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1. Introduction

The embedding of supersymmetric gauge theories into the framework of string theory

and the subsequent application of symmetries and dualities of the latter has shown

to be an extremely fruitful approach to the study of non-perturbative properties

of gauge systems. One way to proceed is to exploit the fact that type IIA string

theory gives rise to non-abelian gauge symmetries when compactified on certain sin-

gular Calabi-Yau manifolds. These are naturally K3-fibrations and a gauge theory of

ADE-type arises when the K3 fiber develops a corresponding singularity. “Geometric

engineering” [1] furthermore exploits the fact that in the field theory limit the rel-

evant part of the compactification geometry is the local singularity structure. This

allows us, for the purpose of extracting field theoretical properties, to just model

manifolds that exhibit the correct configuration of exceptional divisors (P1’s that

occur in resolving the singularities of the K3 fiber and whose intersection matrix

equals the negative of the Cartan matrix of the respective gauge group) fibered over

the appropriate base.

The literature on geometric engineering of N = 2 supersymmetric gauge theories

in four dimensions is already vast. In this paper we follow [2] in applying this method

to Calabi-Yau 4-folds, which leads to N = (2, 2) supersymmetric gauge theories in

two dimensions. The specific example we will investigate is an SU(3) gauge theory.

This implies that the local compactification geometry on the type IIA side contains

two intersecting P1’s fibered over a common compact complex two dimensional base,

which we take to be a P2. The rigid limit of the local mirror to this geometry is
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a complex surface, which plays the rôle of the Seiberg-Witten curve. In analogy

to the 3-fold case, this surface is no longer a Calabi-Yau manifold as it was in the

SU(2) example of [2]. Instead, it has two holomorphic 2-forms that stem from the

same meromorphic 2-form as the derivatives w.r.t. the two moduli, respectively. A

major novelty of 4-folds, as compared to 3-folds, is that 4-forms are no longer dual

to 2-forms but represent an independent part of the cohomology. In particular the

primitive subspace of H2,2
∂̄
(X), i.e. the one generated by forms in H1,1

∂̄
(X), will play a

predominant rôle. It is related to the occurrence of 4-fluxes νa, which as well as part

of the intersection form η(2) on this subspace appear in the twisted chiral potential

W̃ . It is given by

W̃ = ν · η(2) · σD1 , (1.1)

where σD1 are the middle periods of the meromorphic 2-form on the rigid surface.

We will explicitly compute these periods and the four-point Yukawa couplings

and then perform a non-trivial test of the generalization of rigid special geometry

to 4-folds with several moduli. Recall that for 3-folds, X3, special geometry implies

that the prepotential F of the complex structure moduli space is given in terms of

the periods Z i, Fj of the holomorphic 3-form w.r.t. a symplectic basis of H3(X3,Z)

as F = Z iFi(Z)/2. The three-point Yukawa couplings are then given by C(3) = ∂
3F ,

where derivatives are w.r.t. the special projective coordinates Z i. We will verify that

for 4-folds the analogous structure in the rigid limit is given by W̃ as in (1.1) and by

C(4) ∼ (∂2σD1) · η(2) · (∂2σD1) .

We will make this more precise in the following.

The computation of the four-point Yukawa couplings is done in a global model of

the compact Calabi-Yau 4-fold, a realization of which is given by the resolution of the

Fermat hypersurface of degree 36 in the weighted projective space P5(18, 12, 3, 1, 1, 1),

which according to common convention we will call X36(18, 12, 3, 1, 1, 1). This man-

ifold does not only represent a K3 fibration over P2, but the K3 is itself a fibration

of an algebraic 2-torus over P1. Such elliptically fibered 4-folds are interesting in

themselves as they give rise to phenomenologically more interesting N = 1 super-

symmetric gauge theories in four dimensions when used as compactification manifolds

for F -theory [3].

2. The holomorphic Fayet-Iliopoulos potentials

It is well known that for generic points in the moduli space spanned by the gauge

multiplets the non-abelian gauge group of N = 2 supersymmetric gauge theories

is broken down to the maximal abelian torus. Hence we will have to consider an

effective gauge theory with N = (2, 2) supersymmetry and abelian gauge group

U(1)k in two dimensions, where in our specific example k = 2. The superfields
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appearing in such theories comprise k real vector superfields Va, a = 1, . . . , k, with

component expansion

Va = −
√
2
(
θ−θ̄−vz̄,a + θ+θ̄+vz,a − θ−θ̄+σa − θ+θ̄−σ̄a

)
+

+ i
(
θ2θ̄α̇λ̄α̇,a − θ̄2θαλα,a

)
+
1

2
θ2θ̄2Da ,

r chiral superfields Φi, i = 1, . . . , r, obeying D̄+Φi = D̄−Φi = 0, with component
expansion

Φi = φi +
√
2
(
θ+ψ+,i + θ

−ψ−,i
)
+ θ2Fi + · · · ,

where · · · are total derivative terms, as well as their complex conjugates Φ̄i. As a
novelty of two dimensions there are in addition twisted chiral superfields Σa, a =

1, . . . , k, that satisfy D̄+Σa = D−Σa = 0. Their component expansion reads

Σa =
1√
2
D̄+D−Va

= σa − i
√
2
(
θ+λ̄+,a + θ̄

−λ−,a
)
+
√
2θ+θ̄−

(
Da − ifa

)
+ · · · (2.1)

The most general Lagrangian involving these superfields consists of a generalized

Kähler potential K(Σ, Σ̄,Φ, Φ̄) as well as holomorphic chiral and twisted chiral po-

tentials, W (Φ) and W̃ (Σ).

For generic points in the moduli space the chiral matter fields will be massive,

so that in the infrared, after having them integrated out, we are left with only the

twisted chiral fields as the light degrees of freedom and an effective action involving

K(Σ, Σ̄) and W̃ (Σ). Taking the scaling dimension of Σ to equal 1, the Kähler

potential has to be multiplied by the squared inverse of a dimensionful gauge coupling

and therefore becomes irrelevant in the infrared. The twisted chiral potential on the

other hand generalizes the Fayet-Iliopoulos term

i

2
√
2

∫
dθ+dθ̄− W̃ (Σ)

∣∣∣
θ−=θ̄+=0

+ c.c. =
k∑
a=1

(
−ξa(σ)Da + θa(σ)

2π
fa

)
(2.2)

and gives rise to effective, field dependent, complex FI couplings

τa(σ) ≡ iξa(σ) +
θa(σ)

2π
=
∂W̃ (Σ)

∂Σa

∣∣∣∣∣
θ=θ̄=0

, a = 1, . . . , k . (2.3)

These dimensionless couplings are known [4, 5] to receive logarithmic perturbative

corrections to one-loop order

τa(σ) = τa,0 − 1

2πi

r∑
i=1

Qai log

(√
2

µ

k∑
b=1

Qbiσb

)
+ · · · , (2.4)

where µ is the RG scale and Qai is the charge of the i
th massive chiral matter field

under the ath U(1) factor. In addition we expect non-perturbative corrections.
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A further difference from four dimensional gauge theories is the appearance of a

non-trivial scalar potential

V (σ) ∼
k∑
a=1

|τa(σ)|2 . (2.5)

This potential makes the vacuum energy depend on the theta-angle [6, 4] and implies

that supersymmetry is broken unless τa(σ) = 0 for all a = 1, . . . , k.

3. The twisted chiral potential via string theory

In compactifications of type IIA string theory on a Calabi-Yau 4-fold X, the twisted

chiral superfields Σa of the resulting two dimensional gauge theory are in one-to-

one correspondence with Kähler classes in H1,1
∂̄
(X), while the chiral matter fields

Φi correspond to the complex structure moduli belonging to H
3,1
∂̄
(X). The twisted

chiral potential W̃ (Σ) is holomorphic in the Σ’s and is thus a holomorphic section of

a line bundle over the moduli space of Kähler deformations of X. Since the type II

dilaton resides in a different multiplet, W̃ (Σ) does not receive any quantum space-

time corrections and we can restrict ourselves to string tree level. Nevertheless W̃ (Σ)

suffers from non-perturbative corrections due to embeddings of the worldsheet (P1,

since we are in string tree-level) into X, i.e. from worldsheet instantons. These lead to

quantum corrections of the Kähler moduli space ofX that show up in W̃ (Σ). The way

to compute these corrections is to use mirror symmetry, which allows us to consider

instead type IIA string theory on the mirror manifold X∗, while the Kähler moduli
space of X is mapped to the complex structure moduli space of X∗ (isomorphic to
H3,1
∂̄
(X∗)) and vice versa. Here the twisted chiral potential is a holomorphic section

of a line bundle over the moduli space of complex structure deformations of X∗; as
such, it receives no quantum corrections at all.

As was done in [2], we can identify the tree-level correlator we have to compute

in order to obtain W̃ (Σ) by considering the following tree-level Chern-Simons term

in ten dimensional type IIA string theory

LCS = B ∧ F4 ∧ F4 ,
where F4 is the field strength of the RR 3-form field of type IIA theory. We expand

the above forms in topological bases {O(i)ai } of H i,i∂̄ (X) as

B =
h1,1∑
a=1

σaO(1)a , F4 =
h̃2,2∑
b=1

νbO(2)b +
h1,1∑
a=1

Fa ∧ O(1)a , (3.1)

where Fa is the field strength of the twisted chiral superfield, related to the component

fa in the expansion (2.1) of Σa by Fa = fad
2x, with d2x the volume form on the

complement of X. Actually the expansion in the space H2,2
∂̄
(X) is restricted to its

primitive subspace, whose dimension we denote by h̃2,2. Novel to 4-folds as compared
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to 3-folds is the rôle played by elements O(2)b and their corresponding coefficients νb.
Denoting the dual cycles in H4(X,Z) by {γb}, we have∫

γb

F4 = νb , (3.2)

and it is known [7] that at the quantum level these 4-fluxes have to be integers (or

possibly half-integers if p1/4 is not an integral class). Using the above expansion we

obtain

〈LCS〉10d ∼ σanbνc〈O(1)a O(1)b O(2)c 〉X , (3.3)

where nb = 1/(2π)
∫
Fb is the first Chern class of the b

th U(1) bundle, i.e. the instanton

number of the bth gauge factor. Note that the correlator on the right hand side is a

Yukawa coupling in a topological sigma model, known as the A model [8], which is

obtained by twisting the superconformal sigma model on the worldsheet with target

space X. The algebra of observables of this model is identified with the quantum

deformation of the classical intersection algebra on A = ⊕dp=0Hp(X,∧pT ∗X), where
d is the complex dimension of X. Another twist leads to the B model, whose algebra

of observables is the algebra on B = ⊕dp=0Hp(X,∧pTX) ∼= ⊕dp=0Hp(X,∧d−pT ∗X).
Mirror symmetry relates the A and B models to each other on a pair of mirror

manifolds . It was shown in [9, 10, 11] how to compute the Frobenius subalgebra of

A corresponding to the primitive part of the vertical cohomology of X around the
large radius point, which is entirely determined in terms of the two- and three-point

functions. For the case of several moduli, the authors of [10, 11] found in particular

that the couplings C
(1,1,d−2)
a,b,c : H1,1

∂̄
(X) × H1,1

∂̄
(X) × Hd−2,d−2

∂̄
(X) → C are given by

the period integrals of the holomorphic d-form on the mirror X∗ as

C
(1,1,d−2)
a,b,c = ∂ta∂tbΠ

(2)
d η

(2)
dc .

Here ta are the periods linear in logarithms
1 and Π

(2)
d are the quadratic ones, both in

a gauge such that the unique series solution for the periods around the large complex

structure point is equal to 1. On the other hand, η
(2)
dc are purely topological two-point

functions. They define a metric on the primitive subspace of H2,2
∂̄
(X) by the cup

product pairing on a fixed topological basis {O(2)a } of this subspace as

η
(2)
ab = 〈O(2)a ,O(2)b 〉 =

∫
X
O(2)a ∧O(2)b . (3.4)

Via mirror symmetry it coincides with the analogous cup product pairing between B

model observables on the mirror X∗, which are related to the above basis elements
O(2)a by the mirror map. Hence η(2) is a symmetric, invertible h̃2,2× h̃2,2 matrix with
integer entries. We denote its inverse by η(2).
1These are the flat coordinates on the complex structure moduli space of X∗, i.e. the ones in

which the Gauss-Manin connection on the bundle B ∼= Hd(X∗,C) over this moduli space is flat.
Under the mirror map they become the flat coordinates on the moduli space of the complexified

Kähler structure of X .
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Our situation differs from that above in that we are interested in the point of

the string moduli space where an enhanced gauge symmetry arises, which is not

the large radius point. Furthermore we will take the field theory limit in which

gravitational and stringy modes decouple. In this limit the mirror X∗ turns into a
complex surface Wrig, which we will call the local rigid surface. The attribute local

refers to the fact that it is determined by the local singularity structure of X, i.e. the

fibration of exceptional divisors of the resolved K3 over the base P2. In particular

the number of twisted chiral superfields that do not decouple in this limit is given

by the number k of such exceptional divisors. Moreover, as was established in [12]

for 3-folds, there exists a map f : H4(X
∗,Z) → H2(Wrig,Z), such that the subset

of periods of the holomorphic 4-form Ω(4,0) on X
∗ that form a closed monodromy

problem by themselves is given in the rigid limit by periods of a meromorphic 2-form

λ on Wrig as
∫
γ Ω(4,0)

∣∣∣
rigid
=
∫
f(γ) λ. These periods give the scalar components of

the twisted chiral superfields not decoupling in the rigid limit and of their magnetic

duals. In [2] it turned out that in the resulting U(1)k gauge theory the rôle of the

flat coordinates ta is played by the k series solutions σa of the periods of λ and

that the Π
(2)
d are replaced by the k logarithmic solutions σD1,d. The latter arise as

periods over cycles that are the image under the map f of 4-cycles in X∗, which are
dual to observables of the B model on X∗ that correspond, via the mirror map, to
elements of the primitive subspace of H2,2

∂̄
(X). Identifying the field theory limit of

the exponential of (3.3) with ∼ exp(2πiτb(σ)nb) we are hence led to

∂σa∂σbW̃ (σ) ∼
∑
c

νc 〈O(1)a O(1)b O(2)c 〉X
∣∣∣
rigid
∼∑
c,d

νc∂σa∂σbσD1,d(σ) η
(2)
dc (3.5)

or (modulo an additive constant and linear terms in σ)

W̃ (σ) ∼∑
c,d

νc η
(2)
cd σD1,d(σ) . (3.6)

The indices a, b, c, d = 1, . . . , k correspond to the k indices in {1, . . . , h1,1(X)} and
{1, . . . , h̃2,2(X)}, respectively, which are related to periods surviving the field theory
limit. Furthermore we kept the symbol η(2) for the resulting non-degenerate k × k
submatrix of (3.4).

In view of (2.3) and (3.6) the Fayet-Iliopoulos couplings are given (modulo a

possible additive constant) by

τa(σ) ∼
k∑

c,d=1

νc η
(2)
cd

∂σD1,d

∂σa
≡

k∑
c,d=1

νc η
(2)
cd τ̂ad(σ) , a = 1, . . . , k . (3.7)

The objects τ̂ad = ∂σaσD1,d are very reminiscent of the gauge couplings τij = ∂aiaD,j
of the N = 2 supersymmetric SU(k+1) gauge theory in four dimensions. In that case

the rigid limit of the mirror Calabi-Yau 3-fold is a genus k Riemann surface S, whose

6
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k holomorphic 1-forms ωi stem from a meromorphic 1-form λSW as derivatives w.r.t.

the k moduli of the Coulomb branch. Its 2k independent 1-cycles can be chosen

to form a symplectic basis {αj, βj}kj=1 of H1(S,Z) such that the gauge couplings
are given in terms of the k × k parts Aij =

∫
αj
ωi = ∂ui+1

∫
αj
λSW = ∂ui+1aj and

Bij =
∫
βj
ωi = ∂ui+1

∫
βj
λSW = ∂ui+1aD,j of the period matrix as τij = (A

−1B)ij.
In complete analogy, the local rigid surface Wrig, which arises from the Calabi-

Yau 4-fold we consider, is furnished with k holomorphic 2-forms ωa stemming from a

meromorphic 2-form λ as derivatives w.r.t. the k moduli. However, for even complex

dimensional manifolds the vanishing of
∫
Ω ∧ Ω implies quadratic algebraic depen-

dences between the periods of the holomorphic form Ω. We therefore expect to find

3k independent 2-cycles {αj, βj, γj}kj=1 in H2(Wrig,Z), such that the αs intersect with
γs and the βs only among themselves. Their k × 3k period matrix then comprises
the k × k parts

Aab =
∫
αb

ωa = ∂ua+1

∫
αb

λ = ∂ua+1σb ,

Bab =
∫
βb

ωa = ∂ua+1

∫
βb

λ = ∂ua+1σD1,b ,

Cab =
∫
γb

ωa = ∂ua+1

∫
γb

λ = ∂ua+1σD2,b , (3.8)

such that the couplings τ̂ab, as defined in (3.7), are given by τ̂ab = (A
−1B)ab. Whereas

the σb are series in the moduli, σD1,b and σD2,b are logarithmic and double logarith-

mic, respectively, and this is precisely what accounts for the logarithmic one-loop

correction in (2.4).

In the following we will compute the periods σa, σD1,a and σD2,a using geometric

engineering and in a subsequent subsection 3.2 the four-point Yukawa couplings.

This will allow us to exhibit the analogue of rigid special geometry for 4-folds.

3.1 Geometric engineering

The relevant part of the 4-fold geometry is most efficiently described with the help

of toric geometry. Doing so, the Mori vectors describing the two intersecting P1’s

fibered over a base P2 (together with the canonical line bundle that will be irrelevant

for the purpose of this section) are

l(1) = (1,−2, 1, 0, 0, 0, 0) ,
l(2) = (0, 1,−2, 1, 0, 0, 0) ,
l(3) = (−3, 0, 0, 0, 1, 1, 1) . (3.9)

The local mirror X∗loc is then the complex surface given by

X∗loc =
{
0 = P (y) =

7∑
i=1

aiyi

}
, (3.10)
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where the variables {yi} are projective and subject to the constraints 1 = ∏7i=1 yl(j)ii ,
j = 1, 2, 3. A solution to these is given by

(y1, . . . , y7) =
(
s3, s2t, st2, t3, s2z, s2w,

s5

zw

)
with [s, t, z, w] ∈ P3, such that P is a homogeneous Laurent polynomial of degree 3

P = a1s
3 + a2s

2t+ a3st
2 + a4t

3 + a5s
2z + a6s

2w + a7
s5

zw
. (3.11)

In terms of the algebraic coordinates a, b, c on the moduli space of complex structure

deformations of X∗loc, where

a =
a1a3
a22

, b =
a2a4
a23

, c =
a5a6a7
a31

, (3.12)

the discriminant of X∗loc reads

∆̃ = abc∆ = abc((∆cl)
3 + 27a3c q(a, b, c)) , (3.13)

with q(a, b, c) a polynomial and

∆cl = −1 + 4a+ 4b− 18ab+ 27a2b2 .

This discriminant is itself singular at the point (a, b, c) = (1/3, 1/3, 0) and expanding

around this singularity as

a =
1

3
−
(
1

3

)2/3
ε2u , b =

1

3
−
(
1

3

)2/3
ε2u+ 3ε3v , c = ε9Λ9 , (3.14)

we find to lowest order in ε

1

ε18
∆ = −(4u3 − 27v2)3 − 162Λ9v(4u3 + 9v2) + 27Λ18 +O(ε) . (3.15)

Note that whereas for 3-folds the classical discriminant splits quadratically, for 4-

folds we have a cubic splitting [2]. In order to find the correct variables on the field

theory moduli space, we blow up the singular point (a, b, c) = (1/3, 1/3, 0) until we

get divisors with only normal crossings [13]. For one particular choice of coordinate

patch this leads to the following variables

z1 = b− a = 3ε3v ,
z2 =

(a− 1
3
)3

(b− a)2 = −
1

81

u3

v2
,

z3 =
c

(b− a)3 =
1

27

Λ9

v3
. (3.16)
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The sections σ, σD1, σD2 obey a Picard-Fuchs system of regular singular differential

equations. In terms of the algebraic coordinates (a, b, c) this system takes the form

L1 = (θa − 3θc)(θa − 2θb)− a(−2θa + θb)(−2θa + θb − 1) ,
L2 = θb(−2θa + θb)− b(θa − 2θb)(θa − 2θb − 1) ,
L3 = θ3c − c(θa − 3θc)(θa − 3θc − 1)(θa − 3θc − 2) , (3.17)

where θa = a∂a, etc. After transforming to the variables z1, z2, z3, rescaling the

periods πold = επnew =
√
α′πnew, where ε ∼ z

1/3
1 z

1/9
3 , and taking the field theory limit

ε→ 0, we are left with two independent differential operators

D1 = 1
27
θ2

(
θ2 − 1

3

)
+ z2

(
2

3
θ2 + θ3

)(
2

3
θ2 + θ3 +

1

3

)
,

D2 = −
(
θ3 +

1

9

)3
+ z3

(
2

3
θ2 + θ3

)(
2

3
θ2 + θ3 +

1

3

)(
2

3
θ2 + θ3 +

2

3

)
, (3.18)

where θi = zi∂zi . Solutions to these are easily found, using the Frobenius method,

by making the ansatz

σ̃(s, t; z2, z3) =
∑
n,m≥0

c(n,m; s, t)zn+s2 zm+t3 . (3.19)

This determines the indices to be

(s, t) ∈
{(
0,−1
9

)
,

(
1

3
,−1
9

)}
(3.20)

and, remembering that we chose the twisted chiral fields to have scaling dimension

1, we fix the first coefficient to be c(0, 0; s, t) = Λ. Recursion relations then imply

that the general coefficient is given by

c(n,m; s, t) = Λ

{
n∏
i=1

[
(−27)

(
2

3
(i− 1 + s) + t

)(
2

3
(i− 1 + s) + t+ 1

3

)]}
×

×
(
2
3
(n+ s) + t

)
m

(
2
3
(n+ s) + t+ 1

3

)
m

(
2
3
(n+ s) + t+ 2

3

)
m(

s+ 1
)
n

(
s+ 2

3

)
n

[(
t+ 10

9

)
m

]3 , (3.21)

where we have used the Pochhammer symbol (a)m = Γ(a+m)/Γ(a) =
∏m−1
i=0 (a+ i).

Since the derivatives w.r.t. s and t commute with D1 and D2 and since the first two
derivatives w.r.t. t of the indicial equations vanish at our given pairs of indices, we

find the following set of solutions in a neighbourhood of (z2, z3) ∼ (0, 0): two series
solutions

σ̃i(z2, z3) = σ̃(s, t; z2, z3)|(s,t)i , (3.22)

two logarithmic solutions

σ̃D1,i(z2, z3) = ∂t σ̃(s, t; z2, z3)|(s,t)i
= log(z3)σ̃i(z2, z3) +

∑
n,m≥0

(
∂tc(n,m; s, t)

)
zn+s2 zm+t3

∣∣∣
(s,t)i

(3.23)
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and two double-logarithmic solutions

σ̃D2,i(z2, z3) = ∂
2
t σ̃(s, t; z2, z3)

∣∣∣
(s,t)i

. (3.24)

The expansions for the series solutions read

σ̃1(z2, z3) =
Λ

z
1/9
3

(
1 + z2 − 10

729
z3 − 4z22 +

440

729
z2z3 − 1540

531441
z23 +

77

3
z32−

− 10472
729

z22z3 +
261800

531441
z2z

2
3 −

12042800

10460353203
z33 + · · ·

)

σ̃2(z2, z3) =
Λz
1/3
2

z
1/9
3

(
1− z2 + 28

729
z3 + 5z

2
2 −
910

729
z2z3 +

7280

531441
z23 −

104

3
z32+

+
19760

729
z22z3 −

760760

531441
z2z

2
3 +

76076000

10460353203
z33 + · · ·

)
(3.25)

and for the logarithmic solutions as functions of the series solutions

σ̃D1,1(σ̃1, σ̃2) = 9 σ̃1 log
(
Λ

σ̃1

)
+
27σ̃92
8σ̃81

− 27σ̃
6
2

10σ̃51
+
9σ̃32
2σ̃21
+
55Λ9σ̃32
27σ̃111

−

− 11Λ
9

243σ̃81
− 2443Λ18

354294σ̃171
+ · · ·

σ̃D1,2(σ̃1, σ̃2) = 9 σ̃2 log
(
Λ

σ̃1

)
− 27σ̃

10
2

10σ̃91
+
27σ̃72
14σ̃61

− 9σ̃
4
2

4σ̃31
− 5Λ

9σ̃42
σ̃121

+

+
59Λ9σ̃2
243σ̃91

+
12157Λ18σ̃2
177147σ̃181

+ · · · . (3.26)

These sections have a geometric interpretation as period integrals of a meromorphic

2-form λ over 2-cycles in the rigid surface, which arises from the local mirror in

the field theory limit and which generalizes the Seiberg-Witten curve arising from

3-folds. The physical set of periods σb, σD1,b, σD2,b is one that corresponds to an

integral basis of 2-cycles with Weyl-invariant intersection form such that the series

solutions satisfy the Casimir relations

σ21(u, v) + σ
2
2(u, v)− σ1(u, v)σ2(u, v) = u+ · · · ,

σ1(u, v)σ2(u, v)[σ1(u, v)− σ2(u, v)] = v + · · · , (3.27)

where · · · indicate corrections that vanish in the classical limit (which in our coor-
dinate patch (3.16) is at v → ∞). Using the notation σ(0,b) ≡ σb, σ(1,b) ≡ σD1,b
and σ(2,b) ≡ σD2,b, such a set of periods is obtained from the above solutions of the

Picard-Fuchs equations by the linear transformation

σ(a,b) = ca
2∑
c=1

Mbcσ̃(a,c) , a = 0, 1, 2 (3.28)
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with

M =

(−(1− i√3)/(2 31/3) −1
−1/(31/3) (−1)2/3

)
(3.29)

and c0 = 1, c1 = i/6π and c2 = −1/36π2. The monodromy around v ∼ ∞ for
constant u then acts on the period vector (σ1, σ2, σD1,1, σD1,2, σD2,1, σD2,2)

t as matrix

multiplication by2

M (∞)
v =


N 0 0

N N 0

N 2N N

 where N =

(−1 1
−1 0

)
. (3.30)

Note that N3 is the identity matrix.

For our specific example we can easily write down the equation for the local rigid

surface and the meromorphic 2-form λ. After shifting the t-variable such that the

quadratic term in t disappears from (3.11), and using (3.12) and (3.14), the local

rigid surface takes the form

Wrig =

{
z + w +

Λ9

zw
+ PA2(x; u, v) = 0

}
,

with PA2(x; u, v) = x3 − ux − v the simple singularity of type A2. Equivalently we
can take the polynomial form

frig = z
2w + zw2 + Λ9 + zwPA2(x; u, v) . (3.31)

As for the Seiberg-Witten curve, this rigid surface is no longer a Calabi-Yau space.

Rather, we expect to find two holomorphic 2-forms that are derivatives of λ w.r.t.

u and v, respectively. There are curves in the field theory moduli space (spanned

by u and v) above which {frig(w, x, z) = 0} is a singular space. Away from such
subvarieties, i.e. where frig defines a smooth surface, we can use the Poincaré residue

map to construct a holomorphic 2-form. Indeed, whenever we have ∂wfrig|{frig=0} ≡
[−4Λ9z + z2(z + PA2)2]1/2 6= 0 a suitable meromorphic 2-form is given by

λ = −1
z
log

[
2z(z + PA2) + 2

√
−4Λ9z + z2(z + PA2)2

]
dz ∧ dx , (3.32)

such that

ω1 = ∂vλ =
dz ∧ dx√

−4Λ9z + z2(z + PA2)2
=
dz ∧ dx
∂wfrig

2Actually the blocks below the diagonal could be altered by a change of homology basis, which

adds series solutions to logarithmic ones and series and logarithmic solutions to double logarithmic

ones and would still meet our requirements. It is however important to notice that such a change

of basis leaves the relations (3.5) and (3.38) invariant and reflects the indeterminacy mentioned

above (3.6).
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and

ω2 = ∂uλ =
x dz ∧ dx√

−4Λ9z + z2(z + PA2)2
=
x dz ∧ dx
∂wfrig

are two holomorphic 2-forms, as we had expected. In the case ∂wfrig|{frig=0} = 0, but
∂zfrig|{frig=0} ≡ [−4Λ9w + w2(w + PA2)2]

1/2 6= 0, we just have to trade z for w in the
above forms.

3.2 The Yukawa couplings and rigid special geometry

In (3.5) we had found that the second derivatives of the twisted chiral potential

are proportional to linear combinations of three-point Yukawa couplings of the A

model with target space the Calabi-Yau 4-fold X. These couplings in turn were

identified with second derivatives of the logarithmic solutions to the period integrals

of a meromorphic 2-form over 2-cycles in the rigid surface. In the previous subsection

we used geometric engineering and local mirror symmetry to compute these periods.

The purpose of this subsection is to compute the four-point Yukawa couplings directly

from the Picard-Fuchs system. This allows us to exhibit the structure that generalizes

rigid special geometry to 4-folds in an example with two moduli.

The 4-fold we used above is a non-compact toric Calabi-Yau manifold, more

precisely the total space of a canonical line bundle. This non-compactness did not

bother us as long as we were only interested in properties of the rigid local mir-

ror since, for these, only the compact base space of the bundle was relevant. On

the other hand, since the ring structure on the cohomology of a non-compact man-

ifold is not well defined, we need to use a global model of the compact Calabi-Yau

4-fold X in order to compute the Yukawa couplings (taking the field theory limit

not until the end). As already alluded to in the introduction, such a model is fur-

nished, for example, by the Fermat hypersurface of degree 36 in the resolution of the

weighted projective space P5(18, 12, 3, 1, 1, 1), which we called X36(18, 12, 3, 1, 1, 1).

This space is a fibration over P2 with fiber a K3 surface given as X12(6, 4, 1, 1) that

is itself a fibration over P1 with fiber this time a 2-torus X6(3, 2, 1). Note that this

is the same geometry as that of X24(12, 8, 2, 1, 1) [14, 15], except that the base P
1 of

that K3-fibration has been traded for a P2 base. Since it is the family of K3-fibers

that determines the gauge symmetries, most of the analysis is similar to the 3-fold

case [16].

The weighted projective space P5(18, 12, 3, 1, 1, 1) is a toric variety whose fan

comprises the one-dimensional cones

ν1 = (1, 0, 0, 0, 0) , ν2 = (0, 1, 0, 0, 0) ,

ν3 = (0, 0, 1, 0, 0) , ν4 = (0, 0, 0, 1, 0) ,

ν5 = (0, 0, 0, 0, 1) , ν6 = (−18,−12,−3,−1,−1) .
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They represent vertices of a reflexive polyhedron ∆, which contains in addition the

origin ν0 as the only interior point, as well as the two integral vertices ν7 = (ν4+ν5+

ν6)/3 and ν8 = (3ν3+ ν4 + ν5 + ν6)/6. The latter represent exceptional divisors that

are introduced in the process of resolving the quotient singularities of the weighted

projective space. The enlarged vertices, ν̄i = (1, νi) ∈ Z6, satisfy three independent
relations 0 =

∑8
i=0 l

(k)
i ν̄i, k = 1, 2, 3, which define the Mori vectors

l(1) = (−6, 3, 2, 0, 0, 0, 0, 0, 1) ,
l(2) = (0, 0, 0, 0, 1, 1, 1,−3, 0) ,
l(3) = (0, 0, 0, 1, 0, 0, 0, 1,−2) . (3.33)

Applying standard techniques [16, 17, 18, 19] it follows that the mirror X∗ is again
a hypersurface in the same weighted projective space P5(18, 12, 3, 1, 1, 1), given by

p = a0z1z2z3z4z5z6 + a1z
2
1 + a2z

3
2 + a3z

12
3 + a4z

36
4 + a5z

36
5 + a6z

36
6

+ a7(z4z5z6)
12 + a8(z3z4z5z6)

6 . (3.34)

In terms of the algebraic coordinates a = a31a
2
2a8/a

6
0, b = a4a5a6/a

3
7, c = a3a7/a

2
8 on

the moduli space of complex structure deformations of X∗ the Picard-Fuchs system
for the periods πi(a, b, c) of the holomorphic 4-form on X

∗ reads

D1 = θa(θa − 2θc)− 12a(6θa + 1)(6θa + 5) ,
D2 = θ3b − b(−3θb + θc)(−3θb + θc − 1)(−3θb + θc − 2) ,
D3 = θc(−3θb + θc)− c(θa − 2θc)(θa − 2θc − 1) . (3.35)

From the analysis of the X24(12, 8, 2, 1, 1) model in [14] we can furthermore infer that

the point of SU(3) gauge symmetry enhancement is located in the string moduli space

in rescaled variables (x, y, z) = (432a, 27b, 4c) at (x, y, z) = (∞, 0, 1). Expanding
around this point as

x =
1

2ε3u3/2
, y = 3

√
3 ε9Λ9 , z = 1− 2ε3u3/2 − 3√3 ε3v , (3.36)

we indeed find the discriminant of (3.35) to coincide with (3.15) at lowest order and

up to an irrelevant factor.

Next, we compute the four-point Yukawa couplings following [19]. This means

that we first compute the four-point functions of the B model on X∗ directly from
the Picard-Fuchs system (3.35), transform them to the field theory variables and to

the correct gauge and take the rigid limit. Whereas in [19] this gauge was chosen

such that the unique fundamental period around the large complex structure point

was scaled to 1, in our situation it is fixed by the requirement that the Picard-Fuchs

system (3.35), when transformed to this gauge, reduces in the field theory limit to

the rigid system (3.18). The rigid limit of the A model four-point Yukawa couplings
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is then obtained3 by going to the flat coordinates σi. As has already been mentioned,

the four-point couplings are entirely determined by the two- and three-point functions

as

Cσiσjσkσl =
1

4!

∑
π∈S4

h̃2,2∑
e,f=1

C(1,1,2)σπ(i),σπ(j),e
ηef(2) C

(1,1,2)
σπ(k),σπ(l),f

. (3.37)

Our identification of the A model couplings C
(1,1,2)
i,j,k

∣∣∣
rigid
∼ ∂σi∂σjσD1,hη

(2)
hk hence leads

to the following relations

Cσiσjσkσl

∣∣∣
rigid
=
const

4!

∑
π∈S4

∑
e,f,g,h

(
∂σπ(i)∂σπ(j)σD1,g η

(2)
ge

)
ηef(2)

(
∂σπ(k)∂σπ(l)σD1,h η

(2)
hf

)
=
const

4!

∑
π∈S4

∑
e,f

(
∂σπ(i)∂σπ(j)σD1,e

)
η
(2)
ef

(
∂σπ(k)∂σπ(l)σD1,f

)
. (3.38)

Here η(2) is the non-degenerate submatrix of the intersection form (3.4) on the prim-

itive subspace of H2,2
∂̄
(X) corresponding to periods that survive the rigid limit. It

is a symmetric, invertible 2 × 2 matrix with integer coefficients, whose inverse we
denote by η(2). The constant of proportionality appearing in (3.38) is of course the

same for all couplings. Having calculated the four-point functions and the periods,

we can indeed match the left and right sides of (3.38), which fixes the constant of

proportionality and moreover determines the intersection form η(2) to be the Cartan

matrix of SU(3)

η(2) =

(
2 −1
−1 2

)
. (3.39)

Relations (3.6) and (3.38) represent the analogue of rigid special geometry for 4-folds

with several moduli, in the same sense that special geometry for 3-folds manifests

itself in the relations F = Z iFi(Z)/2 for the prepotential F , where Z
i and Fi are

periods of the holomorphic 3-form w.r.t. a symplectic basis of H3(X3,Z) and Cijk =

∂i∂j∂kF for the three-point Yukawa couplings, where the derivatives are w.r.t. the

special projective coordinates Z i. They are the rigid limit of the structure found

in [11] for the non-rigid case.

4. Conclusion

We have investigated the field theory limit of type IIA string compactification on a

Calabi-Yau 4-fold whose relevant part for the purpose of extracting field theoretic

properties consists of two intersecting P1’s fibered over a common base P2. The

rigid limit of the local mirror is a complex surface that generalizes the Seiberg-

Witten curve and on which there exist two holomorphic 2-forms that stem from the

same meromorphic 2-form as derivatives w.r.t. the two moduli.
3These computations are straightforward but somehow unhandy. Therefore we refer to the

appendix for details and present the verification of (3.38) only for one particular four-point coupling.
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The effective field theory that is the appropriate description in the infrared is

an N = (2, 2) supersymmetric gauge theory in two dimensions with abelian gauge

group U(1)2. Its twisted chiral potential is of the form W̃ = ν · η(2) · σD1, where ν
is a vector of 4-fluxes, η(2) an intersection form and σD1 a period vector. By explicit

computation of the period integrals as solutions of the Picard-Fuchs equations and

of the four-point Yukawa couplings we were able to exhibit the generalization of rigid

special geometry to 4-folds in a non-trivial example with two moduli. This structure

manifests itself in the relation C(4) = (∂
2σD1) · η(2) · (∂2σD1) between these four-point

functions and derivatives of the middle periods w.r.t. flat coordinates.

We briefly mention a number of conclusions about two-dimensional gauge theo-

ries as derived from type IIA compactifications on 4-folds, which have already been

discussed in [2] but apply to our example as well. The major novelty of 4-folds is

the rôle played by the primitive subspace of H2,2
∂̄
(X) and its dual 4-cycles, respec-

tively. They lead to new discrete moduli of the gauge theories in two dimensions, the

4-fluxes. If they all vanish, the theory just exhibits a non-trivial Kähler potential.

But once the 4-fluxes are switched on, the structure of the theory becomes richer, as

a twisted chiral potential, FI couplings and a scalar potential are generated. Gener-

ically the last seems to break supersymmetry, as was the case in the one-modulus

example of [2]. The coefficient of the logarithmic term in the FI couplings can fur-

thermore be interpreted as indicating the presence of massive chiral matter we had

not accounted for in the geometrical set-up. Finally, the choice of base is not unam-

biguous, in contrast to the case of 3-folds, but the instanton series depends on this

choice. We do not know how to interpret or resolve this ambiguity.
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A. The four-point Yukawa couplings

In this appendix we discuss some details of the steps occuring in our computation

of the rigid limit of the four-point Yukawa couplings, the general idea of which

has already been explained above (3.37). Subsequently we present the verification

of (3.38) for one particular coupling.

First we compute4 the four-point Yukawa couplings of the B model on X∗, which
is the mirror to X36(18, 12, 3, 1, 1, 1). We write them in the rescaled algebraic vari-

ables (x, y, z) and in order to shorten the exposition we introduce the following

4These computations were performed with the help of the program Lop4f.m, written by Albrecht

Klemm.
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abbreviations for the components of the discriminant of (3.35)

∆ = (1 + y)((−1 + z)3 + yz3)((−(−1 + x)2 + x2z)3 + x6yz3) ≡ ∆1∆2∆3 .

Furthermore C(4,0,0) stands for Cxxxx, C
(2,1,1) for Cxxyz and so forth.

C(4,0,0) =
(−1 + x)2
x4∆3

, C(3,0,1) = −(−1 + x)
3

2x3z∆3
,

C(2,0,2) =
(−1 + x)4
4x2z2∆3

, C(1,0,3) = −(−1 + x)
5

8xz3∆3
,

C(0,0,4) = −(−1 + 2x)
16z3∆2∆3

[
3− 3z + (1 + y)z2 − 6x3

(
2− 3z + (1 + y)z2

)
−

− 4x
(
3− 3z + (1 + y)z2

)
+ 3x4

(
1− 2z + (1 + y)z2

)
+

+ x2
(
18− 21z + 7(1 + y)z2

)]
,

C(3,1,0) =
(−1 + x)

(
− 1 + 2x+ x2(−1 + z)

)
6x3y∆3

,

C(2,1,1) = − (−1 + x)
2
(
− 1 + 2x+ x2(−1 + z)

)
12x2yz∆3

,

C(1,1,2) =
(−1 + x)3

(
− 1 + 2x+ x2(−1 + z)

)
24xyz2∆3

,

C(0,1,3) =
(−1 + 2x)
48yz2∆2∆3

[
− 2 + 3z − (1 + y)z2 + 4x

(
2− 3z + (1 + y)z2

)
−

− 2x3
(
− 4 + 9z − 3(2 + y)z2 + (1 + y)z3

)
+

+ x2
(
− 12 + 21z − (10 + 7y)z2 + (1 + y)z3

)
+

+ x4
(
− 2 + 6z − 3(2 + y)z2 + 2(1 + y)z3

)]
,

C(2,2,0) =

(
− 1 + 2x+ x2(−1 + z)

)2
36x2y2∆3

,

C(1,2,1) = −(−1 + x)
(
− 1 + 2x+ x2(−1 + z)

)2
72xy2z∆3

,

C(0,2,2) = − (−1 + 2x)
144y2z∆2∆3

[
1− 2z + (1 + y)z2 − 4x

(
1− 2z + (1 + y)z2

)
+

+ x2
(
6− 14z + (10 + 7y)z2 − 2(1 + y)z3

)
+

+ x4(−1 + z)
(
− 1 + 3z − 3(1 + y)z2 + (1 + y)z3

)
+

+ 2x3
(
− 2 + 6z − 3(2 + y)z2 + 2(1 + y)z3

)]
,

C(1,3,0) = −(−1 + x)
(
1− 4x− 3x2(−2 + z) + x3(−4 + 6z) + x4(1− 3z + 3z2)

)
216xy2∆1∆3

,
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C(0,3,1) = − (−1 + 2x)
(
1− 4x+ x2(7− 3z) + 6x3(−1 + z) + 3x4(−1 + z)2

)
z2

432y2∆2∆3
,

C(0,4,0) = − (−1 + 2x)z
1296y3∆1∆2∆3

[
− 1 + 3z + (−2 + y)z2 −
− 4x

(
− 1 + 3z + (−2 + y)z2

)
+

+ x2
(
− 6 + 21z + (−20 + 7y)z2 + (5− 4y)z3

)
+

+ 2x3
(
2− 9z − 3(−4 + y)z2 + (−5 + 4y)z3

)
+

+ x4
(
− 1 + 6z + 3(−4 + y)z2 − 2(−5 + 4y)z3 +
+ (−3 + 6y)z4

)]
.

Using the transformation property

Cwiwjwkwl =
∑
m,n,p,q

∂zm
∂wi

∂zn
∂wj

∂zp
∂wk

∂zq
∂wl

Czmznzpzq

of the four-point Yukawa couplings and (3.36) we transform the above couplings to

the field theory variables (u, v). We make sure that we use corresponding gauges for

the holomorphic 4-forms in the local and global construction by rescaling the global

periods by a holomorphic function 1/f(u, v), such that the Picard-Fuchs system

(3.35), when transformed to this gauge, reduces in the field theory limit to the

rigid system (3.18). This implies that we have to rescale the Yukawa couplings by

1/f 2(u, v) after which we can take the rigid limit.

Next we have to change from variables (u, v) to (σ1, σ2). Since we are going to

compare leading terms in series expansions, it is easiest to work with σ̃ and σ̃D1,

which are given in (3.25) and (3.26) and are related to the true σ and σD1 by the

transformations (3.28), and to express everything in the variables (z2, z3) as given

in (3.16). For (3.38) this implies that we replace (σ, σD1) by (σ̃, σ̃D1) whereby η
(2)

gets transformed to η̃(2) = c21M
tη(2)M with c1 and M as in (3.29).

Let us verify (3.38) for Cσ̃1σ̃1σ̃1σ̃1 . Performing the above mentioned steps we find

(−1)7/6 8
3
Cσ̃1σ̃1σ̃1σ̃1 = z

1/3
2 z

2/9
3

(
− 162 + 1620z2 − 4184

9
z3 − 18306z22 +

242000

9
z2z3 −

− 4584286
6561

z23 + 212652z
3
2 −
7880872

9
z22z3 +

+
670041316

6561
z2z

2
3 −
117589832812

129140163
z33 + · · ·

)
.

From (3.25) and (3.26) we have

∂2σ̃1 σ̃D1,1 = z
1/9
3

(
− 9 + 36z2 − 274

81
z3 − 315z22 +

25252

81
z2z3 − 152633

59049
z23 +

+ 3120z32 −
890726

81
z22z3 +

42870113

59049
z2z

2
3 −
2555818340

1162261467
z33 + · · ·

)
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and

∂2σ̃1 σ̃D1,2 = z
1/3
2 z

1/9
3

(
9− 54z2 − 202

9
z3 + 486z

2
2 − 1072z2z3 +

547126

19683
z23 − 4860z32 +

+ 30524z22z3 −
23885459

6561
z2z

2
3 +
1355705192

43046721
z33 + · · ·

)
.

Thus (3.38) holds for Cσ̃1σ̃1σ̃1σ̃1 if

η̃(2) =

(
0 1

1 0

)
.

This implies the validity of (3.38) for Cσ1σ1σ1σ1 with η
(2) the Cartan matrix of SU(3)

as stated in (3.39). Using the same method one easily checks that the same constant

of proportionality and the same intersection form η(2) work for all four-point Yukawa

couplings, thus verifying (3.38).

References

[1] S. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories,

Nucl. Phys. B 497 (1997) 173 [hep-th/9609239].

[2] W. Lerche, Fayet-Iliopoulos potentials from four-folds, J. High Energy Phys. 11 (1997)

004 [hep-th/9709146].

[3] C. Vafa, Evidence for F theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022];

D. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds I,

Nucl. Phys. B 473 (1996) 74 [hep-th/9602114]; Compactifications of F theory on

Calabi-Yau threefolds II, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161].

[4] E. Witten, Phases of N=2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042].

[5] D. Morrison and M. Plesser, Summing the instantons: Quantum cohomology and mir-

ror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279, [hep-th/9412236].

[6] S. Coleman, More on the massive Schwinger model, Ann. Phys. (NY) 101 (1976) 239.

[7] E. Witten, On flux quantization in M theory and the effective action, J. Geom. Phys.

22 (1997) 1 [hep-th/9609122].

[8] E. Witten, Mirror manifolds and topological field theory, in Essays on mirror mani-

folds, ed. S.-T. Yau, International Press, Hong Kong, 1992, p. 120 [hep-th/9112056].

[9] B. Greene, D. Morrison and M. Plesser, Mirror manifolds in higher dimensions,

Comm. Math. Phys. 173 (1995) 559 [hep-th/9402119].

18

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB497%2C173
http://xxx.lanl.gov/abs/hep-th/9609239
http://jhep.sissa.it/stdsearch?paper=11%281997%29004
http://jhep.sissa.it/stdsearch?paper=11%281997%29004
http://xxx.lanl.gov/abs/hep-th/9709146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB469%2C403
http://xxx.lanl.gov/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB473%2C74
http://xxx.lanl.gov/abs/hep-th/9602114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB476%2C437
http://xxx.lanl.gov/abs/hep-th/9603161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB403%2C159
http://xxx.lanl.gov/abs/hep-th/9301042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB440%2C279
http://xxx.lanl.gov/abs/hep-th/9412236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C101%2C239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C22%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C22%2C1
http://xxx.lanl.gov/abs/hep-th/9609122
http://xxx.lanl.gov/abs/hep-th/9112056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C173%2C559
http://xxx.lanl.gov/abs/hep-th/9402119


J
H
E
P
0
6
(
1
9
9
9
)
0
2
1

[10] A. Klemm, B. Lian, S.-S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M- and F-

theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023].

[11] P. Mayr, Mirror symmetry, N=1 superpotentials and tensionless strings on Calabi-Yau

fourfolds, Nucl. Phys. B 494 (1996) 489 [hep-th/9610162].

[12] A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. Warner, Self-dual strings and N=2

supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034].

[13] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on

the point particle limit of N=2 heterotic string compactifications, Nucl. Phys. B 459

(1996) 537 [hep-th/9508155].

[14] A. Klemm, W. Lerche and P. Mayr, K3-fibration and heterotic-type II string duality,

Phys. Lett. B 357 (1995) 313 [hep-th/9506112].

[15] S. Kachru and C. Vafa, Exact results for N=2 compactifications of the heterotic string,

Nucl. Phys. B 450 (1995) 69 [hep-th/9505105].

[16] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map

and applications to Calabi-Yau hypersurfaces, Comm. Math. Phys. 167 (1995) 301

[hep-th/9308122].

[17] V. Batyrev, Dual polyhedra and the mirror symmetry for Calabi-Yau hypersurfaces in

toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003].

[18] P. Aspinwall, B. Greene and D. Morrison, The monomial-divisor mirror map,

Int. Math. Res. Notices (1993) 319 [alg-geom/9309007].

[19] S. Hosono, A. Klemm and S. Theisen, Lectures on mirror symmetry, in Integrable

models and strings, ed. A. Alekseev, A. Hietamaki, K. Huitu, A. Morozov, A. Niemi,

Springer Verlag, 1994, Lecture Notes in Physics 436 235 [hep-th/9403096].

19

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB518%2C515
http://xxx.lanl.gov/abs/hep-th/9701023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB494%2C489
http://xxx.lanl.gov/abs/hep-th/9610162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C746
http://xxx.lanl.gov/abs/hep-th/9604034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB459%2C537
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB459%2C537
http://xxx.lanl.gov/abs/hep-th/9508155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C313
http://xxx.lanl.gov/abs/hep-th/9506112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB450%2C69
http://xxx.lanl.gov/abs/hep-th/9505105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C167%2C301
http://xxx.lanl.gov/abs/hep-th/9308122
http://xxx.lanl.gov/abs/alg-geom/9310003
http://xxx.lanl.gov/abs/alg-geom/9309007
http://xxx.lanl.gov/abs/hep-th/9403096

