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NEW THEORY OF SINGLE BUNCH STABILITY IN A LINAC WITH
QUADRUPOLE DISPLACEMENTS.

G. Guignard, J. Hagel, CERN, Geneva, Switzerland

Abstract of the truncated bunch. The unknowné&s, z) andz are

The analytical treatment previously described [1] has be ethe energy Lorentz factor as well as the vertical transverse

extended to include the important effect of magnetiéﬂSplacernent along the bunch at a given linac position. A

quadrupole transverse displacements, the chromatic vaiccewise constant energy of the bunch along the differ-

ation of the magnetic focusing, the energy spread along tﬁ@t linac sectors is assumed so that no acceleration term

bunh andpossile microwavequacuple,h st wo BP0 1 sbheas 1 e usuon of otor,
relation to BNS damping. Both, the longitudinal and trans: ! :
ping 9 nch in both planes is assumed. Whil&,, and W,

verse equations of motion are solved, the second by usilt?g e ;
the perturbation method with partial expansions develop% present the longitudinal wakefield¢) at the head and

for this theory. The localized nature of the quadrupole gidail of the bunch o stands for the transverse wakefield

placements is preserved by using thin lenses and the sup{e ) at thel.ta"(‘j we use a 4'Lh ordedr.Ch_Ebyshe_v eﬁpansmn

position principle for the kick effects. The causality prin-of a hormalize 9""“35""‘” charge distribution In the range

ciple applied to the downstream beam oscillations due 2 +20 given by:

the kicks is introduced via Heaviside functions. The treat- 4 9

ment presented [2] provides formulae for the tuneshift iny(2) ~ oL (4_Z _ 2) _Aa (4_Z _ 2) +1

the bunch and first-order solutions for the transverse beam 46lp |20 \ip 100 \ /s

off-sets within the bunch. It presents a break-throughin the (%)

recent efforts [3] to solve the problem of the bunch stabilityr he quantityAk(z) in Eq. (2) represents a variation of the

theoretically, with realistic beam and linac models. focusing force inside the bunch which is caused by the en-
ergy dependent focusing (chromatic effect) as well as by

1 EQUATIONS OF MOTION the application of RF quadrupoles in order to reduce the

emittance blowup caused by the presence of wakefields.

The equations of motion for the longitudinal and transversgehe constant” is defined as’ = 4wegr.N Wheree is

(vertical) plane in a linac with longitudinal and transversehe permittivity of free spacey the number of particles in

wakefields is given in the form of two semicoupled partiathe bunch and, the classical electron radius. The function

and linear integro-differential equations [4] as: zg(s) represents the actual quadrupole misalignments as
function of the positiors. This function is either random
9v(s,2) _ eU2 cos (knpz — Dpp) — (1) Oor given by recurrence relations representing a trajectory
0s moc correction [2].
z Wi — W,
—C/ p(z*) [Wro + %(z — 2")]dz*
0 B 2 SOLUTION OF THE LONGITUDINAL
EQUATION
2
%‘Z’Z) — K(s)[1 + Ak(z)]x = Eq. (2) can be solved in a straightforward way by simple
s R integration w.r.t the independent variaBleT his yields
WroC " . #Y 7,%
L () (= = a2 d2t +
o 0 v(s,2) = + cUs cos (kppz — Ppr) —
+K(s)[1 + Ak(z)]zq(s) ) ’ moc?
o N —4megre NsR(2) (6)
The initial conditions are:
with
x2(0,2) =0 3) z
o RG)= [ Wale=splehas @)
5:(6=0=0 @) 0

In this notation® iz is the acceleration phase at the head
The independent variablesand z represent the distance of the bunch. The functio®(z) can easily be found by
along the linac and the coordinate inside the bunchs using the linear variation dfi’;, inside a single bunch and
zero at the head and equal to the bunch lenhgtht the tail the Chebyshev model (5) for the gaussian distribution.
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With the definition¢ = =, R(z) is given by matrices gives the dependencejof
R(2) = B 3(1+ Ak(z
(2 () - LA —x a9
Wro x L (3—(1+ Ak(z))?sin® &)
16,5, 144 5 559 4 157 5 6 x/(1— cos )2 — (1 + Ak(2))2(1 — cos )]
><(23<+23C 6 T3ttt
+Wp X In the case of the coherent equation (11) the tune follows

by substitutingAk(z) = 0 in the above equation [4],

16, 48, 79, 1 ., 3,

D605, Y il = 3
% <23C 53¢ T 16¢ T3¢ T3¢ (8) , B
q= [L (cot fleell + — tan Mw”)} . (14)

The energy spreail s, z) inside the bunch is defined in the 2 3 2
usual way a9(s, z) = (y(s,z) — v(s,0))/v(s, z). How- _ _ _
ever, as a simplification, only the asymptotic limit given adn this way, the actual equations of motion become

0(z) = lims—o00(s, 2) is used. In this way the - depen-

dent detuning forcé\k(z) is given by - + X = K(s)zo(s) (15)
Ak(z) =—¢ in (k - ® 9 0?
(Z) (Z)+QOSIII( RFZ RFQ) ( ) asg +62(Z)y:X(S) %
where o is the maximum focusing strength of the RF CWro [
— * * * 2 2
guadrupole an@ zr, its phase at the head of the bunch. X { olp /O p(z")(z = 2%)dz" — (" —q°(2)) | +
CWro . . .
3 SOLUTION OF THE TRANSVERSE ~ols Jo p(z*)(z = 2" )y(s, 2" )dz" +

EQUATION +K(s5)Ak(2)zo(s). (16)

The linear partial integro-differential equation for the trans-
verse bunch displacement (2) can be solved in an eas®rl Solution for the coherent motion

way by separating two types of solution, one only depend- _ - .
ing on s and one on both independent variablesnd - The coherent equation (15) describing the betatron motion

Hence, the solution is decomposed as in the absence of wakefields and under the influence of
guadrupole misalignments can be solved by assuming lo-
2(s,2) = X(s) + y(s, 2) (10) calized kicks for the actual quadrupole displacements. In
between these kicks the solution is sinusoidal and its am-
and two new equations are obtained, one for the coherdiitude is defined by the effects of the kicupstream of
part (independent of) and one for the incoherent part (de-the position considered. In order to describe this limitation

pending ons andz) of the bunch oscillation: to upstream quadrupoles, the Heaviside Functiga—sy)
is used which has the property to be strictly zero for neg-

d>X (s) ative arguments and equal to unity for positive ones. Here
ds2 (8)X(s) = K(s)zq(s) (11) s denotes thé-th quadrupole position given by, = kL
if L is half a FODO period. In addition to this causality
principle, the method of superposition of all the solutions

%SQ»Z) K ($)[1 + Ak()]y(s, 2) = X (5) x due to single kicks is used. This is justified by the linearity

s : of the equation and the use of thin lenses. The solution is
X {K(s)Ak‘(z) + CWro / p(z")(z — z")dz" | + then:

Yol Jo 5 .
z — - ain = _ k j _ —_

+CWT0 / () (= — 2 Yy(s, 27 )dz" + X = oL sin 5 (—1)"zy sin[q(s — sg)|H (s — sk)

Yol Jo (17)
+K(s)Ak(2)zg(s) (12)

The z;, are the actual quadrupole misalignements at posi-

While Eq. (11) represents the betatron motion in the athion k- In Fig. 1, a typical solution is shown fox' in a

sence of wakefields and acceleration, Eq. (12) contaifi PO lattice with misaligned quadrupoles with an RMS

chromatic contributions as well as terms responsable f ﬂsp'a‘,’eme”t o0 i, whgnu = 105°. The_respnant
creating dispersion induced by the quadrupole misalig yehaviour of the solution arises from the continuity of the

ments. The weak focusing approximation is now introfrequency spectrum of a random function which contains
duced with the average tune defineddy= 1/3. How- the unperturbed betatron frequency on the left side of Eq.

ever, this is used in the focusing forces but not in the term@S)'
containing the quadrupole misalignments, to keep their dis-
crete nature. Computing thefunctions from the transfer
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Fig. 1 SolutionX (s) in the presence of quadrupole
misalignments
3.2 Solution for the incoherent motion

Equation (16) can be rewritten as

% + @ (2, BEAk(2))y = A(2) X (s) +

+K(s)Ak(z)zg(s) +

X [sin q(z)sI1 (s, sg) — cos q(z)sla(s, si)] +

2
+Ak(z2)——sin 2) x
() Fary in (/2)
Ngq
X Z(—l)kxk sin g(z)(s — sx)H (s — sk) (22)
k=1
where
Ii(s,s,) = / cos@s* sinq(s — si)ds™ (23)
sk
Ix(s,sx) = / sin gs* sinq(s — s )ds*. (24)
sk

Evidently I; » permit a closed form solution and these
expressions contain denominators of the fafim- 2(z)
which clearly exhibit the near resonance dynamics of the
single bunch problem with wakefields.

Fig. 2 shows a comparison of the perturbative ana-
lytical solutiony®) to a numerical one obtained by the
code MUSTAFA [5] for CLIC main linac parameters of

+€CWT0 / p(2*)(z — 2*)y(s,z*)dz* (18) N =6-10° and an RMS bunch length of = 200 um at
Yol Jo the linac positiors = 1000 m.

with ylum]

CW ? * * * —
A =[S [ )6 =2 — (6 = ) 1500 [

Yol Jo s = 1000m

(19) 1000 |- 1

Using the approximation (5) fq#(z) the coefficient func-

500 | _ 1

tion A(z) becomes a sixth order polynomial. The formal
perturbation parameter8 ande multiply small contribu- 0

tions such as the wakefields. However, the expansion is  _500}

only made with respect to one of them, namelin or-

der to keep the: dependent tung to any order and in -1000 i
this way avoid the occurence of secular terms. Hence -1500 : : : :

y =y (s,2; E) + eyW (s, 2; E) + O(e2). Already the 0 02 04 l 06 08 1
lowest order contributiop(®) (s, z) has been proven to de- , #/ls . .
scribe the solution sufficiently well for the case of the cLIC F19-2 Comparison of the analytical and the numerical
main linac. The equation fo/(®) is result fory(z) ats = 1000 m.

92y
0s?

+ @ (2)y") = X(s)A(2) + K (s)xq(s) Ak(2)
(20)

To conclude, it can be pointed out that the agreement in
amplitude and frequency of the analytical (full line) and nu-
merical result (points) is very good. The local differences

and this linear inhomogeneous second order equationiis phase mainly originate from the fact that MUSTAFA

solved as usual by adding the homogeneous solytidn
the particular one found applying Green'’s formula.

y(o)(s,z) =yn + suiqu / cosgs*g(s*)ds* —
0
_cos_qs / sin gs*g(s*)ds™ (21)
q 0

whereg(s) represents the right hand side of Eq. (20). Afte

integration the final result becomes

Yo

q(z)
Nq

2 i 1k s—s
+A<Z>;qu<z) sin (1/2)(—=1)¥a H(s — s1.) x

y0(s,2) = yocos q(2)s + == sing(z)s +

uses a strong focusing model while the theory is based on
the weak focusing approximation. In addition the sequence
of random numbers chosen in both examples is different al-
though both sequences have the same RMS value.
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