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Abstract

A part of an alternating gradient circular machine com-
posed of a number of identical cellsNc will not contribute
to the excitation of most of the non-linear resonances to
first order in multipole strength, if the two phase advances
per cell take the values2πk1/Nc and2πk2/Nc. k1 andk2

are any integers andk1 6= k2. This property is demon-
strated here. Its application to synchrotron light sources
and colliders is discussed.

1 INTRODUCTION

The problem of non-linear resonances has been considered
from the beginning in the design of AG machines [1]. The
first synchrotrons had a high periodicity to avoid system-
atic resonances and this principle is still used widely. For
a collider this is not possible because of the small number
of insertions. In this case, the choice of a proper phase ad-
vance per cell in the arcs makes it possible to avoid most of
the systematic non-linear resonances, thanks to the cancel-
lation of their driving term per super-period.

It is shown here how to design these parts of a machine
which are constituted of identical cells, so that they do not
contribute to most of the non-linear resonances. Firstly
some results of the resonance theory are recalled. The res-
onance driving term is computed for an ensemble of iden-
tical cells and the condition for resonance cancellation is
derived. Eventually some applications are given.

2 DRIVING TERM OF A NON-LINEAR
RESONANCE

The theory of non-linear resonances is quite old [2]. Apart
from the pioneer Moser [1] many authors contributed in
the accelerator field. The formulae used here are extracted
from [3]. More modern approaches based on normal form
analysis lead to similar results (see for instance [4]).

We consider here only the response in amplitude of an
harmonic oscillator driven by the non-linear field associ-
ated with the unperturbed linear oscillation,to first order
in multipole strength. The change of frequency with am-
plitude is not taken into account.

On a resonance of ordern defined bynx.Qx +ny.Qy =
integer, with |nx| + |ny| = n, the driving term, which
originates from the Fourier transform of the non-linear field
created by the excursion of the linear motion in the multi-
pole bn, is proportional to the circumferential integral [3]

:

I =

∣∣∣∣∣
∫ C

0

bnβx

nx
2 βy

ny
2 ei(nxµx+nyµy)ds

∣∣∣∣∣ (1)

The resonance ordern is the same as the multipole index
for the main resonance. It is equal ton − 2m, wherem is
an integer, for the sub-resonances of ordern − 2m associ-
ated with the same multipole. These sub-resonances have
a similar driving term.

The integralI can be easily calculated for a sequence
of identical cells. Indeed the optics functionsβx andβy

have identical values at homologous places inside each cell
and the phase advances in the(p + 1)th cell are given
by : µx,p+1(s) = µx,0(s) + pµx,c and µy,p+1(s) =
µy,0(s) + pµy,c, if the longitudinal coordinates has its ori-
gin at homologous places inside each cell.µx,c andµy,c

are the phase advances per cell in both planes, i.e. con-
stants. Thus, making a straightforward change of variable :
s → s+p×Lc, whereLc is the cell length, the contribution
of the(p + 1)th cell to the integralI (1) defined by equa-
tion (1) can then be written as the product of an integral,
which is the same for all cells, and a phase term depending
only on the indexp and the phase advances per cell :

eip(nxµx,c+nyµy,c)

∫
cell

βx

nx
2 βy

ny
2 ei(nxµx,0+nyµy,0)ds.

(2)
The integralI is obtained eventually from the modulus of
the sum of all the terms given by (2) associated with the
different cells. They all contain the same integral which
can be factorised and does not need to be evaluated for our
purpose. The modulus of the sum of the phase terms can
be referred to as the amplification factor of the resonance
{nx, ny} since it tells us by how much the driving term
associated with a single cell has to be multiplied to obtain
the driving term associated with the whole structure.

3 RESONANCE CANCELLATION

The driving term on resonance associated with the ensem-
ble ofNc cells vanishes if the resonance amplification fac-
tor defined in the preceding section is zero, i.e. :∣∣∣∣∣

Nc−1∑
p=0

eip(nxµx,c+nyµy,c)

∣∣∣∣∣ =

√
1 − cos[Nc(nxµx,c + nyµy,c)]

1 − cos(nxµx,c + nyµy,c)
= 0 (3)
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This is achieved if :

Nc(nxµx,c + nyµy,c) = 2kπ (4)

provided the denominator of equation (3) is non zero, i.e. :

nxµx,c + nyµy,c 6= 2k′π (5)

k andk′ are any integers. In what follows, the letterk with
or without indices will mean “any integer”. The resonance
amplification factor has a value oscillating between zero
and about one for almost all values of the variablenxµx,c+
nyµy,c except those satisfying the equality in 5. In the latter
case it is equal toNc. Starting from this value, it decreases
to zero when the variable is equal to2π/Nc and takes the
valueNc/2 for a value of2

√
3/Nc. This gives the range

of the variable for which the resonance amplification factor
takes large values.

Setting now the phase advances to the values :

µx,c/2π = k1/Nc, µy,c/2π = k2/Nc, (6)

we see that the condition for the cancellation of resonances
(4) is satisfied. Indeed, introducing these values into equa-
tion (4), we obtain :

Nc(nx2πk1/Nc + ny2πk2/Nc) = 2kπ

which can be simplified into :

nxk1 + nyk2 = k

For any integer values ofnx, k1, ny, k2, the value of the
expressionnxk1 + nyk2 is always an integer. This means
that this equation is satisfied for any value ofk1 andk2.
This results in the following important property :

“ A part of a circular machine containing Nc iden-
tical cells will not contribute to the excitation of any
non-linear resonance, except those defined bynxµx,c +
nyµy,c = 2k3π, if the phase advances per cell satisfy the
two conditions :

Ncµx,c = 2k1π ( cancellation of one-D horizontal
non-linear resonances )

Ncµy,c = 2k2π ( cancellation of one-D vertical non-
linear resonances )

k1 k2 and k3 being any integers.”

The usefulness of this property lies in the fact that, for
a given resonance order, there are much more resonances
cancelled than excited. For certain orders all resonances
are cancelled. Numerical examples are given below.

It is interesting to point out a useful by-product of this
property. The linear coupling resonance defined bynx =
1, ny = −1 is cancelled providedµx,c−µy,c 6= 2k′π. Tak-
ing k2 = k1 ± 1, it is sure that this condition is satisfied for
FODO cells. Thus, for an ensemble of FODO cells, the lin-
ear coupling resonance is always cancelled when the above
property holds. The demonstration of the cancellation of
the linear coupling has been done in LEP [5]. The solu-
tion retained wasµy,c = 60◦ andµx,c = 71.5◦. The value

of 60◦ of the vertical phase was needed for the non-linear
chromaticity correction, it does not fulfil the above condi-
tion. The number of cells per arc of 31 imposes a value
of the horizontal phase advance of60◦ + k × 11.613◦, the
value retained forµx,c corresponds tok = 1.

4 NUMEROLOGY

We want to find good values of the three parameters :Nc,
k1, k2, i.e. values which satisfy equation 5 for the largest
number of resonances. In order to solve this equation,µx,c

andµy,c are replaced by their values given by equation (6).
This leads to the Diophantine equation :

nxk1 + nyk2 6= k′Nc (7)

For instance for machines with strong systematic multi-
poles of low-order, it is extremely interesting to seek the
smallest number of cells and the phase advances for which
there are no second nor third order resonances. Thus equa-
tion (7) has to be solved fornx andny ∈ [1, 2, 3]. The
easiest procedure is in fact to list the resonances satisfying
the equality in this equation after having fixedNc, k1 and
k2 in order to decide whether these numbers are acceptable.

At first it is clear thatNc must not be equal to one, two
or three. As the addition of a multiple ofNc on either side
of equation (7) do dot modify it, it is sufficient to examine
values smaller thanNc. As equation 7 is symmetrical in
k1 andk2 it is sufficient to examine the casesk1 > k2. To
suppress the linear coupling, it is necessary thatk1 6= k2.
To suppress the third order resonances,k1 must be different
from 2k2.

nx 0 1 2 3 4 5 6
ny 5 1 2 -2 -1 0 2

res. order 5 2 4 5 5 5 8

Table 1: Resonances satisfying the equality in equation 7
associated withk1=3,k2=2 andNc=5. The resonance order
is equal to|nx| + |ny|, it has been limited to 10.

For Nc = 4 there are only two couples{k1, k2} to con-
sider :{3,1} and{3,2}. Both have systematic second order
but no third orders. The fourth order are all systematic,
which prevents the use of systematic octupole excitation to
adjust the anharmonicity.

For Nc=5, there are five solutions with always at least
one resonance of order smaller than 3 excited. There
are two solutions without third order resonance{3,2} and
{4,1}. The list of systematic resonances associated with
{3,2} is given in table 1. This case is interesting for a ma-
chine with magnets containing no systematic do-decapole
component both erect and skew.

The first value ofNc for which there is a solution without
first second and third order is 8. The search was stopped
here as the objective of this study was to find a solution
for LHC with Nc=25. Before examining it, we consider
the case of purely periodic machines for which it is worth
clarifying the concept of systematic resonances.

399

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



5 PURE SUPER-PERIODIC MACHINES

This is the case of almost all accelerators or synchrotron
light sources. For a number of super-periods equal toNc,
the resonance amplification factor can be written in terms
of the tunesQx andQy :√

1 − cos 2π(nxQx + nyQy)
1 − cos[2π(nxQx + nyQy)/Nc]

(8)

It is clear that this expression is zero only on resonance.
Away from the resonance, the factor becomes of the order
of unity. Consequently a large value ofNc is interesting to
gain more freedom to find tunes which maximise the de-
nominator. Note that, if the anharmonicity can bring a tune
on resonance which zeroes the expression (8) at a certain
amplitude, the resonance will not appear in the phase-space
plot. However the plots will be distorted because the reso-
nance has a non zero effect except for a single value of the
tune.

As an example the synchrotron light source ESRF was
designed with 16 super-periods and the design tunes were
Qx=32.2, Qy=11.2. For the values of Qx=32 and Qy=11,
the amplification factor associated with the third order res-
onances is exactly zero. For the actual tune values, it is 1.54
for the resonance 3Qx and 1.09 for Qx+2Qy. This is why a
sextupole arrangement with more than two families had to
be found [6] to cancel these resonances. This situation will
be encountered in any purely super-periodic machine.

6 MACHINES WITH INSERTIONS

This is the case to fully exploit the results of section 3.
Insertions with an arbitrary phase advance make it possible
to adjust the fractional part of the tunes independently of
the phase advance of the arc cells.

A nice example is that of the SPEAR 3 upgrade project.
It has a racetrack layout, i.e. two arcs jointed with straight
sections, with 9 cells per arc and matching cells in the
straight sections [7]. ForNc=9, two couples{k1, k2} make
the lattice free from all third order resonances :{5,4}
and{7,2}. The second order sum coupling resonance is
systematic for both. In a study of this lattice by track-
ing trajectories and systematic tune scan [7], two sets of
phase advances per cell giving the largest dynamic aper-
ture were found. The first set isµx,c = 0.79 ∗ 2π and
µy,c = 0.25 ∗ 2π, i.e. close to the values corresponding
to the couple{7,2} : µx,c = 7

92π andµy,c = 2
92π. The

second set isµx,c = 0.78 ∗ 2π andµy,c = 0.42 ∗ 2π again
close to the couple{7,4} which has only a skew third order
systematic resonance.

For a superconducting storage ring, like LHC at CERN,
there are systematic octupole components in the dipoles
and fourth order resonances have to be avoided. LHC is
composed of eight arcs with 23 FODO cells and one dis-
persion suppressor at each end. The latter break the peri-
odicity of the cell’s arrangement. Assimilating a dispersion
suppressor with one cell, we have to deal with 25 cells per

arc. Because of the design gradient of the arc quadrupoles
and the restricted aperture, the possible couples{k1, k2}
are{7,6} and{6,5}. Trajectories have been tracked with
systematic a4, b4 and b5 producing separately a relative
field error of 0.5.10−4 at 17mm from the dipole axis, for
the couple{7,6}. The dynamic aperture is increased by
more than 50% for a model arc made from 25 cells and
insertions, compared with the nominal lattice with a phase
advance per cell close to 90◦. For the actual LHC with
the dispersion suppressors, there is less improvement but
the lattice is much less sensitive to systematic expected oc-
tupole errors [8]. This opens the possibility of powering the
octupole spool pieces correctors which have the same pe-
riodicity as the cells, without killing the dynamic aperture,
to adjust the anharmonicity for Landau damping.

7 CONCLUSION

The analysis done in this paper shows that paying attention
to the phase advance per cell is extremely beneficial to stor-
age rings with strong focusing or large multipole errors and
no strong non-linear chromaticity due to low-β insertions.

It is shown that a high superperiodicity is not the best
ingredient to avoid non-linear resonances. It is better to de-
sign a machine with a low superperiodicity and arc cells
with a proper phase advance so that the effect of the arc
non-linearities is minimised. This is one of the strategies
followed for LHC in order to minimise the effect of sys-
tematic multipole components which have different values
in each of the eight arcs. It has been shown that such a lat-
tice is rather insensitive to a substantial increase of the sys-
tematic per arc octupole component. It is also insensitive
to a possible dangerous systematic per arc skew sextupole
component.
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