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Abstract
Starting from 2005, the LHC experiments will generate an unprecedented
amount of data. Some 100 Peta-Bytes of event, calibration and analysis data
will be stored and have to be analysed in a world-wide distributed
environment. At CERN the RD45 project has been set-up in 1995 to
investigate different approaches to solve the data storage problems at LHC.
The focus of RD45 soon moved to the use of Object Database Management
Systems (ODBMS) as a central component. This paper gives an overview of
the main advantages of ODBMS systems for HEP data stores. Several
prototype and production applications will be discussed and a summary of
the current use of ODBMS based systems in HEP will be presented. The
second part will concentrate on physics data analysis based on an ODBMS.

1 INTRODUCTION

1.1 Data Management at LHC

The new experiments at the Large Hadron Collider (LHC) at CERN will gather an unprecedented
amount of data. Starting from 2005 each of the four LHC experiments ALICE, ATLAS, CMS and
LHCb will measure of the order of 1 Peta Byte (1015 Bytes) per year. All together the experiments will
store and repeatedly analyse some 100 PB of data during their lifetimes. Such an enormous task can
only be accomplished by large international collaborations. Thousands of physicists from hundreds of
institutes world-wide will participate. This also implies that nearly any available hardware platform
will be used resulting in a truly heterogeneous and distributed system.

The computing technical proposals of LHC experiments do not only require access to the data
from remote sites but in addition ask for distribution of the data store itself to several regional centers.

Experiment Data Rate Data Volume

ALICE

ATLAS

CMS

LHCb

1.5 GB/sec

100 MB/sec

100 MB/sec

1 PB/month (1 month per year)

1 PB/year

1 PB/year

400 TB/year

Table 1: Expected Data Rates and Volumes at LHC

1.1.1 HEP Data Models

HEP data models are typically very complex. The number of different data types (e.g. bank types or
classes) needed to describe the event data of a large HEP experiment reaches easily several hundreds.
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A single event often contains thousands of individual data structures (e.g. banks or objects) and a large
number of relations between those data items (e.g. links or pointers).

The design and documentation of HEP data models is an essential and non-trivial task during
the experiment software development process. Especially the data model of stored data structures is of
significant influence on many other software developments. Since the definition of this data is shared
between multiple subsystems (e.g. data acquisition, event reconstruction and physics analysis) with
very different access patterns, it is often difficult to fulfil all flexibility and performance requirements
in a single design.

All LHC experiments exploit Object Oriented (OO) technology to implement and maintain their
very large software systems. Today most software development is done in C++ with a growing
interest in Java. The data store therefore has to support the main concepts of these OO languages such
as abstraction, inheritance, polymorphism and parameterised types.

1.1.2 The RD45 project

From the analysis of the LHC data management requirements, it seemed clear that existing solutions
based on FORTRAN and sequential files such as ZEBRA would be inadequate for the LHC era. At
CERN, the RD45 project was started in 1995 to investigate new solutions to the LHC data
management problems. After an evaluation of different technology choices such as language
extensions for persistency, light-weight object managers, object request brokers, RD45 focused
rapidly on a solution consisting of a commercial Object Database Management System (ODBMS)
coupled to a Mass Storage System (MSS).

2 OBJECT DATABASE SYSTEMS

2.1 ODBMS and Programming Languages

The natural view of data for application programmers is that of a network of objects in the application
memory space. Figure 1 shows a simple example of such a configuration describing part of the event
data of some HEP experiment. � � � � �� � � � �
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Figure 1: Simple Logical Model of Event Data Objects

A large fraction of any programs operation will consist of navigation within this net to find
needed objects, change their state, create new objects or delete existing ones, e.g. navigation from the
event object to its tracking detector, retrieving a particular track from its track list, and navigation to
all associated hit objects to perform a track refit.



For transient data - objects that only exist within the context of a single program - this
navigation is well supported by OO languages. The pointer and reference types provided by C++ and
Java allow efficiently creating and maintaining complex in-memory object networks. When I/O
operations have to be performed on such a network, e.g. because object data need to be stored or to be
exchanged between two programs, the support from today’s OO languages is rather limited.

2.1.1 Object Input / Output

Neither C++ nor Java provides an I/O sub-system capable of dealing directly with object trees or nets.
The significant burden of providing this capability within a particular application is therefore left to
the application programmer. In particular the programmer is left with the task to maintain two distinct
copies of each data item that has to be stored:

• “ in-memory” data  – an object net with pointers or references describing relations between objects
• “on-disk” data – a sequence of  bytes in one or more disk files

Since the representations of both copies are necessarily different (e.g. for heterogeneity reasons)
the application code has to perform a quite complex transformation between these copies. In particular
the application programmer has to explicitly code:

• When (and how often) to perform the transfer?
The user has to explicitly trigger any data transfer (e.g. read data from disk before first use of
some program variable, write to disk after its last update) and any re-transfer in case that the on
disk data might have been changed by another program. Since in a complex HEP application it is
difficult to predict which data items will be used, often simply all event data is transferred. This
approach may results in degraded performance.

• How to perform the transformation?
The network of objects has to be decomposed into single objects (or even single attributes) which
may be stored directly. Any pointers or references have to be handled by special code that
translates them into some storable format.

Often more than one third of the application code is necessary to perform this in principle well-
defined mapping between disk and memory. In practice it turns out that maintaining this I/O related
code is not only tedious but also relatively error prone. Many software problems in fact result from the
lack of consistency between “ in-memory” and “on-disk” data copies. Since the I/O subsystem is only
loosely bound to the programming language, typically as a set of library routines, consistency can not
be maintained automatically. In addition the large fraction of I/O related code obscures the real
services provided by a given class and makes it sometimes impossible to understand the objective of a
code fragment without knowing about the details of the I/O related code.

2.1.2 Object Persistency

Object databases feature a very different I/O model. The starting point is a so-called “ tight language
binding” in which the consistency between data on disk and in memory is maintained by the database
system. The programmer of an ODBMS application in fact only deals with a single copy of the data,
the object in the programming language itself. The database system is responsible for maintaining the
semantics of persistent objects: objects that retain all their state information between two program
contexts.

Any data transfers needed to synchronise program objects with the data on disk are performed
automatically by the ODBMS on a per object basis. Only data of those objects that are actually used



by a particular program are transferred which might result in a drastically increased application
performance compared to reading an entire event.

ODBMSs transfer complete objects from disk1 into application memory. The state of all data
members and the dynamic type of a persistent object are retained. Virtual function calls through a base
class pointer behave as expected (support for polymorphism). ODBMSs fully support abstract data
types and allow creating persistent types using templates.

2.2 Navigational Access

During the creation of a new persistent object the database assigns a unique Object Identifier (OID) to
each object. When an object is accessed from an application program, its OID is used by the database
to find the object data in the disk store. The different ODBMS products vary largely in their OID
implementation ranging from direct extensions of virtual memory pointers (Objectstore) to structures
that refer more directly to a physical location in the disk store (Objectivity/DB).

OID may themselves be embedded as data members in persistent objects, which allows
implementing a relation between two persistent objects (association). Most ODBMS products allow
creating in addition to uni-directional 1-to-1 relations 1-to-n associations (between one object and a
varying number of other objects) and bi-directional associations.

2.2.1 Smart Pointers

An application programmer typically does not use OID values directly but rather through so-called
smart pointer types which allow to implement “on-demand “ I/O. Smart pointers are small objects
which are provided by the database implementation that behave semantically as a normal object
pointer. E.g. in C++ they allow to use the “->” operator to access an object attribute or to call a
method. During this access the smart pointer will call back the database system to retrieve object data
from disk if necessary. ODBMSs maintain an object cache in the application program (client side
cache) to increase the performance of repeated accesses to the same objects.

Collection<Event> events;           // an event collection
Collection<Event>::iterator evt;    // a collection iterator

// loop over all events in the input collection
for(evt = events.begin();  evt != events.end(); evt++)

{
// access the first track  in the tracklist
d_Ref<Track> aTrack;

 aTrack  = evt->tracker->tracks[0];

// print the charge of all its hits
for (int i = 0; i < aTrack->hits.size(); i++)

cout  << aTrack->hits[i]->charge
                << endl;

}

Example 1: Navigation using a C++ program

                                                     
1 Some databases li ke Objectivity/DB treat large embedded attributes in an on-demand fashion. E.g.
large embedded arrays will be read from disk only if the application accesses at least one array
element.



As a consequence of the tight binding of ODBMS to the programming language the application
programmer perceives the database as a natural extension of normal “ in memory” objects. Using the
database one can create networks of objects with indefinite lifetime and efficiently navigate among
them.

2.3 Schema Handling

Before any instances of a persistent C++ class may be created, the class layout has to be registered
with the database. The information about attribute position, name and type of attributes is used e.g., to
provide the correct memory layout for an object on all different platforms.

For the C++ language this class registration is performed using a pre-processor program which
scans class definitions of persistent classes in Objectivity’s Data Definition Language (DDL) and
generates C++ header and implementation files for persistent classes. The generated header files
define the class interface for clients of a persistent class. The generated implementation files contain
C++ code which implements smart-pointer types and various collection iterators for each persistent
class. All generated files are then compiled together with any other application code and linked
against the Objectivity library to form a complete database application.

The set of all class definitions - also called database schema - is stored centrally in the
federation file together with the catalogue of all database files.

Figure 2: Schema Capture and Build Process

2.4 Consistent Access to Shared Data

ODBMS products provide support for multiple clients working on the same data store and
concurrently updating it. Usually ODBMSs introduce a central “ lockserver” that is responsible to co-
ordinate the updates by keeping a lock table for the whole system. To guaranty data consistency in the



system, object databases use (as e.g. relational database) the notion of transactions. Any data change is
part of a transaction with the ACID properties. Some vendors provide special transaction modes in
which multiple reading processes can coexist with a single writer per locked entity which may
enhance the concurrency behaviour. This feature is very useful for many HEP applications:

• Simplified Support of Parallel Applications
Many sub-systems of LHC experiments like data acquisition, filter- and reconstruction farms and
distributed simulation will only achieve their performance requirements by making use of parallel
processing. These systems will profit form the build-in concurrency support of the data store.

• Data Consistency and Reduced Storage Size
During HEP analysis the current practice involves many redundant copies of the original data.
Starting from the fully reconstructed data one has to repeatedly create copies of the original data
selecting a subset of the events, a subset of the data within an event or both. The reason for these
redundant data copies is the inability of today’s I/O systems to effectively access sparse data, to
re-cluster data or to add additional data to an existing store. In addition to the often significantly
increased total storage size these data copies may lead to subtle consistency problems. Since any
new reconstruction of the original events invalidates these copies, they have to be manually
updated before results of different analysis groups can be compared.

2.5 Physical Store Implementation

All ODBMS products use a multilevel hierarchy to implement the possibly distributed physical store.
Objectivity/DB for example uses a hierarchy of five different levels to implement the physical storage.
The topmost level - the Federated Database - keeps system wide information about the shape of
persistent classes within the store. In addition the catalogue of physical location of all data files is kept
centrally in this file. Each federation consists of up to 64k databases - files that contain the actual data
of all stored objects. Each database is structured internally into up to 32k “containers” - contiguous
areas of objects within a database file. Containers consist themselves of up to 64k pages containing
the actual object data. The starting position of object data on a page is called slot and uniquely defines
a particular object on the page.
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Figure 3: Storage Hierarchy in Objectivity/DB

The structure of the physical store hierarchy is directly reflected by the internal structure of the OID
implementation. A 4-tupel of 16 bit numbers uniquely references any object within the store.
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Figure 4: Object Identifier Implementation used by Objectivity/DB

2.5.1 Separation of Logical and Physical Storage Model

The concept of OIDs allows to directly access any object in the potentially large distributed store
without requiring the application programmer to maintain store implementation details like e.g. file
and host names. Since this information about the physical layout of the store is kept only once,
centrally by the database, it is much easier to change the storage layout without compromising
existing applications. One may change the location of a particular file to a new host by moving the
data and changing the catalogue entry. Since the catalogue is shared by all database applications, they
will use the data from the new location without any change.

Figure 5: Physical Storage Hierarchy and Logical User View

2.5.2 Data Clustering and Re-Clustering

An important feature offered by several ODBMS products is the support of object clustering. When a
persistent object is created, the user may supply information where the object should be placed within
the physical storage hierarchy. In C++ a clustering hint may be passed as an argument to the new
operator. The statement

d_Ref<Track> aTrack = new(event)  Track;

will for example instruct the database to create a new persistent track object  physically close to the
event object. This ability to cluster data on the physical storage medium is very important for
optimising the performance of applications which access data selectively.
The goal of this clustering optimisation is to transfer only useful data from disk to the application
memory (or one storage level below: from tape storage to a disk pool). Grouping data close together



that will later be read together can drastically reduce the number of I/O operations needed to acquire
this data from disk or tape. It is important to note that this optimisation requires some knowledge
about the relative contributions of different access patterns to the data.

An simple clustering strategy is the “type based clustering” where all objects of some particular
class are placed together: e.g. Track and Hit objects within an event may be placed close to each other
since both classes will often be used together during the event reconstruction.

For physics analysis this simple approach is probably not very efficient since the selection of
data that will be read by a particular analysis application depends more on the physics process. In this
case one may group the analysis data for a particular physics process together.

2.5.3 Architectural and Practical Storage Size Limitations:

The theoretical storage size constraints in the current Objectivity implementation result from the
implementation object identifier in four 16-bit words. Each OID consists of four parts:

• 16 bit database number
resulting in  up to 64K databases per federated database

• 15 bit container number (one bit used internally)
 32K containers per database

• 16 bit page number
64K logical pages per container

• 16 bit slot number
64K possible object locations per page

Assuming that the maximum number of database pages is allocated one obtains a maximum
container size of 4GB (for 64kB page size) or 0.5GB (for 8kB page size). The theoretical limit for the
total size of a federated database would amount in this case to some 10 000PB.

In the current implementation the maximum size of a federation is still significantly constrained
by the maximum file size in the system. This calculation of a theoretical limit assumes database sizes
of 128TB. Since in the current implementation each database is represented by a single file, such large
databases are not practical. Assuming a maximum file size (and therefore maximum database size) of
100GB one obtains a maximum federation size of 6.5PB. Since this might be a limitation for LHC
experiments, RD45 has requested to modify the mapping between database and physical files to allow
multiple files per database.

2.6 Limits and Scalability Tests

Various tests have been performed to check the scalabil ity of Objectivity/DB. Federated Databases of
0.5 TB have been demonstrated and multiple federations of 20-80GB are used today in production,
some of them also exploiting the parallel I/O capabilities. The NA45 experiment for example
performed their reconstruction and formatting on 32 filter nodes writing in parallel into a single
federated database. Even more concurrent database clients have been simulated in a recent test
performed at Caltech. On a HP Exemplar supercomputer up to 240 concurrent readers have been used
successfully against a single federated database.

3 OBJECTIVITY SPECIFIC FEATURES

In addition to the generic ODBMS functionality that is implemented by most vendors the products
differ significantly in their data distribution and replication features. The following section describes
these specific features and their potential use in HEP applications in more detail.



3.1 Federations of distributed databases

Applications are connected to one Objectivity federated database at a time. A federated database
consists of many database files that may be located on different hosts connected by local or wide area
network. Each client application communicates directly with the hosts that serve data used by the
application.  Any data transfer takes place between the client process and the Objectivity page server
(ooams) which runs on each data-serving host2. Consistency for concurrent access is provided through
one or more lockserver processes per federation. Before any data is read or modified, the client
connects to this lockserver to obtain a suitable lock.
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Figure 6: Distributed Applications Sharing a Federated Database

3.2 Data Replication

Objectivity/DB allows replicating all objects in a particular database to multiple physical locations.
The aim of this data replication is twofold:
• Enhance performance:

Client programs may access a local copy of the data instead of transferring data over a network.
• Enhance availability:

Clients on sites which are temporaril y disconnected from the full data store may continue to work
on the subset of data for which local replicas are available.

The following diagram shows a simple configuration where one database is replicated from site
1 to two other remote sites over a wide area network.

                                                     
2 Processes that run on the same host on which the database is located directly access the database files
without using the page server.
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Figure 7: Database Replication

Any state changes of replicated objects on either site are transparently propagated to all other
replicas by the database system. In the case that some of the replicas are not reachable, a quorum-
based mechanism is used to determine which replica may be modified and a backlog of all changes is
kept until other replicas become online again.

The data replication feature is expected to be very useful, for example to distribute central event
selection data to multiple regional data centers.

3.3 Schema Evolution

Given the extremely long time scale for LHC experiments it is important to foresee the possibility to
change the object model of experiment data during the experiment lifetime.  Not only new persistent
classes need to be incorporated into the federation schema but also existing class definitions will need
to be changed.

The schema evolution feature of Objectivity/DB allows for example to add, move or remove
attributes within classes or to change the inheritance hierarchy between persistent classes. If a schema
change affects any existing persistent objects the database provides a flexible migration scheme.
Depending for example on the amount of involved data one can choose between:

• Immediate Conversion
all affected objects are converted to the new class layout using an upgrade application

• Lazy Conversion:
affected objects are upgraded as they are accessed

3.4 Object Versioning

Several ODBMS systems provide support for maintaining multiple versions of the same logical
object. In Objectivity these versions may for example constitute a simple linear time series of states of
one object or form a more complex tree of states.  The following diagram shows a general version
genealogy involving multiple linear versions and branches of one object.
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Figure 8: Object Versioning

The object versioning feature is used to implement the calibration database of the BaBar
experiment.

3.5 Other ODBMS Products

3.5.1 Versant

Versant uses a different splitting between database client and server than Objectivity/DB. Whereas
Objectivity/DB implements a "fat-client/thin-server" model, Versant provides the opposite. The object
identifier (OID) in Objectivity/DB has a nearly direct physical mapping, whereas Versant uses a
logical object identifier (LOID).

• In Versant, distributed databases are less tightly coupled than in Objectivity/DB. Each database
has its own schema, as opposed to Objectivity/DB, where the schema is shared across the entire
federation. In our environment, where many databases are likely to reside offline on tape schema
inconsistencies between different databases are li kely to happen.

• Although Versant implements a LOID, an application must know in which database each object
was created and is responsible for opening the databases in question. This contrasts strongly with
Objectivity/DB where it is sufficient to initiali se access to the federation.

• The support for object clustering in Versant is less flexible than in Objectivity/DB.

4 HEP PRODUCTION SCENARIOS: ODBMS-BASED DATA ANALYSIS

A typical analysis scenario can be split in two parts. The first part concerns populating the database
with event data and is usually done in a non-interactive C++ program (e.g., in batch mode). The
second part implies using an interactive tool, such as the IRIS Explorer framework, to actually
produce summary data, usually as histograms, out of the event data.

4.1.1 Building a Tag Database

In this first stage, the analysis data store, assumed to be provided by Objectivity/DB and HPSS, is
populated, e.g. from a former reconstruction phase. The following figure shows schematically the
difference between the PAW+Ntuple and tagDB models.
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Figure 9 - NTuple vs. TagDB Models

Rather than imposing a pre-defined data model, as is the case with today's NTuple, the LHC++
analysis tools work directly with the data model of the experiment. To assist in the selection of the
required events, a new concept is introduced - that of an event tag. An event tag is a small object
containing selection relevant attributes for each event. The tag objects are stored physically separate
from the event to permit eff icient clustering, but have an association to the full event data. At the
moment, two classes of tags have been implemented:

• Concrete tags have their own schema, and are recommended for experiment-wide or work-group
activities, as they offer optimal performance.

• Generic tags, on the other hand, are more suited for individual physicists - they can be defined on
the fly and do not require the definition of new schema, albeit with a small, but acceptable,
performance penalty.

Both implementations share the same interface, which is entirely decoupled from the physical
storage model. This permits the implementation of different clustering strategies, such as attribute-
based clustering - as in column-wise NTuple - without affecting the user interface.

// create a new tag collection
GenericTag simTag(“simulation tag”);

// define all attributes of my tags
TagAttribute<long>  evtNo(simTag,"event number");
TagAttribute<float> et   (simTag,"Et particle1");
TagAttribute<float> theta(simTag,”theta particle1");
TagAttribute<short> pid  (simTag,”id particle1");

Example 2 - Creation and Definition of a New Event Tag

Tags may be filled in a simple event loop, as shown below. It is important to note that the tag
attributes are handled just like normal C++ variables.



while ( evt =  geant->nextEvent() )
{
      simTag.newTag();      // create a new tag

 et   = evt->getPart(1).et;
      theta = evt->getPart(1).theta;
      pid   = evt->getPart(1).pdg_code;
}

Example 3 - Filling a Previously Defined Tag

As has been described above, a fundamental feature of this strategy is the ease in which the full
event data can be accessed. This is a significant piece of new functionality that was not possible using
PAW and NTuples.

while (atlasTags->next())
{

if (et > 4.5 &&  sin(theta) > .5) // for selected events…
{ // … fill histograms f rom the tag…

cout << “event: “ << eventNo << endl;
etHisto->fill(et);

  thetaHisto->fill(theta);

// … but also using data from the event.
Ntracks = atlasTags->event->tracking->trackList.size(); 
nTracksHisto->fill(nTracks);

  }
}

Example 4 - Accessing the Event Data from the Tag

Having populated a collection of tags - typically, but not necessarily, performed in batch, these
data can then be directly be visualised e.g. using IRIS Explorer.

4.1.2 Interactive Data Analysis

Having defined and populated collections of tags, these can then be analysed in the IRIS Explorer
framework, using a combination of standard and HEP-specific modules. A user does not need to be
exposed to the details - a collection of modules can be predefined and presented to the user as a
complete application. Functionality similar to that provided in PAW is available, but with a number of
significant differences. The most important of these is that analysis is no longer restricted to the subset
of data that has been copied into a NTuple. A user has access to all of the data for a given event and is
presented with a unified interface to the entire data store. This includes not only the event data, but
also associated meta-data, such as calibration information, the definitions of various event selections,
and so on. In this way, is it possible to build associations from histograms to the selection criteria that
produced them and the data itself.

In the past, the user was restricted to that subset of the data that was copied into a given
NTuple. Furthermore, the management of these NTuple was entirely the responsibility of the user
(naming, storing etc.). In the ODBMS approach, the user has transparent access to any event or indeed
any part of the event that is stored in a consistent manner experiment wide. These features offer
considerable improvements in flexibility and reproducibility over previous approaches.



5 HEP PROJECTS  BASED ON OBJECTIVITY/DB

5.1.1 BaBar

The BaBar experiment at SLAC is expected to start taking data in 1999. BaBar uses Objectivity to
store event, simulation, calibration and analysis data of an expected amount of 200TB/year.  The
majority of this storage will be managed by HPSS.

5.1.2 ZEUS

ZEUS is a large detector electron-proton collider HERA at DESY. Since ZEUS started taking data
already in 1992, the analysis environment at ZEUS is mainly based FORTRAN using the ADAMO
system. Since 1996 Objectivity is used for event selection in the analysis phase. About 20GB of “ tag
data” are used with the plan to extend to a store of 200GB. The result of re-implementing the event
selection using Objectivity/DB was a significant gain in performance and flexibility compared to the
old system.

5.1.3 AMS

The Alpha Magnetic Spectrometer (AMS) took its first data on a NASA space shuttle flight in 1998
and will be used later on the International Space Station. AMS’s main research goal is the search for
antimatter and dark matter. During its first data-taking period Objectivity was mainly used to store
production data, slow control parameters and NASA auxiliary data.

5.1.4 CERES

The CERES/NA45 experiment is a heavy ion experiment at the CERN SPS studying electron-positron
pairs in relativistic nuclear collisions.  In 1997, CERES successfully used Objectivity/DB to perform a
parallel reconstruction and fil tering of their raw data from a multiprocessor farm (32 nodes
MEIKO/Quadrics CS2). After recently upgrading their detector with a time projection chamber,
CERES expects in 1999 to write 30 TB of raw data during a data-taking period of 1 month.

5.1.5 CHORUS

The CHORUS experiment searching for neutrino oscillations uses Objectivity/DB for an online
emulsion scan database. CHORUS plans to deploy this application also at sites outside CERN.

5.1.6 COMPASS

The COMPASS experiment expects to begin full data taking in 2000 with a preliminary run in 1999.
Some 300TB of raw data wil l be acquired per year at rates up to 35MB/second. Analysis data is
expected to be stored on disk, requiring some 3-20TB of disk space. Some 50 concurrent users and
many passes through the data are expected.

6 CONCLUSION

HEP data stores based on Object Database Management Systems (ODBMS) provide a number of
important advantages in comparison with traditional systems. The database approach provides the user
with in a coherent logical view of complex HEP object models and allows a tight integration with
multiple of today’s OO languages such as C++ and JAVA .

The clear separation of logical and physical data model introduced by object databases allows for
transparent support of physical clustering and re-clustering of data which is expected to be an
important tool to optimise the overall system performance.

The ODBMS implementation of Objectivity/DB in particular show scaling up to multi-PB distributed
data stores and provides a seamless integration with Mass Storage Systems (MSS) like HPSS. Already
today a significant number of HEP experiments in or close to production adopted an ODBMS based
approach.
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