energy
loss using the energy sawtooth has a good intrinsic accu-
racy (O(5 · 10−4)) and does not require dedicated beam
time. However the systematics are not yet under control.
The most promising method is the measurement of the syn-
chrotron tune as function of the total RF voltage. Exter-
nal information is introduced into the fit in a controlled
way which also allows to assess sensitivities to input pa-
rameters and simulation biases. A relative energy error of
∆E/E = 2.8 ·10−4 has been reached and further improve-
ments are possible.
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