
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – SL DIVISION

CERN-SL-99-008 HRF

Signatures of microwave instability

E. Shaposhnikova

Abstract

The microwave instability is probably one of the most well known manifestations of
collective effects in accelerators. However the theory describing this instability for bunched
beams is still under development. The result of the instability is a significant increase in
longitudinal emittance of the beam, leading to a serious performance limitation in many
machines. In this lecture we first discuss what is the phenomenon that one calls the mi-
crowave instability and then describe measurements of instability threshold, momentum
spread and spectrum of the unstable bunch.
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1 Introduction, or what does one call the microwave instability?

With increasing beam current, in the late 70’s, so called turbulent bunch lengthening was observed first
in electron and then in proton accelerators: ACO (Orsay, France), ADONE (Frascati, Italy), CEA (Cam-
bridge, USA), SPEAR (SLAC, USA), ISR, PS and SPS (CERN, Switzerland), Main Ring (Fermilab,
USA) and in many others.

From the start observations showed that this is a single-bunch phenomenon. Momentum blow-
up depended strongly on the intensity per bunch but not on the number of bunches in the ring. The
instability also was identified as being in the longitudinal plane of particle motion.

Most probably, the name microwave (µw) instability was first introduced by D. Boussard in 1975
to describe the very large momentum blow-up suffered by proton bunches during debunching in the
CERN PS seen together with microwave (above 1 GHz) signals [1]. The model suggested in [1] to
explain this single bunch instability used modified coasting beam theory [2]. Later on the nameµw
instability was also extended to coasting beams to describe, in both longitudinal and transverse planes,
instabilities other than the resistive wall and the negative mass. However in this case the frequencies
under consideration are very often much below the GHz range.

Usually (but not always) an instability is called theµw instability if the wavelength of the wake field
responsible is much shorter than the bunch length. This can be written as

τfr � 1, (1)

whereτ is the bunch length in seconds andfr is the frequency of the impedance which drives this insta-
bility. For a coasting beam, condition (1) then means many wavelengths along the ring and frequencies
much higher than the revolution frequency – for large rings this can be in the kHz range. For the latest
generation of electron storage rings with bunch lengths as small as tens of picoseconds inequality (1)
would require the frequency of the impedance to be above 100 GHz. Then again the nameµw instability
is often used for an instability driven by an impedance with a very high frequency, which however does
not satisfy condition (1). There is also the single-bunch transverse microwave instability, which more
often has the name transverse mode-coupling instability (TMCI) [3]. The nameµw instability is even
sometimes used for multibunch instabilities driven by a high frequency impedance [4].

Below, when not specially indicated otherwise, we will talk about the longitudinal single-bunch
instability.

All that concerns the theory of the microwave instability is still an open subject for studies. So we
will concentrate on a phenomenological description rather than on an overview of the many existing
theories [5]-[7]. Even then it is not possible to discuss all manifestations ofµw instability. Inevitably
some interesting phenomena will be missed – like, for example, the saw tooth instability observed with
leptons in the SLC Damping Ring [8], [9] or hysteresis in bunch lengthening at the KEK Accumulation
Ring [10].

2 Observations of instability

Regardless of the rich variety of phenomena called by the same name, all authors agree on the intensity-
dependent emittance blow-up as being the most evident signature of longitudinalµw instability. The
first indication of emittance blow-up in a bunched beam is of course the increase in bunch length with
intensity.

A typical observation of the effect of theµw instability on the bunch distribution is presented in
Fig. 1. A single proton bunch with lengthτ '5 ns injected into the SPS at 26 GeV was captured by the
100 MHz RF system and left to circulate in the ring for some time. Measurements of the bunch profile
were taken at injection and after 1.5 s for two different bunch intensities using a longitudinal wideband
pick-up. As one can see the high intensity bunch observed at the later moment has a distribution and
length very different from the initial one. The low intensity bunch has practically not suffered.
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Figure 1: Bunch profile at injection (upper trace) and after 1.5 s (lower trace) for intensity of2.5× 1010

(left) and5.5 × 1010 (right) protons per bunch. Horizontal axis - time (5 ns/div).

Figure 2: Peak line density (upper trace) andµw signal (lower trace) for intensity of2.5 × 1010 (left)
and5.5 × 1010 (right) protons per bunch. Horizontal axis - time (5 ms/div).

In Fig. 2 the peak detected signal (peak of line density) observed during the first 35 ms after injection
is shown together with theµw signal obtained using a bandpass filter (1.3 - 1.6) GHz for the same
bunches as in Fig. 1. Theµw signal is significantly larger for the high-intensity bunch (note the change
of vertical scale). The differences between the peak detected signals are commented upon later. All data
in Figs. 1 and 2 were obtained using the same wideband pick-up.

Measurements of bunch length carried out for different intensities give the bunch lengthening curve.
These kinds of curves are obtained in nearly every accelerator in the world. Sometimes this curve has a
very clear break-point, as in the classic example from the ISR [11] in Fig. 3 (left), showing two different
types of dependence of bunch length on proton intensity. The first part of this curve can be attributed to
the change in focusing voltage or synchrotron frequency due to the effect of potential-well distortion.
The second part, called in the first observations anomalous or turbulent bunch lengthening, is a signature
of theµw instability and the break-point is its threshold.

In the measurements shown in Fig. 1 the intensity was varied in the injector chain. As a result, to
analyse the data it is necessary to take into account the possible influence of intensity effects on the
bunch shape in the injector itself. This is why in general it is better to change the bunch intensity by
vertical scraping at injection or in the transfer line (to keep the longitudinal bunch parameters constant).

It is interesting that the effects of potential-well distortion can already be deduced from the peak
detected signal measurements in Fig. 2. Let us assume that the injection voltage (150 kV) is matched
so that the incoming “ideal” low-intensity bunch will not have any quadrupole (shape) oscillations after
injection. If the voltage is too high then the bunch will start to rotate in longitudinal phase space and
become shorter during the first quarter of the synchrotron period. The opposite is true if the voltage is
too low – the bunch becomes initially longer. In Fig. 2 the low intensity bunch (on the left) starts to
oscillate with an increasing peak line density (upper signal) – for this bunch the voltage is a little bit too
high to be matched. The high intensity bunch, on the right, obviously shows that the voltage is too low.
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Figure 3: Bunch length as a function of beam current in ISR (left) and in SLC Damping Ring for old
and new vacuum chambers (right).

This happens because the potential well provided by the RF system is distorted by the voltage induced
even by a stable bunch. If this induced voltage is due to the cavity impedance the effect is called beam
loading and usually can be foreseen and compensated in the RF system itself. The voltage induced due
to the impedance of other elements in the ring leads to the effect called potential-well distortion. One
can also notice in Fig. 2 a reduction in average peak line density during the period of observation – this
is already a result of theµw instability.

Very often the bunch-lengthening curve is rather smooth and does not have any clear threshold, as for
example in measurements in the SLC Damping Ring presented in Fig. 3 (right) for old and new vacuum
chambers [9]. Then one way to distinguish the change in bunch parameters associated with theµw
instability from other effects is by measuring the momentum spread (see Fig. 4). Below the instability
threshold, if synchrotron radiation effects are important (which usually is true for leptons), momentum
spread will stay constant, otherwise (as is true for protons) it is the longitudinal bunch emittance (bunch
area in phase space) which is an invariant and momentum spread will change in accordance with bunch
length (will decrease if the bunch lengthens).

Some measurement methods of momentum spread, which often plays a key role in identifying the
µw instability, are described in the next sections both for bunched and coasting beam.

3 Measurement of momentum spread

In practice there are no direct measurements of beam momentum spread in the machine, however it can
be estimated indirectly.

3.1 Bunched beam

3.1.1 From bunch length

For a low-intensity bunch, in the absence of the effect of synchrotron radiation, the most obvious way
to estimate momentum spread is to calculate it from the measured bunch lengthτ for the known syn-
chrotron frequencyωs. In a non-accelerating bucket, the bunch momentum spread is given by:

∆p

p
=

2ωs
|η|ωrf sin

ωrfτ

4
. (2)

Herefrf = ωrf/(2π) is the RF frequency,η = 1/γ2
t − 1/γ2, whereγ andγt are the relativistic factors

which correspond to the synchronous beam energyE0 and transition energy.
However, as we have already discussed in the previous section, for a high-intensity bunch the

potential-well effect should be taken into account by a voltage modification:V → V + Vind and
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Figure 4: Left: total horizontal sizeX1, betatron sizeX2, energy spreadDE/E and bunch length∆
(fwhm) as a function of bunch current in BEP Storage Ring (Novosibirsk). The curves are fitsI

1/3
b and

I
1/6
b to the measured data. Right: energy spread measured from transverse beam size in the New SLC

Damping Ring.

therefore by replacingω2
s → ω2

s + δ, whereδ could be negative or positive. Its sign depends on the
machine impedance being inductive or capacitive and the energyE0 being above or below transition.
Space charge below transition has a defocusing effect and leads to bunch lengthening. Bunch shortening
due to potential-well distortion is quite rare [12].

3.1.2 From transverse size

Momentum spread can be estimated from the total horizontal beam size

σ2
x = σ2

β + (Dx
∆p

p
)2, (3)

whereσβ is the betatron horizontal size andDx is the dispersion function.
By comparingσx measured at the two locations with differentDx one can obtain∆p/p. To minimise

measurement error locations are usually chosen in such a way thatDx is maximum at one and close to
zero at the other.

The horizontal beam size can be measured using optical systems (as in LEP, BEP), a wire scanner
(SLC Damping Ring, SPS) or others.

In Fig. 4 (left) we present measurements from the BEP Storage Ring (Novosibirsk) [13] done with a
resolution≤ 0.25 mm in the transverse plane and≤ 2 cm in the longitudinal using an optical diagnostic
system. The bunch length follows theI1/3

b curve while energy spread theI1/6
b curve,Ib is the beam

current. These measurements allow the intensity dependent increase in bunch length to be explained by
the effect of potential-well distortion. The momentum spread increase is a result of multiple intrabeam
scattering and not of instability.

The energy spread estimated from the transverse beam size measured in the New SLC Damping
Ring [9] with a wire scanner in a dispersive region of the extraction line is shown in Fig. 4 (right).
One can clearly see the onset of the instability which was hidden in the corresponding bunch-length
measurements presented in Fig. 3.
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3.1.3 From debunching

Momentum spread can also be estimated from the speed of debunching. If a bunch is injected into
the machine without RF voltage, or if this voltage was switched off, particles which have more or less
momentum than the synchronous particle will start to move in different directions and the bunch will
become longer.

The initial momentum spread∆p/p can be estimated from the decay of the peak detected signal or
from the low-frequency bunch spectrum (in the last case assuming that the initial density distribution
is known). The low-frequency bunch spectrum during debunching changes with time according to the
following expression (up to the instability threshold):

S(t, n) = S(0, n∗) n∗ = n∗(n, t) = nq(t), (4)

whereS(t, n) is the signal on the spectrum analyzer at frequencynω0, ω0/i(2π) is the revolution fre-
quency, andS(0, n) is the initial bunch spectrum.

For a short bunchq(t) =
√

1 + t2/t2d and

td = τ0/(2|η|∆p
p

) (5)

is the so called debunching time,τ0 being the bunch length at injection. During debunching the local
value of momentum spread in the bunch is decreasing. The bunch length and peak line densityλp(t)
change as

τ(t) = τ0q(t), λp(t) = λp(0)/q(t). (6)

In many proton machines theµw instability was observed during RF gymnastics involving debunch-
ing. Debunching is also used as a tool in studies of theµw instability [1], [14], [15]. In this way it was
understood that local values of momentum spread play an important role.

In Fig. 5 one can see the peak line density decay (peak detected signal) and theµw signal (bandpass
filter 1.3 - 1.6 GHz) from a wideband pick-up recorded during debunching of two bunches with different
intensities.

Figure 5: Peak detected (upper trace) andµw (lower trace) signals during debunching of bunches with
3.4 × 1010 (left) and4.3 × 1010 (right) protons per bunch. Horizontal axis - time (5 ms/div).

Both bunches become unstable during debunching, but the high-intensity bunch at an earlier mo-
ment. It is also possible to notice that the high-intensity bunch debunches faster. Below the instability
threshold this can be explained by an effect similar to potential-well distortion [16] – in this case the
induced voltage has a defocusing effect. During the instability momentum blow-up decreases the de-
bunching time as well, see Eq.(5).

5



Figure 6: Schottky scan at the beginning (left photo) and at the end (right photo) of debunching in the
CERN PS. Horizontal axis - frequency (400 kHz total width), vertical -∝

√
F (ω0) in logarithmic scale.

3.2 Coasting beam

To confirm the unexpected blow-up in the first studies of theµw instability in the CERN PS [1] momen-
tum spread∆p

p
was measured at the end of debunching (coasting beam) using different methods. Let us

consider some of them.

3.2.1 Shottky scan

In Fig. 6 one can see the increasing width of the Schottky spectrum during debunching (from left to
right) due to the effect of theµw instability in the CERN PS [17].

A beam with momentum spread also has a spread in revolution frequencies. The width of the
Schottky spectrumn∆ω0 measured at the frequencynω0 is related to the momentum spread of the
beam by

n∆ω0

nω0
= η

∆p

p
. (7)

The amplitude of the signal atnω0 is proportional to the square root of the number of particles at a given
revolution frequency.

The frequencynω0 should be chosen as a compromise between the width of the line which increases
with n asn∆ω0, and the amplitude of the signal which decays withn. For example, for measurements of
the Schottky spectrum in the SPS a resonant pick-up with resonant frequencynω0/(2π) = 1 GHz (n ∼
23000) and bandwidth 2 MHz is installed in the ring. This method is based on statistical phenomena
and therefore an averaging spectrum analyzer should be used (∼ 100 measurements).

3.2.2 Scanning bucket technique

This technique is based on adiabatically varying the frequencyωrf(t) to move small empty buckets
across the beam in momentum space, (see left picture in Fig. 7). The required frequency variation is

∆ωrf > h∆ω0 = hηω0
∆p

p
, (8)

whereh is the harmonic number. Measurement of the amplitude of the beam spectrum at the frequency
ωrf as a function of time during scanning gives the momentum spread. Results for the CERN PS [17]
are shown in Fig. 7. While this method was used in many machines at CERN (ISR [18], PS, SPS) it is
not straightforward and requires quite fine tuning.

3.2.3 Other methods

For the threshold calculation it is important to know the shape of the particle distribution in momentum.
For electrons one usually assumes a Gaussian distribution. For protons the choice is not so obvious.
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Figure 7: Scanning bucket technique. In the photo measured amplitude of bunch spectrum atωrf (top
signal) together with corresponding change in frequency (lower signal).

Besides those described above there are other methods which allow information about the momentum
distribution to be obtained. There are, for example, beam transfer functions (BTF) and beam echos.

The technique for BTF measurements in coasting beam is well developed. Echos in accelerators
are quite new. After beam excitation by two short consecutive RF pulses with delay∆t at different
harmonics of the revolution frequencyh1 andh2 an echo signal can be observed at harmonic(h2 − h1)
and at a timetecho = h2∆t/(h2 − h1) after the first kick. The shape of the echo signal in time is
proportional to the Fourier transform of the momentum distribution [19].

Disadvantages of these methods are that they are destructive (one needs a kick which can change
a distribution) and not intensity independent. But as a result of this intensity dependence the BTF
measurement can be used to determine the machine impedance.

4 What is theµw instability?

In the introduction we discussed what is the phenomenon that one calls theµw instability. However it
is much more difficult to answer the question what is theµw instability.

The mechanism of the instability is based on the self-action of particles (feedback) which leads to the
fact that an initial small density perturbation grows exponentially with time. The action of one particle
on the other in the accelerator can be described by the wake field or coupling impedance.

The coupling impedanceZ(ω) is the Fourier transform of the wake potential, proportional to the
electric field integrated over one turn as seen by a probe particle following a source particle at a time
interval t. An accurate and detailed definition can be found for example in [7], [20], see also these
proceedings [21].

A complete picture requires knowledge of both the source of the instability – the coupling impedance,
and the mechanism of the self-action — the theoretical model.

Coupling impedance is determined by the beam environment and can be very different in different
accelerators.

Usually in old machines the many changes in cross section contribute to a relatively large impedance
which is difficult to evaluate. As a result, an impedance model which is a broad-band resonator of the
form

Z(ω) =
Rsh

1 + iQ(ω/ωr − ωr/ω)
, (9)

with quality factorQ ' 1 and resonant frequencyωr = ω0nr chosen around the vacuum chamber
cut-off, is often assumed. HereRsh is the shunt impedance and the resonator bandwidth is∆ωr =
∆ωhhhw = ωr/2Q. For bunch lengths which satisfy condition (1), the spectrum of the stable bunch
sees a low-frequency impedanceZ/n = iRsh/(Qnr), wheren = ω/ω0, which together with the space
charge effect is responsible for the potential-well distortion discussed above.
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Examples of|Z/n| (Ohm) for different accelerators are: CERN ISR - 14, Fermilab MR - 5, Super-
ACO - 2.2, LEP - 0.5, ALS - 0.2.

As one can see, in modern accelerators the impedance is smaller and usually better known. A more
realistic broad-band impedance model (for example in [22]) is constructed using impedance calculations
(in most cases numerical) for different machine elements. Difficulties in this case can arise from the fact
that short bunches sample the impedance at very high frequencies, well beyond cut-off.

If the machine coupling impedance is well known then multiparticle simulation codes can be used
to try to reproduce the measurement results for the instability. Usually this is done for the bunch-
lengthening curve.

The theory of theµw instability for a coasting beam is well understood [2], [23]. First theories
analysing bunched beam instabilities were suggested in [24], [25]. It was also proposed [1] that one can
apply coasting beam theory to the local parameters in a bunched beam assuming

• fast instability (growth time shorter than synchrotron period),

• wavelength involved� bunch length; this is condition (1),

• wake function is a short range (low Q impedance).

This gives the Keil-Schnell-Boussard criterion [1], [23] for the threshold of the longitudinalµw
instability, which can be written in the form:

|Z|/n
F ?

≤ pcβ|η|
e2N

(
∆p

p
)2τ, (10)

whereN is the number of particles in the bunch andF ? is a form factor taking into account different
particle distributions.

This empirical rule is widely used for impedance estimations and parameter scaling. The observed
discrepancy for short bunches [6] can be partially improved by using instead of the low frequency limit
Z/n, an effective impedance which is the actual impedance integrated over the bunch spectrum.

For example, threshold measurements done in the CERN SPS during the last 20 years with different
beams (protons and leptons) and by different people produced estimations for the impedance|Z|/n
(using formula (10)) in the range 9 to 37 Ohm. In all these measurements the bunch length was quite
similar – (3 - 5 ns). For much shorter lepton bunches formula (10) predicts an instability threshold which
was exceeded in operation many times without any instability being observed [26]. Replacing|Z|/n
found for long electron bunches by an effective impedance improves the situation but is still insufficient.

A proof for this criterion has so far been provided [27] for a broad-band impedance withZ/n con-
stant over some bandwidth, much larger than the bunch spectrum width∝ 1/τ . This criterion is also
shown [4] to work for a multibunch instability driven by a high-frequency resonator of form (9).

In the next section we will consider measurement of the bunch spectrum. We will show that the
spectrum of the unstable bunch contains important information about the source and mechanism of
instability. We will distinguish between measurements done close to the threshold and those done well
above the instability threshold as being cases of slow and fast instability.

In the case of the fast instability one can assume that bunch behaviour is determined by the induced
voltage and that synchrotron motion can be neglected. For fast-decaying wake fields there is no feedback
between head and tail of the bunch. For the slow instability synchrotron motion plays an important role
– this is how information passes from the tail to the head of the bunch.

5 Bunch spectrum

5.1 Slow instability

The longitudinal motion of the particle can be described by a pair of conjugate coordinates(θ, θ̇), where
θ is an azimuthal position measured relative to the synchronous particle andθ̇ is connected with the
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momentum deviation by

θ̇ = ω0η
∆p

p
. (11)

The synchronous particle gives, at the position of the pick-up, a signal with a spectrum of equal
amplitude lines at all revolution harmonicsnω0, −∞ < n <∞.

Let us consider a particle which performs linear synchrotron oscillations described by the phase
equation

θ̈ + ω2
sθ = 0. (12)

The amplituder and phaseψ of these oscillations are:

θ = r cosψ, θ̇/ωs = r sinψ.

The spectrum of the signal becomes more complicated and has, in addition, synchrotron sidebands
around every revolution frequency line atω = nω0 + mωs, −∞ < m < ∞. Their amplitudes are
Jm(nr), whereJm(x) is the Bessel function of orderm.

In polar coordinates (r, ψ) the evolution of the particle distributionF (r, ψ, t) in longitudinal phase
space is described by the Vlasov equation:

∂F

∂t
+
∂F

∂ψ
ωs +

∂F

∂r
ṙ = 0. (13)

Without wake fieldsṙ = 0 and the stationary distribution function is a function ofr only: F = F0(r).
The spectrum of the bunch does not show any internal motion and consists of revolution lines with an
envelope which is the Fourier transform of the bunch line densityλ(θ).

Due to induced voltageVind the particle motion is perturbed:

θ̈ =
ω2η

β2E0

e

2π
[Vrf(θ) + Vind(θ, t)]. (14)

The distribution function can be decomposed into an equilibrium and a perturbed part:

F (r, ψ, t) = F0(r) + f(r, ψ, t). (15)

For smallf(r, ψ, t) the Vlasov equation (13) can be linearized and the solution for the perturbation can
be written as an expansion in eigenmodes

f(r, ψ, t) =
∞∑

m=−∞

∞∑
k=0

amkRmk(r)e
imψe−iΩmkt, (16)

wherem andk are the azimuthal and radial mode numbers. In general solutions can only be found
numerically. However for some special types of distributionF0(r) and coupling impedanceZ(ω), there
are analytical solutions as well. For more information see [5], [7], [25].

As an illustration, a few examples of bunch line density perturbation creating coherent signals cor-
responding to different low intensity bunch modes, are shown schematically in Fig. 8, [25], [28]. The
perturbation withm = 1 andk = 1 can be created if a bunch with an excess of particles in some local
place in phase space is displaced from the origin as a whole.

Often, instead ofk, radial modes are classified byq = m+ 2k – the number of nodes which the line
density perturbation has inside the bunch [5]. In our example in Fig. 8 the perturbations have the same
number of nodes and therefore the same mode numberq = 3, but different oscillation frequencies and
azimuthal mode numbers –m = 1 andm = 3. The spectrum of these modes consists of sidebands at
each revolution linen: ωnm = nω0 +mωs. For the sinusoidal perturbation drawn in Fig. 8 the envelope
is maximum atω ∼ π(q+ 1)/τ and extends to±2π/τ . Due to the nonlinearity of the external RF field,

9



Figure 8: Mode of oscillation withm = 3, k = 0 (left) andm = 1, k = 1 (right) in longitudinal phase
space (top) and time domain (bottom).

the real spectrum also contains higher harmonics of the synchrotron sidebandmωs. As one can see
identifying radial modes in measurements may not be so obvious. Direct observation of signals in time
domain together with spectrum measurements can help to distinguish the different oscillation modes.

At low intensities bunch oscillations with different azimuthal numbers can be considered indepen-
dently. The coherent frequencies of the oscillations can be found from solving the eigenvalue problem
for the following equation derived from the Vlasov equation [25]

(Ω −mωs)amk =
∑
k

Mm
kk′amk′ , (17)

whereM is an interaction matrix with elements

Mm
kk′ = imK

∞∑
n=−∞

Z(ω′)
ω′ gmk(ω

′)gmk′(ω′). (18)

Hereω′ = nω0 +mωs andK ∝ N is an intensity parameter. For a Gaussian distribution with standard
deviation in the bunch lengthσt, the bunch spectrum functionsgmn(ω) are

gmn(ω) =
1

σt
√

2πk!(m+ k)!
xm+2ke−x

2

, (19)

wherex = ωσt/
√

2. These functions peak at the frequency

ωmaxm,k =
√
m+ 2k/σt. (20)

As we discussed above, it is defined only by the value ofq = m+2k (the number of nodes in the bunch
signal). The amplitudes of spectrum functions having a maximum at the same position (the sameq) are
larger for those with lower azimuthal modesm but higher radial modesk.

When the frequency shifts are small compared toωs, (and ignoring potential-well distortion), insta-
bility is possible only for a narrow-band impedance (Robinson type, not discussed here). Mode coupling
theory assumes that at higher intensities the frequency shifts of the modes with differentm have differ-
ent signs and become comparable toωs. Depending on the type of impedance (inductive or capacitive)
the coherent frequency shift can be negative or positive. For example, for a resonant type of impedance,
modes with the lowest radial modek = 0 and two different azimuthal numbersm andm + 1 such
thatωmaxm,0 < ωr < ωmaxm+1,0, will be shifted in different directions. According to F. Sacherer’s original
assumption [25] the instability threshold is defined by the intensity at which these modes couple. Note
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Figure 9: Measurements of energy spread (top) and synchrotron sideband frequencies (bottom) as a
function of beam current for two different initial bunch lengths:σ = cσt = 0.854 cm (left) andσ=
3.26 cm (right) in BESSY Storage Ring.

that to drive the instability, an imaginary part of the impedance is not sufficient, one needs the resistive
part as well.

Under the assumption that momentum spread and hence bunch length change just enough to stay at
the threshold, the intensity parameterK gives the scaling law [29]

τ ∝ (
ηIavω

2
0

E0ω2
s

)
1

(2+a) , Iav = Neω0/(2π) (21)

for the assumed dependenceZ(ω) ∼ ωa. An example is the scaling law for SPEAR [12], where from
bunch length measurements the parametera = −0.68 was found.

However coupling between azimuthal modes as a mechanism for theµw instability still waits ex-
perimental confirmation in the longitudinal plane. Indeed, motion (m =1) cannot be affected by a self
force such as the wakefield gives and therefore the coherent dipole frequency (m = 1) does not change
with current. The quadrupole frequency (m = 2) does change but usually much less than one needs to
explain an instability by mode coupling.

In Fig. 9 we present the results of bunch spectrum measurements in the BESSY Storage Ring [30].
One can see that as bunch intensity increases synchrotron sidebands do shift from their initial value,
however the emittance blow-up (see the two graphs at the top) starts much earlier and is more associated
with the appearance of higher (m = 2, 3) modes than with their coupling.

Around the threshold of instability one can usually see [6], [12], [30], [31]:

• Growing of higher order modes (usually starting with quadrupole).

• Splitting of modes (radial modes withk > 0 ?).

The method of observing synchrotron sidebands is based on spectrum analysis of a pick-up signal.
Good resolution is needed to observe themωs lines around a revolution frequency linenω0 outside the
stable bunch spectrum, which extends up to2π/τ .

Another measurement of synchrotron sideband behaviour below and above instability threshold,
done by K.Satoh [6] is shown in Fig. 10. The instability threshold when the energy spread starts to
increase, was found to be at 7 mA. It is clear that the sidebands do not overlap at this intensity. Mea-
surements were taken around the carrier at 4.461 GHz.
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Figure 10: Synchrotron sideband evolution with current measured in TRISTAN-AR for beam current
3.1 mA (top left), 5.2 mA (bottom left), 6.3 mA (top right) and 7.9 mA (bottom right). Span 10 kHz.

In conclusion mode coupling has not been clearly observed in the longitudinal plane. Very often the
measured instability threshold coincides with an onset of coherent oscillations. In the analysis based
on the Vlasov equation the instability of a single azimuthal bunch mode can be obtained if the effect of
potential-well distortion is explicitly taken into account [32] - [35].

It was found quite a long time ago that potential-well distortion may play an important role in
instability threshold calculations [24], [36]. Nonlinearity of the wakefield [33] distorts the potential
well in such a way that the equilibrium particle distribution becomes a function of phaseψ also. It was
shown that in a distorted potential well coupling between radial modes belonging to the same azimuthal
mode becomes possible [34]. Degeneration of the synchrotron frequency at two different amplitudes
inside the bunch has been suggested as another possible mechanism for the longitudinal single-bunch
instability [35].

These effects are most pronounced for a resistive wake and are of second order in bunch intensity
N . This may clarify the following experimental fact: in the SLC Damping Ring after the reduction of
the machine impedance (which became mostly resistive) the threshold of the instability decreased [9],
see Fig. 3 (right). However the subsequent bunch lengthening observed was much smaller.

Sometimes the difficulty of finding a self-consistent solution for the stationary distribution above
some intensity is interpreted as the threshold for the instability. However this problem can be of a
numerical nature [37].

Unlike the longitudinalµw instability, in the transverse plane mode-coupling theory (TMCI) has
been succesfully used to explain the fast single-bunch instability first observed in PETRA [3]. In many
electron machines, Super-ACO, EPA, LEP and others, mode coupling was measured and results are in
reasonable agreement with theory.

Transverse mode-coupling instability has not been observed in proton machines. An obvious dif-
ference is the particle mass and therefore the value of the relativistic factor. Apart from synchrotron
radiation, this can be important for space charge effects, when stabilization may come from the incoher-
ent synchrotron frequency spread. Other bunch parameters could be very similar, as for example in the
CERN SPS: at 3.5 GeV leptons have a damping time (4.5 s) and a length (σt = 1 ns) similar to proton
bunches at 26 GeV. Leptons are unstable both at injection and later in the cycle. Using an impedance
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model able to explain all the experimental data for leptons [26], instability is predicted for protons, but
was never seen. Note that for long bunches high radial modes (k > 0) play an important role in making
correct estimations of the TMCI threshold.

5.2 Fast instability

We defined the fast instability as one which develops during a period of time shorter than the synchrotron
period. From this we conclude that the mechanism of this instability is different from that discussed in
the previous section. The theory of the fastµw instability has been considered in many papers, see for
example [27], [38], [39].

If synchrotron motion does not play an important role then the development of the instability should
be similar for the two cases, RF on and RF off, if in the last case debunching is slow during the growth
of the instability. This fact was used in measurements of the unstable bunch spectrum done in the CERN
SPS [40]. These measurements allowed the elements in the ring responsible for theµw instability to be
identified. The method of measurement is described in detail in the next section.

Let us start with a simple illustration of the principle. Below the instability threshold the bunch has a
spectrum which is concentrated at low frequencies, with width proportional to1/τ . Now let us assume
that the bunch line density has some small modulation at a frequencyωr. Then the spectrum of this
bunch will have an additional peak at this frequency as presented in Fig. 11. The width of this peak is
again inversely proportional to the bunch length. As will be shown, above the instability threshold the
presence of a narrow-band resonant impedance leads to line density modulation and therefore to this
type of bunch spectrum.
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Figure 11: Stable (top) and unstable (bottom) bunches (left) and their spectrum (right).

To analyse the fast instability it is natural to use an expansion of the line density perturbationρ(θ, t)
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in azimuthal harmonics:
ρ(θ, t) =

∑
n

ρne
inθ, (22)

where

ρn =
1

2π
e−iΩt

∫ ∫
f(θ, θ̇)e−inθdθdθ̇ (23)

and the growth rate of the instability is defined by the imaginary part of the coherent oscillation fre-
quencyΩ.

The voltage induced by the beam is

Vind = −eω0

∑
n

(Gn + ρn)Zn exp (inθ). (24)

Using the linearised Vlasov equation leads to the same matrix equation as in the analysis of a fast
microwave instability in the system with RF on, when the synchrotron motion in fact is neglected [27].
For a monoenergetic bunch withF (θ, θ̇) = G(θ)δ(θ̇), this equation can be written in the form

ρn = −i ηnω0

2πE0

(
eω0

Ω
)2
∑
n′
Gn−n′Zn′ρn′ , (25)

whereGn is the Fourier transform ofG(θ).
The exact solution of equation (25) can be found for a coasting beam, where the distribution function

does not depend on the azimuthal coordinateθ and therefore

Gn−n′ = Nδn,n′. (26)

In this case the perturbed bunch spectrum consists of signals at the revolution lines with the growth rate
which can be calculated from the expression:

Ω2
n = −i(enω0)

2Nω0

2πE0
η
Zn
n
. (27)

For a pure imaginary impedance (inductive or capacitive),Z = iImZ, this formula describes the nega-
tive mass instability which can occur ifηImZ/n < 0.

Now let us consider a single bunch interacting with a resonant impedance, centered at harmonic
nr = ωr/ω0 and withωrτ � 1. In this case we can ignore the voltage induced by the unperturbed
bunch spectrum. Assume now that the impedance has nonzero value only inside some bandwidth which
is much less than the bunch spectrum width∝ 1/τ . Then the bunch spectrum in Eq. (25) can be assumed
constant over the impedance width withGn−n′ ' Gn−nr for n > 0 andGn−n′ ' Gn+nr for n < 0 .
In this approximation the growth rate does not depend on the harmonic number and can be obtained
by summation overn in Eq. (25). For a resonant impedance of form (9) inside the bandwidth and zero
outside

ImΩ

ωr
'
(
Ne2ω0|η|
16πE0

Rsh

Q

) 1
2

. (28)

If ImΩτ � |η|∆p/p, the assumption of slow debunching is justified.
The spectrum of the unstable modes is

ρn ∼ nGn−nr . (29)

As we expected it is centered atn = nr and has a width inversly proportional to the bunch length. The
same spectrum is obtained with a narrow-band resistive impedance [41], [42].

By finding the maxima in the unstable bunch spectrum it should be possible to measure the frequency
of guilty resonant impedances. It follows from Eq.(28) that one can also hope to determine theRsh/Q by
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measuring the growth rate of the bunch spectrum for the unstable mode. However due to the complicated
structure of the signal in time, the growth rate is ill-defined in comparison to the maximum value of the
mode amplitude, see Fig. 12 (left).

Another approach based on the analysis of the instability in space-time domain [39] shows that the
spectrum centered atnr can be obtained at the initial stages of the instability for a broad-band impedance
as well. However in this case its width will be defined by the bandwidth of the impedance. Note that
similar results were obtained by the author in multiparticle turn-by-turn simulation.

5.2.1 Measurements in the CERN SPS

Single high-intensity proton bunches were injected into the accelerator with RF off above transition
energy at 26 GeV [40]. The maximum amplitude of the signals growing after injection within the first
100 ms was recorded in the frequency range 100 MHz to 4 GHz using a wideband longitudinal pick-up
with a spectrum analyser as a receiver (bandwidth 3 MHz), see example in Fig. 12 (left). The data
were taken for at least ten different bunches and then averaged. The results are shown in Fig. 12 (right)
for relatively short (τ = 4 ns, upper curve) and long (τ = 28 ns - dashed line,τ = 25 ns - solid line)
bunches. As expected, see Eq.(29), long bunches give much better resolution. Additional smearing
of the peaks comes from the faster debunching of the short bunches. Nevertheless both spectra show
common features. Results of measurements with slightly different long bunches are very similar as seen
in Fig. 12.

Figure 12: Left: bunch spectrum component at 1.3 GHz for a short bunch as a function of time, 10
ms/div. Right: spectral distribution measured with short (upper curve) and long (lower curves) bunches.

Since the maximum amplitude at a given frequency is recorded, measurements involve the nonlinear
stage of the instability, which can be better understood using numerical simulations. These simulations
show that the maximum in the bunch spectrum is slightly shifted from the resonant frequency of the
impedance (it is higher above transition and lower below transition) and this shift increases with inten-
sity. One can also observe the generation of higher harmonics of the resonant frequency. Therefore care
should be taken when interpreting the experimental data.

Another way of observing the bunch spectrum is presented in Fig. 13. This is similar to the illus-
tration in Fig. 11. In Fig. 13 the bunch profile, measured every 100 turns from injection, is presented
in the first plot as a mountain range display. The unstable modes grow on the bunch and by taking the
Fourier Transform of each profile we see clearly in the second plot the increase of signals with a definite
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Figure 13: Longitudinal bunch profiles turn by turn and their Fourier analysis.

width at each frequency corresponding to the different impedance sources. Note that a single bunch has
already a rich mode structure.

The spectrum produced from shot to shot by bunches with similar parameters can be slightly differ-
ent, but on average they give reproducible results. The projection of the spectra from Fig. 13 averaged
over many bunches would give similar results to Fig. 12 (right). This method was limited to an upper
frequency of 2 GHz by the sampling rate of the fast oscilloscope (4 GHz).

The spectrum measured with a spectrum analyser over the frequency range 0.1 to 4.3 GHz is shown
in Fig. 14. The injector (PS) was able to provide the following necessary bunch parameters: bunches
were long (25 ns) – to have good resolution in the frequency domain, with small momentum spread
(2×10−4) – so that they were immediately unstable and their debunching was very slow. The debunching
time defined in Eq.(5) is inversely proportional to momentum spread (a monoenergetic bunch would
never debunch!). The slow debunching of these bunches can also be seen in Fig. 13 (top).

In this case (SPS) it was possible to decode the signature of theµw instability and determine the
impedance sources responsible for it. The peaks at 200 MHz and 800 MHz in Fig. 14 are from the
fundamental mode of the two travelling wave RF systems which have highRsh/Q and lowQ (∼ 130).
Small peaks from 0.4 GHz to 1.4 GHz can be identified with some of the HOM modes of the six SPS
RF systems. However the sources of peaks at 400 MHz and above 1.4 GHz were not obvious.

Frequencies above 1.4 GHz suggest cavity-like devices with a radiusrc of around 8 cm. In the
SPS there are about 800 pumping ports which fit this criterion and can explain all the high frequency
resonances. It is interesting that the simple formula for the resonant frequency for theTMmnl modes of
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Figure 14: Measured spectral distribution in the range (0.1 - 4.3) GHz.

a cylindrical cavity

fr =
ωr
2π

=
c

2

√√√√( l
z

)2

+
(
um,n
πrc

)2

(30)

is in good agreement with the frequencies observed. Herez is the cavity length,l is the axial mode
number andum,n is then-th root of equationJm(u) = 0. For an axial longitudinal electric field,TM0nl

modes,u01 = 2.405 andu02 = 5.52.
From Eq.(30), forrc = 8.2 cm andz = 24.0 cm, one can easily find the lowest frequencies of the

TM01l andTM02l modes (l = 0,1,2...)

1.4, 1.53, 1.88, 2.34, 2.87, 3.2, 3.42, 3.7, 4.0...[GHz].

They can all be seen in Fig. 14 at close frequencies. The first mode has lowRsh/Q = 3.9 Ohm (one
cavity) and is hardly visible in the spectrum whereas the second has27.8 Ohm and gives a large peak.
These accidental cavities have always been damped by ceramic resistors (laboratory measurements give
aQ ≤ 100), so that they become less dangerous for coupled-bunch instabilities. However damping does
not changeRsh/Q which is what counts for single-bunch instability, see Eq.(28).

A search for objects with resonant frequencies around 400 MHz led to identification of the magnetic
extraction septa (16 tanks in the ring) as the guilty elements.

A programme to reduce the SPS coupling impedance by shielding the vacuum ports and the septum
magnets has started. This is important for providing the bunch parameters required when the SPS will
become an injector for LHC.

6 Conclusions

• There is a rich variety of phenomena related to theµw instability.

• In general theµw instability is not yet completely undestood and is a hot research topic since it is
a serious performance limitation in many accelerators.

• The coasting beam criterion modified for a bunched beam works quite well in many cases, espe-
cially for long bunches.
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• More observations are required to confirm the mechanism of mode coupling instability in the
longitudinal plane.

• The unstable bunch spectrum contains important information about the mechanism and the source
of the instability.

As B.Zotter stated at the KEK 1990 ICFA Workshop [6]: “Computer simulation always agrees with
theory if done by the same person”.

Measurements are extremely important!
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