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ABSTRACT

We consider the inclusion of brane charges in AdS5 superalgebras that contain the

maximal central extension of the super-Poincaré algebra on ∂AdS5. For theories with

N supersymmetries on the boundary, the maximal extension is OSp(1/8N), which

contains the group Sp(8N, R) ⊃ U(2N, 2N) ⊃ SU(2, 2)× U(N) as extension of the

conformal group. An “intermediate” extension to U(2N, 2N/1) is also discussed.

BPS conditions on boundary states are studied in some details.
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1 Introduction

It is well known that the classification of superalgebras, containing the anti-de Sitter –i.e.

conformal– superalgebra has a barrier at dimension D = 7 [1]. This result is based on the

assumption that the bosonic subalgebra of the superalgebra is the “direct product” of the

conformal algebra O(D − 1, 2) with an internal symmetry group G. This classification can be

viewed, essentially, as an extension of the Haag-Lopuszanski-Sohnius theorem [2] for D > 4.

On the other hand, in dynamical theories with extended objects, it is already known that

the super-Poincaré algebras do include, in any dimension, “central” charges [3, 4, 5, 6, 7] which

at first sight violate the above assumption.

It is then natural to consider the same generalization when such charges of rank p are

introduced in the AdS superalgebra rather than in its Poincaré counterpart. Such extension

has been studied in the literature with the goal of constructing an eleven-dimensional theory in

AdS space [8, 9], or a conformal theory in ten dimensions [6].

The result of these investigations is that the conformal extension of the D = 10 N = 1

Poincaré superalgebra is OSp(1/32), in which Sp(32) ⊃ O(10, 2).

In the present paper, we consider a similar extension in the context of AdS5 supergravity. The

difference here is that AdS5 superalgebras already exist. In the absence of p-brane charge, they

correspond to the usual superconformal algebras U(2, 2/N), which occur in the classification

of Haag, Lopuszanski and Sohnius (HLS) [2]. We consider here the AdS5 superalgebra in the

presence of AdS p-branes, and we show that, for any N -extended supergravity, such algebra

is OSp(1/8N), with the conformal group O(4, 2) ∼ SU(2, 2) embedded as follows in the real

symplectic group Sp(8N, R) [10]:

Sp(8N, R) ⊃ U(2N, 2N) ⊃ SU(2, 2)× U(N). (1)

Extensions of conformal superalgebras in D = 5 have been considered also in ref. [11], where

worldsheet superalgebras for D5-branes in an AdS5 background were proposed. Ref. [11] shows,

among other things, that, in the presence of p-brane charges, the world-sheet superconformal

group of a D3-brane in AdS5, U(2, 2/4), is extended to OSp(1/32).

This paper is organized as follows: in Section 2, we consider the standard superalgebras in

the 5-D Minkowski space, M5, and in AdS5, and view them as the starting blocks for further

investigations. In Section 3 we consider the OSp(1/8N) algebras as algebras in AdS5 in the

presence of AdS p-branes. In Section 4 we give a general, algebraic analysis of the BPS condition

in AdS5, and, in particular, we study the pattern of R-parity breaking induced by BPS p-branes.

Section 5 contains a brief description of an additional “intermediate” conformal extension of

the super-Poincaré algebra, and a comment on the uniqueness of such extensions.
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2 Maximal Central Extensions of Poincaré Superalge-

bras

The maximal central extension of the Poincaré superalgebra with n spinorial components of the

supersymmetry charges gives an algebra with n(n+1)/2 bosonic central charges 3, including the

space-time translations. Examples of such extensions are the N = 1 superalgebra in D = 11

dimensions, in the presence of two- and five-brane charges, and the IIA and IIB algebras in ten

dimensions, in the presence of NS and R brane charges [3, 4, 5, 6].

When the space-time dimension is sufficiently low, the maximal central extensions include

also BPS domain walls and BPS instantons, as it becomes obvious if one regards such algebras

obtained by dimensional reduction. It is relevant to this paper to recall the central extensions

in dimensions D = 4, 5, because they will play an important role when the analogous five-

dimensional superalgebra will be considered in AdS5, and M4 will be interpreted as its boundary.

The N -extended Poincaré superalgebra in D = 5, with maximal central extension, has a

USp(2N) R-symmetry [12], and it reads

{QA
α , QB

β } = (γµC)αβPµΩ
AB + (γµC)αβZ

o [AB]
µ + CαβZ

[AB] + (γµνC)αβZ(AB)
µν , (2)

where Zo [AB]
µ , Z [AB] are in the antisymmetric of USp(2N) (Zo [AB]

µ is also symplectic-traceless:

ΩABZo [AB]
µ = 0) and Z(AB)

µν is in the adjoint of USp(2N).

The standard HLS [2] algebra is obtained by setting Zo [AB]
µ = Z(AB)

µν = 0. These charges

come from strings and membranes.

3 Anti-de Sitter and Conformal Superalgebras

The Anti-de Sitter superalgebra is a modification of the Poincaré superalgebra given in Eq. (2),

where Pµ, Mµν span the algebra of O(4, 2), and generators of U(N) are included.

This is the AdS5 superalgebra U(2, 2/N). This superalgebra can be formally obtained by

decomposing USp(2N) → SU(N)× U(1) in the former algebra:

{QA
α , QB β} = (γµC)αβPµδA

B + (γµνC)αβMµνδ
A
B + (γµνC)αβZo A

µν B + (γµC)αβZoA
µ B + CαβUA

B ,

(3)

{QA
α , QB

β } = (γµC)αβZ
[AB]
µ + CαβZ

[AB] + (γµνC)αβZ
(AB)
µν , c.c., µ, ν = 0, .., 4. (4)

Setting to zero all bosonic generators except Pµ, Mµν and UA
B , and promoting them to the (non-

commutative) generators of the SU(2, 2)× U(N) Lie algebra, with the fermionic generators in

3More precisely, they are bosonic central charges of the supertranslation algebra, which is a subalgebra of the
super-Poincaré algebra.
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the (4, N) + (4̄, N̄) representation, the algebra becomes

{QA
α , QB β} = (γµC)αβPµδ

A
B + (γµνC)αβMµν + CαβU

A
B , (5)

{QA
α , QB

β } = {Qα
A, Qβ

B} = 0. (6)

This is the standard AdS5 superalgebra considered in the literature. If realized on the four-

dimensional boundary, it corresponds to the HLS superconformal algebra in D = 4, which is

the conformal extension of the Poincaré superalgebra without central charges.

Let us now consider whether an AdS5 superalgebra exists with non-vanishing Z generators.

The Z should correspond somehow to brane charges in AdS5.

The AdS5 extension of the Poincaré superalgebra with charges given in Eqs. (3,4) is imme-

diate. Namely, the Z generators in Eqs. (3,4) complete the superalgebra OSp(1/8N, R). The

SU(2, 2)× U(N) generators are embedded as follows in Sp(8N, R):

Sp(8N, R) → U(2N, 2N) → SU(2, 2)× U(N). (7)

As it is well known, the Sp(8N, R) algebra has a three-grading with respect to the “dilation”

generator, R in the decomposition SU(2, 2) → SL(2, C) × R. Here, SL(2, C) is the Lorentz

group of the boundary of AdS5. Indeed,

LSp(8N) = L1 + L0 + L−1, (8)

where L1 contains Pµ and all (dimension-1) central charges of the 4-D super-Poincaré algebra.

L−1 contains Kµ and all (dimension −1) special-conformal central charges, while

L0 = SL(4N, R)×R (9)

is the Lie algebra which contains, among others, the generators of the Lorentz group on ∂AdS5,

and U(N) [10]:

SL(4N, R) → SL(2N, C)× U(1) → SL(2, C)× SU(N)× U(1). (10)

The OSp(1/8N) superalgebra has a 5-grading [9, 13, 14], in which the L±1 subalgebras, in

the symmetric representation of SL(4N), are completed with the 8N -dimensional fundamental

representation of Sp(8N, R), which splits under SL(2, C)× SU(N)× U(1) as:

8N → (1/2, 0, N)1/2 + (0, 1/2, N)−1/2 + (0, 1/2, N̄)1/2 + (1/2, 0, N̄)−1/2. (11)

This splitting corresponds to writing the AdS5 spinor QA
α as (QA

α , S̄A
α̇ ), and Qα A as (Q̄α̇ A, Sα A).

The spinor charges (QA
α , Q̄α̇ A), together with L1, form the maximal central extension of the

super-Poincaré algebra in D = 4, as found in ref. [7]. The (Sβ A, S̄A
β̇
), together with L−1, form
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an isomorphic algebra, with the substitution Pµ → Kµ and Z → ZS. The generators in L0

appear in the mixed anti-commutators {Q, S}, as it follows from the general structure of the

grading:

SP+ :

{QA
α , Q̄β̇ B} = σµ

αβ̇
Pµδ

A
B + ZA

αβ̇ B
, (ZA

αβ̇ A
= 0), µ = 0, ..3,

{QA
α , QB

β } = εαβZ [AB] + Z
(AB)
αβ ,

c.c.,

SC− :

{Sα A, S̄B
β̇
} = σµ

αβ̇
KµδB

A + ZB
S αβ̇ A

, (ZA
S αβ̇ A

= 0),

{Sα A, Sβ B} = εαβZS [AB] + ZS αβ (AB),
c.c.,

L0 :

{QA
α , Sβ B} = [εαβ(D + iU) + Mαβ ]δA

B + εαβUo A
B + Uo A

αβ B (traceless),

{QA
α , S̄B

β̇
} = W

[AB]

αβ̇
+ W

(AB)

αβ̇
,

c.c.,

LOSp(1/8N) = SP+ + L0 + SC−. (12)

The total number of generators of Sp(8N, R) is 4N(8N +1), which splits, in this decomposition,

as

(Sym GL(4N))+ + (Adj GL(4N)) + (Sym GL(4N))− (13)

dimP+ = dim C− = 8N2 + 2N, (14)

dimL0 = 16N2. (15)

Note that in the usual conformal extension of the non-centrally extended SP , that we call P0,

LU(2,2/N) = SP+
0 + L0

0 + SC−0 , (16)

where dimP+
0 = dim C−0 = 4, dimL0

0 = 15 + N2.

4 BPS States in AdS5 and R-Symmetry Breaking

States that preserve some of the supersymmetries of the D = 4 N -extended super-Poincaré

algebra SP+ can be point-like or extended. These states preserve only subgroups of the R-

symmetry U(N), and their breaking pattern can be analyzed in pure algebraic terms. This

analysis agrees with previous studies of branes in AdS5 [11, 15] in all known cases, but also

predicts general patterns of R-symmetry breaking.

The identification of brane charges with the central charges of the super-Poincaré algebra in

Eq. (2) is well established in flat space. The corresponding identification of brane charges with

some bosonic genrators of OSp(1/8N) should hold in AdS5 [11, 15]. This correspondence was

established explicitly in [11] for a brane charge appearing in the world-volume superalgebra of

a D5-brane in AdS5.
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Let us consider, in particular, the case N = 4, and let us start our analysis with point-like

states (monopoles and dyons). They are associated with a scalar central charge, that we called

Z [AB]. It can always be put in the form

Z [AB] =

(
λ1ε

λ2ε

)
, (17)

with ε the 2 × 2 antisymmetric matrix. When λ1 = λ2 we have a 1/2 BPS state, and the

R-symmetry SU(4) is broken to USp(4) ∼ O(5). When λ1 6= λ2 one has 1/4 BPS states, and

SU(4) → USp(2)× USp(2) ∼ O(3)× O(3).

String BPS states are charged under the vector charge ZA
µ B. Let us consider a string oriented

along one of the cooridante axis. The only nonzero component of ZA
µ B is, say ZA

1 B that can be

brought to the standard form:

ZA
µ B =


λ1

λ2

λ3

−λ1 − λ2 − λ3

 . (18)

By looking at the SU(4) ∼ O(6) subgroup left invariant by this matrix one can easily find all

possible R-symmetry breaking patterns. Specifically, 1/2 BPS states have λ1 = λ2 = −λ3; this

means that the R-symmetry is broken to SU(2)× SU(2)× U(1), or

O(6) → O(4)× O(2). (19)

1/4 BPS states have λ1 = λ2, λ3 6= λ1. The R-symmetry breaking is in this case

O(6) → SU(2)× U(1)2. (20)

When λ1 = λ2 = λ3 the string preserves 3/8 of the original supersymmetries, while

O(6) → SU(3)× U(1). (21)

Finally, for generic λi, one finds a 1/8 BPS state preserving only a U(1)3 subgroup of the

R-symmetry.

Finally, 2-branes are sources for the antisymmetric-tensor charge Z(AB)
µν , belonging to the

symmetric representation of SU(4). By choosing a 2-brane configuration oriented along two

coordinate axis, the only nonzero charge is, say, Z
(AB)
12 . It can be brought into the standard

form

Z
(AB)
12 =

(
λ1δ

λ2δ

)
, (22)

with δ the 2 × 2 identity matrix. In this case, 1/2 BPS states correspond to λ1 = λ2, and the

R-symmetry breaking pattern is SU(4) → O(4) = O(3)× O(3). 1/4 BPS states correspond to

λ1 6= λ2; the residual R-symmetry is, in this case SU(4) → O(2)× O(2).
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The BPS states on the boundary can be thought of as “singletons” since they have multi-

plicity 2N (N = 4 in our case), if regarded as N -extended 4-D Poincaré multiplets.

We call s-singleton the usual singleton associated to a massless particle on the boundary,

while we call p-singleton a state associated to a p-brane on the boundary. Thus, “photons” are

s-singletons, monopoles or dyons are 0-singletons etc. BPS states propagating in the bulk are

“bound states” of p-singletons, since they have multiplicity 22N .

To summarize, a p-singleton breaks the original O(6) R-symmetry to O(5− p)× O(p + 1),

while the s-singleton corresponds to p = −1 in this formula.

5 Other Algebras and Uniqueness of the Extension

Let us conclude with a few additional remarks.

First, let us point out that here is a superalgebra that is intermediate between that in

Eqs. (3,4) and that in Eqs. (5,6). This is the U(2N, 2N/1) superalgebra. It is obtained by

setting to zero the right-hand side of Eq. (4), but keeping all terms in the r.h.s. of Eq. (3).

All these algebras can be written in a manifestly O(4, 2)-invariant notation using the follow-

ing decompostition, where A and S denote symmetrization and antisymmetrization, respectively

(µ, ν = 0, ..5):

[(4, N)× (4, N)]S = [6, (N ×N)A] + [10, (N ×N)S ],

(4, N)× (4̄, N̄) = (1, 1) + (15, 1) + (15, N2 − 1) + (1, N2 − 1),

{QA, QB} = (γµC)+T [AB]
µ + (γµνρC)+T (AB)

µνρ , c.c.

{QA, QB} = (γµνC)Mµνδ
A
B + CT A

B + (γµνC)T o A
µν B. (23)

Here + is the 6-D chiral projection. The space-time conformal spinors are identified here with

the (4, 4̄) of SU(2, 2). The U(2N, 2N/1) superalgebra is obtained by setting {QA, QB} = 0,

while the U(2, 2/N) superalgebra is obtained by setting {QA, QB} = 0 and T o A
µν B = 0.

We must also point out that AdS5 algebras with brane charges clearly violate the Coleman-

Mandula theorem [18]. This should imply that they cannot be realized as symmetries of a local

world-sheet theory. In spite of this, the brane charges studied in ref. [11] are topological charges

appearing in the (local) Born-Infeld action of the D-brane. The meaning of this result is not

yet clear to us.

Finally, let us comment on the uniqueness of AdS5 extensions of the super-Poincaré algebra

with central charges. For N -extended supersymmetry, OSp(1/8N) is the unique extension of

the super-Poincaré algebra in Eq. (2) with the following properties: a) all right-hand sides of

the fermionic anticommutators are nonzero, and form a simple Lie algebra; b) it contains the

group O(4, 2) × U(N); c) it has the same number of fermionic charges as the superconformal
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algebra U(2, 2/N). This follows from the classification of all superalgebras based on simple

Lie algebras given in ref. [16]. Likewise, the “intermediate” algebra U(2N, 2N/1) is the unique

superconformal extension of algebra (2) where all chiral Poincaré anticommutators are set to

zero. For N = 1 one can say more. In that case, indeed, it was shown in ref. [17] that only

two extensions of the super-Poincaré algebra exist. One, in which all central charges are set to

zero, is the usual U(2, 2/1); the other is, necessarily, OSp(1/8). Notice that in this case the

“intemediate” algebra is also U(2, 2, /1). In this case SP+ is just the N = 1 supertranslational

algebra considered in [19, 20], while [10]

L0 = R× SO(3, 3), (24)

since SL(4, R) ∼ SO(3, 3). The standard Lorentz transformations and U(1) R-symmetry cor-

respond to the subgroup SO(3, 1)× SO(2) ⊂ SO(3, 3).
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