
USER REQUIREMENTS

Gottfried Kellner
CERN, Geneva, Switzerland

Abstract
The requirements are a collection of statements that should describe in a
clear, concise, consistent and unambiguous manner all significant aspects of
a proposed system. They should describe what the computer system should
be capable to do and describe the environmental need which the proposed
software is to satisfy. User requirements definition is an iterative process to
find the widest possible agreement through interviews and surveys. The
overriding objective of requirements analysis is to provide necessary and
suff icient information for subsequent design, implementation, and
validation & verification to be successful. Requirements form the baseline
for system development, when the system is initiall y built , but also through
subsequent maintenance and enhancement. We will discuss the problems
involved in requirements gathering and analysis, the content and property of
a good requirements specification, and a number of general and specific
approaches to requirements analysis.

1. INTRODUCTION

Already since the mid-70s it is known that requirements errors are the most numerous and, more
significantly, that they also are the most costly and time-consuming to correct. The recognition of the
criti cal nature of requirements established Requirements Engineering as an important sub-field of
Software Engineering. A number of research activities and conferences are devoted to this field since
many years [1].

Quoting from Fred Brooks [2]:

• The hardest single part of building a software system is deciding precisely what to build.

• No other part of the conceptual work is as diff icult as establishing the detailed technical
requirements, including all the interfaces to people, to machines, and to other software
systems.

• No part of the work so cripples the resulting system if done wrong.

• No other part is more diff icult to rectify later.

Results of industry studies in the 1970s described by Boehm [3], and since replicated many
times, showed that requirements errors are the most costly. These studies all produced the same basic
result: the earlier in the development process an error occurs and the later the error is detected, the
more expensive it is to correct. Moreover, the relative cost rises quickly – an error that costs one
dollar to fix in the requirements phase may cost $ 20 to fix during unit tests, and $ 100-200 to fix if
not corrected until the system is put into operation or in the maintenance phase.

2. IMPORTANCE OF (USER) REQUIREMENTS

Deciding precisely what to build and documenting the results is the goal of the requirements phase of
software development. The traditional “waterfall model” [4] of the software li fe-cycle assumes that at
the end of the user requirements phase a requirements specification exists which is unambiguous,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25256717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complete, consistent, verifiable and validatable. This specification should establish and specify
precisely what the software must do without describing how to do it. This rather simple-minded
approach might be applicable for rather small and well -defined software projects. In most cases
requirements are not full y known, or are not clearly understood. An iterative approach, including
prototyping or partial design may be needed to clarify issues. A variety of software li fe-cycle models
have been evolved which better address the inherent diff iculty to arrive at requirements specifications
– incremental, prototyping, RAD, spiral, 4GL, and others [4]. Even if the specification document
would be perfect to start with there will always be changes due to planned upgrades or unanticipated
changes to functionality or environment of the system.

Good requirements are essential i f we are to be sure that we are building the system the user
wants, and that we are not doing more than is needed. They should play this role not only during
initial development, but also during subsequent maintenance and enhancements. In practice there are
rather few systems where the requirements are good enough to be useful throughout the system’s li fe.
Requirement management is one of the key process areas to achieve this goal.

3. USER REQUIREMENTS

User Requirements are the primary communication vehicle between users (and customers) of a
desired software system and the computer specialists to document the user’s perceived needs. They
describe both the system and the environment in which it will operate. They must provide necessary
and suff icient information for subsequent design and implementation to be useful.

A requirement is a ‘condition or capabilit y needed by a user to solve a problem or achieve an
objective’ [5]. This definition leads to two principal categories of requirements: ‘capabilit y
requirements’ and ‘constraint requirements’ [6]. Capabilit y requirements describe the process to be
supported by software. They should define operations, or a sequence of related operations, that the
software will be able to perform. Capabilit y requirements should be quali fied with attributes, where
feasible (e.g. capacity, speed, accuracy). Constraint requirements place restrictions on how the user
requirements are to be met. The user may place constraints on the software related to interface
requirements (e.g. communication, hardware, software, human-computer interaction), to quality
requirements (e.g. adaptabilit y, availabilit y, portabilit y, security, safety, standards), or requirements
on resources and time-scales for producing and operating the software.

4. USER REQUIREMENTS DEFINITION

A variety of methods and tools are used to elicit (i.e. capture), specify and document the user
requirements. Considering the importance of user requirements rather ‘ low-tech’ techniques are used.
Requirements elicitation is still a very active field of research in computer science, cogniti ve
psychology, social science, Artificial Intelli gence, amongst others. Many papers are presented at
conferences, but few of these ideas are used in real-li fe projects outside the study cases.

People involved in the elicitation process are users, customers, designers and software
engineers, project managers, and facilit ators with extensive knowledge in techniques for elicitation,
analysis and design of software. The purpose is to gather a maximum of information about user
needs, to capture the user’s aims and objectives, and to clarify requests or statements which are
ambiguous, incomplete, too detailed, etc. Methods used include interviews, surveys, studies of
existing systems, feasibilit y studies, exploratory prototyping, joint or rapid application development
procedures, identification of scenarios, use cases or patterns. Usually a combination of these
techniques is applied, depending on the project, the expertise of the users to identify and express their
needs, and the skill s of the facilit ator.

Most user requirements are specified in simple natural language. These can be complemented
by diagrams, tables, mathematical formalisms, context diagrams for describing the environment,
indeed anything that can help in clarification of issues. Word processors, spread-sheet and
diagramming tools are mostly used. For larger software systems database management systems and
requirements engineering tools will help to manage the complexity of a large number of requirements
and their interdependency. These tools are particularly useful to cope with problems of requirements
management over long periods of time for development and operation of software systems.

Documentation of user requirements, the User Requirements Document (URD), usually applies
standard templates provided by a variety of sources. We have adopted the layout proposed by the
ESA PSS-05 documents. ESA PSS-05 provides standards and guidelines for the whole software li fe-
cycle and is widely used in industry in Europe [6]. A standard URD template using Adobe
FrameMaker [7], as well as several examples of URD for HEP applications have been made available
on the web [8]. A URD will normally pass many cycles of internal reviews for updates and
clarifications. Acceptance tests will be identified for validation of the user requirements in the
transfer phase at the end of the software development cycle. A formal review of the URD and the
Acceptance Test Plan, involving users, developers, management and QA staff , will conclude by a
formal statement that the project is ready to proceed. Formally, the software li fe-cycle begins with the
acceptance of the User Requirements Document.

5. SUMMARY

Requirements are intrinsically hard to do well . Beyond the need for discipline, there are a number of
diff iculties that attend both the understanding of requirements and their specification. Technical and
human concerns have to be addressed to manage complexity or communicate to different audiences.
All of the approaches outlined very briefly above have significant weaknesses, but experience
confirms that the use of any careful and systematic approach is preferable to an ad-hoc and chaotic
one. Non-existent or inconsistent requirements will end up in poor quality software and expensive
rework. Benefits of good requirements come at a cost. It needs people with adequate experience,
training and resources at the begin of a project, not after disaster has struck. The bulk of software
problems arise from inadequate specifications, not from errors in implementation.

REFERENCES

[1] Software Requirements Engineering, 2nd edition, Edited by R.H.Thayer and M.Dorfman, IEEE
Computer Society Press, ISBN 0-8186-7738-4, 1997.

Proceedings of the Third IEEE International Symposium on Requirements Engineering,
January 6-10, 1997, Annapolis, IEEE Computer Society Press, ISBN 0-8186-7740-6, 1997.

Requirements engineering : a good practice guide, I.Sommervill e, P.Sawyer, John Wiley &
Sons, ISBN 0-471-97444-7, 1997.

Software Engineering (5th edition), I.Sommervill e, Addison Wesley, ISBN 0-201-42765-6,
1995.

[2] “No Silver Bullet: Essence and Accidents of SoftwareEngineering” , F.Brooks, Computer, April
1987, pp. 10-19

The Mythical Man-Month, F.Brooks, Addison-Wesley, 1975

[3] Software Engineering Economics, B.Boehm, Prentice Hall , 1981

[4] Software Engineering, A Practioner's Approach, R.S.Pressman, 4th edition, McGraw-Hill ,
ISBN 0-070-52182-4, 1996

[5] IEEE Standard Glossary for Software Engineering Terminology, ANSI/IEEE Std 610.12-1990

[6] Software Engineering Standards, C.Mazza et al., Prentice Hall , ISBN 0-13-106568-8, 1994

Software Engineering Guides, Edited by J.Fairclough, Prentice Hall , ISBN 0-13-449281-1,
1996

[7] Learning Adobe Framemaker: The Off icial Guide to Adobe Framemaker. Paperback, Mac
Mill an, May 1 1996, ISBN: 1568302908

[8] see http://www.cern.ch/FrameMaker/#templates

