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Abstract
A model describing the transport of charge carriers

generated in silicon detectors (standard planar float zone and
MESA diodes) by ionizing particles is presented. The current
pulse response induced by � and � particles in non-irradiated
detectors and detectors irradiated up to fluences � � 3 � 1014
particles/cm2 is reproduced through this model: i) by adding a
small n-type region 15 �m deep on the p+ side for the standard
planar float zone detectors at fluences beyond the n to p-type
inversion and ii) for the MESA detectors, by considering one
dead layer 14 �m deep (observed experimentally) on each side,
and introducing a second (delayed) component. For both types
of detectors, the model gives mobilities decreasing linearily
up to fluences of about 5 � 1013 particles/cm2 and converging,
beyond, to saturation values of about 1000 cm2/Vs and 455
cm2/Vs for electrons and holes, respectively. At a fluence
� � 1014 particles/cm2, charge collection deficits of about
13% for � particles, 25% for � particles incident on the front
and 35% for � particles incident on the back of the detector are
found for both type of diodes.

I. INTRODUCTION

The electrical characteristics of n-type silicon detectors
(standard planar float zone (SPFZ) and MESA) as a function
of the particle fluence (�) can be extracted by modelling the
transport of the carriers of the charge generated by � or �
particles in non-irradiated and irradiated silicon detectors.
The model is used to fit the experimental signal-current pulse
responses (measured as a function of the collection time)
induced by � and � particles in p+ � n � n+ diodes. The
extracted electrical characteristics of a p+ � n � n+ diode
are the effective impurity or dopant concentration (Neff ), the
electron (�e) and hole (�h) mobilities, and the charge carrier
lifetimes (�te, �th).

II. THE CHARGE TRANSPORT MODEL

The electrical characteristics are extracted from a system
of five partial differential equations: the current continuity
equations for electrons and holes, the Poisson equation (which
determines the electric field and considers the plasma effect)
and two equations relating the concentration of trapped to the
untrapped charges. No analytical solution can be obtained,
so the equations are discretized using Gummel’s decoupling
scheme [1] to obtain a numerical solution. The observed
signal (V (t)) is a convolution of the current (I(t) obtained
from Ramo’s theorem [2]) produced by all the individual
charge carriers and the response from the system, which is
simply an RC circuit. The response of the system is Gaussian

with a characteristic time constant � = RaC, where C is the
capacitance of the detector and Ra = 50 
 the input impedance
of the amplifier:
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wheren and p are the concentration of electrons and holes,E the
electric field, Da the ambipolar diffusion constant, G = 1000

the gain of the amplifier, r0 the initial radius of the column of
deposited charge and w the thickness of the diodes. The drift
velocity of the charge carrier reaches a saturation value vs for
electric field values around 104 V/cm. The empirical equation
describing the mobility as a function of the electric field is [3]:

�(x) =
�0

[1 + (�0E(x)=vs)
m
]
1=m

(3)

where �0 is the zero field mobility,m = 1 for holes, m = 2 for
electrons; vs = 1:05 � 107 and 107 cm/s for electrons and holes,
respectively.

The mobilities are also dependent on the temperature and
dopant concentrations. Those dependences are taken into
account via the empirical equation [4]:
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where the values used for the electrons (holes) are: �min = 55.24
(49.7) cm2/Vs,Nref = 1:072�1017 (1:606�1017) dopants/cm3, �
= -2.3 (-2.2), � = -3.8 (-3.7),� = 0.73 (0.70), T is the temperature
in Kelvin and �0 is the mobility at T = 300 K.

The quantities of interest are extracted by using the code
MINUIT [5] to minimize the �2 obtained from fitting the
numerical solution found for V(t) to the measured current pulse
response induced by � and � particles.

Electrons from a 106Ru source with an energy > 2 MeV,
selected by an external trigger, and � particles from a 241Am
source with an energy of 5.49 MeV were used. The current
pulses induced by particles penetrating the silicon diode are
detected by a fast current amplifier. The pulses are recorded by
a digital oscilloscope used in averaging mode, to improve the
signal-to-noise ratio. The diodes studied in the present work
are listed in Table 1 with their thickness and resistivity.



Table 1
Characteristics of the studied diodes. The detectors were irradiated (column 7) by step of fluence up to 9:92 � 10

13 n/cm2 for M4, 7:48 � 10
13

p/cm2 for M18, M25, M35, and up to 2:87 � 10
14 p/cm2 for P44, P86, P88, P135, P189, P300 and P304. M49, M50 and M53 were not irradiated

Detector Process Current Thickness Neff (� = 0) Resistivity Maximum fluence
pulse source (�m) (1011 cm�3) k
� cm (1013 cm�2)

M4 SPFZ � 317 -3.4 12.2 9.92 n
M18 SPFZ �,� 309 -4.1 11. 7.48 p
M25 SPFZ �,� 308 -2.1 23. 7.48 p
M35 SPFZ � 508 -1.7 24. 7.48 p
M49 SPFZ � 301 -4.7 8.9 -
M50 SPFZ � 471 -1.8 22.8 -
M53 SPFZ � 223 -5.4 7.7 -
P44 MESA �,� 306 -18 2.0 28.7 p
P86 SPFZ �,� 290 -21 2.5 28.7 p
P88 SPFZ �,� 290 -19 2.5 28.7 p
P135 MESA �,� 308 -17 2.0 28.7 p
P189 SPFZ �,� 294 -21 2.5 28.7 p
P300 MESA �,� 303 -6 6.0 28.7 p
P304 SPFZ �,� 320 -6 6.0 28.7 p

III. STANDARD PLANAR FLOAT ZONE DIODES

Fits of the charge carriers transport model to the current
pulses induced by relativistic electrons and by �-particle either
on the front-side or the back-side of non-irradiated SPFZ
detectors (represented in Fig. 1) reproduces well the shape of
the measured current pulses (� and �). Figure 2 shows the
contribution of the electrons and holes to the signal.
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Figure 1: Schematic representation of a SPFZ diode.

Table 2 shows the initial mobilities at � = 0 of the diodes
obtained from the model. The average mobilities achieved for
electrons and holes are: �e = 1284 � 21 cm2/Vs and �h =

482� 10 cm2/Vs, respectively.

The detectors have been irradiated either with � 1 MeV
neutrons at CERN-PSAIF, up to a fluence of 9:92 � 1013 n/cm2

or with 24 GeV/c protons at CERN-PS, up to a fluence of
2:87 � 1014 p/cm2 (column 7 in Table 1).

The results of the charge transport model fits to the
experimental data permit the extraction of the value of Neff as
a function of the fluence:

Neff = �Nd exp(�c�) +Na + b�; (5)

where Nd and Na are the concentration of donnors and
acceptors at � = 0, respectively; b and c are the acceptor
creation and donnor removal parameters, respectively. By
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Figure 2: Fits (full line) of the charge transport model to the current
pulse response induced at � = 0 by � particles incident on the front
side (a), on the back side (b) of detector M25 and by relativistic
electrons on detector M50 (c); A bias voltage Vb = 160 V is applied
in all cases. The individual electrons (e) and holes (h) contributions
are shown.

using Eq. (5) to describe the evolution of Ne� with fluence, one
obtains the results shown in Fig. 3 for two detectors (P86 and
P88). The values of the parameters obtained using Eq. (5) for
all the detectors are reported in Table 3.

Using a simple pn+ junction after the n to p-type inversion
(which takes place at a fluence � � �inv � 5 � 1012
particles/cm2, a detector with an higher initial resistivity
inverts from n to p-type at lower fluence value), the charge



Table 2
Mobilities at � = 0 of the SPFZ diodes as obtained from the model

Detector �h �e
(cm2/Vs) (cm2/Vs)

M4 504 � 2 1278� 15
M18 474 � 2 1236� 15
M25 476 � 2 1308� 28
M35 472 � 3 1272� 5
M49 546 � 11 1266� 24
M50 529 � 13 1272� 20
M53 478 � 12 1350� 20
P88 459 � 4 1222� 20
P189 480 � 20 1340� 27
P304 495 � 3 1124 � 22
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Figure 3: Evolution of the effective concentration of dopants as a
function of fluence for the detectors a) P86 and b) P304.

Table 3
Values of the parameters obtained to describe the evolution of the

effective concentration with fluence

Det. Nd Na b c

(1011/cm3) (1011/cm3) (10�2/cm) (10�13cm2)
M4 3.1 0 1.5 8.1
M18 3.7 0 2.8 12.
M25 2.0 0 2.5 21.
M35 36. 35. 0.2 1.0
P44 17. 0 0.9 2.4
P86 33. 11. 1.0 2.2
P88 30. 11. 1.5 1.5
P135 23. 7.0 0.7 1.3
P189 19. 0 1.4 3.2
P304 5.4 0 1.6 2.9

carriers transport model poorly reproduces the measured
V(t) as a function of the collection time for � > �inv.
Also, the mobilities keep on decreasing continuously with
increasing fluence. For instance, while�h = 474:4 cm2/Vs and
�e = 1236 cm2/Vs for the detector M18 at � = 0, the values
of the mobilities for this detector drop to �h = 338 cm2/Vs
and �e = 700 cm2/Vs at a fluence of � = 7:48 � 1013 p/cm2

without showing any sign of saturation.

In order to fit the data and to account for the evolution of
the electrical characteristic of the detectors with fluence beyond
�inv, the electric field is modified after inversion by introducing

a n-type region 15 �m deep near the p+ contact. This concept of
double junction can be also found in [6] and in other references
contemporary with the present work [7, 8]. This modification
of the electric field permits to reproduce the measured V(t) as
a function of the collection time for � > �inv, as shown in
Fig. 4. The evolution of the pulse shape of one detector (M25)
as a function of fluence, as described by applying the model, is
shown in Fig. 5 through Fig. 7.
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Figure 4: Fits (full line) for detector M4 before (a and b) and after (c
and d) the introduction of the 15 �m n-type junction on the p+ side
after inversion at fluences of � = 6:27 (a,c) and 9:92 � 10

13 n/cm2

(b,d) for an � particle on the back side with an applied voltage of
Vb = 160 Volts.
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Figure 5: Fits (full line) of the current pulse response induced by �

particles incident on the front side of detector M25 for successive
levels of fluence � from 0 up to 4:95 � 10

13 p/cm2 (� is in units of
10

13 p/cm2, Vb is the applied voltage in volts).
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Figure 6: Fits (full line) of the current pulse response induced by �

particles incident on the back side of detector M25 for successive
levels of fluence � from 0 up to 7:48 � 10

13 p/cm2 (� is in units of
10

13 p/cm2, Vb is the applied voltage in volts).
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Figure 7: Fits (full line) of the current pulse response induced by �

particles incident on detector M25 for successive levels of fluence �
from 0 up to 7:48 � 10

13 p/cm2 (� is in units of 1013 p/cm2, Vb is the
applied voltage in Volts).

The behaviour of the mobility with fluence is also modified
by the introduction of the 15 �m n-type region. As it can
be seen from Fig.8, the mobility now tends, after an initial
decrease, towards the saturation values �sat;e � 1000 cm2/Vs
and �sat;h � 455 cm2/Vs for the electrons and holes for
� > 5 � 1013 particles/cm2, respectively. This figure also shows
that the mobility values obtained using either � or � particles
data are in agreement, which provides a consistency check of
the model.
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Figure 8: Evolution of the mobilities as a function of fluence for
SPFZ diodes, as extracted from the model using � front, � back and �
particles data.

IV. MESA DIODES

The MESA process for building diodes is an alternative to
the planar process that is simpler and cheaper, as it involves no
oxidation or masking. Studies [9] have shown that a layer of
about 14 microns on each side of the diode acts as a dead layer.
So by taking this feature into account, it is possible to adapt the
model, successfully applied to SPFZ detectors, to the description
of the MESA detectors.

We start with a MESA detector of thickness w, of which a
thickness Xdead is considered dead on each side as shown in
Fig. 9. We can define the active thickness of the detector as
w0 = w � 2 �Xdead.

n+ p+n

Back Front

r

h

e

X00’ w’

Xdead w-X dead
w0

Figure 9: Schematic representation of a MESA diode with the dead
layers on each side.

The initial distribution of charge carriers at time t = 0 over
the total thickness w is the same as for a SPFZ detector, even
though only the active region Xdead < x < w � Xdead (i.e.
00 < x < w0) will generate the signal. This modification alone
to the model (line 1 in Fig. 10a) is not enough as the measured
current-pulses are wider. We consider that a fraction (f) of the
electron-hole pairs created in the dead zones becomes active only



at a later time Tlate which gives a second component (line 2 in
Fig. 10b). A very good description of the measured current-pulse
of a MESA diode is obtained by adding the two components (line
3 in Fig. 10b).
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Figure 10: Current pulse response induced by � particles incident on
the back of a MESA diode before (line 1) and after (line 3) the addition
of a second (delayed) component (line 2) at � = 0 and applied voltage
Vb = 200 Volts.

For � particles incident on the front side of the detector, some
electrons will be released near the front (see Fig. 11a):

n(x; Tlate) = n(x; Tlate) + f; (6)

for � particles incident on the back side of the detector, some
holes will be released near the back (see Fig. 11b):

p(x; Tlate) = p(x; Tlate) + f; (7)

or a combination of both cases for � particles (see Fig. 11c).

0’ w’ 0’ w’

0’ w’ 0’ w’

� front � back

� particles � particles

t = 0

0 < t < Tlate

t = Tlate

t = 0

0 < t < Tlate

t = Tlate

Figure 11: Representation of the distribution of charge carriers in a
MESA diode before and after the inclusion of the second component.

Fits of the model to the current-pulse response of MESA
detector P135 induced by � and � particles, taking into account
the second (delayed) component, are shown in Fig. 12 as a
function of fluence. The mobilities as a function of fluence for
MESA diodes are shown in Fig. 13 and are in agreement with
the values obtained for the SPFZ detectors.

Table 4
Mobilities at � = 0 of the MESA diodes as obtained from the model

Detector �h �e
(cm2/Vs) (cm2/Vs)

P44 455 � 15 1422� 24
P135 472 � 9 1310� 23
P300 469 � 12 1298� 18
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Figure 12: Fits (full line) of the current pulse response induced by �

particles incident on the front side (a), on the back side (b) and for �
particles (c-f) of MESA detector P135 for successive levels of fluence
� from 0 up to 2:87 � 10

14 p/cm2 (� is in units of 1013 p/cm2, Vb is
the applied voltage in volts).

V. CHARGE COLLECTION EFFICIENCY

Since the number of defects increases as the fluence gets
higher, the charge carrier lifetimes due to trapping decreases.
The integration of the signal over the collection time allows
the determination of the collected charge. Thus, a comparison
between the results obtained using the trapping lifetime
extracted at a certain fluence, with those obtained if no trapping
had occurred, allows the calculation of the charge collection
efficiency (CCE). As it can be seen from Fig 14a and 14b,
for neutron (proton) irradiated SPFZ detectors, a charge
collection deficit around 12 % (25 %) is calculated for �
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Figure 13: Evolution of the mobilities as a function of fluence for
MESA diodes.

particles incident on the front side and about 18 % (35 %)
for � particles incident on the back side of the detector, for a
fluence of � 1014 particles/cm2. Direct measurements [10] of
CCE using � particles from a Th C’ source with an energy of
8.78 MeV on detectors irradiated up to a fluence of � 1014

protons/cm2 show a smaller deficit (� 5 % on the front side
and � 10 % on the back side). Those discrepancies can be
explained. First, an � particle of 5 (8.78) MeV has a range
of � 25 (57) microns in silicon, most of the energy being
deposited toward the end of the path. We can assume that most
electron-hole pairs are created around 20 (50) microns from
the surface. Thus, for a typical detector of 300 microns, the
charge carriers generated by � particles from an 241Am source
will experience more trapping as they spend � 15% more time
in the detector than those generated by � particles from a Th
C’ source. Secondly, the setup used with the Th C’ source in
ref. [10] had a shaping time (1 �s) larger than the shaping time
(100 ns) used with the present 241Am source setup. A large
shaping time means that the trapped charges are more likely to
untrap and thus reduce the observed charge collection deficit.
For � particles, a collection deficit of about 13 % is calculated
(Fig. 14c) for a fluence of � 1014 particles/cm2. This latter
result is in agreement with the 12% deficit obtained from
direct charge collection efficiency measurements made with �

particles (shaping time of 100 ns) [11] for detectors irradiated
at fluences � 1014 particles/cm2. For MESA detectors, using a
signal induced by � particles, charge collection deficits around
12 % and 18 % are calculated (Fig. 14d) for fluences of � 1

and 3 � 1014 protons/cm2, respectively. This result is similar
to the one obtained for SPFZ detectors at a fluence of � 1014

protons/cm2.

VI. CONCLUSIONS

The present study brings the following conclusions:
The model describing the transport of the carriers of charge
generated in silicon detectors by ionizing particles allows one
to reproduce the current pulse response of non-irradiated and
irradiated SPFZ detectors induced by � and � particles up
to fluences around n to p-type inversion (� � �inv) using a
simple p+ � n � n+ diode. Beyond inversion (� > �inv) a
small n-type region 15 �m deep is introduced on the p+ side
of the detector. The introduction of this region modifies the
electric field after inversion and permits the charge carriers
transport model to reproduce the experimental data up to
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Figure 14: Charge collection efficiency as a function of fluence using:
a) � particles incident on the front, b) � particles incident on the back
and c-d) � particles.

fluences of � 1014 particles/cm2. The model was also adapted
to be used with MESA diode by considering one dead layer on
each side of the diode and a delayed component.

For both types of detectors (SPFZ and MESA), this model
gives mobilities decreasing linearily up to fluences of around 5 �
1013 particles/cm2 and beyond, converging to saturation values
of about 1000 cm2/Vs and 455 cm2/Vs for electrons and holes,
respectively.

At a fluence � � 1014 particles/cm2, the charge carrier
lifetime degradation due to trapping with increased fluence is
responsible for a charge collection deficit of about 13% for �
particles, 25 % for � particles incident on the front side and 35
% for � particles incident on the back side of SPFZ and MESA
diodes, which is in agreement with direct measurements.
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[10] S. Pospı́šil, Scanning of silicon detector using alpha
particles and low energy protons, talk given at GaAs’98,
Pruhonice, 22-26 june 1998, to be published in Nucl. Instr.
and Meth. A (1998).

[11] C. Leroy et al., Study of electrical properties and charge
collection of silicon detectors under neutron, proton and
gamma irradiations, Proc. IVth Int. Conf. on Calorimetry
in High Energy Physics, World Scientific, eds. A.
Menzione and A. Scribano, Singapore (1994) 627.


