USER REQUIREMENTS

Gottfried Kellner
CERN, Geneva, Switzerland

Abstract

The reguirements are a olledion d statements that shoud describe in a
clea, concise, consistent and urambiguous manner all significant aspeds of
a propaosed system. They shoud describe what the mmputer system shoud
be caable to doand describe the environmental need which the proposed
software is to satisfy. User requirements definitionis an iterative processto
find the widest possble agreement through interviews and surveys. The
overriding ohedive of requirements analysis is to provide necessary and
sufficient information for subsequent design, implementation, and
validation & verificaion to be succesful. Requirements form the baseline
for system development, when the system isinitialy bult, bu also through
subsequent maintenance and enhancement. We will discuss the problems
involved in regquirements gathering and analysis, the content and property of
a good requirements gedficaion, and a number of general and spedfic
approades to requirements analysis.

1 INTRODUCTION

Alrealy since the mid-70s it is known that requirements errors are the most numerous and, more
significantly, that they also are the most costly and time-consuming to corred. The recogrition d the
criticad nature of requirements established Requirements Engineeiing as an important sub-field of
Software Engineaing. A number of reseach adivities and conferences are devoted to thisfield since
many yeas|[1].

Quoating from Fred Brooks [2]:
» Thehardest single part of buil ding a software system isdedding predsely what to build.

* No aher part of the conceptual work is as difficult as establishing the detailed technicd
requirements, including all the interfaces to people, to madiines, and to ather software
systems.

* No part of the work so cripples the resulting system if dore wrong.
* No ather part ismore difficult to redify later.

Results of induwstry studies in the 197G described by Boehm [3], and since replicaed many
times, showed that requirements errors are the most costly. These studies all produced the same basic
result: the ealier in the development processan error occurs and the later the aror is deteded, the
more expensive it is to corred. Moreover, the relative st rises quickly — an error that costs one
ddlar to fix in the requirements phase may cost $ 20to fix during urit tests, and $ 106200to fix if
not correded urtil the system is put into operation a in the maintenance phase.

2. IMPORTANCE OF (USER) REQUIREMENTS

Dedding predsely what to buld and daumenting the results is the goal of the requirements phase of
software development. The traditional “waterfall model” [4] of the software life-cycle assumes that at
the end d the user requirements phase arequirements gedficaion exists which is unambiguots,



https://core.ac.uk/display/25256717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complete, consistent, verifiable and validatable. This gedficaion shoud establish and spedfy
predsely what the software must do withou describing hav to doit. This rather simple-minded
approach might be gplicable for rather small and well-defined software projeds. In most cases
requirements are not fully known, o are not clealy understood. An iterative gproad, including
prototyping a partial design may be needed to clarify iswues. A variety of software life-cycle models
have been evolved which better addressthe inherent difficulty to arrive & requirements edficaions
— incremental, prototyping, RAD, spira, 4GL, and dhers [4]. Even if the spedficaion daument
would be perfed to start with there will always be changes due to planned upgades or unanticipated
changes to functionality or environment of the system.

Good requirements are esential if we ae to be sure that we ae building the system the user
wants, and that we ae not doing more than is needed. They shoud play this role not only during
initial development, bu also duing subsequent maintenance and enhancements. In pradicethere ae
rather few systems where the requirements are goodenoughto be useful throughot the system’slife.
Requirement management is one of the key processareas to achieve thisgoal.

3. USER REQUIREMENTS

User Requirements are the primary communicaion wehicle between users (and customers) of a
desired software system and the cmputer spedalists to dacument the user’s perceved neals. They
describe both the system and the environment in which it will operate. They must provide necessary
and sufficient information for subsequent design and implementation to be useful.

A requirement is a ‘condtion a cgpability needed by a user to solve aproblem or achieve an
objedive’ [5]. This definition leads to two principal caegories of requirements. ‘capability
requirements’ and ‘ constraint requirements' [6]. Capability requirements describe the processto be
suppated by software. They shoud define operations, or a sequence of related operations, that the
software will be ale to perform. Capability requirements shoud be qualified with attributes, where
feasible (e.g. cgpadty, spedal, acaracy). Constraint requirements placerestrictions on how the user
requirements are to be met. The user may place onstraints on the software related to interface
requirements (e.g. communicdion, hardware, software, human-computer interadion), to quality
requirements (e.g. adaptability, availability, patability, seaurity, safety, standards), or requirements
onresources and time-scaes for producing and oyerating the software.

4. USER REQUIREMENTSDEFINITION

A variety of methods and tods are used to €licit (i.e. capture), spedfy and daument the user
regquirements. Considering the importance of user requirements rather ‘low-tedh’ techniques are used.
Requirements elicitation is dill a very adive field o reseach in computer science, cogntive
psychoogy, social science, Artificia Intelligence, amongst others. Many papers are presented at
conferences, but few of these ideas are used in red-life projeds outside the study cases.

People invaved in the dicitation process are users, customers, designers and software
engineas, projed managers, and fadlit ators with extensive knowledge in techniques for elicitation,
analysis and design d software. The purpose is to gather a maximum of information about user
nedls, to cgpture the user's aims and ohjedives, and to clarify requests or statements which are
ambiguous, incomplete, too dtailed, etc. Methods used include interviews, surveys, studies of
existing systems, feasibility studies, exploratory prototyping, joint or rapid applicaion development
procedures, identificaion d scenarios, use caes or patterns. Usualy a combination o these
techniquesis applied, depending onthe projead, the expertise of the users to identify and expresstheir
neads, and the skill s of the fadlit ator.



Most user requirements are spedfied in simple natural language. These can be complemented
by dagrams, tables, mathematica formalisms, context diagrams for describing the eavironment,
indeed anything that can help in clarification d issues. Word processors, spread-shed and
diagramming tods are mostly used. For larger software systems database management systems and
reguirements engineaing toaswill help to manage the complexity of alarge number of requirements
and their interdependency. These todls are particularly useful to cope with problems of requirements
management over long periods of time for development and operation d software systems.

Documentation d user requirements, the User Requirements Document (URD), usually applies
standard templates provided by a variety of sources. We have alopted the layout proposed by the
ESA PSS05 dauments. ESA PSSO05 provides dandards and guidelines for the whole software life-
cycle and is widely used in indwstry in Europe [6]. A standard URD template using Adobe
FrameMaker [7], aswell as ®veral examples of URD for HEP appli cations have been made avail able
on the web [8]. A URD will normally pass many cycles of interna reviews for updates and
clarifications. Acceptance tests will be identified for validation o the user requirements in the
transfer phase & the end d the software development cycle. A forma review of the URD and the
Acceptance Test Plan, invalving wsers, developers, management and QA staff, will conclude by a
formal statement that the projed isready to proceeal. Formally, the software life-cycle begins with the
acceptance of the User Requirements Document.

5. SUMMARY

Requirements are intrinsicdly hard to dowell. Beyondthe need for discipline, there ae anumber of
difficulties that attend bdh the understanding d requirements and their spedfication. Technicd and
human concerns have to be addressed to manage wmplexity or communicate to diff erent audiences.
All of the gproaches outlined very briefly above have significant weaknesses, bu experience
confirms that the use of any careful and systematic goproach is preferable to an ad-hoc and chaotic
one. Non-existent or inconsistent requirements will end upin poa quality software and expensive
rework. Benefits of good requirements come & a st. It neals people with adequate experience,
training and resources at the begin of a projed, na after disaster has gruck. The bulk of software
problems arise from inadequate spedficaions, na from errorsin implementation.

REFERENCES

[1] Software Requirements Engineaing, 2ndedition, Edited by R.H.Thayer and M.Dorfman, IEEE
Computer Society Press ISBN 0-818677384, 1997.

Procealings of the Third IEEE International Symposium on Requirements Engineeaing,
January 6-10, 1997 Annapdlis, IEEE Computer Society Press ISBN 0-818677406, 1997.

Requirements engineaing : a good padice guide, |.Sommervill e, P.Sawyer, John Wiley &
Sons, ISBN 0-471-974447, 1997.

Software Engineaing (5th edition), |.Sommerville, Addison Wesley, ISBN 0-201-427656,
1995.

[2] “No Silver Bullet: Esence and Acddents of SoftwareEngineaing’, F.Brooks, Computer, April
1987, pp. 1619

The Mythicd Man-Morth, F.Brooks, Addison-Wesley, 1975
[3] Software Engineaing Econamics, B.Boehm, Prentice Hall, 1981



[4]

[5]
[6]

[7]

(8]

Software Engineging, A Pradioner's Approach, R.S.Pressnan, 4th edition, McGraw-Hill ,
ISBN 0-070-521824, 1996

IEEE Standard Glossary for Software Engineaing Terminology, ANSI/IEEEStd 610.121990
Software Engineaing Standards, C.Mazza ¢éal., PrenticeHall, ISBN 0-13-1065688, 1994

Software Engineaing Guides, Edited by J.Fairclough, Prentice Hall, ISBN 0-13-4492811,
1996

Leaning Adobe Framemaker: The Official Guide to Adobe Framemaker. Paperback, Mac
Millan, May 1 1996, SBN: 1568302908

seehttp://www.cern.ch/FrameM aker/#templ ates



