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Abstract. Stars in globular clusters can act either as
sources for MACHOs (Massive Astrophysical Compact
Halo Objects) located along the line of sight or as lenses
for more distant background stars. Although the expected
rate of microlensing events is small, such observations can
lead to very useful results. In particular, one could get in-
formation on the shape of the galactic halo along different
lines of sight, allowing to better constrain its total dark
matter content.

Moreover, on can also infer the total dark matter
content of globular clusters, which is presently not well
known. To this latter purpose, we analyse the microlens-
ing events towards the galactic bulge, which lie close to the
three globular clusters NGC 6522, NGC 6528 and NGC
6540. We find evidence that some microlensing events are
indeed due to MACHOs located in the globular clusters,
suggesting, therefore, that these clusters contain a signif-
icant amount of dark matter.

Key words: galactic halo - microlensing - dark matter -
globular clusters

1. Introduction

An important problem in astrophysics concerns the nature
of the dark matter in galactic halos, whose presence is im-
plied by the observed flat rotation curves in spiral galaxies.
Microlensing (Paczyński 1986) allows the detection of MA-
CHOs in the mass range 10−7 < M/M� < 1 (De Rújula,
Jetzer, Massó 1992) in the halo, disk or bulge of our
galaxy. Till now, more than 15 microlensing events have
been found towards the Large Magellanic Cloud (LMC)
(Alcock, Akerlof, Allsman et al. 1993, Alcock, Allsman,
Alves et al., 1997b, Auburg, Bareyre, Bréhin et al 1993),
one event towards the Small Magellanic Cloud (SMC) (Al-
cock, Allsman, Alves et al. 1997c, Palanque-Delabrouille,
Afonso, Albert et al. 1997, Udalski, Kubiak & Szymański
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1997) and about 200 events towards the galactic bulge
(Alcock, Allsman, Alves et al. 1997a, Udalski, Szymański,
Stanek et al. 1994, Alard & Guibert 1997).

However, in spite of the many events, several questions
are still open, in particular on the mass and the location of
the lenses. In fact, from the duration of a single microlens-
ing event, one cannot infer directly the mass of the lens,
since its distance and transverse velocity are generally not
known. To break this degeneracy it has been proposed to
perform parallax measurements (Gould 1997), which how-
ever require the use of space satellites.

Globular clusters could be in many respect very use-
ful to solve some of these problems. In fact, microlensing
searches using globular clusters as targets could probe dif-
ferent lines of sight in addition to the ones towards the
LMC or the SMC, this way allowing to better determine
the spatial distribution of the MACHOs (Jetzer 1991).
Since in globular clusters much less stars than compared
to the LMC or SMC can be used as targets, one would have
to monitor many globular clusters in order to get some mi-
crolensing events. Gyuk & Holder (1997) and Rhoads &
Malhotra (1997) have studied this possibility and shown
that this way interesting galactic structure information
can be extracted allowing to distinguish between different
halo models.

Another possibility is to search for microlensing of
background stars by MACHOs located in foreground glob-
ular clusters. Such an observation can in addition give im-
portant information on the total mass of globular clusters.
It has been argued recently that a large fraction of their
mass (around 50%) is dark, which could be in the form of
brown dwarfs, low-mass stars or white dwarfs (Heggie et
al. 1996, Taillet, Salati & Longaretti 1995, 1996). More-
over, one expects that the heavy stars tend to sink towards
the cluster cores, whereas the light objects populate the
outskirts. Hence, the dark component of the cluster is not
similarly concentrated towards the center as the bright
stars which eases observation.

The idea –as originally proposed by Paczyński (1994)–
is to monitor globular clusters like 47 Tuc or M22 in front
of the rich background of either the SMC or the galactic
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2 Gravitational Microlensing by Globular Clusters

bulge. In this case, when the lens belongs to the cluster
population, its distance and velocity are roughly known.
The velocity is defined by the dispersion velocity of the
cluster stars together with the overall transverse velocity
of the cluster as a whole. Knowing approximately the dis-
tance and the velocity of the lens would allow to extract
from a microlensing event the mass of the lens with an
accuracy of ∼ 30%.

Due to these reasons, it is important to study in more
detail microlensing by globular clusters either using their
stars as sources, or the dark matter contained in them
as lenses for more distant stars (Wandeler 1995). In this
paper we discuss both aspects in detail. Although the
mass distribution of the luminous part of the cluster, as
inferred from the observation of the distribution of the
red giant population, agrees well with a King model, we
do not consider this to be representative for the popu-
lation of light objects. Taillet, Longaretti & Salati (1995,
1996) have shown that in an isolated globular cluster ther-
malisation between the different populations does occur.
However, globular clusters –especially the ones towards
the bulge– tidally interact with the surrounding material
which might counteract thermalisation, hence the consid-
eration of alternative mass distributions should be taken
into account and variations of the microlensing event rate
due to it might give some hints at the dynamical history
of the cluster.

We also analyse the microlensing events towards the
galactic bulge, which are close to the three globular clus-
ters NGC 6522, NGC 6528 and NGC 6540. These clus-
ters lie within the observation fields of the MACHO and
OGLE teams. We find evidence that some microlensing
events are indeed due to MACHOs located in the globular
clusters, suggesting therefore that these clusters contain a
significant amount of dark matter.

The paper is organized as follows: in Sect. 2 we in-
troduce briefly the basics of microlensing. In Sect. 3 we
discuss as an example the globular cluster 47 Tuc, which
will then be used to estimate in a very conservative way
the optical depth and the lensing rate for other clusters
as well. In Sect. 4 we present microlensing using globular
clusters towards the galactic bulge. In particular, we anal-
yse the events as reported by the MACHO and the OGLE
collaboration lying within a distance of 30 pc around the
centers of NGC 6522, NGC 6528 and NGC 6540. In Sect. 5
we conclude with a short summary of our results.

2. Basics of microlensing

For completeness we give here a short summary of the
most important formulae of gravitational microlensing; for
more details see for instance Jetzer (1997).

The time dependent magnification of a light source due
to gravitational microlensing is given by

A(t) =
u2
◦ + t2/T 2

◦ + 2√
(u2
◦ + t2/T 2

◦ )(u2
◦ + t2/T 2

◦ ) + 4
, (1)

with u◦ = dmin/RE , where dmin is the minimal distance
of the MACHO from the line of sight between the source
and the observer. RE is the Einstein radius, defined as

R2
E =

4GMD

c2
x(1− x) , (2)

with x = s/D, D and s are the distances to the source
and the MACHO, respectively. vT is the relative trans-
verse velocity of the involved objects. T◦ = RE/vT is the
characteristic time for the lens to travel the distance RE .

The probability τopt, that a source is found within a
radius RE of some MACHO, is defined as

τopt =

∫ 1

0

4πG

c2
ρ(x)D2x(1− x) dx , (3)

with ρ(x) the mass density of microlensing matter at the
distance s = xD from us along the line of sight.

The microlensing event rate is given by (De Rújula,
Jetzer, Massó 1991, Griest, Alcock, Axelrod et al. 1991)

Γ = 2uTHD

∫
RE(x)vT fT (vT )

dn

dµ
dvT dxdµ , (4)

where µ = M/M� and fT (vT ) is the transverse velocity
distribution. The maximal impact parameter uTH is re-
lated to the threshold magnification ATH by Eq. (1). In
the following we take ATH = 1.34 which corresponds to

uTH = 1. dn(x)
dµ

is the MACHO number density, which for
a spherical halo is given by

dn(x)

dµ
=
dn◦

dµ

a2 +R2
GC

a2 +R2
GC +D2x2 − 2DRGC cosα

, (5)

here α denotes the angle between the line of sight and the
direction towards the galactic center. n◦ is assumed not
to depend on x and is normalized such that

M�

∫
µdµ

dn◦

dµ
= ρ◦ ' 7.9× 10−3 M�

pc3
(6)

equals the local dark matter mass density. RGC ' 8.5 kpc
is the distance from the Sun to the galactic center and
a ' 5.6 kpc is the core radius of the halo.

For the average lensing duration one gets the following
relation

〈T 〉 =
2τopt
πΓ

uTH . (7)
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3. The system SMC-47 Tuc: a paradigm for cluster
lensing

In this section we thoroughly discuss the basics of mi-
crolensing by a globular cluster. We use the system SMC-
47 Tuc as an example, but the results, by appropriately
scaling them, are valid for other globular clusters as well.

First, we discuss simple models of 47 Tuc which will
then be used for the computation of the optical depth and
the microlensing event rate for different geometries of lens
and source.

The globular cluster 47 Tuc (NGC 104) lies at galactic
coordinates l = 305.9◦, b = −44.89◦. For the distance
we assume 4.1 kpc, although in the literature values up to
4.7 kpc are quoted (Harris 1996). Our choice will rather
underestimate the optical depth. The position is such that
it overlaps with a part of the outer region of the SMC,
which makes it an interesting object. Globular clusters
are small objects compared to the scale of their distance,
hence they are well suited for gravitational lensing, since
one may assume the distance of their stars to be the same
for all practical purposes.

3.1. Spatial density and velocity dispersion for 47 Tuc

For the calculation of the lensing rate we need to know
the spatial distribution of the dark matter in the globular
cluster. Since this is not known, we will instead discuss
models for the total mass of the cluster. To get the mass
density ρd of the dark objects, we then make the simplify-
ing assumption that ρd is proportional to the total mass
density ρ, i.e. ρd is given by

ρd = f ρ =
Mdark

Mtot
ρ , (8)

where Mdark is the total mass of the MACHOs in the clus-
ter. We are aware, that this assumption is oversimplified,
however, as long as the content of dark matter in glob-
ular clusters is not known, it is one way to parametrize
our ignorance. Moreover, since the expected event rate for
47 Tuc is about one event per year or even less, we do
not consider multi-mass models for 47 Tuc. We postpone
the discussion of them to Sect. 4, when we discuss lensing
by globular clusters towards the bulge in which situation
the model can be tested due to the higher number of mi-
crolensing events.

The simplest model of a globular cluster is a self-
gravitating isothermal sphere of identical ”particles”
(stars). The equilibrium distribution function in phase-
space coordinates is

f(x,v) =
ρ◦(

2π kBTm
)3/2 exp

(
m(Φ(x)− 1

2v
2)

kBT

)
, (9)

where Φ(x) is the gravitational potential of the cluster,
T the temperature, kB Boltzmann’s constant and m the

mass of a ”particle”. Taking into account the spherical
symmetry of the globular cluster and defining the one-
dimensional velocity dispersion σ as

σ =

√
kBT

m
, (10)

Eq. (9) reads

f(r,v) =
ρ◦

(2πσ2)3/2
exp

(
Φ(r) − 1

2v
2

σ2

)
. (11)

Here r is the radial distance relative to the cluster center.
Integrating over all velocities, we get

ρ(r) = ρ◦ exp

(
Φ(r)

σ2

)
. (12)

Inserting Eq. (12) into the Poisson equation for the grav-
itational potential, one obtains

d

dr

(
r2 d ln ρ

dr

)
= −

4πG

σ2
r2ρ . (13)

A solution of this equation is

ρ(r) =
σ2

2πGr2
. (14)

The mass density given in Eq. (14), together with the inte-
grated velocity distribution Eq. (11), defines the singular
isothermal sphere.

To avoid the singularity at the origin we rescale the
variables (r̃ = r/rc, ρ̃ = ρ/ρ◦) and find a non-singular
solution which can be approximated for r̃ < 2 by (for
details see Binney & Tremaine 1987)

ρ̃(r̃) =
1

(1 + r̃2)3/2
for r̃ < 2 (15)

and for r̃ >> 2 with the singular function given in
Eq. (14).

An observable quantity, connected with the surface
density of stars in a cluster, is the surface brightness. The
luminosity function Φ(M) gives the relative number of
stars with absolute magnitude M in the range [M − 1/2,
M + 1/2]. The number surface density of the stars can be
computed from the observed surface brightness. Assuming
that all stars in the cluster have the same mass, we can
compare the above densities with surface brightness mea-
surements. The mass surface density Σ is derived from the
mass density by the integration

Σ(b) =

∫ ∞
−∞

ρ(
√
l2 + b2)dl , (16)

where b is the projected radial distance. For the density
of the singular isothermal sphere, given by Eq. (14), the
surface density is

Σ(b) =
σ2

2Gb
. (17)
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Similarly, the density ρ̃(r̃)in Eq. (15) leads to the surface
density

Σ(b) ∝
2

1 + b̃2
, (18)

where b̃ = b/rc.
Since Eq. (15) fits the regular solution of Eq. (13) in

the range r̃ < 2, we find that the corresponding surface
density falls to roughly half of its central value at the core
radius rc. Knowing rc and σ from observations, the central
density ρ◦ is determined in the isothermal model by

rc =

√
9σ2

4πGρ◦
. (19)

With rc = 0.52 pc as given in Lang (1992) and a velocity
dispersion of σ = 10 km/s (Binney & Tremaine 1987),
Eq. (19) for 47 Tuc yields ρ◦ = 6.0× 104 M�/pc3 .

King (1962) found that the above surface density func-
tions (17), (18) fit well star counts up to a limiting radius
rt (called tidal radius), where the measured surface den-
sity drops sharply to zero. Thus a better fit to the surface
density of the cluster is given by

Σ(b) ∝

(
1

[1 + (b/rc)2]
1/2
−

1

[1 + (rt/rc)2]
1/2

)2

. (20)

With a spherical symmetric density

ρ(r) = −
1

π

∫ rt

r

[
d

db
Σ(b)

]
db

(b2 − r2)1/2
, (21)

the corresponding mass density becomes

ρ(r) =
k

πrc[1 + (rt/rc)2]3/2
1

z2

[
1

z
arccos z − (1− z2)1/2

]
,

(22)

where

z =

[
1 + (r/rc)

2

1 + (rt/rc)2

]1/2

and k is chosen such that ρ(0) = ρ◦ (King 1962). Inte-
grating this density with a tidal radius rt = 60.3 pc (Lang

1992), one finds a total mass of MKing
tot = 3.5×105M� for

47 Tuc.
To study the dependence of the optical depth and the

lensing rate on different mass distributions, we will use
the following four models (see Fig. 1).

1. Fitted King model: the density is given by Eq. (22)

with central density ρ◦ = 6.0 × 104 M�
pc3 , core radius

rc = 0.52 pc and MKing
tot = 3.5 × 105 M� as already

mentioned above.
2. Inner isothermal model: the density is given by

Eq. (15) with rc = 0.52 pc and σ = 10 km/s as above,
but with ρ◦ chosen such that the total mass within the
tidal radius is the same as in the fitted King model,
rather than determined via Eq. (19).

3. Singular model: the mass density is described by the
isothermal sphere, i.e. by Eq. (14) with the same σ as
mentioned above. The total mass of this model within
the tidal radius rt is Msing

tot = 2.8× 106 M�.
4. 1

1+r2 - model: the mass density is given by

ρ(r) =
ρ◦

1 +
(
r
rc

)2 (23)

with rc as above and ρ◦ chosen such that the total
mass within the tidal radius is the same as for the
fitted King model.

The last three mass distributions are cutted discontinu-
ously at the tidal radius. Thus the integration range for
the optical depth and the lensing rate is only a sphere
with a radius equal to the tidal radius. For all models the
velocity distribution follows a Maxwell distribution as in
Eq. (11) with σ = 10 km/s.

0 10 20 30 40

0

2

4

Fig. 1. The four different mass density models used in the
calculations, plotted as a function of the radial distance
r. For clarity the plot ends at r = 40 pc rather than at
r = rt = 60.3 pc.

The 1
1+r2 -model is considered mainly because the in-

tegrations can be performed analytically. Hence, we can
easily compare the analytic result with the ones obtained
numerically for the other models.

Of course there exist more sophisticated models for
globular clusters, e.g. the (single or multimass) King-
Michie models (King 1966, Gunn & Griffin 1979), that
take into account the finite escape velocity from the clus-
ter, which naturally leads to a finite extension of the clus-
ter. However, for the study of the influence of different
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mass distributions on the measured quantities, we con-
sider the above mentioned models to be sufficient and,
therefore, in this section, restrict our discussion to them.
In addition, we remind on the well known scaling proper-
ties of the King model, which allow to derive the corre-
sponding quantities for a different choice of parameters.

3.2. Optical depth, lensing rate and mean event duration
for SMC-47 Tuc

We now discuss the different possibilities for microlensing
in the system SMC-47 Tuc, i.e. events where the source
and the lens are both located in 47 Tuc; the source is
in the SMC and the lens in 47 Tuc; the source is in 47
Tuc and the lens in the halo of the Milky Way, or finally
the source resides in the SMC and the lens in the Milky
Way. For SMC self-lensing we refer e.g. to the paper by
Palanque-Delabrouille, Afonso, Albert et al. (1997).

At the end we also discuss the dependence on the mass
function, which itself is independent of the lensing geom-
etry. Since we hope to disentangle the different cases, we
also calculate the differential rate dΓ

dT
. Throughout this

part we will assume all lenses to have the same mass. The
velocity distribution of the halo objects, as well as those
of the cluster is taken to be a Maxwell function. As al-
ready mentioned, we define the amplification threshold to
be ATH = 1.34.

3.2.1. Optical depth for source and deflecting mass in the
cluster

For completeness we discuss also this case, although, as we
will see, its contribution can be neglected for all practical
purposes.

For a pointlike source τopt is, according to Eq. (3),
given by

τopt =

∫ 1

xb

4πG

c2
D2x(1− x)ρd(r(x)) dx (24)

where

xb =
Dc −

√
r2
t − b

2

D
' 1−

rt

D
= 1− 1.4× 10−2 . (25)

Dc is the distance from the observer to the cluster cen-
ter and D the one to the source. Hence, the integration
is cut at the boundary of the cluster. The optical depth
for a source located in the center of the cluster (b = 0) is
τopt = 9.2 × 10−9 Mdark

3.5×105 M�
for the fitted King model.

The results for the 4 different models are shown in Fig. 2.
Of course the isothermal-sphere model differs most, be-
cause its total mass M sing

tot = 2.8× 106M� varies substan-
tially from the others.

Since the lower limit of integration is very close to 1,
τopt can be approximated as follows

τopt '
4πG

c2

∫ xu

0

l ρd(r(l)) dl .

-60 -40 -20 0 20 40 60
-20

-15

-10

-5

Fig. 2. The optical depth for the four different models as a
function of the source position. All sources are located on the
line of sight from the observer to the cluster center, but at
different radii relative to the center. The optical depth of the
singular model is only shown for sources with Dc − D > 0,
since its mass density has a singularity at r = 0. For the plot
we assume f = 1, and the total mass of the models as given in
Sect. 3.

Here

xu =
√
r2
t − b

2 − (Dc −D)

and l = D −Dd is the distance from the lens (located at
Dd) to the source. Hence, τopt is proportional to D −Dd

weighted with the mass density in the globular cluster
along the line of sight from the observer to the source.

3.2.2. Lensing rate for source and deflecting mass in the
cluster

We assume the mass function to be independent of the
position and all lenses are taken to have the same mass µ◦
(in units of M�). From Eq. (9) we find that the transverse
velocity distribution is given by

fT (vT ) = 2
vT

v2
H

e−v
2
T /v

2
H (26)

with v2
H = 2σ2. If the source as well as the deflecting mass

are in the cluster, the event rate becomes

Γ =

√
2πσrE

M�
√
µ◦

D

∫ 1

xb

ρd(r(x))
√
x(1− x)dx , (27)
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with r(x) =
√
b2 + (Dc − xD)2 and rE defined to be

rE =

√
4G

c2
M�D . (28)

We use the same geometry as in the previous subsection.
The result for the fitted King model for a source located

at the center of the cluster is Γ = 6.6×10−15
√
µ◦

Mdark

3.5×105M�
1/s.

In order to more easily compare between the microlens-
ing rates for different locations of the source and the lens,
we introduce the quantity ñ(α):

ñ(α) ≡
Ñ(α)

(1′)2
,

where Ñ(α) is the number of microlensing events per unit
time in an area of (1′)2 located at an angular distance α
from the cluster center. For simplicity, we will give the
rate ñ(α) in units of pc. In the plane perpendicular to the
line of sight through the cluster center, 1′ corresponds to
1.2 pc. Hence, we can define a new quantity

n

(
b = α

1.2 pc

1′

)
≡ ñ(α)

1

(1.2 pc)2
,

which is in units of pc−2 unit time−1. We call n(b) the
surface density of microlensing events. To calculate n(b)
we have to add up the lensing rates for all stars located
on the line of sight with impact parameter b from the
cluster center. From Eq. (27), we see that the lensing rate
Γ depends on D and on b, through r(x) and xb. Taking
this into account we get

n(b) =

∫ Df

Di
nstar(

√
b2 + (Dc −D)2) Γ(D , b) dD (29)

where in the ideal situation, which will lead to an upper
bound for n(b) we have Df,i = Dc ±

√
r2
t − b

2. nstar(r)
is the number density of stars (in units of pc−3) in the
cluster at distance r from the center and D, b, Dc are all
in units of pc. To describe the distribution of stars in the
cluster, we assume that the number density is proportional
to the mass density ρKing of the fitted King model, since
the mass surface density of this model is proportional to
the number surface density of stars in a cluster. Thus nstar

is given by

nstar(r) =
Nstar

MKing
tot

ρKing(r) (30)

with Nstar = 4.6 × 105 (Lang 1992). With Eqs.(27) and
(29) this leads to

n(b) = 3.6× 10−19Nstar

Mtot

1
√
µ◦

×

∫ Df

Di
D3/2ρKing

(√
b2 + (Dc −D)2

)
×

∫ 1

xb(D)

√
x(1− x)ρd

(√
b2 + (Dc − xD)2

)
dD dx .

0 20 40 60
-25

-20

-15

-10

Fig. 3. The surface density of microlensing events is plotted
as a function of the projected radius b for the four different
models calculated in the text, assuming µ◦ = 1. For the plot
we assume f = 1, and the total mass of the models as given in
Sect. 3.

The results for the four models are shown in Fig. 3.
The number of lensing events per year in the whole

cluster is∫ rt

0

2π n(b)b db = 2× 10−2

√
1

µ◦
f

Nstar

4.6× 105
(31)

for the fitted King model. On the other hand, the number
of lensing events depends also on the telescope resolution.
Assuming a distribution according to Eq. (30), we find
that stars with a projected radial distance smaller than
0.6 pc from the center cannot be resolved if the limiting
resolution of the telescope is 0.1”, whereas if it is 1” even
stars with projected radius b smaller than 7.5 pc from the
center cannot be resolved. Hence, the number of expected
lensing events per year using a telescope with a resolution
of 0.1” is

∫ rt

0.6pc

2π n(b)b db =


1.1× 10−2

√
1
µ◦

Mdark

3.5×105M�
Nstar

4.6×105

2.4× 10−3
√

1
µ◦

Mdark

3.5×105M�

Nstar

4.6×105

and the one for a resolution of 1” is

∫ rt

7.5pc

2π n(b)b db =


1.4× 10−4

√
1
µ◦

Mdark

3.5×105M�

Nstar

4.6×105

2.3× 10−4
√

1
µ◦

Mdark

3.5×105M�
Nstar

4.6×105
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The first line is for the fitted King model, the second for
the 1

1+r2 -model.
The distribution of the microlensing events as a func-

tion of their duration T, using the transverse velocity dis-
tribution as defined in Eq. (26) and the definition of rE in
Eq. (28), is given by

dΓ

dT
= −

2Dµ◦
M�

r4
E

σ2

1

T 4

×

∫
(x(1− x))2 ρd(x) exp

[
−
R2
E(x)

2σ2 T 2

]
dx. (32)

The result for the fitted King model assuming a lens
mass µ◦ = 1 is shown in Fig. 4.

0 20 40 60 80 100
-16

-14

-12

-10

-8

Fig. 4. The distribution of the lensing events with duration
T = RE/vT for different geometries of the lens system. For
the calculations we used the fitted King model and made the
assumption that all lenses have the same mass µ◦ = 1. The
notation is to be understood as follows: the first entry denotes
the position of the source, the second the one of the lens e.g.
SMC−>Cl means a star of the SMC is lensed by an object
in the cluster. MW abbreviates Milky Way; b, Dc and D are
defined within the text. For the plot we assume f = 1, and the
total mass of the model as given in Sect. 3.

3.2.3. Optical depth and lensing rate for the source in the
SMC and the deflecting mass in the cluster

What changes in the calculation of τopt and Γ is itemized
below:

– the distance D of the source is now about 63 kpc, cor-
responding to the distance of the SMC from the Sun;

– the x-integration goes from xi = (Dc −
√
r2
t − b

2)/D,

to xf = (Dc +
√
r2
t − b

2)/D;
– the velocity distribution gets shifted, because of the

motion of 47 Tuc relative to the SMC with a velocity
of about vd ∼= 180 km/s. Hence, a velocity drift has to
be introduced in the Maxwell distribution, such that

f(v) =
1

(2πσ2)
exp

(
−

(vx − vd)2 + v2
y + v2

z

2σ2

)
, (33)

where we assume the x-axis to be parallel to the veloc-
ity drift. The resulting transverse velocity distribution
is then given similarly to Eq. (26). With this, the in-
tegral over dvT in Eq. (4) yields∫ ∞

0

vT f(vT )dvT = vd ' 180 km/s . (34)

Thus, the lensing rate and the optical depth become

τopt =
4πG

c2
D2

∫ xf

xi

x(1− x)ρd(r(x))dx , (35)

Γ =
2vdrE
M�
√
µ◦
D

∫ xf

xi

√
x(1− x) ρd(r(x))dx

=
5.1× 10−18

M�
√
µ◦

(
D

pc

)3/2∫ xf

xi

√
x(1− x)

ρd(r(x))

M�/pc3
dx .(36)

For the extreme case of a star in the SMC lying on the line
of sight going through the center of the cluster, the optical
depth is τopt = 1.4× 10−4 Mdark

3.5×105M�
and the lensing rate

Γ = 2.0× 10−11
√

1
µ◦

Mdark

3.5×105M�
1/s.

Since the tidal radius is smaller than about 200 pc, the
quantity x(1−x) as well as

√
x(1− x) does not vary more

than 10% over the integration range, and the variation of
τopt as well as Γ is directly proportional to the surface
density of the cluster. Assuming a tidal radius of 60 pc we
find (with x̄ an average value for x)

τopt = x̄(1− x̄)
4πG

c2
D Σ(b) f

= (2.32± 0.04)× 10−9

(
D

63 kpc

)
×

Σ(b)

(M�/pc2)
f (37)

Γ(b) =
√
x̄(1− x̄)

2vdrE
M�
√
µ◦

Σ(b) f

= (3.25± 0.03)× 10−16

√
D

63 kpc

Σ(b)

M�/pc2

√
1

µ◦
f . (38)

The mean event duration is

〈T 〉 =
2

π

τopt

Γ
= 52

√
µ◦ days,

which is nearly independent of the angle between source
and cluster center, since both τopt and Γ are proportional
to Σ(b) as given by Eqs.(37) and (38).
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Of course the chance to find a lensing event in this
case depends not only on the optical depth, but also on
the number of SMC stars in the background of 47 Tuc.
Hesser, Harris, Vandenberg et al. (1987) finds an average
of 1000 stars/30(arcmin)2 with a magnitude in the inter-
vall of 0.0 < (B−V ) < 0.8, 21 < V < 24. In the following
we assume a constant number of 50 stars/(arcmin)2, al-
though there is a gradient in the density of the SMC stars
across the whole 47 Tuc region decreasing from the south-
east to the northwest side.

According to Eq. (29) we get with the above mentioned
proportionality between Γ and Σ a surface density of mi-
crolensing events of

n(b) =
√
x̄(1− x̄)

2vdrE
M�
√
µ◦

Σ(b)
nstar

(1.2 pc)2
f , (39)

where nstar is the number of SMC stars per (1′)2. n(b) is
shown in Fig. 5.

0 20 40 60

-15

-10

-5

Fig. 5. The surface density of microlensing events is shown for
the different geometries of the lens system. For the calculations
we used the fitted King model and made the assumption, that
all lenses have the same mass µ◦ = 1. For the abbreviations
we refer to Fig. 4. For the plot we assume f = 1, and the total
mass of the models as given in Sect. 3.

The number of events per year in the whole area of 47
Tuc is then given by∫ rt

0
2π n(b) bdb =

= 0.12
√

1
µ◦

Mdark

3.5×105M�
nstar

50/(1.2pc)2
1

year (40)

for the fitted King model. The expected number of events
per year for an observation done with a resolution of 0.1′′

is

∫ rt

0.6pc

2π n(b) bdb =


1.0× 10−1

√
1
µ◦

Mdark

3.5×105M�

nstar

50

1.2× 10−1
√

1
µ◦

Mdark

3.5×105M�

nstar

50

and for an observation with a resolution of 1′′

∫ rt

7.5pc

2π n(b) bdb =


3.0× 10−2

√
1
µ◦

Mdark

3.5×105M�
nstar

50

1.0× 10−1
√

1
µ◦

Mdark

3.5×105M�

nstar

50 .

The first value is for the fitted King-model and the second
for the 1

1+r2 -model.
For comparison, if we insert a velocity vd '

180 km/s = 9.2 × 10−3 arcsec/year for the cluster and
a density of 50 SMC stars per (1′)2 in the formula for
the event rate per year, as given in the paper of Paczyński

(1994) one obtains f×1.5
√

1
µ◦

1
year for the rate in the whole

area of the cluster, f×1.4
√

1
µ◦

1
year for the rate with a res-

olution of 0.1” and f × 1.3
√

1
µ◦

1
year for the rate with a

resolution of 1”. The factor f parametrizes the fraction of
dark matter f = Mdark/Mtot. Paczyński used in his calcu-
lations the total mass as given by the singular isothermal
sphere model, which gives Mtot = 4.3×106M�. The differ-
ence to our values is mainly due to the different adopted
mass surface densities. Since the total mass of the fitted
King model is MKing

tot = 3.5× 105M�, this explains, with
the help of Eq. (40), just the factor 12 between Paczyński’s
results for the number of events and ours for the fitted
King model for the rate in the whole area of the cluster.
A multi-mass model fitted to radial velocity and surface
brightness observations of 47 Tuc leads to a total mass of
Mtot = 1.1×106M� (Meylan 1989), which is about 3 times
bigger than the value for the fitted King model. In addi-
tion, the fitted King model concentrates much more mass
in the center, whereas in the singular isothermal sphere
model, there is still a lot of mass in the outer regions of
the cluster. From these considerations, we see that the un-
certainties are quite important and they are mainly due to
the poor knowledge of the dark matter content in globular
clusters.

Paczyński (1994) proposed to measure the microlens-
ing of background stars by MACHOs in globular clusters,
because in this way the mass of the lens can be determined
more precisely than in the lensing experiments under way.
Since the lens is in the cluster, it has the transverse ve-
locity and the position of the cluster. To estimate the in-
herent error of the method we adopt the values below,
where the transverse velocity vT is assumed to be pre-
cisely known up to the cluster dispersion velocity and the
distance up to the cluster size: vT = 180 km/s± 10 km/s,
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Dd = 4100 pc ± 60 pc and D = 63 kpc ± 6 kpc. It fol-
lows then an uncertainty in the mass determination of∣∣∆m
m

∣∣ ≤ 0.33 . The uncertainty in the lens mass with the
currently reported lensing events is more like a factor 3 or
even bigger (Jetzer & Massó 1994, Jetzer 1994).

The distribution of the lensing events as a function of
the duration T is:

dΓ

dT
= −

2Dµ◦
πM�

r4
E

T 4

1

σ2

∫ xb

xE

dx

∫ π

0

dy [x(1− x)]2 ρd(x)

× exp

(
−
v2
d

2σ2
−

R2
E

2σ2T 2
+
RE vd

σ2T
cos y

)
, (41)

where y is the angle between vd and the projected MA-
CHO velocity in the plane perpendicular to the line of
sight. The numerical results, with the above mentioned
values for vd and σ are shown in Fig. 4.

3.2.4. Optical depth and lensing rate for the source in the
cluster and the deflecting mass in the halo of the
Milky Way

To calculate the optical depth and the lensing rate we
set the position of the source equal to the position of the
cluster. In the reference frame, where the origin is at the
galactic center and the x1 − x2 plane is the symmetry
plane of the galaxy, the coordinates of a lens, located on
the line of sight from the observer to the cluster center, are
x1 = xDc cos bT cos lT − RGC , x2 = xDc cos bT sin lT , and
x3 = xDc sin bT , where bT = 44.89o and lT = 305.9o are
the galactic latitude and longitude of 47 Tuc. With the
number density distribution Eq. (5), we find the optical
depth (with D = Dc) to be τopt = 1.5× 10−8.

Let’s now look at the lensing rate. Since the velocity
distribution in the halo is assumed to be Maxwellian, the
integration over vT in Eq. (9) leads to∫
vT f(vT )dvT =

vH

2

√
π (42)

with vH ' 210 km/s. Thus, in a model where all lenses
have the same mass, the lensing rate becomes with Eq. (4).

Γ = 4.7× 10−15

√
1

µ◦
1/s . (43)

According to Eq. (29) the surface density of microlens-
ing events in this case is

n(b) = Γ
Nstar

Mtot
ΣKing(b) . (44)

Nstar

Mtot
ΣKing(b) is the number surface density of the stars in

the cluster in units of pc−2.
The time scale calculated with Γ and τopt as obtained

above is

< T >=
2

π

τopt

Γ
= 23

√
µ◦ days .

For the distribution of the lensing events we obtain

dΓ

dT
= −

4Dµ◦
M�

r4
E

v2
H

1

T 4

×

∫ 1

0

dxρd(x)[x(1 − x)]2 exp

(
−

R2
E

v2
HT

2

)
(45)

with the MACHO mass density ρ(x) as in Eqs. (5) and
(6).

dΓ

dT
= 3.0× 10−2 1

T 4
×∫ 1

0

dxρ(x)[x(1 − x)]2 exp

(
-2.3× 103x(1− x)

T 2

)
1

days2 .

(46)

The numerical results with vH = 210 km/s and D =
4.1 kpc for µ◦ = 1 are shown in Fig. 4 where the motion
of the cluster relative to the Milky Way halo is neglected.

For a list of globular clusters which might be used as
targets for a systematic microlensing search, we refer to
the papers of Gyuk & Holder (1997) and Rhoads & Mal-
hotra (1997).

3.3. Optical depth and lensing rate for a source in the SMC
and the deflecting mass in the halo of the Milky Way

Since this is a standard case we restrict to the presentation
of the results. With a distance D = 63 kpc and the galactic
coordinates of the SMC l = 302.8◦ b = −44.3◦, we get for
the optical depth and the lensing rate

τ = 7.0× 10−7 and Γ = 6.6× 10−14

√
1

µ◦
1/s .

Therefore, the time scale is < T >= 78
√
µ◦ days. The

result for dΓ
dT

is shown in Fig. 4.

3.3.1. Dependence of the lensing rate Γ on the mass func-
tion

Up to now, we assumed all lenses in the cluster to have the
same mass, which is, of course, rather unphysical. There-
fore, we discuss now the variation of Γ with the mass func-
tion dn/dµ. However, we will still make the assumption
that the mass function does not depend on the position.
To estimate the variation of Γ we choose a mass function
of the form

dn◦

dµ
= Cµ−(1+γ) (47)

with γ in the interval [-1, 3] and the mass m in the range
ma ≤ m ≤ mb. With Eq. (47) the lensing rate Γ becomes
(with uTH=1)

Γ = Γ�
M�

ρd◦

∫
µ1/2 dn◦

dµ
dµ

= Γ�
1− γ

m1−γ
b −m1−γ

a

×
m

1/2−γ
b −m1/2−γ

a

1/2− γ
. (48)
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Γ� is the lensing rate computed under the assumption
that all lenses have mass µ◦ = 1.

For the limiting cases γ << 1/2 and γ >> 1 this leads
to a lensing rate

Γ = Γ�

{
1√
ma

γ >> 1
1√
mb

γ << 1/2 .
(49)

In Fig. 6 Γ/Γ� is shown for different upper and lower lim-
its of the MACHO mass.

-1 0 1 2 3
0

10

20

30

40

Fig. 6. Γ/Γ� is plotted as a funtion of the slope γ. This cor-
responds to the dependence of the lensing rate on the slope of
the mass function. Γ� is the lensing rate for a model where all
MACHOs have the same mass µ◦ = 1

4. Microlensing towards the bulge using dark ob-
jects in globular clusters as lenses

One encounters several problems by using globular clus-
ter stars as sources. In fact, globular clusters have at most
some 105 stars that can be monitored. The angular size
of a globular cluster is small and the stars are highly con-
centrated towards the center. Furthermore, most globu-
lar clusters are located towards the galactic center which
restricts the number of objects being well suited for an
exploration of the halo. Therefore, microlensing by glob-
ular clusters only leads to valuable results, if one is able
to simultanously observe dozens of clusters with a very
high resolution for several years. At present this seems to
be a somewhat to demanding task, however this could be
feasible in the near future.

In this section we discuss the possibility to use dark
objects in globular clusters towards the bulge as lenses (see
also Taillet, Longaretti & Salati 1995, 1996), in front of
rich regions of the galactic center or the spiral arms. There
is a large sample of possible clusters which could be used
for this purpose (see Table 1). The core radius of the dark
component of the cluster can be larger than the core radius
obtained by surface luminosity measurements. Since the
size of the cluster is much smaller than its distance, it can
be assumed to be equal for all its members, moreover, the
velocity dispersion inside the cluster is also small, hence
globular clusters are well suited for determining the lens
mass.

4.1. Estimate of optical depth and event rate

In the first part of this section, we give some (conservative)
estimates for the optical depth and the event rate due to
some globular clusters towards the bulge by scaling the
results obtained for 47 Tuc under the assumption that the
clusters contain only little dark matter. As was derived
in Eq. (39), the optical depth due to a globular cluster is
proportional to the surface density of microlensing events
and the pure geometrical quantity x̄(1−x̄). Assuming Σ(b)
to be proportional to the total visual magnitude MV , we
can calculate the contribution to the optical depth due to
the clusters (see Table 1). Since the galactic bar is not too
extended, we fix the distance of the sources to be 8.5 kpc.

Compared with the measured average optical depth to-
wards the galactic center τopt ' 2.4×10−6 due to the disk
and the bar itself (Alcock, Allsman, Alves et al. 1997a),
we see from Table 1 that some of the globular clusters
can give a very significant contribution to the total op-
tical depth or even dominate it along their line of sight,
as in the case of NGC 6553, which lies close to the ideal
distance of x̄ = 0.5.

A rough estimate of the microlensing event rate per
year due to globular clusters towards Baades Window is
obtained by properly rescaling Eq. (40). We compute the

event rate in units of
√

1
µ◦

Mdark

3.5×105M�

nstar
50/(1.2pc)2

1
year as in

Eq. (40), in order to be able to easily compare between
the different clusters. To that purpose one has to use the
scaling factor η given by:

η = 0.12
v′dr
′
E

vdrE

n′star

nstar

(1.2 pc)2

A

∫
Σ′(b) db∫
Σ(b) db

, (50)

where the unprimed quantities belong to 47 Tuc and the
primed to the cluster under consideration. A is the surface
which corresponds to (1′)2 at the distance of the cluster.
For the calculation of the numbers, as given in Table 1,
we assumed v′d = 30 km/s which is indeed a very conser-
vative value and, therefore, we will get a lower limit for
the eventrate.
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Object Position [l, b] MV x̄ τopt
[

Mdark
3.5×105M�

]
N
[√

1
µ◦

Mdark
3.5×105M�

nstar
50/(1.2pc)2

1
year

]
Terzan 1 357.57 1.00 -3.3 0.765 2.1× 10−7 1.1× 10−5

Terzan 5 3.81 1.67 -7.9 0.941 4.7× 10−6 5.5× 10−4

Terzan 6 358.57 -2.16 -6.8 0.882 3.2× 10−6 2.2× 10−4

UKS 1 5.12 0.76 -6.2 0.882 1.8× 10−6 1.3× 10−4

Terzan 9 3.60 -1.99 -3.9 0.918 1.6× 10−7 1.4× 10−5

Terzan 10 4.42 -1.86 -7.8 0.988 9.0× 10−7 4.3× 10−4

NGC 6522 1.02 -3.93 -7.5 0.824 8.6× 10−6 5.0× 10−4

NGC 6528 1.14 -4.17 -6.7 0.871 3.2× 10−6 2.1× 10−4

NGC 6540 3.29 -3.31 -5.3 0.412 1.9× 10−6 2.6× 10−4

NGC 6544 5.84 -2.20 -6.5 0.294 4.9× 10−6 1.5× 10−3

NGC 6553 5.25 -3.02 -7.7 0.553 1.8× 10−5 1.3× 10−3

NGC 6558 0.20 -6.03 -6.1 0.753 3.0× 10−6 1.6× 10−4

Table 1. Optical depth and event rate due to MACHOs in some globular clusters for sources located towards the galactic
center. The symbols are defined within the text. Cluster data is adopted from Harris (1996).

4.2. Spatial distribution of microlensing events around
NGC 6522, NGC 6528 and NGC 6540

In the following we present a rough analysis of the mi-
crolensing events around the three globular clusters which
lie within the observation fields of MACHO and OGLE.

Within a radius of 30 pc around NGC 6522 and 6528
we found 7 events for each of them (see Table 2). Since the
projected areas of these two clusters overlap, 4 events lie
within the 30 pc circles around both clusters. NGC 6540,
which is nearer to us, hosts a total of 15 events within
the 30 pc circle. At first sight, since the covered area is
about four times larger, this value seems to be lower than
expected. However, NGC 6540 is about 8 times less bright
than NGC 6522. Therefore, if the total luminosity roughly
scales with the total mass content, we expect NGC 6540
to contain less dark matter than NGC 6522.

Within 12 pc we found 3 events for NGC 6522, 2 events
for NGC 6528 and 4 events for NGC 6540 (see Table 2).
The event rate ratio in units of events per square degree
for the 12 pc circle and the 30 pc ring (excluding the in-
nermost 12 pc) are 99/25 for NGC 6522, 74/35 for NGC
6528 and 33/17 for NGC 6540, respectively. For all three
clusters the central region shows an increase in microlens-
ing events. Due to the fact that the 30 pc circles around
NGC 6522 and NGC 6528 intersect, we can also calculate
the event rate in the overlapping region, which we find to
be 70 events per square degree. Within our poor statistics,
this is what one expects for a line of sight crossing twice
the region of influence of a globular cluster. It would also
give a first hint, that globular clusters can indeed have a
population of dark objects that reaches out as far as 30 pc.

Of course, there is now the problem how to distinguish
between the events due to MACHOs located in the globu-
lar cluster and those due to MACHOs in the disk or bulge,
which will define our ”background”. Since this cannot be

decided for a single event, we assume that the events which
lie in the ring from 12 to 30 pc are due to MACHOs in
the disk or bulge. This way we certainly overestimate the
”background”. Moreover, the common events within 30 pc
around both NGC 6522 and NGC 6528 were counted as
”background” events for both clusters. This way leading
also to a higher background rate. The so estimated event
rate per area is then subtracted from the value in the inner
12 pc region. The leftover events should be due to MA-
CHOs located in the globular cluster. We find the follow-
ing values (in parenthesis the ”background”): 2 (1) hence
a total of 3 events for NGC 6522, 1 (1) event for NGC 6528
and 2 (2) events for NGC 6540. We see that the number of
observed events in the inner 12 pc is roughly twice as high
as one would get due to MACHOs in the disk or bulge
alone. By assuming that all the events in the ring from
12 to 30 pc are due to MACHOs in the disk or bulge, we
have certainly underestimated the contribution from the
globular cluster, since some of these events might also be
associated with the cluster.

Of course, we must discuss the shortcomings of our
analysis. We tacitly assumed that the product of total ob-
servation time and background star density is the same for
the 12 and 30 pc regions for a given cluster. This should
at least be well fullfilled for the relatively small regions
around NGC 6522 and NGC 6528. For NGC 6522 and
NGC 6528 we added MACHO and OGLE data, hence
we use a different normalisation for them than for NGC
6540. In addition, we did not take into account the dif-
ferent efficiencies. Moreover, our evaluation is based upon
a very poor statistics, and thus one must take the above
results with all the necessary caution. However, since all
our estimates were performed very conservatively and for
all three clusters we get the same behaviour and since
also the overlapping region of NGC 6522 and NGC 6528
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Fig. 7. Position of 195 microlensing events towards the bulge
in galactic coordinates (taken from the alert list of the MA-
CHO collaboration and the corresponding list of the OGLE
team). The crosses denote the position of some of the globu-
lar clusters reported in Table 1, which are located in Baades
Window. Only the three clusters NGC 6522, NGC 6528 and
NGC 6540 lie within the observation fields. The circles around
the three clusters correspond to a radius of 30 pc around the
cluster center.

shows an increase in microlensing events, we think it’s fair
to state, that globular clusters can –within some pc– at
least double the optical depth and also the event rate due
to MACHOs in the disk and the bulge; the latter quan-
tities being τ ' 2.4 × 10−6 (Alcock, Allsman, Alves et
al. 1997a) and Γ ' 1.3 × 10−12s−1 for a typical mass of
0.1M�.

Stars in globular clusters can also act as sources for mi-
crolensing, however, as discussed in Sect. 3.2.4 their con-
tribution, unless for the very central region of ∼ 1− 2 pc,
is very small as compared with lensing due to sources in
the bulge. For NGC 6522 and NGC 6528 there is a small
probability that the source lies in NGC 6528 and the lens
in NGC 6522. Knowing the distances and the relative mo-
tion of the two clusters this system might yield the most
accurate mass determination for a lensing object.

It is interesting to note, that the above mentioned
event rate ratios scale with the total luminosity i.e. the
brightest cluster NGC 6522 shows also the largest increase
of events towards the center.

For the mean event duration as given in Table 2, we
calculate the typical mass of a MACHO for vd = 30 km/s
and vd = 180 km/s. Obviously, one should consider only
the events due to MACHOs in the cluster. However, since

it is not possible to distinguish them, we have just taken
the average value as a first approximation. This should not
be far from the true value (as can be seen by inspection
of Table 2). The results are given in Table 3. We see that
depending on vd the MACHOs can be either Jupiter type
objects, brown dwarfs, M-stars or even white dwarfs.

Object 〈M〉 d ≤ 12 pc 〈M〉 12 < d ≤ 30 pc

NGC 6522 0.003M� 0.021M�
0.11M� 0.75M�

NGC 6528 0.021M� 0.018M�
0.77M� 0.65M�

NGC 6540 0.003M� 0.016M�
0.12M� 0.57M�

Table 3. Typical masses for the microlensing events around
NGC 6522, NGC 6528 and NGC 6540. The upper value corre-
sponds to vd = 30 km/s, the lower to vd = 180 km/s. d denotes
the distance from the cluster center.

Below we compute the optical depth and the event rate
for four different King models as a function of the distance
from the cluster center in the lens plane. The parameters
are tuned such that the average of the values in the in-
terval from 1 to 12 pc roughly corresponds to the above
mentioned values for the optical depth τ and the event
rate Γ. The tidal radius was assumed to be rt = 60.3 pc,
the distance to the lens is set to be 3.5 kpc and the one to
the source 8.5 kpc. For the calculation of the event rate we
again take the rather low value vd = 30 km/s. Since we are
not able to reproduce the mass function, we rather study a
bi-mass model, hence the cluster consists of a heavy com-
ponent (component 1) and a light one described by one of
the other components as defined below.

Component 1: the density is given by Eq. (22) with cen-

tral density ρ◦ = 6.0×104 M�
pc3 core radius rc = 0.52 pc

and MKing
1 = 3.5× 105 M�. For the calculation of the

event rate we assumed a typical mass M = M�.
Component 2: as Component 1, but with a core radius

rc = 1.56 pc and a typical mass of M = 0.1 M�. The
total mass of this component is again 3.5× 105 M�.

Component 3: as Component 2, but with a total mass
of the component of 1.75× 106 M�

Component 4: as Component 3, but with a core radius
rc = 2.6 pc

We find that a population of low mass objects as described
by a King model with a total mass of 1.75× 106 M� can
lead to the desired enhancement of the optical depth and
the lensing event rate up to distances of ∼ 12 pc from the
cluster center (see Figs. 9 and 10). Of course, the mod-
els and mass values given above have to be taken as an
illustration, nevertheless it is clear that the rather high ob-
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Object Position [l, b] MV within 12 pc within 30 pc Duration [days] Mean [days] Events/degree2

NGC 6522 1.02 -3.93 -7.5 OGLE 5 12.4

97-37∗ 12

97-68 6

10.1 99

OGLE 1∗ 25.9

OGLE 2 45

OGLE 4∗ 14

97-14∗ 21.5

26.6 25

NGC 6528 1.14 -4.17 -6.7 OGLE 1∗ 25.9

97-14∗ 21.5

23.7 74

OGLE 3 10.7

OGLE 4∗ 14

OGLE 10 61.1

97-37∗ 12

95-11 30.5

22 35

NGC 6540 3.29 -3.31 -5.3 96-6, d < 6 pc 19.5 33

96-17 16.5

95-29 12

95-40 8.5

14 33

96-14, d < 18 pc 12.5

95-26, d < 18 pc 19.5

95-31, d < 18 pc 16 20

97-2, d < 24 pc 23.5

97-10, d < 24 pc 8.5

97-24, d < 24 pc 5

95-36, d < 24 pc 12 20

98-1 97.5

97-58 26.5

96-1 76

95-30 33.5 15

30 17

Table 2. Microlensing events within a radial distance of 30 pc around NGC 6522, NGC 6528 and NGC 6540. Values marked
with an asterisk lie within 30 pc of both NGC 6522 and NGC 6528. For NGC 6540 we also give the finer binning as used for
Fig. 8. Data is taken from the alert list of the MACHO collaboration and the event list of the OGLE team. The event duration
follows the OGLE convention i.e. T = RE/vT , which is half the value as reported in the MACHO alert list.

served microlensing rate of the clusters imply a substantial
dark matter component. Although there is a large inherent
uncertainty in the event rate due to the poor knowledge
of vd, it is important to note, that the required optical
depth and event rate cannot be due to the heavy compo-
nent alone.

5. Summary

We discussed in detail microlensing by globular clusters.
47 Tuc was taken as an example for which we performed

the calculation of the optical depth, the microlensing event
rate and the average lensing duration for all possible ge-
ometries of the system SMC-47 Tuc-Milky Way. In addi-
tion, we studied the dependence of these parameters on
the mass function.

We have seen that for the case, where the source is
a star in the SMC and the lens is a MACHO in 47 Tuc,
one can expect an observable eventrate of ∼ 0.1 − 1 per
year. However, this result depends crucially on the total
amount of dark matter and its distribution in the cluster,
which both are not well known at present.
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Fig. 8. The microlensing event rate per area as a function of
the radial distance from the cluster center for NGC 6540.
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Fig. 9. The optical depth for the four different King models
as described within the text.
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Fig. 10. The microlensing event rate for the four different King
models as described within the text.

We then applied these results to study microlensing by
globular clusters towards the galactic center, where locally
the optical depth can be dominated by dark matter inside
clusters. However, since globular clusters are very local-
ized objects, the expected number of events as obtained
by these scaling arguments is small. A larger event rate is
expected, if the average MACHO mass inside the cluster is
well below one solar mass, the total amount of dark mat-
ter is larger than 3.5×105M� or the density of observable
stars behind the cluster is significantly higher than the
assumed value of 50 stars per (1.2 pc)2. Indeed, analysing
the event distribution around the three clusters inside the
observation fields of MACHO and OGLE, we find an in-
crease of the microlensing event rate by at least a factor
of about 2, as compared to that expected for MACHOs
located in the disk and the bulge. This increase suggests
the presence of a substantial amount of dark matter in
form of light objects such as brown dwarfs.

Given this promising preliminary results it is impor-
tant to systematically analyse future lensing data as a
function of the position around the mentioned globular
clusters. In fact, having few more events at disposal will
already be very helpful to draw more firm conclusions and
get better limits on the content of dark matter in globular
clusters.

In addition, we propose to favour observation fields
around globular clusters for future campaigns. In partic-
ular NGC 6553 is a very promising candidate for lensing
by dark objects in globular clusters, since its luminosity
is high and also its distance is such that the tidal radius
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of the cluster corresponds to a relatively large angular
size. Moreover, it would be important to have more pre-
cise knowledge of vd, which is at present one of the main
sources of uncertainty.
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