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The heterotic string compactified on Calabi-Yau n fold Zn gives rise to interest-

ing minimal supersymmetric string vacua with a quite realistic spectrum of gauge

symmetries and matter fields [1]. The definition of these vacua, involves the spec-

ification of a gauge background V with structure group H ∈ G0 embedded in the
perturbative heterotic gauge group G0 = E8 × E8 or SO(32) such that

c1(V ) = 0 mod 2 , λ(V ) = c2(Z) + [W ] , (1)

where λ is the four-dimensional characteristic class of V . The second term [W ]

applies to a generalization of heterotic vacua which include non-perturbative five-

branes [2]. Here [W ] is a sum of formal four-forms that integrate to one in the

transverse direction to the five-branes. Note that the five-branes necessarily have to

wrap two-cycles in a 3-fold compactification; such cycles have to be holomorphic in

order to preserve supersymmetry [3].

In addition, the connection on V has to satisfy

Fab = Fāb̄ = 0 , gab̄F
ab̄ = 0 . (2)

The first equation says that V is holomorphic, while the second equation is inter-

preted as some stability condition on V . Although an existence theorem exists under

certain conditions [4], explicit solutions to (2) have been known only in very special

constructions. The difficulty to find appropriate backgrounds V has hampered the

study of interesting four-dimensional vacua for a long time.

An entirely independent construction of holomorphic, stable vector bundles1 V

on Calabi-Yau n-folds Zn has been developed in [6] using type-IIA strings compacti-

fied on local Calabi-Yau n+1 fold singularitiesWn+1 and the F-theory limit thereof.2
This geometric approach gives a systematic way to obtain families of vector bundles

that solve (2), with any structure group H ∈ G0 and on any toric Calabi-Yau man-
ifold Z. Given the fact that it is so hard to find solutions to (2) in general, there

must be a very good reason why the geometric construction yields a large class of

solutions without difficulties. Now supersymmetry of the F-theory compactification

requires that the singularity Wn+1 is Calabi-Yau. It is the purpose of this note to
show that it is precisely this Calabi-Yau condition that translates to a stability con-

dition on the bundle V on Z, formulated in terms of the existence of holomorphic

sections of certain line bundles. The answer to why it was so easy to get solutions

to (2) from the geometric construction is thus that we have replaced the complicated

condition (2) of the heterotic string, about which we have poor control, with the

simple Calabi-Yau condition on the type-IIA/F-theory side, which is much easier to

deal with.
1We will loosely call V a bundle in the following, though our construction naturally yields

sheaf generalizations of bundles, which provide the relevant set up for heterotic string compactifi-

cations [5].
2See [7] for a review.
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The relation of type-IIA strings and holomorphic stable vector bundles can be

traced back to a simple extension of mirror symmetry in a K3 × T 2 compactifi-
cation [8], more specifically a discrete symmetry in the moduli space of this com-

pactification that relates geometric deformations of K3 to Wilson lines on the T 2

factor. One can then combine this picture with taking the F-theory limit of the

type-IIA compactification. Specifically one can show that the moduli of Wilson lines

on Z1 = T
2 is the same as the geometric moduli of a local 2-fold singularityW2. The

relevant compactification geometry W2 is the local mirror of a Kähler resolution of
an H singularity of an elliptically fibered ALE space. Here H is the structure group

of the bundle V , as before.

Fibering this picture, using the adiabatic argument of [9], one obtains an equiva-

lence between complex deformations of an elliptic and K3 fibered Calabi-Yau singu-

larityWn+1 and holomorphic stable vector bundles on an elliptically fibered manifold
Zn [6]. Holomorphic stable bundles V on smooth elliptic fibrations Zn have been first

considered in [10] and subsequently in [11].

The construction in [6] has been formulated in terms of toric geometry which

for many purposes is the most useful and most general definition for the Calabi-Yau

manifoldsWn+1 and Zn. The toric construction of the pair (V, Zn) in terms of an n+1
dimensional non-compact Calabi-Yau manifold Wn+1 works for any structure group
H of the bundle. IfH fits into the perturbative heterotic gauge group G0 = E8×E8 or
SO(32), we can interpret (V, Zn) as a valid perturbative heterotic vacuum. Precisely

in this case one can find an embedding of the geometryWn+1 into a compact Calabi-
Yau manifold Wn+1. The statement that F-theory compactified on the local patch

Wn+1 of Wn+1 is equivalent to the heterotic string compactification on (V, Zn) then
establishes F-theory/heterotic duality [12, 13] in the point particle limit.

Toric geometry describes a Calabi-Yau n-fold Zn in terms of a convex, toric

polyhedron ∆∗Wn+1 , which is the convex hull of a set of integral vertices ν
?
i in a

standard integral lattice N .3 It is satisfying to observe [6] that the heterotic physics

such as the compactification manifold Zn and some defining data of the bundle V

have a very simple representation in terms of the polyhedron ∆∗Wn+1 . Moreover also
non-perturbative dynamics of the heterotic vacuum for singular configurations, in

particular non-perturbative gauge symmetries and non-perturbative five-branes that

appear in (1), can be read of from the toric data of Wn+1 in a simple way. It is

the purpose of this note to extend the dictionary between physical and toric data

developed in [6] to describe stability of the bundle V in terms of convexity of the

polyhedron ∆∗Wn+1.
In particular it was noted in [6], that for a given structure group H of the bundle,

convexity of the toric polyhedron ∆?Wn+1 translates to a bound on the first Chern class
η = c1(N ) of a line bundle N that is an important characteristic of the bundle V .
3See [6] for a list of reviews on toric geometry in the physics literature.
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Observing that in six dimensions, the bound on η from convexity of ∆? translates

to the stability of instantons on K3 with structure group H , these bounds were

interpreted as a similar stability condition in lower dimensions. A general formula

for the stability of V in terms of bounds on η was subsequently conjectured in ref. [14]

which was however not in agreement4 with the original bounds in [6]. In the following

we derive a general stability bound for η from the toric representation of data (V, Zn)

which is consistent and, we believe, gives a correct treatment.

We start with a sketch of the description of the pair (V, Zn) in terms of the

non-compact Calabi-Yau n+1-foldWn+1. The latter is elliptically fibered with base
B̃n and ALE fibered with base Bn−1. The manifold Wn+1 is defined as the vanishing
locus of a polynomial p in a toric ambient space with coordinates (y, x, z̃, v, xi), where

xi denote the coordinates of the base Bn−1 and (y, x, z̃, v) are certain coordinates on
the ALE fiber. The general form of p is

p = p0 + p+ = p0(y, x, z̃; xi) +
J∑
j=1

vjpj+(y, x, z̃; xi) , (3)

where p0 and p
j
+ are quasi-homogeneous polynomials. In particular the v independent

piece p0 describes an elliptically fibered Calabi-Yau manifold Zn : p0 = 0, while

the polynomials pj+ contain the information about the bundle V . More specifically,

each node in the affine Dynkin diagram Γ(H) with Dynkin index si contributes one

monomial to the polynomial psi+ ; in particular J = max(si). E.g. in the case H =

SU(N), we have N nodes of index 1, each of which contributes a monomial to p1+. The

precise form of the v dependent part of p is p+ = v(aN (xi)z̃
N+aN−2(xi)z̃N−2x+ · · ·+

a0(xi)x
N/2) for N even with the last term being ∼ yx(N−3)/2 for N odd. The complex

parameters multiplying the monomials in p+ give a projective parametrization of the

moduli space of the SU(N) bundle.

Thus the structure group H determines the y, x, z̃, v content of the monomials

appearing in the defining equation p ofWn+1. It does not determine the dependence
on the base variables xi, however. The latter specifies topological properties of V

that enter the higher Chern classes ck(V ), k > 1. However note that the dependence

on xi is quite restricted because of the quasi-homogeneousness of p. It was shown

in [6] that the dependence of the monomials in p on xi is completely determined by

specifying the action of two C∗ actions acting on (y, x, z̃, v, xi). In other words, we
have to specify two line bundles L and M on the base Bn−1 and the coordinates
(y, x, z̃, v, xi) transform as certain sections ofM and L such that

y ∼M3L3 , x ∼M2L2 , z̃ ∼M , v ∼M5−N , fc,d ∼MdLc , (4)
4Essentially, the discriminant criterion used in [14] is not restrictive enough to fix the structure

group H .
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where fc,d = fc,d(xi) is the base dependence part in the monomial

y(6−2b−c)/3xbz̃cvdfc,d(xi)

of p. Moreover N is the highest power of z̃ that appears in p1+.

From the fact that p0 = 0 describes a Calabi-Yau manifold it follows that the

bundle L is actually the anti-canonical bundle of Bn−1. On the other handM is an

important intrinsic property of V . In the following we will derive a bound on the first

Chern class c1(N ) of the line bundle N =ML6 from convexity of the polyhedron
∆∗Wn+1 , which is the toric way to ensure that the singularity Wn+1 represents a patch
of a Calabi-Yau space.

The change from M to N is intended to make contact with the notation of
ref. [10], where V has been described in terms of sections of a certain weighted

projective bundle W on Bn−1 with coordinates on W being sections of N siL−dj .
Here si are the Dynkin indices as above and di are the degrees of the independent

Casimir invariants of H . The dependence of higher Chern classes of V on c1(N ) has
been determined in [10, 15].

To keep the discussion as basic as possible we will work directly with the defining

polynomial p rather than with the toric polyhedron ∆?Wn+1 that determines p [16]. In
particular, if we consider a structure group H ∈ G0, we have a compact embedding
Wn+1 →Wn+1. Moreover the K3 fiber (that, in a local patch, contains the ALE fiber
of Wn+1) has a singularity G which is the commutant of H in G0 [13]. The defining
polynomial p̂ of Wn+1 can be written in generalized Weierstrass form:

p̂ = y2 + x3 + yxẑa1 + x
2ẑ2a2 + yẑ

3a3 + xẑ
4a4 + ẑ

6a6 . (5)

Note that we use (y, x, ẑ) and (y, x, z̃) to denote the homogeneous coordinates of

the elliptic fiber of the n + 1-dimensional Calabi-Yau Wn+1 and the n dimensional

Calabi-Yau Zn, respectively. The an are functions of the coordinates x̃i of the base

B̃n of the elliptic fibration of Wn+1. In particular having a singularity of type G

above a locus, say at z ≡ x̃1 = 0 on the base B̃n can be phrased in terms of the
behavior of the an near z = 0, an ∼ zδn using Tate’s algorithm [17].
To reiterate, the structure group H determines the singularity G of the K3 fiber

of Wn+1. In turn G is determined by the behavior of the coefficient functions an
in the generalized Weierstrass form p̂ near the singularity z = 0. Moreover we are

interested in the singularity of the K3 fiber W2 of the K3 fibration W2 → Wn+1 →
Bn−1. Thus z is now a coordinate on the base P1 of the elliptically fiberered K3,
π : W2 → P1. However note that in the local limit Wn+1 → Wn+1 where our map
f : Wn+1 → (V, Zn) applies, the an become nothing but the B̃n dependent parts of
the monomials y(6−b−c)/3xbz̃cvdfc,d(xi) in the defining polynomial p of Wn+1.
To be more explicit let us consider the case G0 = E8×E8. The relation between

the coordinates in p̂ and p, using z ≡ x̃1, w ≡ x̃2 as the coordinates of the base P1
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of W2 as above, is then

(y, x, z̃; v; xi)p =
(
y, x, ẑzw;

w

z
; x̃i, i > 3

)
p̂
.

In particular the existence of a term an = z
δnf(xi) implies that the line bundle

N dnLn−6dn (6)

has a holomophic section, where we have defined dn = n − δn. Combining the
conditions imposed by all the an, n ∈ {1, 2, 3, 4, 6} we arrive at the condition

ν(G) c1(L) ≤ η (≤ 12c1(L)) , (7)

where ν(G) is the singularity dependent quantity

ν(G) = max

(
(6dn − n)
dn

)
, (8)

for all n ∈ {1, 2, 3, 4, 6} with dn 6= 0. Note that this argument also tells us that the
minimal bundle Nmin is always a power of L, a fact that is non-trivial for h1,1(B) > 1.
We have also indicated in (7) an upper bound for η of a very different origin. It is

not related to the stability of N but rather to the stability of η′ = c1(N ′) ≥ 0, where
N ′ is the equivalent bundle in the second E8 factor.
From eqs. (7) and (8) we obtain

G = SU(2)∗ : η ≥ 14
3
· L G = E8 : η ≥ 0 · L

G = SU(3)∗ : η ≥ 9
2
· L G = E7 : η ≥ 2 · L

G = SU(M) : η ≥ 5 · L G = E6 : η ≥ 3 · L
G = SO(N) : η ≥ 4 · L G = G2 : η ≥ 4 · L

G = F4 : η ≥ 3 · L (9)

Here N ∈ {7, . . . , 12}, M ∈ {2, . . . , 6} and the groups with a star denote the sin-
gularities associated to III and IV s fibers in the list of [17]. Moreover L = c1(L).
Note that our arguments for the bound (7) give a necessary but in general not suf-

ficient criterion for the stability of the bundle. In particular the distinction between

singularities associated to simply laced (SL) and non-simply laced (NSL) groups is

often the specific form of the sections fc,d in the SL case rather than a difference

in the topological class [17]. Our arguments give a criterion for the existence of a

holomorphic section fc,d which is sufficient for SL groups, but it does not ensure that

one gets a generic enough section to describe also the NSL case. Thus the bounds

given in (9) are strict lower bounds only for the simply laced case.
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It would be nice to have a derivation of the bound on η that is directly related

to the structure group H and in particular also applies to the non-compact case with

arbitrary rank. A reasonable proposal based on (9) is

H = SU(N) : η ≥ N · L H = E8 : η ≥ 5 · L

H = SO(7) : η ≥ 4 · L H = E7 : η ≥ 14
3
· L

H = SO(M) : η ≥ M
2
· L H = E6 : η ≥ 9

2
· L

H = Sp(K) : η ≥ 2K · L H = G2 : η ≥ 7
2
· L

H = F4 : η ≥ 13
3
· L , (10)

where N ≥ 2, M ≥ 8 and K ≥ 2. Here we have used the calculation of the six-
dimensional spectrum in [17, table 3] to raise the bounds for the NSL cases, such

that we get the correct answer in six dimensions. Similarly we could compare the

calculation of the matter spectrum in four dimension for a heterotic compactification

on a Calabi-Yau 3-fold with (9).

It is interesting to observe, how the geometric description contains non-trivial

information about the instanton dynamics on Calabi-Yau manifolds Zn. Moreover

in many cases there is also another point of view, namely in terms of a supersym-

metric field theory in uncompactified space time. In particular, via the heterotic

compactification on K3×T 2, the instanton dynamics on K3 is related to the moduli
space of N = 2 supersymmetric field theories. Similarly, instantons on Calabi-Yau
three-folds will be related to the moduli space of N = 1 Super-Yang-Mills theories.
It would be very interesting to use the toric construction of V on Zn to study this

relation in detail.
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