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1. Introduction

This paper discusses issues related to orientifolds. The motivation which led to this

project was to understand various strong coupling behaviour of orientifold planes.

These planes play an important role in understanding the non-perturbative properties

of string theories. They can also be used for realizing and studying, using branes,

gauge theories with orthogonal and symplectic gauge groups; in this perspective, the

dictionary for translating different gauge theories into brane configurations is still

1



J
H
E
P
0
7
(
1
9
9
9
)
0
0
9

under construction. There are several types of orientifold planes. For most of them,

we know, at least classically, what is the gauge theory realized on branes living in

the presence of these orientifolds. However, as will be discussed below, there are

cases (the somehow exotic plane1 Ô or the ON planes acting on NS-branes) in which

the entries in the dictionary are still mysterious. Moreover, even when everything is

understood at the classical level, the strong coupling behaviour of these configurations

is not well understood; this prevents us from extracting non-perturbative results from

the brane configuration for the corresponding gauge theory. Unfortunately, this lack

of understanding is common to many different orientifold configurations.

In this paper, we make a first step in the direction of better understanding these

configurations and we analyze a class of theories, with various supersymmetries and in

various dimensions, with global SO(2n) symmetry. The issues which will be discussed

here in more detail are:

• Mirror Symmetry in three dimensions.
• Various constructions of Brane Box Models involving orientifold planes.
• Some issues in six dimensional theories.
• More constructions of Finite four dimensional gauge theories using branes.

All the theories presented have in common a Dn type global symmetry. Since, be-

sides the use of an orientifold, theories with Dn global symmetry can be realized by

engineering space-time singularities, there is a natural question that arises in relation

to the models discussed in this paper and that we will discuss in some detail:

• What happens to a Dn space-time singularity when we perform a T-duality?

The answer for this question in the case of a Ak singularity, which first appeared

in [1], is extensively discussed in the literature, and here we present the Dn case.

The understanding of the behaviour of singularities under T-duality helps in relating

(and therefore in better understanding) different approaches with branes to the same

gauge theory. For each of the theories considered in this paper, we will discuss the

fate of the configurations under T-duality and the relation with different approaches

in the literature.

Let us briefly summarize what is known about the orientifold zoo.

There are several types of orientifold planes. The most familiar and most dis-

cussed one is the Op plane which carries negative RR charge, that is in units in which

the charge of a Dp-brane is positive (we will take the charge of a physical brane to

be +1 in this paper). The charge of this Op plane is −2p−5. A collection of n phys-
ical Dp-branes located at the Op plane give rise to a Dn gauge theory on the world

1See the next few paragraphs for a discussion on this object.
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volume of the Dp-branes, that is an enhanced SO(2n) gauge theory. Henceforth this

orientifold will be called Op−, in short. If there are 2p−5 physical Dp branes located
on top of an Op− plane, we get a special case in which the RR charge of this object is
zero. The corresponding RR field has no sources coming from such an object which

makes it special and leads to interesting phenomena in various dimensions and su-

persymmetries. For a recent discussion for the case of O6 planes see [2]. We will call

this object Op0.

Another type of orientifold is also fairly discussed in the literature and first

appeared in [3]. This orientifold plane carries an opposite charge with respect to

the Op− plane, +2p−5, and will be called Op+. A collection of n physical Dp-branes
sitting on top of this orientifold plane give rise to an enhanced Cn gauge theory on

the world volume of the Dp-branes, that is a Sp(n) gauge theory.

With this realization of gauge theories, the natural question which arises is what

is the realization of Bn type gauge theories. (We remind that An gauge theories

are given by collecting n + 1 branes on top of each other, with no presence of an

orientifold plane). The answer to this question is also well known. If one puts a

stuck Dp-brane on the Op− plane and, in addition, n physical branes, one gets the
desired construction. The charge of a stuck Dp-brane is +1/2, this means that the

charge of the orientifold with a stuck Dp-brane on it is 1/2− 2p−5. Henceforth, this
orientifold plane will be called Õp. Aspects of this orientifold plane were recently

discussed in [4].

A last type of orientifold plane is the less familiar object out of all other. This

orientifold plane was discussed in various papers [5, 6, 7, 4] where the special cases of

p = 3 and p = 4 were discussed. T-duality suggests the existence of this orientifold

plane for any p and this issue will be discussed elsewhere.2 This orientifold plane

will be called Ôp. A universal charge formula for this orientifold plane is not clear

at the moment.

Once we accept the existence of these types of orientifold planes, the next natural

question which comes to mind is what is the strong coupling behavior of such planes?

In many cases the answer appears in the literature. One notable work on this issue

is of Sen, [8] where he gives a description of strong coupling behaviour of Op− planes
for various values of p. Less is known about the other types of orientifolds.

A special case is p = 5. We ask what is the strong coupling of an O5 plane.

We will call such an object an ON plane which comes from the fact that S-duality

of Type IIB implies that this orientifold carries magnetic charge with respect to

the NS two-form of Type IIB. T-duality also implies that there will be a simi-

lar object in Type IIA theory, that is an ON plane which carries a NS two-form

charge. As for the Op planes, we assume that there are four types of such ob-

2It is interesting to look at configurations with orientifold planes and stuck 5 branes. The

nature of the orientifold plane changes as one crosses the 5 branes and strong coupling duals of such

configurations lead to interesting results.
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jects which will be denoted by ON−, ON+, ÕN, ÔN . The charges of these ob-
jects are −1 for ON−, +1 for ON+, +1/2 for ÕN and not clear for ÔN . Simi-
lar to the Op0 object, we can have a configuration with a physical NS brane sit-

ting on top of an ON− plane. This configuration carries no NS two-form charge
and will be denoted ON0. Like the Op0 objects the absence of NS two-form charge

leads to interesting field theory consequences which makes this configuration

special.

Another set of questions which arise in the presence of such orientifolds is what

is the gauge theory which lives on the world volume of Dp-brane which have some

directions which are not parallel to the orientifold planes. As an example, we would

like to know what is the world volume gauge theory of a collection of D4-branes which

are sitting transverse to an ÕN plane in a supersymmetric fashion. All combinations

of this type are of natural interest.

In this paper we will mainly focus on theories with SO(2n) global symmetry.

The recent understanding of the properties of the ON0 plane [9, 10] helps us in

extending previous analysis of mirror symmetry in three dimensions [11, 12], Brane

Box Models [13, 14, 15] and six-dimensional theories [16, 17, 18] to the case with Dn
symmetry. Essentially, this paper extends what was done in the above mentioned

papers from the Ak series to the Dn series. In this context, it is of great importance

to understand what happens to a Dn ALE space under T-duality. This issue has its

own importance even besides its use for realizing gauge theories with branes and it

will be discussed in detail in this paper. It is natural to ask about theories with Bn
and Cn global symmetry. This is related to the understanding of strong coupling

behavior of Õp and Op+ planes. This will be discusses elsewere.

The paper is organized as follows. In section 2 we review and extend the analysis

of the ON0 plane properties. We extensively discuss the behaviour of D-brane probes

near the plane. This section contains the technical tools that will be needed for all

the examples in this paper. The subsection 2.2 is more technical; since the results

in this subsection will be used only for a particular pair of mirror theories and

for six-dimensional theories, the reader not interested in these topics may skip this

subsection. In section 3 we discuss the T-duality for an ALE space of type Dn.

In the following sections we discuss various examples of gauge theories in various

dimensions. In section 4 we present several examples of mirror pairs in N=4 three

dimensional gauge theories. In section 5 examples of Brane Box Models and finite

N=1 gauge theories in four dimensions. In section 6 examples of six-dimensional

superconformal fixed points and small instanton theories. We tried to keep each

different section as self-contained as possible, in such a way that the reader only

interested in a particular class of gauge theories or only interested in T-duality for

ALE spaces may skip what does not interest him. For each class of gauge theories

we explicitly discuss T-dual descriptions and try to make contact with different

approaches.
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2. The ON0 plane

A particularly important object for our purpose is the plane ON0, obtained as a

superposition of an ON− plane and a physical NS brane. It arises both as the strong
coupling limit of O5− planes and as an essential ingredient in the T-duality for D
singularities.

Its importance is increased by the fact that it has a perturbative description [9].

The ON0 plane can be considered as the fixed plane of the perturbative (−1)FLR
projection in a Type II string theory. This orbifold projection is the combination of

a space-time Z2 inversion in four directions, R, and the operator (−1)FL, the left-
handed space-time fermion number. There are fields living on the world-volume of

ON0. They are the twisted states of the orbifold projection, which, both in Type

IIA and Type IIB, have the same massless field content as a NS-brane.3

ON0 acts as a sort of orientifold projection for NS-branes. n − 1 physical NS-
branes on top of the ON0 plane realize an SO(2n) symmetry; this is the standard

gauge symmetry of the system of NS-branes in Type IIB, or, the non-Abelian sym-

metry acting on the tensionless strings of the (2, 0) theory in Type IIA. Notice that,

in this description, one of the Cartan generators of SO(2n) is not associated with the

position of one of the NS branes but rather with the twisted states of the orbifold

projection.4

There are two properties of ON0 that make it special. They also explain the

proposed SO(2n) symmetry:

• S duality. In the Type IIB context, n − 1 NS-branes near ON0 plane give
the S-dual realization of (1, 1) SO(2n) six-dimensional theories with n physical

D5-branes on top of an orientifold plane. S-duality indeed maps D5-branes

into NS-branes, and O5 planes into ON planes. ON0 is the strong coupling

limit of the corresponding O50 plane, the superposition of an O5− orientifold
and a physical D5 brane [9]. As noticed in [9], the O50 plane, as opposed to

O5− supports fields on its world-volume and it is not charged under the RR
six-form; it has therefore the right characteristic for being the strong coupling

limit of the orbifold fixed plane.

• T duality. ON0 is also connected to the T-dual of a Type IIA Dn singularity.
The proposal is that a T-duality along one of the directions of a Type IIA

Dn singularity is the Type IIB orbifold R
4/(−1)FLR in the presence of n − 1

3The twisted states are vector supermultiplets of a (1, 1) six-dimensional theory in Type IIB and

(2, 0) tensor supermultiplets in Type IIA.
4It is interesting to consider the brane realization of the BPS spectrum of these theories. The

W-bosons are realized by D-strings, and the magnetically charged two-branes are realized by D3

branes. Near the ON0, the realization is different than the usual one near Op planes. See figure 2

for some of these states.
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physical NS-branes. The gauge symmetry is in both cases SO(2n). The n

twisted states of the Dn Type IIA singularity, which are (1, 1) six-dimensional

vector multiplets, are mapped to the n− 1 multiplets living on the NS-branes
in Type IIB plus the extra multiplet living on the plane ON0. This proposal

can be motivated by representing a T-duality as a combination of two strong-

weak coupling dualities, as depicted in figure 1. A background with a Dn
singularity can be described as a particular decompactification limit of Type

IIA on a singular K3, which is dual to the Type I′ string theory on T 4. In
the relevant decompactification limit, the dual theory can be represented as

Type IIB on R4/ΩR. In this dual description, the non-perturbative enhanced

SO(2n) gauge symmetry of Type IIA is described by n physical D5-branes near

an O5− orientifold plane. Another S-duality now brings us back to the Type
IIB orbifold R4/(−1)FLR in the presence of NS-branes. Similar arguments
apply for Type IIB singularities and Type IIA ON planes and NS branes.

The importance of ON0 both as the strong

TYPE IIB / (-1) F LR  / Z  ,D4 
k n

T

S S

TYPE IIA TYPE IIB

TYPE IIB / TYPE I

Figure 1: A graph consisting of

commuting T and S dualities. The

T-duality between Type IIA at an

orbifold singularity and Type IIB

with NS-branes can be represented

as two successive strong-weak cou-

pling dualities.

coupling of O5 plane and as an ingredient in the

T-dual description of Dn singularities is mani-

fest in figure 1. As strong coupling of an O50

plane, ON0 plays an important role in the study

of mirror symmetry in three dimensional N = 4

gauge theories. As ingredient in the T-dual de-

scription of Dn singularities, it plays an impor-

tant role in better understanding several brane

configurations, varying from Brane Box Models

to six-dimensional theories.

But, before constructing explicit examples,

we need to explain what is the behavior of D-

branes in the presence of an ON0 plane.

2.1 D-branes in the presence of an ON0

plane

Consider a Dp-brane (p ≤ 6) transverse to the ON0 plane, or the Type II orbifold
R4/(−1)FLR. Let us take, for definiteness, the R inversion acting on the coordinates
6, 7, 8, 9.

The crucial point is that the twisted sector of the (−1)FLR orbifold has the same
field content as a NS-brane and, therefore, a D-brane can end on it. This means that

the D-brane is a source for the fields living at the fixed plane5 As noticed in [9], D-

branes ending on the orbifold fixed plane may have both positive and negative charge
5Notice that this is different from the standard configuration in which a D-brane crosses an

orientifold plane. Since the orientifold plane does not carry any field on its world-volume, the

D-brane is not really ending on it.
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(a) (b)

D3 D3

O5 D5-

NS

-

+
+

-

D5 D5 NS

Figure 2: Two useful ways of thinking of ON0 planes. In the S-dual description (b) the

different signs for the charges are explained by considering branes ending on the D5 brane

from the right or from the left. We may also put extra D5-branes (and NS-branes in the S-

dual configuration) for future reference. In (b), we put two kinds of D5-branes (represented

as dots). One of them is bound to the ON0 plane; in the S-dual picture (b) it has the

interpretation of a NS-branes which lives in between O5− plane and the D5-brane.

under the twisted fields; moreover, configurations of parallel D-branes with different

charges are supersymmetric [9, 10]. The reader should not confuse these negatively

charged D-branes with anti D-branes. Anti D-branes have a negative charge under

the ten-dimensional RR-forms. In this paper we always consider D-branes. Our

branes are charged both under the ten-dimensional RR-form (with positive charge)

and under the six-dimensional twisted sector form (with positive or negative charge).

The existence of different charges and the fact that supersymmetry is preserved

can be easily understood in the case p = 3 going to the S-dual configuration [9].

The result for general p follows from T duality. Consider figure 2. In the S-dual

picture, the orbifold plane is represented by an orientifold O5− plane and a physical
D5-brane which can be moved away from the orientifold point. The twisted sector

of the orbifold point are mapped to the fields on the D5-brane. D3-branes ending

on the orbifold plane are now ending on the D5-brane. Their charge under the D5-

fields has a different sign according to whether they end to the left or to the right of

the D5-brane. We can identify the positively charged branes ending on the orbifold

plane with the D3-branes ending on the D5-brane from the right, while the negatively

charged branes with D3-branes coming from the right infinity, going straight to the

orientifold, coming back and ending on the D5-brane from the left. This configuration

is manifestly supersymmetric.

n Dp-branes ending on the fixed plane, all of them with the same charge, have a

world-volume theory with eight supersymmetries consisting of a U(n) gauge theory.

There are no matter fields, since the hyper-multiplets corresponding to the fluctua-

tions transverse to the orbifold plane are projected out by the action of R. The rules

for projecting the open string spectrum in the case with both positive and negative

charges were found in [9, 10] by using a boundary-state method. The rule is that, if

there are n1 Dp-branes with positive charge and n2 Dp-branes with negative charge

7
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U(n ) U(n ) 1 2

n 1

n
2

ON
0 ON

0

n 1

n
2

U(n ) U(n ) 1

( n  , n  )1 2

2

2

(a) (b)

NS

Figure 3: Two sets of D-branes (n1 with positive charge and n2 with negative charge)

ending on ON0 plane. The resulting gauge theory and matter fields are indicated below

the figure. In (a) there are two hypermultiplets in the bi-fundamental representation of

the two gauge groups. These hypermultiplets parametrize fluctuations transverse to the

orbifold plane. In figure (b), the two hypermultiplet is projected out by the presence of the

NS brane.

ending on the fixed plane, (−1)FLR acts on the open string Chan-Paton factor as the
conjugation by a diagonal matrix with n1 entries equal to +1 and n2 equal to −1.
This means that the gauge fields (and their superpartners) coming from open strings

connecting D-branes with different charge are projected out and the gauge group is

U(n1)× U(n2). The hyper-multiplets corresponding to open strings with both ends
on D-branes with the same charge are projected out being odd under R, but the

ones associated with mixed open strings have an extra minus sign and survive giv-

ing matter fields in the bi-fundamental (n1, n2) representation (figure 3). The same

result can be obtained by looking at the S-dual configuration described in figure 2.

In this paper we will need configurations with more NS-branes and with other Dq-

branes. They are depicted in figure 4a. When there are both Dp and Dq-brane, it is

better to use pictorial conventions in which Dp-branes are horizontal lines, NS-branes

are points and Dq-branes or Oq planes are vertical lines. Here q and the directions in

which the Dq-brane extend are chosen in such a way that preserves supersymmetry in

the presence of Dp-branes; the number of directions of type D-N in the open strings

connecting Dp and Dq-branes must be 4. Dp-Dq configurations considered in this

paper are the D3-D5 systems relevant for mirror symmetry in three dimensions, the

D5-D7 systems for Brane Box Models, and the D6-D8 systems for the construction

of six-dimensional theories.6 The Dq-branes serve for introducing matter fields in the

fundamental representation of the various gauge groups. The world-volume theory

6See section 2.2 for the explicit directions for the Dp and Dq branes.
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U(r)

U(k)

Dq

NS

2  + 

U(t)

0
ON

U(s)

w2 w3 w4

2

w3

w

w

w1 w2

4
1w

.... ....t sk

r

Figure 4: The gauge theory can be read from the quiver diagram on the right. Nodes

represent the gauge group factors, links represent bi-fundamental matter fields and external

lines represent fields in the fundamental representation of the corresponding gauge group.

obtained in this way can be conveniently encoded in a quiver diagram, where nodes

represent the gauge group factors, links represent bi-fundamental matter fields and

external lines represent fields in the fundamental representation of the corresponding

gauge group; the quiver is depicted in figure 4b.

The curious splitting of the Dq-branes near ON0 requires some explanation. The

w1 Dq-branes in figure 4a are bound to the ON
0 plane. The existence of bound branes

can be easily understood in the particular case of p = 3 and q = 5; in the S-dual

picture of figure 2b, they are described by the NS-branes which live in between O5−

and the D5-brane. It is obvious from figure 2 that they only contribute flavors to

the U(p) gauge group. The w2 Dq-branes are instead mapped to NS-branes which

live to the right of the D5-branes; they contribute flavors to both the U(p) and U(q)

gauge groups.

The global symmetry for a generic gauge factor is U(wi). The gauge theory

has a U(2w1) × U(w2) symmetry for the factors associated with branes near ON0.
Notice that only a subgroup USp(2w1)×U(w2) of this global symmetry is manifestly
realized in the brane picture. Further arguments in favor of this symmetry will be

discussed in section 4.

This kind of quiver theories naturally represent a small U(w) instanton sitting on

a Dn ALE space [19, 20]; here w is the total number of Dq-branes. The configuration

with NS-branes is the T dual of the one considered in [19], as will be discussed in

section 3. The form of the theory is the same for every value of p.

2.2 Including orientifold planes

In this subsection we further complicate our life by introducing an orientifold plane in

addition to ON0. This configuration will be used in section 4.4 for a particular class

of mirror pairs in three dimensions, and in section 6 for discussing six-dimensional

theories. The reader not interested in these examples can skip this subsection.

We now discuss the behavior of Dp-branes near an ON0 plane when we also

introduce an Oq− plane to the picture.

9
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ON0

k

k

1

2

- -

ON0

- 2k

1 2(k  , k  )

(a) (b)

1 2

Oq

Op

Oq

Op
+

U(k) with anti                                          USp(k  )     USp(k  )

Figure 5: In the case ‘without vector structure’ (figure (a)), the states living on ON0 and

responsible for absorbing the charge of Dp-branes are projected out by Ω. Therefore there

is only one type of Dp-brane, living at the intersection of Oq− and Op− planes. This is
the theory discussed in [3]. In the case ‘with vector structure’ (figure (b)), the surviving

states living on ON0 allow and require the existence of two kinds of Dp-branes. Each set

of branes supports a USp(k) group due to the existence of an Op+ plane.

In this paper, we consider ON0 as a perturbative orbifold projection; in this,

it differs very much from its natural partners, the NS-branes, which are solitonic

objects. The Oq− and the ON0 plane combine into a Z2 × Z2 orbifold/orientifold
projection, generated by ΩRq and (−1)FLR6789, where Rq represents a Z2 inver-
sion in all the coordinates transverse to the Oq plane. We are using notation in

which the ON0 plane extends along (012345) and the Dp-branes are stretched along

(0, 1, . . . , p − 1) and are possibly finite along x6. The Oq plane extends over the
coordinates (0, 1, . . . , p− 1) and (7, 8, 9). We will denote R6789, in short, R.
We now discuss what kind of theory is realized on Dp-branes in this situation.

The reader not interested in technical details may want to skip the two following

paragraphs dealing with tadpoles, projections and all that, and look at figure 5. In

the following we present two derivations for the massless fields in this configuration.

First derivation. Every generator of the orbifold/orientifold projection acts on

the Chan-Paton factors of the D-branes according to the rules in [3, 19]. Under a

T-duality in the directions p, . . . , 5 and 6 , the factor (−1)FL disappears [21], and we
recover a non-compact version of the original model in [3]. As widely discussed in the

literature [19, 22, 23, 24, 25], there are essentially two different consistent models.

They differ in the perturbative definition of the Ω projection on the closed string

twisted states and in the action of Ω on the Chan-Paton factors. Geometrically,

they are distinguished by the type of SO(2m) bundle that can be defined on a space

with a Z2 singularity [22]. This SO(2m) bundle is realized on the world-volume

10
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of the Dq-branes. A bundle defined on a space with a Z2 singularity may admit

vector structure, or not. The original example in [3] does not admit vector structure.

Modifications that admit vector structure were constructed in [26, 22, 23, 24, 25].

The difference between the two cases is encoded in the following relation between

the matrices that act on the Chan-Paton factors [19, 23, 24, 25]:

γ[(−1)FLR] = ±γΩRqγT[(−1)FLR]γ
−1
ΩRq

with/without vector structure (2.1)

Since we put an Oq− plane, which by definition determines an SO(2m) symmetry
on the world-volume of Dq-branes, γΩRq acts as the identity matrix on Dq-branes [3].

The rule that the symmetry of the matrix that projects Dp-branes is opposite to

the one that projects Dq-branes [3] is then enough to (almost) uniquely fix the

projection matrices, modulo an irrelevant change of basis. The result is that, in the

case without vector structure, the world-volume theory for 2N Dp-branes is U(N)

with antisymmetric matter fields, and, in the case with vector structure, is USp(2N)×
USp(2N) with a bi-fundamental matter field. The sign in equation (2.1) is related

to a global sign in the action of Ω on the closed string twisted sector. The projection

by ΩRq breaks the Lorentz-invariance of the six-dimensional theory of the twisted

states. To avoid confusion, it is better to work in the particular case in which p = 6,

in which this Lorentz invariance is not broken; this is the configuration of D6 and

D8 branes relevant for the study of six-dimensional theories. The result for generic

Dp and Dq-branes near ON0 follows from T-duality. The twisted sector provides

a tensor multiplet and a hyper-multiplet. In the case without vector structure the

tensor multiplet is projected out and the hypermultiplet survives [23]. The opposite

happens in the case with vector structure. Undoing the T-duality for discussing

the case with generic p, we discover that, in the case without vector structure, the

twisted state which may absorb the charge of a Dp-brane is projected out by the Ω

projection, while in the case with vector structure it survives. The sign in equation

(2.1) is also related to the sign of the RR charge of the Op plane that is induced in

the theory. It is the standard Op− plane in the case without vector structure, but it
is Op+ in the case with vector structure [23].

Second derivation. In [17] we exploited a general method for studying the consis-

tent Type II and Type I models, living at Zn singularities, where differences between

the models (presence or absence of vector structure) were manifest in a dual brane

description. Locally, the system ON0 − Oq is indistinguishable from the generic Z2
orbifold/orientifold, which was studied in [17]. In the next sections, we will add more

NS-branes and the methods in [17] will not be sufficient for describing the full sys-

tem, but, at that time, we should already know how to deal with ON0. The methods

in [17] allow to study the possible Z2 orbifold/orientifold models in a T dual picture

where the singularity is replaced by two NS-branes.
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Figure 6: Z2 orbifold/orientifold models, without (a) or with vector structure (b). Details

are exhaustively discussed in [17]. Lines are Dq-branes and points are NS-branes.

To avoid confusion, we again specialize our discussion to the case with p =

6; a T-duality gives the result for generic p. The two ways of putting two NS-

branes on a circle, respecting the Z2 symmetry, give two possible models, depicted

in figure 6. The gauge group is, in the case without vector structure, U(N) with

antisymmetric matter, and, in the case with vector structure, USp(N) × USp(N)
with a bi-fundamental. In the first case, there are no tensor multiplets, while in the

second case there is one. Applying a T-duality for recovering the case with generic p,

we discover that, in the case without vector structure, the twisted state which may

absorb the charge of a Dp-brane is projected out by the Ω projection, while in the

case with vector structure it survives.

The results of this long analysis are summarized in figure 5. The results are

consistent with a naive extrapolation of the rules discussed in section 2.1 to the

case with an orientifold. The crucial point of the previous analysis is that the states

associated with ON0, responsible for the splitting of the branes, survive the orien-

tifold projection only in the case with vector structure. Therefore, we can have two

kinds of Dp-branes, and the typical D-quiver splitting only in the case with vector

structure. In the case without vector structure, we have only one kind of brane,

which is projected according to the original example in [3].

Consider now the addition of NS-branes. This gives the theory depicted in

figure 7. We face a lot of small subtleties. The following are the general rules for

determining the matter content.

1. At every NS-brane the charge of the Op plane changes [27]. Gauge groups

associated to 2k Dp-branes near Op+ are USp(2k), while those associated to k

branes near Op− are SO(k). The only exception occurs when an Op− crosses
ON0; in this case the gauge group associated to 2k Dp-branes is U(k).

2. The bi-fundamental (r, k) fields appearing in figure 5, associated to the branes

near ON0, are absent when the branes end on a NS-brane, since the latter

12
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Figure 7: The gauge theory can be read from the quiver diagram on the right. The bar

on the links means that they give rise to a half bi-fundamental.

freezes all fluctuations transverse to itself. This is the general case, unless one

considers the degenerating examples associated to a singularity of type D2.

3. There are only half bi-fundamentals for the gauge groups USp× SO. This is
due to the Op projection. This rule does not apply for gauge groups USp×U
or SO×U.

4. The Dq-branes can be partitioned among the NS-branes and give rise to matter

fields in the fundamental representation. wi Dq-branes located where an Op
+

plane exists give rise to an SO(wi) global symmetry, while those located where

an Op− plane exists give rise to a USp(wi) global symmetry. This global
symmetry teaches us that wi, (i 6= 1, 2) Dq-branes give rise to wi/2 flavors.
Near ON0 (w1 and w2 ) there is a further splitting for the Dq-branes. This

is analogous to the splitting encountered in section 2.1. The global symmetry

is SO(2w1) × SO(w2). The field theory may get a bigger global symmetry
SO(2w1 + w2)× SO(w2) not seen by the branes.

This kind of quiver theories naturally represents small SO(w) instanton on a Dn
ALE space [19]. The configuration with NS-branes is the T dual of the one considered

in [19], as will be discussed in section 3. The form of the theory is the same for every

value of p. In the particular case p = 6 the world-volume theory is uniquely specified

by the requirement of anomaly cancellation. This will be exhaustively discussed in

section 6.

3. T-duality for Dn singularities

In this Section, we discuss in more detail the T-dual of a Dn singularity. It is well

known that, in Type II string theory, a T-duality along one of the directions of an

ALE space of type Ak transforms it into a Type II flat background with k + 1 NS-
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branes [1]. As already anticipated, the proposal is that the T-dual configuration for

an ALE space of type Dn is the Type II orbifold R
4/(−1)FLR in the presence of n−1

physical NS-branes.

In the Ak case, the k + 1 twisted states of a Zk+1 orbifold
7 are mapped to the

world-volume fields of the k + 1 NS-branes.8 In the Dn case, the NS-branes world-

volume fields provide the dual description of only n − 1 twisted states. The dual
of the remaining twisted state comes from the fixed point of (−1)FLR; the twisted
sector of (−1)FLR, both in Type IIA and Type IIB, has indeed the same massless
field content as a NS-brane.

It is sometimes useful to replace the ALE space with a Taub-NUT geometry

(also called KK monopole). Globally the structure of an ALE space is R4, that

of a Taub-NUT space is R3 × S1, which makes it more suitable for performing T-
dualities. The ALE space can be recovered by sending a parameter (which roughly

measures the radius of the circle) to infinity. The T-dual of a Dn KK monopole is

the R3×S1/(−1)FLR orbifold with n−2 NS-branes. Since there are two fixed points
of (−1)FLR along S1, only n− 2 NS-branes are now required to match the n twisted
states. The T-dual of the Dn orbifold is obtained by sending the radius of the dual

S1 to zero.

The proposal was motivated before using the chain of dualities depicted in fig-

ure 1. Related arguments can be found in earlier literature [21, 28], where it was no-

ticed that the perturbative T dual of the singular K3 manifold T 4/Z2 is T
4/(−1)FLZ2

and a description in terms of NS-branes was proposed.

We can now ask what happens when we introduce D-brane probes in the picture.

There is an almost complete dictionary for determining the world-volume theory

of D-branes sitting at ALE orbifold singularities [19, 20]. N Dp-branes sitting at

a singularity of the form R4/ΓG, where G is a simply-laced group, have a world-

volume theory that is associated with the extended Dynkin diagram for G, with a

gauge factor for each node of the diagram and a bi-fundamental matter field for

each link [19]. The gauge group is
∏
U(nµN), where nµ are the Dynkin indices for

the group G. The Higgs branch of these theories, which is the same for all p and is

not corrected by quantum effects, is the symmetric product of N copies of the ALE

space; this is the brane realization [19] of the well known mathematical construction

of the ALE spaces as hyperKähler quotients.

We should be able to see that the world-volume theory of D-branes probe is pre-

served by the previously discussed T-duality. The analysis of the Ak case is straight-

forward. N Dp-branes (p ≤ 6) sitting at a Zk+1 singularity have a world-volume
theory U(N)k+1 with bi-fundamentals for neighboring U(N) factors. Deforming the

ALE space to a Taub-NUT and performing a T-duality along the S1, we obtain a

7The twisted states are vector supermultiplets of a (1, 1) six-dimensional theory in Type IIA and

(2, 0) tensor supermultiplets in Type IIB.
8NS-branes indeed support vector multiplets in Type IIB and tensor multiplets in Type IIA.
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Figure 8: In figure (a), the extended Dynkin diagram for Ak is depicted. The small

numbers near each node are the Dynkin indices. Each node is associated with a gauge

group factor and each link with a hypermultiplet in the bi-fundamental representation

of the corresponding groups. The resulting theory is U(N)k+1 with bi-fundamentals for

neighboring U(N) factors. The same theory can be obtained by considering figure (b),

which describes D-branes wrapped around a circle and broken in between k+1 NS-branes.

. . . . . .(b) (b)

1

1

1

1

2 2 2 2

U(2N)

U(N)

ON NS

N

N

2Nn-3 n-2

0

Figure 9: In figure (a), the extended Dynkin diagram for Dn is depicted. The small

numbers near each node are the Dynkin indices. Each node is associated with a gauge

group factor and each link to a hypermultiplet in the bi-fundamental representation of

the corresponding groups. The resulting theory is U(N)2 × U(2N)n−3 × U(N)2 with bi-
fundamentals for neighboring factors. The same theory can be obtained by considering

figure (b), which describes D-branes wrapped around a circle with two fixed points, here

depicted as a segment.

configuration of N D(p+1)-branes in the presence of k+1 NS-branes, configuration

that was discussed in [11] and reproduces the same world-volume theory (figure 8).

That the T-duality process gives a consistent result also in the Dn case can be

now easily shown using the results in the previous sections. The world-volume theory

for 2N Dp-branes sitting at a Dn singularity is U(N)
2×U(2N)n−3×U(N)2 with bi-

fundamentals associated with the links of theDn extended Dynkin diagram (figure 9).

After T-duality, we have a set of 2N D(p+ 1)-branes wrapped around a circle with

two fixed points under (−1)FLR. We can picture the projected circle as a segment.
We also have n− 2 NS-branes. Combining the methods in [11] with those described
above, it is straightforward to check that the theory associated to this configuration

of branes is the same as that associated to the Dn extended Dynkin diagram.
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Configurations in which M Dq-branes are also present are interesting. We are

considering a situation in which the Dp-probe is sitting at a point in the ALE

space, q = p + 4 and the Dq-brane is wrapped on the ALE space. This config-

uration naturally describes N small U(M) instanton on an ALE space; the Higgs

branch of Dp-branes world-volume theories, which is the same for all values of p

and is not corrected by quantum effects, is isomorphic to the N instantons moduli

space [19]. The case of SO(2M) instantons is easily obtained by considering an Oq

plane. After a T-duality, we obtain a configuration with D(p + 1), D(q − 1) and
NS-branes. The world-volume theory can be read using the results in sections 2.1

and 2.2 and agrees with the one discussed in [19]. The representation of small

instantons sitting at space-time singularities as systems of D and NS branes was

discussed in [17] for the case of the Ak ALE spaces. The replacement of space-

time singularities with dual smooth backgrounds with NS-branes has a double pur-

pose. First, it allows to have a better control on parameters and moduli of the

theory. Second, it provides a very simple and intuitive classifications of the gauge

bundle compatible with the singularity; it naturally distinguishes between bundles

with or without vector structure and accounts for the breaking to a subgroup due

to the singularity. The analysis in [17] can be easily extended to the Dn ALE

space using the results in sections 2.1 and 2.2. U(M) instanton theories are as-

sociated to the configurations in figure 4 and SO(2M) instanton theories to the

configurations in figure 7; both the figures must be made compact by including

a second ON0 plane. Once again, the disposition of the NS-branes on the seg-

ment accounts for the allowed U(M) or SO(2M) bundles and for the breaking of

the gauge group to a subgroup. The extension of the construction in [17] to the

Dn series is one of the achievements of this paper, but we do not indulge more

on this here, since section 6 will be devoted to the subject. The small U(M) or

SO(2M) instanton at Dn singularities will also appear in the discussion about mirror

symmetry.

4. Mirror symmetry

The ON0 plane was used in [10] to explain three-dimensional mirror symmetry for

USp(k) gauge group coupled to a hypermultiplet in the second rank antisymmetric

tensor representation and n flavors in the fundamental representation. The candidate

mirror theory, associated with the Dn extended Dynkin diagram, was guessed in [29]

and demonstrated in [12], using M-theory. However, a description in terms of the

construction in [11] was still lacking and, with that, something in our knowledge of

the dictionary for translating general gauge theories in terms of brane models was

missing. The understanding of the strong coupling of O50 planes clearly closes this

gap [9, 10].
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Figure 10: Brane configuration for USp(2k) with an antisymmetric and n flavors (b) and

its mirror (a).

A Dn quiver three-dimensional N = 4 gauge theory can be realized as in fig-

ure 10a, as extensively discussed in section 3. It is simple, using the rules in [11],

to check that the mirror theory is indeed USp(2k) with an antisymmetric and n fla-

vors [10]. An S-duality transforms NS-branes into D5-branes and the ON0 plane into

a combination of an O5− plane and a physical D5-brane. As a result, an S-duality
transforms the system in figure 10a into a set of D3-branes stretched between two

O5− planes in the presence of n D5-branes, as depicted in figure 10b. This is a
fairly standard configuration which realizes the above mentioned USp(2k) theory.

For more details, the reader is referred to [10]. We will shortly show many examples

that should make clear this type of construction.

4.1 Examples

The examples that we explicitly discuss are:

• Mirror of USp(2k) with n flavors in the fundamental representation.
• Mirror of USp(2k1) × USp(2k2) with a hypermultiplet in the bi-fundamental
representation, n1 flavors in the fundamental representation of the first group

and n2 flavors in the fundamental representation of the second group.

• Mirror of U(2k) with one or two matter fields in the two-rank antisymmetric
tensor representation and n flavors in the fundamental representation.

Many other examples and generalizations are also outlined.

4.1.1 Mirror of USp(2k) with n flavors

The mirror theory was found in [30] using different methods; this serves as a check

to our method. Later we will study other examples for which there are no known

mirrors in the literature. This demonstrates the power of this approach.

The procedure for calculating the mirror theory follows standard steps using the

rules in [11]. To move to the Higgs branch of the original theory, one goes to the

origin of moduli space, namely to the region in which the D5 branes touch the D3

branes. Once they touch, the D3 branes can split. Figure 11b shows the maximal
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Figure 11: Brane realization for USp(2k) gauge theory with n flavors in the fundamental

representation. Figure (a) shows the coulomb branch of the theory. This figure is drawn

on the double cover of the projected space. The X symbol in the middle denotes an O5−

plane. The circles denote D5 branes. The vertical lines represent NS brane and its image,

the horizontal lines are D3 branes. Figure (b), drawn only on the physical plane, shows

the Higgs branch of this theory, or alternatively the Coulomb branch of the mirror. The

branes in the figure are the S-dual of the branes in figure (a), with the same notation for

the branes. The numbers below or next to a set of horizontal lines denote the number of

D3 branes in between two NS branes.

splitting for the D3 branes. The split- k

k

2k 2k 2k 2k-1 2 1

Figure 12: Dynkin diagram for USp(2k)

with n flavors. The numbers next to nodes de-

note the rank of the gauge factor in the gauge

group. Lines denote bi-fundamental hyper-

multiplets. A line ending on an X denotes a

hypermultiplet which is charged with respect

to the corresponding node it connects. Later

this will be called an external line.

ting is done taking into account that

S-configurations are not supersymmet-

ric. As a result the NS brane, when

located to the right of all branes has

D3 brane tails connecting it to 2k D5

branes. These tails do not represent

massless modes in the field theory. Us-

ing the observation that the position of

the NS brane is not a relevant param-

eter for the low energy field theory, we

move the NS brane to the left. When-

ever it crosses a D5 brane, a D3 brane

is removed. After passing 2k D5 branes

the NS brane is located as in figure 11b. Note that in figure 11b the NS-brane has

been denoted as a circle. This before denoted a D5 brane; we have indeed performed

an S-duality. At this point we learn that the gauge group in the segment where the

circle is located gets an extra hypermultiplet. The final gauge group can be encoded

into the quiver diagram depicted in figure 12. The resulting gauge group is

U(k)2 ×U(2k)n−2k−1 ×
2k−1∏
i=1

U(i), (4.1)

with matter as in the figure. Note that the first U(2k) factor has an additional

hypermultiplet which is only charged under this group.
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Figure 13: The brane configuration for USp(2k1) × USp(2k2) with n1 flavors in the
fundamental representation of the first group, n2 flavors in the fundamental representation

of the second group and a bi-fundamental is shown in figure (a) together with its mirror.

The quiver diagram corresponding to the mirror theory is shown in figure (b).

4.1.2 Mirror of USp(2k1)× USp(2k2)
The next example is the mirror of USp(2k1)×USp(2k2) with n1 flavors in the funda-
mental representation of the first group, n2 flavors in the fundamental representation

of the second group and a bi-fundamental. The brane configuration is obtained by

considering two O5− planes; it is depicted, with the S-dual configuration, in fig-
ure 13a. Notice that we now switched to different notations, which are more suitable

for giving a synthetic description of compact models; to avoid confusion we explic-

itly indicated the type of branes in the picture. The quiver diagram for the mirror

theory can be easily computed step-by-step using the rules in [11] and it is shown

in figure 13b. The particular case k1 = k2 is almost trivial to compute; the reader

simply needs to exchange NS- and D5-branes and ON0 and O50 planes. The case

k1 6= k2 requires also some attention to non-supersymmetric configurations and to
move some of the D5-branes; the needed steps are very similar to the ones discussed

in the previous example. The resulting gauge group is, (assuming k1 > k2 and

n1 + 2k2 > 2k1 + 1),

U(k1)
2 × U(2k2)n1−2k1+2k2−1 ×

[
2k1−1∏
i=2k2+1

U(i)

]
×U(2k2)n2−1 × U(k2)2 .
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Figure 14: Quiver diagrams of type D with some external lines. The mirror theories are

indicated below each graph.

Special attention is required for the cases n1 + 2k2 − 2k1 = 0, 1. Without loss of
generality, we consider from now on k1 = k2. For n1 = 0, 1, one should analyze the

global symmetry of the three dimensional theory, interpreted as the world volume

theory which lives on the NS brane. For generic n1, the NS brane supports the usual

(1,1) supersymmetric six dimensional U(1) multiplet. This is even true for the case

n1 = 1. For n1 = 0, we have enhanced symmetry which can be seen before making the

mirror operation. The NS brane has a modulus which measures the distance from the

O5− plane. When this distance goes to zero a W-boson, given by D-string stretching
between the NS brane and its image under the O5− plane, becomes massless. The
resulting group on the world volume of the NS brane is enhanced to USp(2). More

generally, n NS branes next to an O5− plane have an enhanced USp(2n) gauge theory
on their world volume. It should be noted that Poincaré invariance in six dimensions

no longer holds since the O5− plane breaks it explicitly. The world volume theory of
the NS brane is then a six dimensional theory with a point like singularity at three of

its coordinates. This breaks half of the supersymmetries in addition to the explicit

breaking of six dimensional Poincaré invariance.

The case n1 = 0 becomes even more special when we consider the configuration

after making the mirror transformation. The crucial point is that in the S-dual

picture the orientifold plane and a D5-brane combine into an ON0 plane. For n1 = 0,

the NS-brane, which in the original configuration lives between the orientifold and

the D5-brane whose fate is to combine with it, becomes, after S-duality, a D5-brane

that is bound to ON0. We already discussed this kind of configurations in section

2.1. The enhanced symmetry on the world volume theory of the D5 brane remains,

as before the mirror transformation, a USp(2) gauge theory.

Combining this with the symmetry on the world volume of the D5-branes, we

get that the global symmetry of the problem for n1 = 0 is USp(2) × SO(2n2). For
n1 6= 0 the global symmetry is U(1) × SO(2n1) × SO(2n2). The knowledge of the
global symmetry helps in deriving the quiver diagram corresponding to the mirror

theories. The diagrams for n1 = 0, 1 are drawn in figure 14a and 14b.
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4.1.3 SU(Nc) with antisymmetric matter and Nf flavors.

We have seen that there are examples with no external lines, corresponding to fig-

ure 13, and with two external lines (figure 14). The natural question to ask is how to

get a quiver with only one external line. The naive answer will be to get half of the

case in figure 14b. Indeed one needs to put a stuck NS brane on the O5 plane. This

leads to a quiver with one external line as required. What is the field theory of this

configuration of branes? Well, the answer is fairly standard. A stuck NS-brane gives

a hypermultiplet in an anti-symmetric tensor representation. On the other hand, the

gauge theory on the D3 brane still remains a USp gauge theory since it is projected

on the other side of the interval. So we get a theory with the same matter content

as for the case with no external lines as in figure 13. It is a known phenomenon

that the presence of a single NS brane does not change the matter content but may

make one of the parameters in the theory manifest as a deformation of the brane

configuration.

The brane configurations for SU(2k) field theories with antisymmetric matter

are given in figure 15a. The steps for computing the mirror theories closely par-

allel those considered in the previous examples. The computation in the compact

case is almost trivial; in the non-compact case, one needs to pay attention to non-

O5

NS

D5

2k

n

O5

NS

D5

2k

n -

NS

U(2k) with one anti

and n flavors

        

                                                                                                                              

NS

U

U(2k)  with two anti

and n flavors

2k

k

k

2k

k

k

... ... ...
2k 2k-1 1

n-2k-1

(a)

(b)

Figure 15: Figure (a): brane realization for SU(Nc) gauge theory with one or two flavors

in the antisymmetric representation and Nf flavors in the fundamental representation.

Figure (b): the quiver diagrams for the mirror theories.
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supersymmetric configurations and move branes around, closely paralleling what is

done in section 4.1.1. The results for the mirror theories can be conveniently en-

coded in the quiver diagrams shown in figure 15b. There is no enhanced symmetry

associated to the stuck NS branes.

All the considered compact models are associated to a Dn extended Dynkin di-

agram, decorated with one or two external lines. A convenient classification of these

kind of theories is given by looking at the global symmetry; we discussed examples

with global symmetry that is a subgroup of USp(2)× SO(2n). The maximally sym-
metric case is the one in figure 14a. In the original theories (and with this we mean

the theories realized as configurations of branes with orientifold planes) the SO(2n)

subgroup symmetry is manifestly realized as the symmetry that rotates the flavors

transforming in the fundamental representations of the gauge groups; in general, this

symmetry is reduced to SO(2n1) × SO(2n2). The USp(2) symmetry instead is not
manifest classically, as standard in mirror symmetry [31]; it makes its appearance

as an IR symmetry, and, in general, is reduced to U(1). Alternatively, if one turns

on a magnetic gauge coupling, the symmetry is present only at infinite magnetic

gauge coupling. In the mirror theories instead the SO(2n) subgroup symmetry is not

manifest classically, while the USp(2) symmetry (or, generically, its U(1) subgroup)

rotates the flavors corresponding to external lines. These symmetries can be also

read from the brane configurations as the symmetries on the world-volume of NS-

and D5-branes. All these symmetries are pictorially manifest in the quiver diagram

of the mirror theory; SO(2n) is associated with the Dn Dynkin-diagram form of the

graphs and USp(2) rotates the external lines. The number and the position of the

external lines also accounts for the reduction of this symmetry group to a generic

U(1)× SO(2n1)× SO(n2) subgroup.
A natural question is: what is the mirror of the theory corresponding to a Dn

quiver diagram with up to k external lines arbitrarily distributed among the nodes?

The answer is not difficult to find using the results in the previous sections: we need

to consider the case with more NS-branes and make a diagrammatic computation

with the rules we discussed. The result will be presented in section 4.3. But, first,

let us make some general remarks and try to make contact with different approaches.

4.2 Discussion and relation to other approaches

The step-by-step rules for computing mirror pairs, which we discussed in the previous

sections, can be applied to a large variety of theories. In this section, we discuss few

general issues about our results and consider examples that have a T-dual description

and allow to make contact with different approaches.

All the previous pairs of mirror theories pass the simplest consistency check: the

dimension of the Coulomb branch of the theory is equal to the dimension of the

Higgs branch of its mirror, and vice versa. The number of masses and FI terms

is also consistent with the mirror symmetry expectations, except that in the case
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of the theories depicted in figure 14. The USp(2k)2 theory for n1 = 0, 1 indeed

has a missing FI term. A similar phenomenon was encountered in [12] and also

in [10], in the analysis of D2 and D3 quiver diagrams. A possible resolution of this

paradox is that the USp(2k)2 theory has a hidden FI parameter which is not visible

in the classical Lagrangian and appears only when the theory flows in the IR to an

interacting superconformal fixed point.

The reader may have noticed that the theories USp(2k)2 and U(2k) with anti-

symmetric tensors can be interpreted as the world-volume theory of SO(2n) small

instantons sitting at a Z2 singularity [24, 25, 17]. The representation of these small

instanton theories as systems of NS-, Dp- and Dq-branes was extensively discussed

in [17, 18]; a T-duality along x6 transforms the NS-branes into a space-time sin-

gularity, and the configuration of D-branes into a system of D2- and D6-branes,

which have a natural interpretation as small instanton theories. In this approach the

orientifold-invariant dispositions of two NS-branes on a segment accounts for all the

possible breaking of SO(2n) to subgroups and the type of allowed bundles (with or

without vector structure) [17]. Using the discussion in section 3, it is not difficult to

see that also the mirror theories have the natural interpretation, in the spirit of [17],

as the world-volume theory of SU(2) small instantons sitting at a Dn singularity.

Once again, modulo minor differences due to the presence of ON0, the disposition

of the NS-branes on the segment accounts for the allowed global symmetry bundle.

We see that the gauge group of the instanton theory and the group associated to the

singularity are exchanged by mirror symmetry. This is not a fortuitous coincidence.

In [12] mirror symmetry was studied by realizing the gauge theories with con-

figurations of D2- and D6-branes, and lifting them to systems of membranes sitting

at orbifold singularities in M theory. This approach can be useful for studying the

N=4 three-dimensional superconformal fixed points using the tools of the AdS/CFT

correspondence [32, 33]. The compact examples considered in the previous sections

can be reduced to configurations of D2- and D6-branes by performing a T-duality

along x6 and using the results of section 3. Consider only the case in which there

is the same number of D3-branes everywhere; more general configurations are as-

sociated with fractional branes sitting at orbifold singularities. We obtain systems

of D2-branes sitting at a ΓG singularity in the presence of D6-branes realizing a

G′ global symmetry, where G and G′ are SU(n) or SO(2n); these theories are the
world-volume theories of small G′ instantons sitting at a G singularity. Mirror sym-
metry correspond to the exchange of G with G′. The system can be lifted to a set of
membranes in M-theory with a G×G′ singularity; mirror symmetry is then reduced
to the geometrical symmetry that exchanges G with G′. The argument is general
and simple; unfortunately, the three-dimensional theory is not completely specified

until we specify the form of the G′ bundle on the ΓG ALE space, since in general
the global symmetries G and G′ are broken to subgroups by the choice of a bundle.
The case analyzed in the previous sections corresponds to the singularity Z2 × Dn.
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The mutual disposition of NS- and D5-branes in both the original and the mirror

theory determines a particular bundle, with a given global symmetry; in the case

of the D-type quiver diagram, the disposition of the external lines gives a pictorial

description of this bundle. The Type IIB description is useful for describing the most

general bundle, and, more than that, provides a step-by-step method for comput-

ing the bundle for the mirror theory once the original one is given. Moreover, the

type IIB description can be easily used also for configurations containing fractional

branes.

Finally, we notice that interesting effects are associated with the singular cases

of D2 and D3 singularities. In this paper we do not discuss these cases; however,

they are easily realized using the methods discussed in this Section. The case of

a D2 singularity is particularly interesting since it provides examples of theories

that are dual (in the sense that they flow to the same IR fixed point) at specific

points in moduli space [34, 35]. The reason is that a D2 singularity splits into

two A1 singularities. The M-theory lift of two D6-branes near an orientifold is the

space (R3 × S1)/Z2. The two fixed points of Z2 correspond, in general, to different
superconformal fixed points and the three-dimensional gauge theory may flow to one

or the other according to the vacuum expectation value of the scalar parameterizing

the position in S1. It is not immediately obvious how these effects can be seen in

the Type IIB description we are using in this paper.

4.3 The case with Zm ×Dn global symmetry
In this section we consider examples with global symmetry of type Zm × Dn. In
the original configurations of branes constructed with orientifolds, these models are

obtained by adding more NS-branes to the examples considered in section 4.1; in

terms of the mirror theories, they are obtained by adding external lines to the Dn
quiver diagram.

Consider only compact configurations. Non compact ones, which end with a

NS-brane, can be extended to compact one by adding a second orientifold plane.

As it should be clear from the examples in section 4.1, the mirror transform of a

non-compact model can be obtained by the mirror transform of the corresponding

compact one, by substituting the right part of the quiver diagram with a standard

pattern of nodes associated to groups with decreasing rank, as depicted in figure 12.

We consider only, for simplicity, configurations with the same number of D3-

branes everywhere. These are the kind of configurations that have a known T-

dual description. The reader has all the elements for analyzing more complicated

examples.

Consider figure 16a. m NS-branes can be put on the segment in an orientifold-

invariant fashion in several ways [17, 18]. Ifm is odd, there must be a stuck NS-brane;

each of the [m/2] physical branes living not at the boundary of the segment has an

image under the orientifold projection. If m is even, we can put m/2 physical branes
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Figure 16: In figure (a) there are a total of
∑
i pi = n D5-branes and a total of m

NS branes (carrying m/2 magnetic NS charge). The NS-branes are put on the segment

in an orientifold-invariant way. Stuck NS-branes on the orientifolds can be present or

not; this has been denoted using unfilled circles. The theory is USp(k) × U(k)m/2−1 ×
USp(k) with bi-fundamentals and n fundamentals distributed among the gauge factors, or

analogous theories in which one or both the USp(k) factors are replaced by U(k) with an

antisymmetric tensor, if there are one or two stuck NS-branes, respectively. The mirror

theory is depicted in figure (b); the Dn quiver diagram has a maximum number m of

external lines.

on the segment far from the boundary (case with vector structure) or we can put two

stuck and m/2−1 physical NS-branes (case without vector structure). The theory is
USp(k)×U(k)m/2−1×USp(k) with bi-fundamentals and n fundamentals distributed
among the gauge factors, or analogous theories in which one or both the USp(k)

factors are replaced by U(k) with an antisymmetric tensor; the replacement occurs

if there are one or two stuck NS-branes, respectively. These theories represent small

SO(2n) instantons sitting at a Zm singularity [24, 25, 17].

The mirror is a Dn quiver theory with an arbitrary distribution of a maximum

of m fundamentals among the nodes. The exact mirror can be easily derived using

the rules discussed in section 4.1.

These pairs of mirror theories are associated to M-theory singularities of the form

Zm × Dn. These theories have been also considered in [12] in the simplified case in
which k = 1 and the maximal global symmetry is not broken.9 The discussion in this

section provides a general method for studying generic bundles and for determining

the particular theory that corresponds to a generic diagram with a given distribution

of external lines among the nodes.

The discrepancy between the number of parameters of the theories and of their

mirrors mentioned in section 4.2 is even increased for k > 2. Some FI terms are

missing; this was also noticed in [12].

9The proposal in [12], when compared to the one in this section, has an interchange between

theories with vector structure and theories without. This happened since, in those days, there was

no explicit method for computing the mirror theories in the case of Dn global symmetries, and the

result was guessed on the basis of the M-theory intuition, the symmetry of the problem and the

counting of parameters. In this paper we presented a method for explicitly computing the mirror

theory.
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4.4 The Dn ×Dk global symmetry and self-dual models
We finish our discussion about mirror symmetry by considering the class of theories

realized using both ON0 and orientifolds planes. Consider, for example, figure 7.

The three dimensional gauge theories that can be realized using these configurations

are encoded in the quiver diagrams shown in the figure. We may ask: what is the

strong coupling limit of these configurations? Luckily enough, the answer is very

simple; since ON0 and O50 are exchanged by S-duality, the mirror configuration has

a form similar to the original one. It is encoded in a quiver diagram of the same

form, with different numbers wi and different dispositions of external lines. Consider

only, for simplicity, compact models and configurations with the same number of

D3-branes everywhere.

The maximally allowed global symmetry is SO(2n)× SO(2k), where k =∑wi.
The disposition of external lines breaks this global symmetry to a subgroup SO(w1)×
SO(w2)× USp(w3)× USp(w4)× · · ·. This is the world-volume theory of an SO(2k)
small instanton sitting at a Dn singularity. The corresponding M-theory singularity

is Dn × Dk. Using the explicit S-duality, with the rules explained in the previous
sections, or using the arguments in [12], we conclude that the mirror theory has the

form in figure 17, but with k and n interchanged. The precise number and disposition

of external lines can be determined by an explicit (and easy) computation.

It is natural to consider self-dual examples. If k = n, choosing suitable values

for wi, we easily obtain self-dual theories. In other words, we can consider these

configurations as obtained by the orbifold generated by {(−1)FLR6789,ΩR3456}; this
is the meaning of having both ON0 and O50, as discussed in section 2.2. Under an

S-duality, Ω and (−1)FL are interchanged. The orbifold is therefore unaffected by an
S-duality combined with the interchange of (345) with (789) (this are the rules of the

game [11]!); configurations in which the total D5-charge and the total NS-charge, as

well as their disposition in space-time, are the same (this certainly implies k = n)

are therefore expected to be self-dual.

USp(2k)SO(2k)

USp(k)

USp(k)

2

w3 w4

w

1w

....

Figure 17: A Dn quiver diagram with k =
∑
wi external lines. It corresponds to a global

symmetry associated to Dn × Dk. The mirror theory has the same form, with k and n
interchanged and with a different partition of n =

∑
w̃i external lines.
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Figure 18: A generic Brane Box Model with ON0 planes. The matter fields in the

fundamental or anti-fundamental representation, which are represented as oriented arrows,

are indicated for two particular boxes. The boxes near ON0 are split into two U(N) gauge

factors. The matter fields for U(Ni,1) are indicated as standard arrows, while those for

U(Ni,0) are indicated as dashed arrows. If Ni,j = 2N for j 6= 0, 1 and Ni,0 = Ni,1 = N ,
there is no bending and the one-loop beta function is zero. Under the same condition,

if the model is compact in both the horizontal and vertical direction, the theory is finite

and related under T-duality to D3-branes near an orbifold of C3 generated by Zk and Dn,

where k is the number of NS′-branes and n− 2 is the number of NS-branes.

4.5 Open problems

There are open questions which are not solved by the current methods we use. There

are two basic unsolved questions.

The mirror of SO gauge theories and their generalizations. We refer to config-

urations which involve O3+ or O5+ planes. It is not clear at the moment how to

understand the mirror of these planes and this is the source for the confusion.

There are two basic constructions of USp gauge theories using D3 branes, D5

branes and NS branes. One construction uses an O3+ plane and the other one an

O5− plane. In both cases the resulting gauge group is USp. Correspondingly, the
Type IIB S-dual of both configurations is expected to give the known dual. Currently

only one configuration gives a satisfactory answer. The one with an O5− plane. The
configuration with O3+ is not understood well enough to produce the right mirror.

5. Four dimensional theories

5.1 Brane box models

It is almost straightforward to introduce an ON0 plane in the Brane Box Models

studied in [13]. Consider figure 18.10 There are D5-branes extending in (012346),

10An interesting developement which generalizes Brane Box Models is given in [36] and is termed

Brane Diamonds. It would interesting to generalize the contents of this section along these lines.
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NS-branes and ON0 planes extending in (012345) and NS′-branes extending in
(012367). The model has N = 1 supersymmetry and is generically chiral. The

generic box Ni,j gives rise to the gauge group U(Ni,j). The open strings connect-

ing neighboring boxes give rise to chiral matter fields in the fundamental (or anti-

fundamental) representation of the neighboring gauge groups. These matter fields

and their chirality are depicted using oriented arrows. Only arrows directed and

oriented East, North and South-West exist [13]. All the existing matter fields are

indicated for the box Ni,j. Every time three arrows close a triangle there is a cu-

bic superpotential [13]. The only novelty regards the boxes near ON0, for exam-

ple Ni,0 and Ni,1. As we can expect from section 2, there is a splitting into two

gauge factors U(Ni,0) and U(Ni,1). The action of (−1)FL on the Chan-Paton fac-
tors is a diagonal matrix with entries +1 for the indices associated to Ni,0 and

−1 for those associated to Ni,1. As a consequence, the open strings connecting,
say, Ni,0 with Ni±1,1 are projected out. The resulting spectrum is indicated in fig-
ure 18 for the box Ni,1 and Ni,0; the standard arrows represent the matter fields

for the gauge group U(Ni,1), while the dashed arrows represent the matter fields

for U(Ni,0).

The numbers Ni,j must be chosen in order to have an anomaly-free model.

Anomalies on the world-volume of the branes should be related to the violation

of the equations of motion for some space-time field. Due to the complexity of

the model and the non-trivial bending of the NS and NS′-branes, the precise re-
lation between anomalies and charge conservation of the string background is not

known. Attempts to find such a relation appeared in the literature [37, 38, 39,

40] without a conclusive result. In principle, it may happen that, even if the

number Nij are such that they cancel anomalies, the branes background is in-

consistent. However, the consistency of a large class of Brane Box Models can

be explicitly checked by T dualizing them to other consistent systems of branes

sitting at orbifold singularities [15, 39]. The class of consistent models can be

enlarged by considering models which are separately well defined and sewing

them [37, 38, 39, 40].

There is an obvious example that is well defined. If we take the same number

of D5-branes in each box there is no bending for the NS-branes and the space-time

equations of motion are satisfied. This corresponds to Ni,j = 2N for j 6= 0, 1 and
Ni,0 = Ni,1 = N . The condition of no bending is equivalent to vanishing of the

total charge of the D5-branes ending on a given NS and NS′-branes. The analogous
condition for the ON0 plane forces us to take Ni,0 = Ni,1. Since the bending is

associated to the running of the coupling constant [41], this model has zero one-loop

beta function [14]. Every gauge group U(n) , including those realized near ON0, has

indeed 3n fields in the fundamental and 3n in the anti-fundamental representation.

The quantum field theory is conjectured to be finite using the same argument of

non-bending as in [14].
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5.2 Relation to branes at orbifold singularities and finite models

We can easily construct cylindrical (6 direction compact) and elliptical (6 and 4

directions compact) models. These kind of models can be related by T-duality to

systems of branes at orbifold singularities [13, 14, 15]. Consider n − 2 NS-branes
and k NS′-branes. According to the discussion in section 3, we expect that the
NS′-branes are replaced by a T-duality along the 4 direction with an A-type sin-
gularity and the NS-branes and the ON0 planes are replaced by a T-duality along

the 6 direction with a D-type singularity. The cylindrical models are the T dual of

systems of D4 and NS-branes at a Dn orbifold singularity extended in the directions

6, 7, 8, 9 [13, 42]. The elliptical models are the T dual of systems of D3-branes sitting

at a C3 orbifold; the actual orbifold group is the smallest discrete group acting on

C3 that contains a Zk subgroup acting on the coordinates 4, 5, 8, 9 and a Dn sub-

group acting on the coordinates 6, 7, 8, 9. To preserve N = 1 supersymmetry, this

discrete group must be a subgroup of SU(3) [43]. It would be quite interesting to

further analyze the relation between the Brane Box Models and the construction

in [43].

When Ni,j = 2N for j 6= 0, 1, n, n − 1 and Ni,0 = Ni,1 = Ni,n−1 = Ni,n = N ,
the D3-branes transforms in the regular representation of the orbifold group [19].

However, in general, the numbers Ni,j do not need to be all equal. We may project

the D3-branes with a different representation. This would result in having frac-

tional D3-branes. The anomaly cancellation becomes now equivalent to the tadpole

cancellation [39].

We may obtain more complicated orbifold singularities by compactifying in the 6

direction allowing for a shift along the 4 direction [15]. The shift must be compatible

with the Z2 projection induced by ON
0. It appears that the Brane Box Models

give a simple construction of the gauge theory and the superpotential of some of the

theory associated with discrete groups of SU(3). It would be interesting to analyze

the dictionary for translating these kind of models into an orbifold projection, along

the lines of [15, 43].

It is believed that the properties of finiteness improve if the models are compact

[14, 15]. If we take Ni,j = 2N for j 6= 0, 1, n, n− 1 and Ni,0 = Ni,1 = Ni,n−1 = Ni,n =
N and compactify along the 6 direction, allowing for some shift, we obtain a finite

and conformal N = 1 model. As we said, this is mapped by T-duality to a set of

D3-branes sitting at an orbifold singularity. The finiteness of this model then follows

from the AdS/CFT correspondence using the arguments in [44].

6. Six-dimensional theories

In this section we discuss examples of six-dimensional gauge theories.

There are several consistent string backgrounds that give rise to anomaly-free

six-dimensional theories [45, 46, 47, 3, 26, 24, 25]. In [17] we described a real-
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ization with D6-, D8- and NS-branes. The introduction of an ON0 plane in the

original construction in [16, 17, 18] allows to realize more complicated examples.

This section completes the results in [17]. It also shows how to construct (in the

spirit of [11]) the gauge theories associated to small SO(32) instantons sitting at Dn
singularities.

In section 2, we discuss in detail what is the world-volume theory of Dp-branes

ending on NS-branes and ON0 planes. In the case of D6-branes, we must include

the fields living on NS-branes or ON0 planes in the six-dimensional theory and we

must also pay attention to the anomaly cancellation conditions. As a general rule, an

anomaly in field theory translates in the brane set-up to the non-conservation of some

charge for bulk fields. In this particular case, the relevant charges are associated to

the fields living on the NS-branes; for a remarkable return, the same fields provide

the tensor multiplets that are necessary to completely cancel the anomalies in six-

dimensions.

The general discussion about anomaly cancellation in the brane set-up can be

found in [48, 17]. The general rule will be clear after considering a specific example.

The six-dimensional theory corresponding to figure 3b is still U(n1) × U(n2) with-
out bi-fundamentals, but now with two tensor multiplets and two hyper-multiplets

coming from the NS-brane and the ON0 plane. Naively, one would think that only

one linear combination of these multiplets is relevant for the field theory, arguing

that the sum of the two multiplets decouples while the difference appears as a gauge

coupling and FI parameter, respectively, for both gauge groups. However, this is

not true. The two tensor multiplets and two hypermultiplets couple both to the

gauge theory. The sum of the multiplets couples to, say, the gauge group on the

D6 branes which have positive charged with respect to the ON0 multiplet while the

difference of the multiplets couples to the gauge group associated with the nega-

tively charged D6 branes. The theory in figure 3 is generally anomalous. A U(N)

theory with Nf flavors indeed is anomalous unless Nf = 2N and the theory is cou-

pled to a tensor multiplet, the scalar of which plays the role of a gauge coupling.

It is easy to see what is wrong with charge conservation for bulk fields. Since the

world-volume of the D6-brane is bigger than that of a NS-brane, the RR-charge

of the D6-brane can not be absorbed by the NS-brane as it happens for all the

Dp-branes ending on a NS-brane for p ≤ 5. Therefore the D6 charge must be
canceled locally at the position of the NS-brane. In this case, there are n1 + n2
D6-branes on the left of the NS-brane and zero on the right and the charge is not

conserved.11

11Notice that, while a Dp-brane may have positive or negative charge under the fields living on

ON0 [9], the charge under the NS-brane fields is always positive for branes ending, say, on the left.

We are not considering anti Dp-branes in our picture; they would break supersymmetry. Actually,

one can interpret Sen’s assignment of positive and negative charges as being ending ‘to the left’ or

‘to the right’ of the ON0 plane, respectively as in figure 2.
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Figure 19: The standard figure for a six-dimensional theory. D6-branes are depicted

as horizontal lines ending on points corresponding to NS-branes (filled circles) and ON0

planes (empty circles). D8-branes are depicted as vertical lines.

There are two ways of removing the obstacle and constructing an anomaly-

free theory. They are depicted in figure 19. Notations are changed with respect

to figure 3. Since the D6-worldvolume is bigger than the NS one, it is better to

represent D6-branes as lines ending on points which represent NS-branes. In fig-

ure 19a, we added n1 + n2 semi-infinite D6-branes to the right of the NS-brane in

order to preserve the charge. The two kinds of D6-branes ending on ON0 have op-

posite charge with respect to the fields living on it and we must cancel the ON0

tadpole by taking n1 = n2. The resulting theory is U(n) × U(n) with 2n fla-
vors for each group, two tensor multiplets and two hypermultiplets. The tensor

multiplets are necessary to cancel the non-Abelian anomalies [49] while the hyper-

multiplets, acting as dynamical FI terms, cancel the Abelian anomalies, making

the U(1) factors massive [19, 22]. In figure 19b, we also added D8-branes, de-

picted as vertical lines. They induce a cosmological constant, which is constant

in space-time and jumps by one unit when one crosses a D8-brane [50]. A non-zero

cosmological constant m induces an effective RR seven form charge at the posi-

tion of a NS-brane. This changes the charge conservation condition in the follow-

ing way: the D6 charge on the left of a NS-brane minus the D6 charge on the

right must equal the value of the cosmological constant at the position of the NS-

brane:12 nl − nr = m [48, 17]. The cosmological constant is zero near ON0 im-
plying again n1 = n2. It is instead equal to m near the NS-brane implying that

we must add 2n − m semi-infinite D6-branes to its right. The resulting theory is
again U(n) × U(n) with 2n flavors for both groups, two tensor multiplets and two
hypermultiplets.

Equipped with the rules discussed in section 2, we can construct more general

examples. Adding NS-branes to the initial ON0 plane, without including orientifolds,

we obtain theories that are products of U(N) gauge groups. This kind of examples

are exhaustively discussed in [17].

12We are using conventions in which a physical D6-brane counts +1 and a physical D8-brane

induces a cosmological constant of magnitude +1.
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Introducing an O8 plane, we can construct many more examples, containing, in

particular, the configurations T dual to SO(w) small instantons on Dn ALE spaces.

Compact model with two ON0 planes are associated to small instanton theories,

as discussed in section 3. In the six-dimensional case, we must pay attention to the

anomaly cancellation, which usually constrains the world-volume theory. Theories

of small U(N) or SO(2N) instantons living at a Dn singularity are associated with

a Dn extended Dynkin diagrams as in figure 9 with the addition of external lines

as in figure 4, for U(N), or figure 7, for SO(2N). The n tensors and hypermulti-

plets required to cancel both non-Abelian and Abelian anomalies are automatically

provided by the n− 2 NS-branes and the two ON0 planes.
The introduction of an O8− plane affects our picture much more than in the

original examples in [17]. The general strategy in [17] was to replace every space-

time singularity with a dual background where the singularity was replaced by branes.

This in general allows to have a better control on the parameters and moduli of the

theory. In the case of Dn singularities, we will have a mixed picture, with both

NS-branes and the perturbative orbifold projection associated to ON0 plane.

The generic quiver theory in the presence of O8− plane was already discussed,
for arbitrary dimension, in section 2.2 (figure 7). The form of the world-volume the-

ory does not depend on the dimension. What is peculiar to six-dimensions is that

the anomaly cancellation uniquely determines the world-volume theory. Moreover

we need to include fields from the NS-branes and from the twisted sectors in the

theory; they are crucial for canceling the anomalies. Recall from section 2.2, that

there are two consistent configurations of D-branes living at the intersection of an

O8− and an ON0 plane. The first one has an O6− plane, no splitting of branes,
U -type gauge groups and an hypermultiplet from the twisted states. The second

one has an O6+ plane, a splitting with USp-type gauge groups and a tensor mul-

tiplet from the twisted states. In six-dimensions, it is crucial to keep track of the

twisted sectors, since they contribute to the theory and are important in canceling

the anomalies.

The actual gauge groups (the numbers k, r, t, s, . . . in figure 7) can be deter-

mined by the RR-charge conservation condition, which is equivalent to the anomaly

cancellation [17]. We recall that we are using notations where O8− contributes −8
to the cosmological constant and O6± has RR-charge ±4. The only new ingre-
dient, not present in [17], is the condition that must hold near ON0. The total

charge for the ON0 twisted tensor field must be canceled, since there is no room

for the D6-brane RR-charge to escape. This fixes the splitting (the numbers k

and r) near ON0. The rule is that k − r = w1. It is easily checked that it is
equivalent to the anomaly cancellation condition; we give an explicit example be-

low. This result would surely follow from a careful analysis in terms of bound-

ary states, along the lines of [9]. We prefer to give a heuristic argument in the

spirit of the S-dual picture of figure 2. It is convenient to represent the ON0
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plane as splitted into a fixed plane and a virtual NS-brane which supports the

twisted fields (see figure 20). The w1 Dq-branes now live on the left of the vir-

tual NS-brane. We assume that the virtual NS-brane behaves at all effects as a

real NS-brane. This means that the orientifold plane O6 change sign in crossing it.

More important, the anomaly cancellation condition for the ON0 plane is mapped

to the standard condition for a NS-brane. The cosmological constant at the vir-

tual NS-brane is −8 + w1, where −8 is the contribution of O8−. The condition is
(2k − 4)− (r + k + 4) = −8 + w1, which is the same as k − r = w1; the ±4 are the
contribution of the O6 plane on the right and on the left of the virtual NS-brane,

respectively.

It is quite easy to construct compact

NS

-4D6 charge    -4

��
��
��
��
��

��
��
��
��
��

Dq

+4

1w 2w

k

r

Figure 20: The anomaly cancellation rule

near ON0. ON0 is represented as the pair

containing a fixed plane and a virtual NS-

brane.

models by putting another O8− plane in
the six direction and taking

∑
wi = 16.

This will describe the T dual version of

SO(32) small instantons sitting at Dn
singularities [24, 25, 51]. The theory

will change according to where we add

the O8 plane. If n is even,13 O8 will in-

tersect an O6+; therefore we will need

the prescription in figure 5b. If n is

odd, O8 will intersect an O6− plane and
we will need figure 5a. The resulting

theory is the same as the one discussed

in [24, 25, 51]. In figure 21 we depicted

the theory associated with small instan-

tons for D4 and D5. The general theory

for arbitrary n should be obvious from these examples; it is associated to an extended

(affine) Dynkin diagram of D-type for n even, and to a standard (without the extra

node) Dynkin diagram of D-type for n odd.14 Charge conservation fixes the gauge

groups in such a way to cancel all the anomalies. As an example of the application

of the previous rules, we consider the D4 example in figure 21.

We put w1 = 16 and all the other wi = 0. There is a total of four conditions.

1. Near the first ON0; the previously discussed condition is 2k − 2r = w1 = 16.
2. Near the first NS-brane. O6 contributes a +4 RR-charge on the left and −4
on the right. The cosmological constant is −8 + w1 = 8, where −8 is the
contribution of O8−. The condition is (2k + 2r + 4)− (2t− 4) = 8.

13We know from section 1 that for the description of a Dn singularity we need n− 2 NS-branes
and two ON0 planes.
14To be precise, if we consider the geometrical construction of these theories in [24, 25], we realize

that, for n odd, it is not the extended node of the diagram that is missing, but the last two nodes

(the n− 1th and nth) are identified.
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USp(2k)

USp(2k-16) USp(2k-16)

SO(4k-16)

USp(2k)

USp(2k)

SO(4k-16)

O6 O6 O6O6+ +- -

16 16
USp(2k-16)

USp(4k-32)

U(2k-16)

2k

2r

2t
2s

2z

Figure 21: The SO(32) small instanton theory for D4 and D5 singularities. For simplicity,

we considered an SO(32) unbroken group, obtained by putting all the 16 D8-branes at

the same point, near ON0. The case for general breaking of the global symmetry group

follows by partitioning the D8-branes in between the NS-branes. The charge conservation

rules described in the text uniquely fix the world-volume theory. The generalization to an

arbitrary Dk is obvious.

3. Near the second NS-brane: (2t− 4)− (2s+ 2z + 4) = 8.

4. Near the last ON0, where there are no D8-branes: 2s− 2z = 0.

This set of four equations determines the world-volume content indicated in

figure 21. The theory is anomaly free.15 For n even, the theory contains n tensor

multiplets (n−2 NS-branes and two ON0 planes intersecting O6+ planes); for n odd,
n − 1 tensor multiplets and one FI hypermultiplet (ON0 intersecting O6−). This is
exactly what is required to cancel the Abelian and non-Abelian anomalies.

6.1 Generalizations

We can easily construct generalizations of the small instanton theories and build new

models. A first example is easily obtained by constructing theories in which the ON0

plane always intersects an O6− plane. There is no splitting of branes near ON0 and
the quiver diagram is a simple line of nodes. This configuration is allowed only if n

15Recall that a USp(Nc) theory is anomaly free if Nf = Nc + 8, while an SO(Nc) theory is

anomaly free if Nf = Nc − 8. In both cases, a tensor multiplet is needed to completely cancel the
anomaly.
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is even. The world-volume theories are of the form,

U(k1)×USp(k2)× SO(k3)× · · ·
· · · ×USp(kn−2)×U(kn−1) , (6.1)

with bi-fundamentals or half bi-fundamentals for neighboring factors and fundamen-

tals for the various gauge groups. This model was already considered in [17]. The

numbers ki are easily determined using the rules found in the previous section. After

orientifold projection, the two ON0 planes provide the two FI hypermultiplet needed

for canceling the Abelian anomalies and the NS-branes provide the n−2 tensor mul-
tiplets needed for the non-Abelian anomalies. We can speculate that these theories

correspond to a geometrical SO bundle at a Dn singularity without vector structure,

which indeed exists only for n even. We did not find the explicit construction of

theories without vector structure for D-singularities in the literature, but it would

not be too difficult to construct them using the methods in [24, 25]. In figure 22 we

depicted the D4 example. The generalization to Dn is straightforward.

A second obvious generalization involves

O6 O6

U(k)

16

USp(2k-16) U(k-8)

- -

Figure 22: A small instanton with-

out vector structure sitting at a D4
singularity.

the introduction of an O8+ plane. It has charge

+8, therefore if we have both O8− and O8+

in a compact model there is no need for D8-

branes. The discussion about the properties of

O8−ON0 planes is invariant under the simul-
taneous change of sign of the charge of the O8

and O6 planes. This means that there are two

consistent configurations of D-branes living at

the intersection of an O8+ and an ON0 plane.

The first one has an O6+ plane, no splitting

of branes, U -type gauge groups and a hyper-

multiplet from the twisted states. The second

one has an O6− plane, a splitting with SO-type
gauge groups and a tensor multiplet from the

twisted states. In the case of a Dn singularity,

we obtain standard D-type Dynkin diagrams for n odd, and extended (affine) D-type

Dynkin diagrams for n even. This is the opposite of what we found when the two

O8 planes had both the same negative charge. The D4 and D5 cases are depicted in

figure 23.

We discussed several examples. They are complete in the sense that they cover

all the possible configurations which contain ON , O8 and O6 planes. By combining

in a different way the various players of this game, we can construct many other

compact and non-compact models. The rules we gave in the previous section for

determining the world-volume theory will always produce a consistent anomaly-free

six-dimensional theory with a non-trivial fixed point. We will not discuss the appli-
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O6-

USp(2k)

USp(2k)

U(2k+8)

SO(4k+16)

O8+
O8+-O8 -O8

O6+O6+ +O6

USp(2k)

USp(2k)

SO(4k+16)

SO(4k+16)

SO(4k+16)

USp(4k+16)

Figure 23: D4 and D5 theories constructed with the use of O8
+.

cations of what we said to all the rich aspects of the six-dimensional physics, since

the general philosophy of the brane construction for six dimensional theories was

already presented in [17].

Acknowledgments

A.H. would like to thank discussions with Jacques Distler and Bo Feng. A.H. would

also like to thank the Theoretical Physics Division in CERN and the Institute for

Advanced Study in Jerusalem for their kind hospitality while various stages of this

work were done. A.Z. would like to thank the Center for Theoretical Physics at

MIT for kind hospitality during the early stages of this work. The work of A.H. was

supported in part by the U.S. Department of Energy under contract #DE-FC02-

94ER40818.

References

[1] H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds,

Nucl. Phys. B 463 (1996) 55, [hep-th/9511164].

[2] J. Erlich, A. Hanany, and A. Naqvi, Marginal deformations from branes, J. High

Energy Phys. 03 (1999) 008, [hep-th/9902118].

[3] E. G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d mani-

folds, Phys. Rev. D 54 (1996) 1667, [hep-th/9601038].

[4] E. G. Gimon, On the M theory interpretation of orientifold planes, hep-th/9806226.

36

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB463%2C55
http://xxx.lanl.gov/abs/hep-th/9511164
http://jhep.sissa.it/stdsearch?paper=03%281999%29008
http://jhep.sissa.it/stdsearch?paper=03%281999%29008
http://xxx.lanl.gov/abs/hep-th/9902118
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1667
http://xxx.lanl.gov/abs/hep-th/9601038
http://xxx.lanl.gov/abs/hep-th/9806226


J
H
E
P
0
7
(
1
9
9
9
)
0
0
9

[5] E. Witten, Baryons and branes in anti-de Sitter space, J. High Energy Phys. 07 (1998)

006, [hep-th/9805112].

[6] A. M. Uranga, Towards mass deformed N = 4 SO(n) and Sp(k) gauge theories from

brane configurations, Nucl. Phys. B 526 (1998) 241, [hep-th/9803054].

[7] K. Hori, Consistency condition for five-brane in M theory on R5/Z2 orbifold, Nucl.

Phys. B 539 (1999) 35, [hep-th/9805141].

[8] A. Sen, Stable nonBPS states in string theory, J. High Energy Phys. 06 (1998) 007,

[hep-th/9803194].

[9] A. Sen, Stable non-BPS bound states of BPS D-branes, J. High Energy Phys. 08 (1998)

010, [hep-th/9805019].

[10] A. Kapustin, Dn quivers from branes, J. High Energy Phys. 12 (1998) 015,

[hep-th/9806238].

[11] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-

dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230].

[12] M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional

gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201].

[13] A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge the-

ories using branes, J. High Energy Phys. 05 (1998) 001 [hep-th/9801134].

[14] A. Hanany, M. J. Strassler, and A. M. Uranga, Finite theories and marginal operators

on the brane, J. High Energy Phys. 06 (1998) 011 [hep-th/9803086].

[15] A. Hanany and A. M. Uranga, Brane boxes and branes on singularities, J. High Energy

Phys. 05 (1998) 013 [hep-th/9805139].

[16] I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409

(1997) 109 [hep-th/9705022].

[17] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories,

Nucl. Phys. B 529 (1998) 180 [hep-th/9712145].

[18] I. Brunner and A. Karch, Branes at orbifolds versus Hanany-Witten in six- dimen-

sions, J. High Energy Phys. 03 (1998) 003 [hep-th/9712143].

[19] M. R. Douglas and G. Moore, D-branes, quivers, and ALE instantons,

hep-th/9603167.

[20] C. V. Johnson and R. C. Myers, Aspects of type IIB theory on ALE spaces, Phys. Rev.

D 55 (1997) 6382 [hep-th/9610140].

[21] A. Sen, Duality and orbifolds, Nucl. Phys. B 474 (1996) 361 [hep-th/9604070].

37

http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://xxx.lanl.gov/abs/hep-th/9805112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB526%2C241
http://xxx.lanl.gov/abs/hep-th/9803054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB539%2C35
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB539%2C35
http://xxx.lanl.gov/abs/hep-th/9805141
http://jhep.sissa.it/stdsearch?paper=06%281998%29007
http://xxx.lanl.gov/abs/hep-th/9803194
http://jhep.sissa.it/stdsearch?paper=08%281998%29010
http://jhep.sissa.it/stdsearch?paper=08%281998%29010
http://xxx.lanl.gov/abs/hep-th/9805019
http://jhep.sissa.it/stdsearch?paper=12%281998%29015
http://xxx.lanl.gov/abs/hep-th/9806238
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB492%2C152
http://xxx.lanl.gov/abs/hep-th/9611230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C107
http://xxx.lanl.gov/abs/hep-th/9611201
http://jhep.sissa.it/stdsearch?paper=05%281998%29001
http://xxx.lanl.gov/abs/hep-th/9801134
http://jhep.sissa.it/stdsearch?paper=06%281998%29011
http://xxx.lanl.gov/abs/hep-th/9803086
http://jhep.sissa.it/stdsearch?paper=05%281998%29013
http://jhep.sissa.it/stdsearch?paper=05%281998%29013
http://xxx.lanl.gov/abs/hep-th/9805139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C109
http://xxx.lanl.gov/abs/hep-th/9705022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB529%2C180
http://xxx.lanl.gov/abs/hep-th/9712145
http://jhep.sissa.it/stdsearch?paper=03%281998%29003
http://xxx.lanl.gov/abs/hep-th/9712143
http://xxx.lanl.gov/abs/hep-th/9603167
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C6382
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C6382
http://xxx.lanl.gov/abs/hep-th/9610140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB474%2C361
http://xxx.lanl.gov/abs/hep-th/9604070


J
H
E
P
0
7
(
1
9
9
9
)
0
0
9

[22] M. Berkooz et. al., Anomalies, dualities, and topology of d = 6 N = 1 superstring

vacua, Nucl. Phys. B 475 (1996) 115 [hep-th/9605184].

[23] J. Polchinski, Tensors from K3 orientifolds, Phys. Rev. D 55 (1997) 6423

[hep-th/9606165].

[24] J. D. Blum and K. Intriligator, Consistency conditions for branes at orbifold singu-

larities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030].

[25] J. D. Blum and K. Intriligator, New phases of string theory and 6d RG fixed points

via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199, [hep-th/9705044].

[26] E. G. Gimon and C. V. Johnson, K3 orientifolds, Nucl. Phys. B 477 (1996) 715

[hep-th/9604129].

[27] N. Evans, C. V. Johnson, and A. D. Shapere, Orientifolds, branes, and duality of 4d

gauge theories, Nucl. Phys. B 505 (1997) 251, [hep-th/9703210].

[28] D. Kutasov, Orbifolds and solitons, Phys. Lett. B 383 (1996) 48 [hep-th/9512145].

[29] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, Mirror symmetry in three–

dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101

[hep-th/9611063].

[30] K. Hori, H. Ooguri, and C. Vafa, Non-abelian conifold transitions and N = 4 dualities

in three- dimensions, Nucl. Phys. B 504 (1997) 147 [hep-th/9705220].

[31] K. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories,

Phys. Lett. B 387 (1996) 513 [hep-th/9607207].

[32] S. Ferrara, A. Kehagias, H. Partouche, and A. Zaffaroni, Membranes and five-branes

with lower supersymmetry and their AdS supergravity duals, Phys. Lett. B 431 (1998)

42 [hep-th/9803109].

[33] J. Gomis, Anti-de Sitter geometry and strongly coupled gauge theories, Phys. Lett. B

435 (1998) 299 [hep-th/9803119].

[34] S. Sethi, A relation between N=8 gauge theories in three-dimensions, J. High Energy

Phys. 11 (1998) 003, [hep-th/9809162].

[35] M. Berkooz and A. Kapustin, New IR dualities in supersymmetric gauge theory in

three- dimensions, J. High Energy Phys. 02 (1999) 009 [hep-th/9810257].

[36] M. Aganagic, A. Karch, D. Lust, and A. Miemiec, Mirror symmetries for brane con-

figurations and branes at singularities, hep-th/9903093.

[37] E. G. Gimon and M. Gremm, A note on brane boxes at finite string coupling, Phys.

Lett. B 433 (1998) 318, [hep-th/9803033].

[38] L. Randall, Y. Shirman, and R. von Unge, Brane boxes: Bending and beta functions,

Phys. Rev. D 58 (1998) 105005 [hep-th/9806092].

38

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C115
http://xxx.lanl.gov/abs/hep-th/9605184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C6423
http://xxx.lanl.gov/abs/hep-th/9606165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB506%2C223
http://xxx.lanl.gov/abs/hep-th/9705030
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB506%2C199
http://xxx.lanl.gov/abs/hep-th/9705044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB477%2C715
http://xxx.lanl.gov/abs/hep-th/9604129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C251
http://xxx.lanl.gov/abs/hep-th/9703210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB383%2C48
http://xxx.lanl.gov/abs/hep-th/9512145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C101
http://xxx.lanl.gov/abs/hep-th/9611063
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C147
http://xxx.lanl.gov/abs/hep-th/9705220
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB387%2C513
http://xxx.lanl.gov/abs/hep-th/9607207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB431%2C42
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB431%2C42
http://xxx.lanl.gov/abs/hep-th/9803109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C299
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB435%2C299
http://xxx.lanl.gov/abs/hep-th/9803119
http://jhep.sissa.it/stdsearch?paper=11%281998%29003
http://jhep.sissa.it/stdsearch?paper=11%281998%29003
http://xxx.lanl.gov/abs/hep-th/9809162
http://jhep.sissa.it/stdsearch?paper=02%281999%29009
http://xxx.lanl.gov/abs/hep-th/9810257
http://xxx.lanl.gov/abs/hep-th/9903093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB433%2C318
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB433%2C318
http://xxx.lanl.gov/abs/hep-th/9803033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C105005
http://xxx.lanl.gov/abs/hep-th/9806092


J
H
E
P
0
7
(
1
9
9
9
)
0
0
9

[39] R. G. Leigh and M. Rozali, Brane boxes, anomalies, bending and tadpoles, Phys. Rev.

D 59 (1999) 026004 [hep-th/9807082].

[40] A. Karch, D. Lust, and A. Miemiec, N = 1 supersymmetric gauge theories and super-

symmetric three cycles, hep-th/9810254.

[41] E. Witten, Solutions of four-dimensional field theories via M theory, Nucl. Phys. B

500 (1997) 3 [hep-th/9703166].

[42] J. Lykken, E. Poppitz, and S. P. Trivedi, Chiral gauge theories from D-branes, Phys.

Lett. B 416 (1998) 286 [hep-th/9708134].

[43] A. Hanany and Y.-H. He, Non-abelian finite gauge theories, J. High Energy Phys. 02

(1999) 013 [hep-th/9811183].

[44] S. Kachru and E. Silverstein, 4d conformal theories and strings on orbifolds, Phys.

Rev. Lett. 80 (1998) 4855, [hep-th/9802183].

[45] A. Sagnotti, Open strings and their symmetry groups. Talk presented at the Cargese

Summer Institute on Non- Perturbative Methods in Field Theory, Cargese, Italy, Jul

16-30, 1987.

[46] M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B

247 (1990) 517.

[47] M. Bianchi and A. Sagnotti, Twist symmetry and open string wilson lines, Nucl. Phys.

B 361 (1991) 519.

[48] A. Hanany and A. Zaffaroni, Chiral symmetry from type IIA branes, Nucl. Phys. B

509 (1998) 145 [hep-th/9706047].

[49] A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys.

Lett. B 294 (1992) 196 [hep-th/9210127].

[50] J. Polchinski and E. Witten, Evidence for heterotic–type I string duality, Nucl. Phys.

B 460 (1996) 525 [hep-th/9510169].

[51] P. S. Aspinwall and D. R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys.

B 503 (1997) 533 [hep-th/9705104].

39

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C026004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C026004
http://xxx.lanl.gov/abs/hep-th/9807082
http://xxx.lanl.gov/abs/hep-th/9810254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://xxx.lanl.gov/abs/hep-th/9703166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB416%2C286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB416%2C286
http://xxx.lanl.gov/abs/hep-th/9708134
http://jhep.sissa.it/stdsearch?paper=02%281999%29013
http://jhep.sissa.it/stdsearch?paper=02%281999%29013
http://xxx.lanl.gov/abs/hep-th/9811183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://xxx.lanl.gov/abs/hep-th/9802183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB247%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB247%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB361%2C519
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB361%2C519
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB509%2C145
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB509%2C145
http://xxx.lanl.gov/abs/hep-th/9706047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB294%2C196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB294%2C196
http://xxx.lanl.gov/abs/hep-th/9210127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB460%2C525
http://xxx.lanl.gov/abs/hep-th/9510169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB503%2C533
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB503%2C533
http://xxx.lanl.gov/abs/hep-th/9705104

