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Abstract

In the supersymmetric standard model there exist pure gravity contributions to the
soft mass parameters which arise via the superconformal anomaly. We consider the
low-energy phenomenology with a mass spectrum dominated by the anomaly-induced
contributions. In a well-defined minimal model we calculate electroweak symmetry
breaking parameters, scalar masses, and the full one-loop splitting of the degenerate
Wino states. The most distinctive features are gaugino masses proportional to the
corresponding gauge coupling beta-functions, the possibility of a Wino as the light-
est supersymmetric particle, mass degeneracy of sleptons, and a very massive grav-
itino. Unique signatures at high-energy colliders include dilepton and single lepton
final states, accompanied by missing energy and displaced vertices. We also point
out that this scenario has the cosmological advantage of ameliorating the gravitino
problem. Finally, the primordial gravitino decay can produce a relic density of Wino
particles close to the critical value.
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1 Introduction

Supersymmetry provides a promising solution to the gauge hierarchy problem afflicting the

standard model (SM). However, it is clear that supersymmetry must be broken at low ener-

gies. The specific mechanism for transmitting supersymmetry breaking effects is important

in determining the low-energy experimental signatures. Currently, there are two known

ways that supersymmetry breaking effects appear in the low-energy Lagrangian. In gravity-

mediated scenarios [1], supersymmetry is broken in a hidden sector and transmitted gravi-

tationally to the observable sector fields. While this scenario is elegant and simple, it suffers

from the supersymmetric flavor problem. Alternatively, in gauge-mediated scenarios [2],

supersymmetry breaking is transmitted via gauge forces and this scenario provides an ap-

pealing solution to the supersymmetric flavor problem. Both of these alternative scenarios

have distinct experimental signatures.

We consider a third scenario for transmitting supersymmetry breaking to the observable

sector. In this scenario, rescaling anomalies in the supergravity Lagrangian give rise to soft

mass parameters for the observable sector fields [3, 4]. Unlike the gravity-mediated or gauge-

mediated scenarios, these anomaly contributions will always be present if supersymmetry is

broken. We will refer to the case in which the anomaly-induced masses are dominant as the

anomaly-mediated supersymmetry breaking (AMSB) scenario. In this scenario the gaugino

mass is proportional to the corresponding gauge beta function while the scalar masses (and

A-terms) depend on the anomalous dimensions of the corresponding scalar fields. One of

the distinctive features of the AMSB scenario is the gaugino mass spectrum, with the Wino

being the lightest supersymmetric particle. Similarly, the squark mass spectrum is unique

but unfortunately the slepton mass spectrum is tachyonic. This can be cured by adding

a positive, non-anomaly mediated contribution [3]. Some phenomenological consequences

of this scenario have been recently presented in ref. [5]. A different and very interesting

approach to cure the tachyonic mass spectrum problem has been suggested in ref. [6].

Another distinctive feature of AMSB is that the gravitino is much heavier than the

gauginos and squarks. This is cosmologically attractive because the gravitino problem can

be ameliorated. Moreover, gravitino decays can produce a present Wino energy density close

to the critical value. The neutral Wino is therefore a good dark-matter candidate, in spite
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of its negligible thermal relic density.

2 The anomaly-induced mass spectrum

The anomaly-induced soft terms [3, 4] are always present in a broken supergravity theory,

regardless of the specific form of the couplings between the hidden and observable sectors.

They are linked to the existence of the superconformal anomaly. Indeed they explicitly

arise when one tries to eliminate from the relevant Lagrangian the supersymmetry-breaking

auxiliary background field by making a suitable Weyl rescaling of the superfields in the

observable sector. Their origin has been discussed from various point of views in refs. [3, 4, 6].

Here we give a heuristic derivation of the essential results, and make some comments on their

phenomenological relevance.

The effect of supersymmetry breaking can be described by a flat-space chiral superfield

Φ, with background value

Φ = 1−m3/2θ
2. (1)

This field acts as a compensator of the super-Weyl transformation. In other words, by

choosing suitable couplings of Φ to the observable fields, the theory is made superconformal

invariant.

Let us consider a supersymmetric gauge theory with no mass parameters at the classical

level. This does not appear at first sight to be relevant to the minimal supersymmetric

model which contains a mass term – the Higgs mixing mass µ – seemingly even in the limit

of exact supersymmetry. Actually, the µ term can be viewed as an effect of supersymmetry

breaking [7], and therefore we set it to zero for the moment. Mechanisms for generating µ

in AMSB scenarios have been discussed in refs. [3, 4, 6]. At the quantum level, there is

always the need to introduce a mass parameter, which is the renormalization scale µ (not

to be confused with the Higgs mixing parameter). In the presence of a compensator field Φ

for super-Weyl transformations, it is natural to expect that the renormalization scale µ is

promoted to a superfield, according to

µ→ µ/
√

Φ†Φ. (2)
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The replacement of Φ with its background value given in Eq. (1) generates a specific set of

supersymmetry-breaking terms.

The simplest way to obtain the form of the supersymmetry-breaking terms is to employ

the technique developed in ref. [8]. The main idea is that when certain parameters of a super-

symmetric theory are “analytically continued” into superspace, the renormalization-group

(RG) flow of the modified theory is completely determined by the properties of the original

theory. In particular, if a parameter is continued into a supersymmetry-breaking background

field, the RG properties of the exact supersymmetric theory determine the form of the soft

terms. The prescription given in Eq. (2) is a specific example of such a continuation. We

can then make use of the general expressions of the gaugino masses Mλ, scalar masses mQ̃,

and trilinear couplings AQi
in terms of derivatives of the field wave-functions [8],

Mλ = −1

2

∂ ln S

∂ ln Φ

∣∣∣∣∣
0

FΦ (3)

m2
Q̃ = − ∂2 ln ZQ

∂ ln Φ∂ ln Φ†

∣∣∣∣∣
0

F †
ΦFΦ (4)

AQi
=

∂ ln ZQi

∂ ln Φ

∣∣∣∣∣
0

FΦ. (5)

The symbol “|0” denotes setting to zero the Grassmann coordinates, θ = θ̄ = 0. Here S

and ZQ are the gauge and matter field wave-functions, with S related to the gauge coupling

constant by Re(S)|0 = g−2/4. Using Eq. (2) and FΦ = −m3/2, see Eq. (1), we obtain

Mλ = −g2

2

dg−2

d lnµ
m3/2 =

βg

g
m3/2 (6)

m2
Q̃

= −1

4

d2 ln ZQ

d(ln µ)2
m2

3/2 = −1

4

(
∂γ

∂g
βg +

∂γ

∂y
βy

)
m2

3/2 (7)

Ay =
1

2

∑
i

d lnZQi

d lnµ
m3/2 = −βy

y
m3/2. (8)

Here the sum
∑

i extends over the fields involved in the Yukawa superpotential term with cou-

pling constant y, and we have used the renormalization group functions γ(g, y) ≡ d lnZ/d lnµ,

βg(g, y) ≡ dg/d lnµ, and βy(g, y) ≡ dy/d lnµ.

4



2.1 Features of the anomaly-induced soft terms

The soft terms in Eqs. (6)–(8) are determined by the anomalous dimensions of the fields or,

in other words, by the violation of the Weyl symmetry in the quantum theory given by the

conformal anomaly. Indeed, the supergravity prescription in Eq. (2) is sufficient to determine

the complete form of the soft terms, by means of the technique of ref. [8].

The form of the soft terms in Eqs. (6)–(8) is particularly interesting because it is invariant

under RG transformations. This means that the analytic continuation into superspace given

by Eq. (2) defines a consistent RG trajectory for the soft terms. The phenomenological

appeal of this form of the soft terms resides precisely in this crucial property. In particular,

it entails a large degree of predictivity, since all soft terms can be computed from known

low-energy SM parameters and a single mass scale, m3/2. Also, it leads to robust predictions,

since the RG invariance guarantees complete insensitivity of the soft terms from ultraviolet

physics. As demonstrated with specific examples in ref. [4], heavy states do not affect the

low-energy parameters in Eqs. (6)–(8), since their effects in the beta-functions and threshold

corrections exactly compensate each other. This means that the gaugino mass prediction in

Eq. (6) is valid irrespective of the GUT gauge group in which the SM may or may not be

embedded. However, exceptions to ultraviolet insensitivity appear in the presence of gauge

singlet superfields [6].

The insensitivity from ultraviolet physics not only leads to robust predictivity, but also

provides a solution to the supersymmetric flavor problem. Indeed the unknown physics

which breaks the flavor symmetry at a high-energy scale ΛF and determines the Yukawa

couplings does not leave any visible trace in the anomaly-mediated soft terms. Recall that

in gauge mediation the flavor problem is solved by making the soft terms insensitive to any

physics above the messenger scale M . The parameter M is unknown, and is chosen such that

M < ΛF . The soft terms vanish above the scale M and therefore their low-energy values

are finite and have a logarithmic dependence on M . In contrast, in anomaly mediation the

soft terms do not vanish at any scale (below the Planck mass MP ), but their values at low

energies are not influenced by physics at any intermediate scale.

In order to preserve the attractive properties of the anomaly-mediated soft terms, we

have to make sure that other forms of communication of supersymmetry breaking to the
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observable sector do not give larger contributions. In ordinary gravity mediation, one makes

use of tree-level supersymmetry-breaking communication which, in general, dominates over

the loop effects of anomaly mediation. If there are no gauge-singlet superfields with scalar

vacuum expectation value of order MP , then the theory does not contain operators of the

form ∫
d2θ

X

MP
TrWαWα + h.c., (9)

where X is the Goldstino superfield. Gaugino masses are only generated by higher-dimensional

operators and are at best of order m
3/2
3/2/M

1/2
P . In particular, this is in general true in theories

with dynamical supersymmetry breaking. In this case, the anomaly-mediated effects give

the dominant contributions to gaugino masses [4].

It appears at first difficult to forbid or suppress tree-level gravity contributions to scalar

masses, which are obtained by couplings in the Kähler potential between visible sector fields

Q and the Goldstino multiplet X, ∫
d4θ

1

M2
P

X†XQ†Q. (10)

However, the suppression is possible if the Kähler potential has the specific structure

K = −3M2
P ln(1− fvis

3M2
P

− fhid

3M2
P

), (11)

where fvis and fhid are functions of only visible and hidden fields, respectively. This structure

could be the result of the underlying fundamental theory such as string theory. However, it

is not clear how such a special form of the Kähler potential can be stable against radiative

corrections.

A very interesting possibility, pointed out in ref. [3], is that the supersymmetry-breaking

and visible sectors reside on different branes embedded into a higher-dimensional space and

separated by a sufficiently large distance. In this case, the structure in Eq. (11) is guaranteed

by the geometry and not by a symmetry. Thus, all the low-energy soft parameters will arise

from anomaly-induced effects.

Unfortunately, it turns out that the pure scalar mass-squared anomaly contribution is

negative for the sleptons [3]. In order to avoid this problem we need to consider other posi-

tive soft contributions to the spectrum. This can arise in a number of ways, but any of the
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solutions will spoil the most attractive feature of anomaly mediation, i.e. the RG invari-

ance of the soft terms and the consequent ultraviolet insensitivity. This is, in our opinion,

the most disappointing aspect of these scenarios. Nevertheless, there are various options to

cure this problem without reintroducing the flavor problem. An example is the inclusion

of contributions from fields propagating in the bulk space between the two branes [3]. An-

other interesting possibility is a combination of gauge- and anomaly-mediated contributions,

discussed in ref. [6].

The necessary cure for the slepton masses may completely upset also the mass relations

for the other particles (as in the case of the model of ref. [6]). However, here we will simply

parametrize the new positive contributions to the scalar squared masses with a common mass

parameter m0, assuming that the extra terms do not reintroduce the supersymmetric flavor

problem. We will see that many of the phenomenological features of an anomaly-induced

mass spectrum do not crucially depend on the details of the contributions m0.

2.2 Defining a minimal model

In the AMSB scenario, as discussed above, the necessary mass parameters are the gravitino

mass, m3/2, and the common scalar mass m0, which is required to correct the negative

mass-squared of the sleptons. The low-energy soft mass spectrum will be

Mλ =
βg

g
m3/2, (12)

m2
Q̃

= −1

4

(
∂γ

∂g
βg +

∂γ

∂y
βy

)
m2

3/2 + m2
0, (13)

Ay = −βy

y
m3/2. (14)

The expressions for the superpartner masses of the minimal particle content and soft pa-

rameters are given in the Appendix. We will see that this soft-mass spectrum will give

rise to distinctive features which differ from the usual gravity-mediated and gauge-mediated

scenarios.

Since our working framework is a theory with anomaly-mediated masses and extra uni-

versal contributions to the scalar masses, we operationally construct the full supersymmetric
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spectrum from four input parameters,

m3/2, m0, tan β, sign(µ). (15)

We treat the µ and Bµ masses as derived quantities that combine with other terms in

the scalar potential to reproduce correct electroweak symmetry breaking (EWSB). This

procedure is done with the one-loop effective potential. Also, we assume that Eq. (13) is

valid at the GUT scale. As previously discussed, the introduction of the scalar mass m0

breaks the RG invariance, and therefore we must define a scale for the boundary condition

Eq. (13). Notice, however, that at the one-loop level with Yukawa couplings neglected, the

squark and slepton squared masses are renormalized additively. Therefore, in this case, we

do not need to specify at which scale Eq. (13) is valid. However this is not true, for instance,

for the stop and Higgs mass parameters.

We find that electroweak symmetry breaking can be accommodated with the above frame-

work. Successful EWSB correlates with values of |µ| typically between 3 to 6 times the Wino

mass as long as m0 is not significantly higher than the anomaly-mediated contributions to

the squark masses. Otherwise, |µ| can be larger. The relative size of µ with respect to

M2 becomes important when considering mass splitting among the degenerate Wino triplet

states. This will be considered in more detail in the next section.

In Fig. 1 we demonstrate a subset of superpartner masses using a generically chosen set

of input parameters, m3/2 = 36TeV, tanβ = 5, and µ < 0. The choice of m3/2 = 36TeV

determines the gaugino masses to be M1 = 333GeV, M2 = 119GeV, and M3 = 850GeV. We

vary m0 to demonstrate its dependence in the scalar mass spectrum. The squark masses are

rather insensitive to values of m0 that raise the slepton masses above their anomaly-mediated

tachyonic values. The sleptons, ẽL and ẽR, are nearly equal in mass. The extraordinary

degeneracy of these slepton masses will be expounded upon in the following section.

In Fig. 1 we also plot the lightest physical Higgs boson mass, mh. This is roughly

constant over the range of m0, since this eigenvalue admits only logarithmic sensitivity to

supersymmetry breaking scales. Requiring M2 > 90GeV and assuming tan β > 1.8 (for

perturbative unification at the GUT scale), we find a lower bound on the lightest scalar

Higgs boson mass of 70GeV. The lower bound exceeds 100GeV for tanβ > 5. The upper

bound on the Higgs boson mass, assuming M2 < 500GeV and m0 < mq̃ is 125GeV. However,
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Figure 1: Masses of several states in the supersymmetric spectrum as a function of m0 with
m3/2 = 36 TeV, tan β = 5, and µ < 0. The gaugino masses for this choice are M1 = 333 GeV,
M2 = 119 GeV, and M3 = 850 GeV.

the squark masses are above 3TeV when the bound is saturated. Since such high squark

masses are not welcome in the loop-corrected Higgs potential, the Higgs mass is expected

to be lighter than 125GeV in AMSB. On the other hand, the pseudoscalar Higgs mass, mA,

depends linearly on the supersymmetry breaking scale, and therefore increases with m0 as

shown in the figure. In the next section, we study a few of the unique features of the AMSB

spectrum, and how it impacts search capabilities at high-energy colliders.

3 Phenomenology

A unique feature of anomaly-mediated supersymmetry is the gaugino mass hierarchy. To

compute the gaugino masses we include next-to-leading corrections coming from αs and

αt ≡ y2
t /4π two-loop contributions to the beta-functions and weak threshold corrections

enhanced by a logarithm. In this approximation, we find

MNLO
1 = M1(Q)

{
1 +

α

8π cos2 θW

[
−21 ln

Q2

M2
1

+ 11 ln
m2

q̃

M2
1

+ 9 ln
m2

˜̀

M2
1
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+ ln
µ2

M2
1

+
2µ

M1
sin 2β

m2
A

µ2 −m2
A

ln
µ2

m2
A

]
+

2αs

3π
− 13αt

66π

}
(16)

M1(Q) =
11α(Q)

4π cos2 θW
m3/2 (17)

MNLO
2 = M2(Q)

{
1 +

α

8π sin2 θW

[
−13 ln

Q2

M2
2

+ 9 ln
m2

q̃

M2
2

+ 3 ln
m2

˜̀

M2
2

+ ln
µ2

M2
2

+
2µ

M2

sin 2β
m2

A

µ2 −m2
A

ln
µ2

m2
A

]
+

6αs

π
− 3αt

2π

}
(18)

M2(Q) =
α(Q)

4π sin2 θW

m3/2 (19)

MNLO
3 = M3(Q)

{
1 +

3αs

4π

[
ln

Q2

M2
3

+ F

(
m2

q̃

M2
3

)
− 14

9

]
+

αt

3π

}
(20)

F (x) = 1 + 2x + 2x(2− x) ln x + 2(1− x)2 ln |1− x| (21)

M3(Q) = −3αs(Q)

4π
m3/2. (22)

The higgsino corrections to M1 and M2 are proportional to µ/M1,2 and can become very

important in models with large µ, as discussed in ref. [4]. The NLO corrections are significant,

especially for M2 where the 6αs/π contribution changes the Wino mass by more than 20%.

The mass ratios of the gauginos M1:M2:|M3| are approximately 3.3 : 1 : 8.8 at leading

order. At NLO, these ratios are changed to 2.8 : 1 : 7.1. This implies that a nearly degenerate

triplet of Winos (W̃±, W̃ 0) are the lightest gauginos. We shall see below that the neutral W̃ 0

is the lightest in the triplet, and is a candidate lightest supersymmetric partner (LSP). In an

R-parity conserving theory the W̃ 0 is stable and escapes detection at a high-energy collider.

Therefore, visible particles produced in association with the W̃ 0 states will be required to

uncover evidence of supersymmetry.

It is also possible that the LSP is a sneutrino. This would be the case if the additional

contributions to the scalar masses were large enough to generate a positive mass-squared for

the sleptons but still smaller than the Wino mass. In this case, Wino decays would generally

produce leptons and sneutrinos in the final state. We will consider this possibility in some

detail in sect. 3.4.
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3.1 Mass splitting among Winos

The first step in considering light Wino states is to calculate the mass splitting between the

charged and neutral states. For the moment we shall ignore loop corrections and describe

the tree-level splitting that develops for light Wino states. Upon integrating out the heavy

Bino and Higgsino states, we are left with an effective theory with several operators that

could shift the mass of the remaining chargino and neutralino states to be different than M2.

Operators of the form O = MabW̃
aW̃ b will generate mass splittings for the Winos only if Mab

transforms non-trivially under SU(2). Because of the symmetry property of the Majorana

mass term, Mab must have isospin 2, and the lowest-dimensional operator which generates a

mass splitting is

O =
1

Λ3
(H†τaH) (H†τ bH) W̃ aW̃ b, (23)

where Λ ∼ M1, µ and H denote the Higgs doublets. Therefore, we see from the above that

all mass splittings at tree-level must occur with m4
W /Λ3 suppression.

A more detailed formula for the tree-level mass splitting† with |µ| �M1, M2, mW is‡

mχ̃±1
−mχ̃0

1
=

m4
W sin2 2β

(M1 −M2)µ2
tan2 θW + 2

m4
W M2 sin 2β

(M1 −M2)µ3
tan2 θW

+
m6

W sin3 2β

(M1 −M2)2µ3
tan2 θW (tan2 θW − 1) +O(

1

µ4
). (24)

When this formula is valid and µ is determined by the electroweak-breaking condition, the

mass splitting is negligible compared to the charged pion mass – an important mass scale for

the phenomenology of Wino decays. In our numerical analysis, we will always calculate the

chargino and neutralino mass splittings from the exact formula and not from the expansion

in Eq. (24), given here only for illustrative purposes. Notice also that, in the large tanβ

†To generate a Wino mass splitting, it is also necessary to break the global custodial SU(2)V defined

such that the matrix Φ =
(

H0
d H+

u

H−
d H0

u

)
, constructed from the two Higgs doublets, transforms as Φ→ V ΦV †

with V unitary. The µ term is invariant, since it can be written as µ detΦ. The symmetry is preserved by
electroweak breaking, as long as tan β = 1, but it is broken by hypercharge effects. Therefore Eq. (24) has
to vanish in the limit tan β → 1 and tan θW → 0.

‡Our sign convention for µ is set by W = µ(H0
uH0

d −H+
u H−

d ).
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limit, the Wino mass difference becomes

mχ̃±1
−mχ̃0

1
=

M2m
4
W

2µ4

(
1 +

2M2 tan2 θW

M1 −M2

)
+O(

1

µ6
), for tan β →∞. (25)

In this limit the mass difference has a further suppression factor, M2/µ because the necessary

chiral flip cannot originate from the Higgsino mass.

The dominant contribution to the Wino mass splitting does not come from the tree-level

result described above, but rather due to one-loop corrections in the chargino and neutralino

mass matrices. We have done a full numerical calculation of the one-loop corrected chargino

and neutralino mass matrices using the formulae of ref. [9]. For the anomaly-mediated

spectrum, with only positive mass-squared additional contributions to all the scalar masses,

we find that the gauge-boson loop corrections dominate the mass splitting. This is because in

the typical anomaly-induced mass spectrum the squark masses are heavy and the µ parameter

is large. Consequently, following the argument that led us to Eq. (23), we infer that their

contribution to the Wino mass splitting is suppressed by M4
W /Λ3. On the other hand, the

effect of gauge-boson loops cannot be described by local operators. Isolating this contribution

in the limit of large µ, we find (see also refs. [11, 5])

∆χ ≡ mχ̃±1
−mχ̃0

1
=

αM2

π sin2 θW

[
f(m2

W/M2
2 )− cos2 θW f(m2

Z/M2
2 )
]

(26)

where

f(x) ≡ −x

4
+

x2

8
lnx +

1

2
(1 +

x

2
)
√

4x− x2

[
arctan

2− x√
4x− x2

− arctan
x√

4x− x2

]
. (27)

In the limit that M2 →∞, the expression in Eq. (26) simply becomes

∆χ =
α mW

2(1 + cos θW )

[
1− 3

8 cos θW

m2
W

M2
2

+O
(

m3
W

M3
2

)]
, (28)

which has the asymptotic limit ∆χ = α mW /[2(1 + cos θW )] ' 165 MeV.

It may appear odd that the mass splitting should asymptote to a constant value as M2

gets arbitrarily massive. This behavior can be understood in momentum space as an infrared

mismatch between the self-energies of W̃+ and W̃ 0 regulated by mW . Or, equivalently, since

SU(2) is a good theory for short distances r � m−1
W , we can calculate the Coulomb energy

12



Figure 2: The mass splitting as a function of M2 for tan β = 2. The solid curves, from top to
bottom, represent µ = 2M2, µ = 3M2, µ = 5M2, and µ = ∞. The dashed curves are the same
except for the opposite sign of µ. The dot-dashed curve is the charged pion mass mπ± .

of the charged state for large distances r >∼ m−1
W (infrared region) to obtain a mass splitting

of approximately αmW . The exact prefactors are given in Eq. (28).

In Figs. 2 and 3 we show the total calculated mass splitting as a function of M2 for

tan β = 2 and 10. In our numerical calculation, we include the full one-loop result and we

do not use the approximate expressions given in Eq. (26). The solid curves, from top to

bottom, represent µ = 2M2, µ = 3M2, µ = 5M2, and µ = ∞. The dashed curves are the

same except that µ < 0. The dot-dashed curve is the charged pion mass mπ± . As tanβ

increases the sign of µ becomes less and less relevant in the calculation of the mass splitting.

When tan β = 40 the solid and dashed curves are irresolvable.

In an anomaly-mediated spectrum with radiative electroweak symmetry breaking, the

typical relation between M2 and µ is 3 <∼ |µ|/M2
<∼ 6. This is true as long as the squark

masses are not increased significantly beyond their anomaly-mediated baseline values from

the universal mass contributions that lift the slepton mass-squared to positive values. This

is also acceptable from naive fine-tuning arguments. Larger values of µ lead to an unnatural

Higgs potential. For |µ|/M2 = 5 we find from Figs. 2 and 3 that the mass splitting is
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Figure 3: The mass splitting as a function of M2 for tan β = 10. The solid curves, from top to
bottom, represent µ = 2M2, µ = 3M2, µ = 5M2, and µ = ∞. The dashed curves are the same
except for the opposite sign of µ. The dot-dashed curve is the charged pion mass mπ± .

significantly above mπ± such that W̃± → W̃ 0π± is kinematically allowed and is the dominant

decay mode. This remark is also true even for extraordinarily large values of µ as long as

M2
>∼ 80 GeV.

3.2 Finding supersymmetry with dileptons

The precise calculation of the mass splitting is crucial since in ref. [10] it was demonstrated

that if mπ± <∼ mχ̃±1
− mχ̃0

1

<∼ 1GeV then the W̃± will decay too fast to use a quasi-stable

charged particle analysis, with dedicated triggers. However, the decays are not prompt, and

so analyses of events triggered by other means could see a stiff charged particle track that

subsequently terminates in the vertex detector. The difficulty is triggering the event.

One way to trigger such events is to produce the Winos in associated production with a

standard model particle, such as a gluon at hadron colliders or a photon at e+e− colliders.

Triggering on high-pT monojets or high-energy photons at these colliders then may be an

effective way to trigger the events and save them for future analysis [10, 12, 5]. At the
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analysis stage a kink in the vertex detector, or a terminating stiff track, would then indicate

a non-SM underlying process.

Here we pursue another direction for discovery. We can utilize production and subsequent

decays of other SUSY particles as a way to trigger on the events and learn more about the

theory. For example, if sleptons or squarks are produced in a hadronic collision, they will

cascade decay to high-pT SM particles and charged and/or neutral Winos. The SM particles

can be used for the trigger, and the cascade decays can be used to learn something about

the spectroscopy of the theory.

Our example process is slepton and sneutrino production at the Tevatron which cascades

into l+l− + XD, where XD is a displaced vertex from one or two W̃± → W̃ 0π± decays.

These displaced vertices are heavy charged particle tracks which stop in the vertex detector

and produce very soft pions that may or may not be detectable. The dilepton events are

produced through

pp̄→ ν̃L l̃±L → l±l∓W̃±W̃ 0 → l±l∓ + XD + E/T (29)

pp̄→ ν̃Lν̃L → l±l∓W̃±W̃∓ → l±l∓ + XD + E/T . (30)

In Fig. 4 we plot the total cross-section of such events for one flavor (µ+µ− + XD) at the√
s = 2TeV Tevatron. We require the pseudo-rapidity to be within |η| < 2 for both leptons,

and we require the leading lepton to have pT > 10GeV, and the next lepton to have pT >

5GeV. The total rate presented in Fig. 4 is calculated at leading order.

Our conclusion based on Fig. 4 is that left-handed sleptons with mass less than 185GeV

would be discovered at the Tevatron if M2
<∼ mν̃L

−10GeV (for leptons to have high enough

pT for triggering) and if the Tevatron reaches at least 10 fb−1 integrated luminosity. This

result is based on the requirement that more than 10 l+l− + XD events will occur for each

flavor. We conservatively choose a 10 event requirement in order to ensure that our mass

reach conclusion will remain valid if the dilepton identification efficiency were to be as low

as 50% for the pT acceptance cuts given above.

Other modes such as µ± + XD are possible in ν̃L and µ̃L production, and could confirm

and extend the mass reach capabilities of the dilepton mode.

The dilepton signal discussed is essentially background free with the displaced vertices

present [10]. However, the possibility of prompt Wino decays arises if µ is sufficiently light
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Figure 4: Dilepton signal with at least one displaced vertex from smuon and sneutrino production
at the Fermilab Tevatron with 2 TeV center of mass energy and M2 = 90 GeV. Acceptance cuts of
the leptons and efficiencies are described in the text. The different curves are for tan β = 1, which
makes mµ̃L

= mν̃L
, and for tan β = ∞ which maximizes the hypercharge D-term splitting such

that m2
µ̃L

= m2
ν̃L

+ m2
W . With 10 fb−1 the Tevatron will record more than 10 such events for each

lepton flavor if mν̃L
< 185 GeV.

to yield a chargino/neutralino mass splitting above 1GeV. This would make the charged

Wino decay promptly into a neutral Wino plus other states too soft to admit into the event

description, and the resulting event would be difficult to separate from W+W− background.

Also, if the top squarks are reduced from additional negative scalar mass sources, the mass

splitting between the lightest chargino and neutralino could be greatly enhanced by loop

corrections involving third family sfermions and fermions. In these cases, special triggers

or analyses based on decay kinks of the charged Wino could not be relied upon, but the

dilepton signal could remain useful with enough integrated luminosity. In addition to ν̃Lν̃L

and ν̃Ll̃ production described above, the total dilepton sample also has contributions from

l̃R l̃R and l̃Ll̃L production that never yield dilepton signals plus a displaced vertex, and so

were not counted before. Although the total rate of dilepton events increases by nearly a

factor of two when we include l̃R l̃R and l̃Ll̃L production, the lack of a displaced vertex makes

it a challenge to separate it from SM backgrounds [13].
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3.3 Degeneracy of sleptons

Another striking feature of the anomaly-mediated model with additional universal scalar

terms is the near degeneracy of the left and right sleptons of the first two generations. The

mass-squared splitting is somewhat insensitive to m0,

∆ẽ = m2
ẽL
−m2

ẽR
= (11 tan4 θW − 1)

3

2
M2

2 +
(
−1

2
+ 2 sin2 θW

)
m2

Z cos 2β

+
1

8π2

(
9

5
g2

1M
2
1 − 3g2

2M
2
2

)
ln

mẽR

mZ

' 0.037
(
−m2

Z cos 2β + M2
2 ln

mẽR

mZ

)
. (31)

The first term is the tree level anomaly-induced splitting, the second term is the hypercharge

D-term splitting induced by electroweak breaking, and the third term is the one loop, leading

log mass splitting induced by renormalizing the masses to their own scale. It is a numerical

accident that the value of sin2 θW is such that the M2
2 coefficient in the first term of Eq. (31)

is nearly zero. If,

sin2 θW =
1

1 +
√

11
= 0.2317 (32)

then the tree-level coefficient of M2
2 would be identically zero. The actual value of sin2 θW (mZ)

is 0.2312±0.0003 [14] in the MS scheme and is extraordinarily close to the value in Eq. (32)

required to make the M2
2 coefficient in the tree-level mass splitting vanish.

It is also a numerical accident that the hypercharge D-term coefficient is suppressed

since sin2 θW ' 1/4. Although the coefficient is not as spectacularly suppressed as the m2
3/2

coefficient, it is multiplied by a fixed scale m2
Z . Therefore, for a given value of tanβ the mass

squared difference remains constant regardless of how heavy the sleptons may be.

The degeneracy of the slepton can be characterized by the fractional difference,

mẽL
−mẽR

mẽR

= −1 +

√√√√1 +
∆ẽ

m2
ẽR

' 1

2

∆ẽ

m2
ẽR

. (33)

In Fig. 5 we plot contours of the relative mass splitting in the M2-mẽR
plane. The mass

splitting is less than a few percent over most of parameter space. It exceeds 5% only when

M2 > 350GeV. However, the squark masses in this case are over 2TeV, which induces a

considerable fine-tuning in the one-loop Higgs potential. Therefore, it is not expected that
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Figure 5: Contours of 100%× (mẽL
−mẽR

)/mẽR
in the M2-mẽR

mass plane with large tan β, which
maximizes the mass splitting.

M2 is so high, implying that the slepton mass differences should be no more than a few

percent over the relevant parameter space.

The resolution of slepton masses from end-point lepton distributions of the slepton decays

is approximately 2% at an e+e− or a muon collider [15]. Note that at a polarized linear col-

lider it will not be difficult to determine that both left and right sleptons are being produced

even if they are degenerate. This can be accomplished most effectively by comparing the

total rate of slepton production with the asymmetry of production for polarized beams [15].

Degenerate sleptons are not expected in the usual supergravity or gauge-mediated scenarios,

where mẽR
is generally lighter than mẽL

. An exception to this is in the minimal supergravity

model with m0 � m1/2. However, given the current limits on m1/2 from gaugino searches at

the Tevatron and LEP, degenerate sleptons will only occur at very high mass.

The above discussion is based on the assumption that the additional contributions to the

slepton masses are universal. Since the anomaly-mediated mass differences is accidentally

negligible, the degeneracy of the sleptons becomes a test of the additional mass contributions.

Other approaches to the slepton tachyonic problem do not necessarily imply degenerate
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slepton mass eigenstates [6].

3.4 LEP2 Signals

At LEP2 many signatures are possible in the AMSB scenario. The charged Winos have a

large production cross section as long as they are kinematically accessible and as long as

the sneutrino t-channel amplitude does not significantly interfere destructively with gauge

boson s-channel amplitudes. Production of charginos at LEP has been the topic of many

studies in supersymmetry phenomenology at LEP [16]. However, most of these studies have

assumed that the LSP, the lightest neutralino, is more than a few GeV below the lightest

chargino mass. In AMSB this is no longer the case. We expect that the lightest neutralino

and charginos form a nearly degenerate SU(2) triplet, as discussed in previous sections.

Since the chargino is only slightly above the neutralino in mass, the process e+e− →
W̃+W̃− will be accompanied by very soft visible final states from decays such as W̃± →
π±W̃ 0. These soft final states cannot be triggered on, which has led others [10, 12, 5] to

suggest triggering on initial state photon radiation and then searching for soft, displaced

tracks at the analysis level. However, there are other potential signatures of supersymmetry

when Winos are the lightest gauginos. To enumerate them we must consider the other states

in the supersymmetric spectrum which may be produced in collisions or as decay products

of Wino production. In the AMSB scenario, the degenerate left and right sleptons and

the sneutrino are the most important states at LEP after the gauginos. The ratio of their

masses to the Wino masses is unknown in our framework, but it is more natural that they be

somewhat light in order to keep the Higgs scalar potential from being fine-tuned. Therefore,

considering phenomenological implications of light sleptons at LEP is useful.

There are many permutations to the relative ordering of M2, mν̃L
, and mẽ ≡ mẽL,R

.

Recall that the relationship between mẽ and mν̃L
is

m2
ẽL

= m2
ν̃L
−m2

W cos 2β. (34)

We can provide the general phenomenological features using a graph in the M2-mν̃L
plane for

LEP2 running at
√

s = 200GeV. The results of the present and future experimental analyses

combining the searches at LEP2 in different channels will be best presented as exclusion or
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discovery regions in the M2-mν̃L
plane. The LEP1 limit of Wino masses is slightly above

mZ/2, and the limit on sneutrino masses is slightly below mZ/2; therefore, we begin the

axes of Fig. 6 at mZ/2. The lines represent kinematic boundaries. For example, the top

dashed line is where mẽ =
√

s/2, and for all mν̃L
values above that line, ẽẽ production is not

possible. The precise locations of the dashed lines depend on the choice of tanβ, which we

choose to be tan β = 3 for this figure.

Each region in the figure constitutes a different ordering of the mass eigenstates, and

will produce a different set of useful observables with which to probe the theory. These

observables are given inside the parentheses. For example, in the small triangular region

surrounding the point (M2, mν̃L
) = (95GeV, 60GeV) one can search for γ + E/ , l+l− + E/ ,

and up to four electrons plus missing energy. Specific processes which lead to these signatures

include,

e+e− → γν̃Lν̃L → γ + E/ (35)

e+e− → W̃+W̃− → l+l′− + E/ (36)

e+e− → l̃−l̃+ → l+l− + E/ (37)

e+e− → W̃ 0W̃ 0 → l̃+l−l̃′+l′− → l+l−l′+l′− + E/ . (38)

Some of the leptons may be softer than others because of reduced phase space in a decay

of a massive sparticle into a lepton and a sparticle with mass near its parent. Near the

boundaries of the curves, it is often the case that some leptons are not energetic enough,

and care must be taken in the analysis to identify them.

Finally, the stau sleptons may be lighter than the other sleptons, leading to more τ lepton

final states than other leptons. Although efficiency in identifying τ leptons is smaller than

the others, it is possible at large tan β to have large mixing among the τ̃L and τ̃R sleptons

to produce a mass eigenstate accessible to LEP whereas the other sleptons are not.

4 Gravitino cosmology

A distinctive feature of the AMSB scenario is that the gravitino is much heavier than the

supersymmetric partners of ordinary particles. The reason for this is that the AMSB masses
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Figure 6: Signatures of the AMSB scenario at LEP2. Each blocked region has a unique mass
hierarchy among ν̃L, ẽL and M2, and therefore leads to different signatures which are contained
within the parenthesis. The meaning of “(γ)”, for example, is e+e− → γW̃+W̃− → γ + E/ . We
assume, as is justified by EWSB analysis, that M2 is very close to the mass of the nearly degenerate
lightest charginos and neutralino. The mass splitting between mν̃L

and mẽ is due to a hypercharge
D-term, and its value is calculated with tanβ = 3 for this figure.
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are suppressed by a loop factor relative to the gravitino mass m3/2. In particular, one finds

that the gravitino–Wino mass ratio is m3/2/M2 ' 300.

A large gravitino mass is cosmologically advantageous for solving the gravitino problem

[17]. This problem occurs when gravitino decay products disrupt the light element abundance

during nucleosynthesis. Even a period of inflation is not sufficient to solve this problem since

gravitinos are thermally produced during the reheating phase of the universe [18]. Thus,

in order for the gravitino decay products to be harmless during nucleosynthesis one either

requires that the gravitino decays before affecting nucleosynthesis or that the reheating

temperature of the universe be bounded from above.

The gravitino number density in units of the photon number density after the inflationary

epoch is [19]
n3/2

nγ
(T ) = 2× 10−9g∗(T ) T13(1− 0.03 lnT13). (39)

Here T13 is the reheating temperature after inflation in units of 1013 GeV (i.e., T13 ≡ TR/1013

GeV), and g∗(T ) counts the massless degrees of freedom at the temperature T including a

factor of 7/8 for fermions and the dilution factor for frozen-out species.

The gravitino decay width is

Γ3/2 =
1

4

(
Ng +

Nm

12

) m3
3/2

M2
P

' 5.1
(

m3/2

50 TeV

)3

sec−1. (40)

Here MP = 1.2×1019 GeV, Ng and Nm are the number of gauge and matter decay channels,

and we have summed over all the SM particle content (Ng=12, Nm=49).

Immediately after the gravitino decays, the temperature of the universe is given by

TD =

(
45 Γ2

3/2M
2
P

4π3g∗(TD)

)1/4

= 2.7

(
10.75

g∗(TD)

)1/4 (
m3/2

50 TeV

)3/2

MeV. (41)

Therefore for m3/2
<∼ 60 TeV a detailed analysis of effects of gravitino decay during nucle-

osynthesis is necessary.

The particular gravitino decay products that cause the main interference during nu-

cleosynthesis at early times (∼ 1 second) are hadronic showers [20]. Photodissociations

are not relevant at early stages of the nucleosynthesis epoch since the destructive photon-

nucleus interactions are much less probable than photon-photon interactions. The overall
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Figure 7: The upper bound on the reheat temperature as a function of the gravitino mass m3/2 and
the corresponding Wino mass M2. The observational limit upper limit on the primordial helium
abundance is Y (4He) < 0.25. Therefore, the region above the line is excluded, and an upper bound
on TR results.

effect of hadronic decay products is to convert protons into neutrons, and consequently the
4He abundance is increased since the additional neutrons that are produced are synthesised

into 4He. Thus, using the observational upper limit on the primordial helium abundance

Y (4He) < 0.25, we obtain an upper bound on the reheat temperature [21] which is depicted

in Fig. 7. For m3/2
<∼ 40 TeV, the typical bound on the reheat temperature is TR ∼ 109

GeV. This is typically less constraining than in the usual gravity-mediated scenarios with

weak-scale gravitino mass [21].

As the gravitino mass increases, the upper bound on the reheat temperature becomes

less significant, and completely evaporates for m3/2
>∼ 60 TeV, since the gravitinos decay

well before the start of nucleosynthesis. For m3/2
>∼ 60 TeV, we may be concerned that

the entropy produced by the gravitino decay excessively dilutes the baryon–to–photon ratio

obtained by a primordial baryogenesis mechanism. However, this is never the case. Actually
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for
m3/2

50 TeV
> 8× 10−4

(
g∗(TD)

10.75

)1/2

T 2
13(1− 0.03 lnT13)

2, (42)

the gravitino decays before dominating the universe and the entropy release is not dangerous.

We have checked that, even when the gravitino matter-dominates the universe, the entropy

production is not problematic. Therefore we conclude that when m3/2
>∼ 60 TeV, there is no

upper bound on the reheat temperature arising from nucleosynthesis.

However, bounds on the reheating temperature when m3/2
>∼ 60GeV do come from con-

siderations of the Wino energy density. The Wino thermal relic abundance ΩTH
LSP does not

play a significant cosmological role. Indeed Wino annihilations into gauge bosons in the

early Universe are very efficient and lead to [4]

ΩTH
LSP h2 ' 5× 10−4

(
M2

100 GeV

)2

. (43)

On the other hand, a non-thermal production of LSPs is generated by the gravitino decay [22].

Since this decay occurs below the Wino freeze-out temperature, the LSP abundance is easily

determined by assuming that each decaying gravitino produces a single Wino. The LSP

is relativistic at decay time and becomes non-relativistic at a typical temperature T ∼
TDM2/m3/2, after red-shifting. The predicted relic abundance is

ΩG
LSP h2 ' 30

(
M2

100 GeV

)
T13(1− 0.03 lnT13). (44)

The requirement for not overclosing the universe leads to a bound on the reheat temperature

TR
<∼ 1011 GeV. Of course, if R-parity is not conserved then this bound from LSP relic

abundance is no longer relevant. In this case, for gravitino masses m3/2
>∼ 60 TeV, one can

then contemplate using leptogenesis or even GUT baryogenesis mechanisms to generate the

baryon asymmetry of the universe, consistently with the AMSB gravitino cosmology.

On the other hand, when TR ' 1010–1011 GeV the relic abundance of LSPs from gravitino

decays is near critical density, providing a natural source of dark matter.

Finally, we comment on another positive aspect of the heavy gravitino cosmology. We can

avoid the cosmological Polonyi problem that arises in the usual gravity-mediated scenario

when the gauge singlet Polonyi field acquires a Planck scale vacuum expectation value but

decays relatively late. In the AMSB scenario there is simply no need for the Polonyi field

since the gaugino masses arise from a quantum anomaly.
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5 Conclusion

In summary, anomaly-induced masses are always present when supersymmetry is broken.

When these AMSB contributions dominate and yield all the gaugino masses as well as adding

to universal scalar masses, a unique spectrum results which has important differences from

other models of supersymmetry. Several of these unorthodox features that arise in low-energy

supersymmetry from the AMSB scenario include,

• The ratio of gaugino masses M1 : M2 : |M3| is approximately 2.8 : 1 : 7.1 when loop

corrections are included, and M2 ' mZ ;

• The lightest supersymmetric particle is most often the Wino, but may also be the

sneutrino;

• Dilepton signals with displaced vertices are useful signals for this scenario at LEP and

the Tevatron;

• The anomaly-induced contribution to left and right slepton masses is accidentally de-

generate. This remains true if the required, additional sources for slepton masses are

universal;

• LEP signatures are sensitive to the hierarchy of sneutrino, slepton and Wino masses.

The searches in the different channels can be simply combined to give exclusion plots

in the M2-mν̃L
plane;

• The gravitino mass is much heavier than the masses of the other sparticles. Conse-

quently, the cosmological problem associated with gravitino decays during nucleosyn-

thesis is alleviated over much of parameter space;

• In spite of its negligible thermal relic abundance, neutral Winos can form the galactic

dark matter, since they are copiously produced, below their freeze-out temperature,

from the primordial gravitino decays.

Discovery of several of the above phenomenological implications is necessary to gain confi-

dence that the AMSB scenario is a proper description of nature.
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Appendix

Using Eqs. (12)-(14), the anomaly-mediated spectrum is

M1 =
33

5

g2
1

16π2
m3/2 (45)

M2 =
g2

2

16π2
m3/2 (46)

M3 = −3
g2
3

16π2
m3/2 (47)

m2
t̃R

=
(
−88

25
g4
1 + 8g4

3 + 2ytβ̂yt

) m2
3/2

(16π2)2
(48)

m2
b̃R

=
(
−22

25
g4
1 + 8g4

3 + 2ybβ̂yb

) m2
3/2

(16π2)2
(49)

m2
Q̃3

=
(
−11

50
g4
1 −

3

2
g4

2 + 8g4
3 + ytβ̂yt + ybβ̂yb

) m2
3/2

(16π2)2
(50)

m2
Hu

=
(
−99

50
g4
1 −

3

2
g4

2 + 3ytβ̂yt

) m2
3/2

(16π2)2
(51)

m2
Hd

=
(
−99

50
g4
1 −

3

2
g4

2 + 3ybβ̂yb
+ yτ β̂yτ

) m2
3/2

(16π2)2
(52)

m2
L̃3

=
(
−99

50
g4
1 −

3

2
g4

2 + yτ β̂yτ

) m2
3/2

(16π2)2
(53)

m2
τ̃R

=
(
−198

25
g4
1 + 2yτ β̂yτ

) m2
3/2

(16π2)2
(54)

Ayt = − β̂yt

yt

m3/2

16π2
(55)

Ayb
= − β̂yb

yb

m3/2

16π2
(56)

Ayτ = − β̂yτ

yτ

m3/2

16π2
. (57)

where

β̂yt = 16π2βyt = yt

(
−13

15
g2
1 − 3g2

2 −
16

3
g2

3 + 6y2
t + y2

b

)
(58)

β̂yb
= 16π2βyb

= yb

(
− 7

15
g2
1 − 3g2

2 −
16

3
g2

3 + y2
t + 6y2

b + y2
τ

)
(59)
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β̂yτ = 16π2βyτ = yτ

(
−9

5
g2

1 − 3g2
2 + 3y2

b + 4y2
τ

)
. (60)

The first two generation squark and slepton masses are obtained by appropriately changing

the Yukawa couplings to first and second generation Yukawa couplings.
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