
ion of
f HEP
future
earch.
ional
aratus,
money,
rtise of

with

ad in
nts of
duced
earch.
oftware
ring
e not
way of
e do

f their
way
ations
e final

nning

hich
system

96, the
rgy of

apt to
ases in
egrade
SOFTWARE EVOLUTION: CASE STUDY, OPAL

K. Ackerstaff
CERN, Geneva, Switzerland

Abstract
The OPAL case study presented in two lectures shows the application of
modern software engineering techniques presented in the lectures on user
requirements, project management, configuration management, software
documentation and software quality in the Software Evolution Track in a
running high energy physics experiment.

1. INTRODUCTION

In HEP (High Energy Physics) the use of computers is no longer restricted to numerical calculat
complex mathematical problems. Today computers and software are used in all areas o
experiments, from administration to physics analysis. The size and complexity of current and
HEP projects makes computers and software a major tool to perform fundamental physics res
Software has become a “mission critical” part of HEP and has to be treated with a profess
approach. With the advent of large scale experiments involving more than 300 people, huge app
a major financial investment and a lifetime of more than a decade, the management of people,
hardware and software engineering becomes a problem which can only be solved using the expe
professionals. Feedback from Software Engineering Science into HEP is essential to cope
problems in software evolution in HEP.

The application of modern software engineering technology and tools is not very widespre
current HEP experiments. The tradition, or culture, of software development in physics departme
universities and institutes is one reason for this. Traditionally software for physics has been pro
by physicists and many of the foundations of software engineering actually stem from physics res
Meanwhile the use of computers and software outside research has increased dramatically and s
produced for HEP is only a tiny fraction of the total. The introduction of software enginee
methodology and tools into the HEP community is very slow. Since many of the developers ar
software engineers, new methods need training and the reluctance of people to change their
producing software must be overcome. The culture of software development in HEP, the “way w
things”, can only be changed gradually since the people involved mostly spend only a fraction o
time on software development and come from different institutions from all over the world. “A new
of doing things” can not just be imposed on developers, but the challenges of yet bigger collabor
and experiments, with more and more complex software and an increased dependency of th
outcome of HEP experiments on this software requires the use of modern software technology.

In this case study the introduction of modern software development techniques into a ru
HEP experiment is described.

2. THE OPAL CASE

The OPAL experiment is one of the four experiments at the LEP particle accelerator at CERN w
has been in operation since 1989. Amongst other software and hardware upgrades, the online
was upgraded and partly redesigned in the period 1996-98. With the advent of the LEP2 era in 19
accelerator is being continuously upgraded to gradually reach a maximum centre-of-mass ene
approximately 200 GeV. The four experiments, which detect particle collisions at LEP, must ad
the changing accelerator conditions. The OPAL experiment has experienced substantial incre
background. The planned increase in both the beam energy and intensity is expected to d
background conditions further.

ithout
fast

ntrol
perating

was

anges
to an

ftware
of the
lose
IPT)
despite
ment.

made
rs are
d

ger data
torage.
urther

ware
was

ss the

an on

ject
by the
e; the
s used

ion to
rease
The OPAL trigger and data acquisition system must be able to handle this background w
losing physics events. The original system contains considerable flexibility in programming the
logic used in trigger decisions. However, during the (long) lifetime of the experiment the trigger co
software has had to adapt to changes in the detector, the trigger hardware and the accelerator o
modes, which were not foreseen in the original design. This resulted in a control code which
excessively complex and difficult to maintain.

The difficulties experienced in adapting the trigger control software to these unforeseen ch
motivated the redesign of the software. In turn, the positive experience from this redesign led
upgrade of the event builder involving a redesign of all concerned software.

This case study is restricted to the trigger upgrade which enables to show all aspects of so
evolution and use of modern software technology in OPAL. The redesign and implementation
OPAL trigger software was carried out by a small team from the OPAL experiment in c
collaboration with one member of the CERN/ECP Information and Programming Technology (
group. The adoption of suitable methodologies ensured the successful outcome of the project,
the heterogeneous and real-time environment and the strict time constraints of a running experi

3. THE OPAL TRIGGER

The OPAL trigger system [1] selects events according to logic implemented in several custom
VME compatible modules. Programmable combinations of 120 trigger signals from 32 subdetecto
used to form the trigger decision, made every 22µs. A positive trigger decision is sent on a dedicate
bus to the subdetector data acquisition systems. After complete readout the subdetector and trig
are collected by the event builder. The complete events are sent through the filter [2] to data s
The entire data acquisition system is controlled by RunControl using finite state machines (F
details of the OPAL data acquisition system are given in [3]).

The original software ran on two VME CPUs and controlled and monitored the trigger hard
and signals. It was written in real-time Fortran [4], consisted of approximately 60000 lines, and
implemented under the OS9 operating system.

The main tasks of the trigger software are:

– to load the user defined trigger logic into the hardware;

– to read out the trigger hardware on each event upon a positive trigger decision;

– to trigger and synchronize subdetector readout;

– to read out monitoring information asynchronously to the event loop and send the data acro
network;

– to handle exceptions generated by hardware and software.

The user interface to the trigger monitoring was a commercial histogram presenter which r
a Macintosh II [5] connected via a VME interface card to the trigger crate.

4. THE REDESIGN

A team of six people worked full- or part-time on the redesign of the trigger software, in a pro
which lasted from January until August 1997. The project was led by a physicist and supervised
OPAL online coordinators. The redesign was split into three sub-projects: the core trigger cod
histogramming presenter; the trigger monitoring software. The redesign of the core trigger code i
here as an example to demonstrate the importance of the approach to software engineering.

4.1 Motivation

The experience of running the trigger system in 1996 when LEP2 started motivated the decis
redesign the software and streamline the hardware. The main motivations were to inc
maintainability and flexibility.

ign of
any of

of the
an be

E
dence

ional

de has

guage.
major

ed, for

id any

g the

e
t

Several hardware upgrades carried out in the past could not be fitted into the original des
the old code, which resulted in excessive code complexity. The documentation did not reflect m
these code changes. Further hardware upgrades are foreseen during the remaining lifetime
experiment, and the manpower required for operations must be reduced. Maintainability c
improved by moving the non real-time functionality to a UNIX platform and thus simplifying the VM
hardware. Moving the histogram presentation to the common UNIX platform also removes depen
on specific hardware, and reduces the number of operating systems used.

4.2 Requirements & Constraints

The new system should cover the full functionality of the old trigger system, and satisfy addit
requirements in order to implement the improvements mentioned above.

– The core trigger and the monitoring code have to be separated. The remaining core trigger co
to run on a single VME CPU with no loss of performance.

– The monitoring code has to be moved outside the real-time system.

– The histogram presenter has to be replaced and run on a Unix platform.

– All software must be documented, and designed to be maintainable.

– The design has to facilitate future hardware changes.

To achieve this an object oriented approach was chosen, using the C++ programming lan
The redesign of a central software system within a running experiment imposes several
constraints.

– The existing interfaces between the trigger and outside software systems must be retain
example databases, event structures and RunControl interfaces.

– The new system must run with the old trigger hardware.

– To ensure a smooth transition, the new system must initially be backward compatible to avo
loss of data during commissioning.

– Finally the new trigger system must be complete and operational for 1997 data taking, usin
manpower available.

4.3 The Software Development Process

The first step in the project is the choice of
methodologies in the different activities and
phases shown in figure 1.

The user requirement document
(URD) and the project management follow
ESA’s Software Engineering Standards
(PSS05) insofar as was appropriate to the
project.

For design and implementation the
object modeling technique (OMT) was used.

Quality assurance was carried out by
peer review and regular analysis of the code
quality according to the ISO9126 [8]
standards. The project was reviewed on a
weekly basis in project meetings. The OPAL
online and operations coordinators took part
in the review process to ensure that
requirements were met.

Integration

Delivery

Operation

Detailed Design &

A
ct

iv
iti

e
s

P
h

a
se

s

Project time

Documentation

Configuration Management

Quality Assurance

Project Management & Tracking

User Requirements

Analysis & Design

Implementation

Fig. 1 The software life cycle used in this project. Activities
such as documentation and management continu
throughout the lifetime of the project, whereas projec
phases are active only during a specific time.

(SDE)
elected
using
erised
GHT
s and
logged

place
written
dards

Thus
Unix

ce as

s the

ntial in
d from
d the

alysis,
se two
PAL

ble for

ns in
learn
roject.
in the

ption
nalyze
ed the
l parts
new

tested
from

allows
VME

is class
mory if
odules
4.4 The Software Development Environment

In order to instrument the software development process a software development environment
was set up at the beginning of the project. Tools for each activity and phase of the process were s
and customized to the specific requirements of the project. Documentation is written
FrameMaker [9] with templates provided by the CERN/IPT group. These documents are hyp
using WebMaker [10] and linked to the OPAL online web. The source code is hyperised using LI
[11]. For configuration management the CVS [12] package is used. All relevant documents, utilitie
source code are managed under the CVS repository, and changes to the repository are
automatically on the web. CVSWeb [13] is used to browse the central repository via the web.

Code is developed on Unix workstations, whereas compilation, testing and operation take
on OS9 systems. For file and directory transfer across these platforms a tool has been
specifically for the project. The quality of the code has been analyzed along ISO9126 quality stan
using Logiscope [14], which has been integrated to work with the GNU-make [15] program.
GNU-make allows compilation and linking on OS9 systems and automated quality analysis on
platforms using the same utility.

As an instrumentation of OMT, Rose [16] is used to produce the C++ class and inheritan
well as message trace and state diagrams.

The ATLAS coding conventions [17] were customized for the project. SNiFF+ [18] is used a
code development environment.

The knowledge and experience of the software engineer from the IPT group has been esse
setting up the SDE and choosing appropriate methodologies and tools. The project team benefite
this in terms of learning and applying the methodologies and tools. The setup of the SDE an
integration of the tools described above took approximately a month at the start of the project. An
design and implementation took altogether three months, and the integration and testing pha
months. This time could only partly be used due to the constraints of the commissioning of the O
experiment and the LEP schedule, when the OPAL data acquisition system was often unavaila
testing the trigger.

4.5 Experience with the Software Development Environment

A detailed documentation of the project infrastructure includes a description of all technical actio
the software development process. This allowed all members of the project team to rapidly
standard actions and adapt to the SDE. Therefore all tools could be used from the outset of the p
This documentation proved to be absolutely essential in order to get people to use and work with
SDE.

A substantial amount of information on the details of the trigger system, for example exce
handling and interfaces, had to be retrieved from the old trigger code. SNiFF+ has been used to a
the old software, and FrameMaker used to document the software and hardware, which facilitat
re-engineering process. A detailed quality analysis using Logiscope helped determine the critica
of the trigger software. SNiFF+ also allows simultaneous navigation through both the old and
software during the analysis phase.

The OMT design enables fast and efficient coding. The models produced with Rose can be
against the functionality of the old code. Hence the implementation of the models is separated
design and can be carried out by any member of the project team. Furthermore, inheritance
partial testing. For example, the trigger hardware is reflected in hardware classes inherited from a
module base class. This base class hides all VME specific memory access and error handling. Th
allows either direct access to hardware registers, or else the registers are simulated in local me
desired. This allows the software to be run on a test setup with only a subset of the hardware m
present. Hardware which cannot be accessed is automatically simulated in software.

CVS.
and

ture.

d for the
ware
tasks
ithout

met all
unning
neering

tation
ith it.
d the

oject
ch too

ful in

art of
tware
gement

tools
s from

n.
f

The members of the project team were able to work simultaneously on the code using
Following the coding conventions results in a uniform code structure which facilitates peer review
collaborative coding. The majority of version conflicts are resolved by the CVS merging fea
Version tracking and logging are important also during the implementation phase.

4.6 Product Assessment

Figure 2 shows the overall quality of the new
code against time compared to the old code.
The percentage of code rated as fair or poor
according to the ISO9126 standards is below
2%, compared to above 30% for the old code.
The improved code quality is maintained
throughout the implementation and
integration phases.

The improved quality is reflected in
the performance of the new code. It has been
operational since the beginning of August
1997, and satisfies all requirements. Unlike
the old system no expert intervention has
been required during data taking.

The control cycle and exception
handler synchronization is carried out by
OS9 signals rather than by introducing
artificial delays, as was the case beforehand.
As a consequence the software is much more
stable. A recent hardware upgrade and
associated software changes were completed in one afternoon rather than several weeks neede
previous upgrade. This is due to the flexibility inherent in the design. Moving the monitoring soft
outside the real-time system protects the core control code from frequent intrusion. Monitoring
are automated and data driven from configuration files, thus allowing changes by the user w
modifying the code. Due to this and the full documentation maintainability is improved.

5. CONCLUSIONS

The OPAL trigger software has been redesigned. The project was completed on schedule and
requirements, despite the constraints imposed by the timelines and existing interfaces of a r
experiment. The successful outcome is a direct consequence of using modern software engi
methodologies.

The customization of the methodologies and tools together with a cookbook like documen
on how to use the SDE makes it easy for new developers to adopt the environment and work w
The process of this customization carried out by a software engineer and physicists exhibite
difference in their “culture”. Carefully adapting methodologies and tools to the specifics of the pr
is absolutely necessary. The PSS-05 standards for User Requirements for example are mu
detailed for a project like this, nevertheless after customization they proved to be very use
capturing the user requirements.

The SDE established for the trigger upgrade project now forms the basis for the largest p
the OPAL online software. The redesign of the OPAL event builder made use of it and existing sof
has been incorporated into the same environment. This did not happen because of a mana
decision, but because it proved to be useful to the maintainers and developers of the software.

In general the project profited from the methodology and the management techniques, the
as the instrumentation of the SDE are secondary in that they can be exchanged by similar tool

Fig. 2 ISO9126 quality of the old and new code. The
percentage of the code in three quality categories is show
The values for the new code are shown over the duration o
the project.

ity, is
HEP

of the
ators
andeh,
d it
ering
rans
lly
.

14,

tics
ional

New

B),

port

web/
106

.

les de

29
l
burg,
different suppliers. The change in the culture, the “way we usually do things” in the HEP commun
the major point to be achieved to improve software engineering and software quality in
experiments.

ACKNOWLEDGMENTS

The successful completion of the project would not have been possible without the active support
OPAL online coordinators, Per Scharff-Hansen and Frans Meijers, the OPAL trigger coordin
Graham Wilson, and Tara Shears. The help of a professional software engineer, Arash Khodab
with the know how of the CERN/EP/IPT group was absolutely essential for this work, we fin
important to have a group acting as internal consultant in CERN to guide us in software engine
matters. In addition we wish to thank Denice Deatrich for writing the new histogram display, and F
Meijers and Christoph Schwick for their contribution to the trigger monitoring. We gratefu
acknowledge the financial support of the Particle Physics and Astronomy Research Council, U.K

REFERENCES

[1] M.Arignon et al. “The trigger system of the OPAL experiment at LEP,”
Nucl. Instr. and Meth. A313 (1992), pp. 103-125.

[2] D.G.Charlton et al. “The on-line event filter of the OPAL experiment at LEP,”
 Nucl. Instr. and Meth. A325 (1993), pp. 129-141.

[3] J.T.M.Baines et al. “The data acquisition system of the OPAL detector at LEP,”
Nucl. Instr. and Meth. A325 (1993) pp. 271-293.

[4] H. von der Schmitt, “Real Time Fortran”, available from the OPAL Secretariat,
CERN, 1211 Geneva, Switzerland.

[5] Macintosh II and AppleTalk are trademarks of Apple Computer Inc., Cupertino, CA 950
California, USA.

[6] “Software Engineering Guides”, C.Mazza et al. Prentice Hall, London 1996.
[7] “Object Oriented Modeling and Design”, J. Rumbaugh et al., Prentice Hall 1991.
[8] ISO/IEC 9126, “Information technology - Software product evaluation - Quality characteris

and guidelines for their use,” International Organization for Standardization and Internat
Electrotechnical Commission, December 1991.

[9] FrameMaker, available from Adobe Systems, Adobe House, West One Business Park, 5 Mid
Cultins, Edinburgh EH11 4DU, Scotland, United Kingdom.

[10] WebMaker, available from Harlequin Limited, Barrington Hall, Barrington, Cambridge (G
CB2 5RG.

[11] LIGHT, available from CERN/ECP/IT, http://www.cern.ch/LIGHT/.
[12] “Version management with CVS, CVS 1.9”, Per Cederqvist et al., available from Signum Sup

SA, Box 2044, S-580 02 Linkoping, Sweden.
[13] CVSWeb, a utility to browse CVS trees via the web, see http://www.freebsd.org/~fenner/cvs
[14] Logiscope, available from Verilog SA, 150 rue Nicolas Vauquelin, P.O. Box 1310, F-31

Toulouse Cedex, France.
[15] “GNU make, A program for directing recompilation, edition 0.5 for V. 3.75 Beta” R. M

Stallmann and R. McGrath, Free Software Foundation 1996.
[16] Rose, available from Rational Software Corporation, Immeuble de la gare, 1,place Char

Gaulle, f-78180 Montigny le Bretonneux, France.
[17] “C++ coding standards for ATLAS”, S. M. Fisher and L. Tuura, CERN Atlas Software Note

(1996). http://atlasinfo.cern.ch/Atlas/documentation/notes/SOFTWARE/note29/cxx-rules.htm
[18] SNiFF+, available from TakeFive Software GmbH, Jakob-Haringer-Strasse 8, A-5020 Salz

Austria.

	SOFTWARE EVOLUTION: CASE STUDY, OPAL
	1. INTRODUCTION
	2. The OPAL Case
	3. The OPAL Trigger
	4. The Redesign
	4.1 Motivation
	4.2 Requirements & Constraints
	4.3 The Software Development Process
	Fig.�1�� The software life cycle used in this project. Activities such as documentation and manag...

	4.4 The Software Development Environment
	4.5 Experience with the Software Development Environment
	4.6 Product Assessment
	Fig.�2�� ISO9126 quality of the old and new code. The percentage of the code in three quality cat...

	5. Conclusions
	Acknowledgments
	References
	[1] M.Arignon et al. “The trigger system of the OPAL experiment at LEP,” Nucl. Instr. and Meth. A...
	[2] D.G.Charlton et al. “The on-line event filter of the OPAL experiment at LEP,” Nucl. Instr. an...
	[3] J.T.M.Baines et al. “The data acquisition system of the OPAL detector at LEP,” Nucl. Instr. a...
	[4] H. von der Schmitt, “Real Time Fortran”, available from the OPAL Secretariat, CERN, 1211 Gene...
	[5] Macintosh II and AppleTalk are trademarks of Apple Computer Inc., Cupertino, CA 95014, Califo...
	[6] “Software Engineering Guides”, C.Mazza et al. Prentice Hall, London 1996.
	[7] “Object Oriented Modeling and Design”, J. Rumbaugh et al., Prentice Hall 1991.
	[8] ISO/IEC 9126, “Information technology - Software product evaluation - Quality characteristics...
	[9] FrameMaker, available from Adobe Systems, Adobe House, West One Business Park, 5 Mid New Cult...
	[10] WebMaker, available from Harlequin Limited, Barrington Hall, Barrington, Cambridge (GB), CB2...
	[11] LIGHT, available from CERN/ECP/IT, http://www.cern.ch/LIGHT/.
	[12] “Version management with CVS, CVS 1.9”, Per Cederqvist et al., available from Signum Support...
	[13] CVSWeb, a utility to browse CVS trees via the web, see http://www.freebsd.org/~fenner/cvsweb/
	[14] Logiscope, available from Verilog SA, 150 rue Nicolas Vauquelin, P.O. Box 1310, F-31106 Toul...
	[15] “GNU make, A program for directing recompilation, edition 0.5 for V. 3.75 Beta” R. M. Stallm...
	[16] Rose, available from Rational Software Corporation, Immeuble de la gare, 1,place Charles de ...
	[17] “C++ coding standards for ATLAS”, S. M. Fisher and L. Tuura, CERN Atlas Software Note 29 (19...
	[18] SNiFF+, available from TakeFive Software GmbH, Jakob-Haringer-Strasse 8, A-5020 Salzburg, Au...

