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Abstract

We compute, within the Schrödinger functional scheme, a renormaliza-

tion group invariant renormalization constant for the first moment of the

non-singlet parton distribution function. The matching of the results of our

non-perturbative calculation with the ones from hadronic matrix elements

allows us to obtain eventually a renormalization group invariant average

momentum of non-singlet parton densities, which can be translated into a

preferred scheme at a specific scale.
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Physical quantities that need renormalization, such as the coupling constant, the

quark mass or the matrix elements of operators appearing in the Wilson opera-

tor product expansion with a non-zero anomalous dimension, are “running” with

the renormalization scale. The choice of the scale is in general motivated by the

kinematics of the Green functions involving such renormalized quantities, but

the final physical predictions of the theory without perturbative approximations

are independent of such a choice. This leads to the well-known renormalization

group equations that put the independence on a formal basis. The redundancy in

a parametrisation of the theory in terms of renormalized quantities and the rel-

ative renormalization scale can be avoided by considering renormalization group

invariant quantities, such as the Λ parameter of QCD or the renormalization

group invariant quark masses (RGIM). The advantage of the latter choice in non-

perturbative lattice determinations of the quark mass has recently been stressed

by the authors of ref. [1] where an essential part of the RGIM programme was

carried out.

In particular, the definition of the RGIM, which corresponds, roughly speaking,

to a running mass at infinite renormalization scale, is free of the renormaliza-

tion scheme dependence that usually affects quantities renormalized (in a given

scheme) at a fixed scale. It can hence be evolved back to an arbitrary finite scale

in a preferred scheme.

The purpose of this letter is to present a similar calculation for the operator

that corresponds to the average momentum of non-singlet parton densities. A

lattice — perturbative and non-perturbative — study of the evolution of such an

operator has been discussed in refs. [2] and [3] to which we address the reader

for more details about the calculation that we here only shortly summarize as

follows. We calculate the renormalization constant of the twist-two non-singlet

operator for the first moment of the quark parton distribution defined by:

OqNS
µν =

( i
2

)n−1
ψ̄(x)γ{µ

↔
Dν}

λf

2
ψ(x) − trace terms , (1)

where {. . . } means symmetrization of the indices. We remark that the technique

discussed here can be extended to higher moments in an anloguous way. The

basic ingredient for the reconstruction of the non-perturbative scale dependence

of the renormalization constants of the above operator is the finite-size step scaling
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function σZ defined by:

Z(sL) = σZ(s, ḡ2(L))Z(L) , (2)

where L is the physical length that plays the role of the renormalization scale, s

parametrizes the step size of the change in the scale, and Z is the renormalization

constant of the operator, which is defined by:

OR(µ) = Z(1/µ)−1Obare(1/L) . (3)

Z is obtained from the Schrödinger Functional (SF) matrix element, 〈. . . 〉SF, of

the operator on a finite volume L3T , normalized to its tree level1:

〈Obare(1/L)〉SF = Z(L)〈Otree〉SF . (4)

The renormalized operator then satisfies 〈OR(µ = 1/L)〉SF = 〈Otree〉SF. The

framework of the Schrödinger Functional [4, 5], which describes the quantum

time evolution between two fixed classical gauge and fermion configurations, de-

fined at times t = 0 and t = T , has been used extensively in the recent literature

[6, 7, 1] to calculate non-perturbative renormalization constants of local oper-

ators. Among the advantages of the method, we only quote the possibility of

performing the computations at zero physical quark mass and of using non-local

gauge-invariant sources for the fermions without need of a gauge-fixing procedure.

In our particular case, we exploit both features. Our observable is defined by [2]:

Z =
f2(x0 = L/4)√

f1

/(
f2(x0 = L/4)√

f1

)
tree

, (5)

with f2 given by

f2(x0) = −a6
∑
y,z

eip(y−z)〈1
4
ψ̄(x)γ{1

↔
D2}

1

2
τ 3ψ(x)ζ̄(y)Γ

1

2
τ 3ζ(z)〉 (6)

and f1 by

f1 = −a12
∑

y,z,v,w

〈ζ̄ ′(v)
τ3

2
ζ ′(w)ζ̄(x)

τ3

2
ζ(y)〉 , (7)

1In the following we choose T = L.
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where ζ = δ/δψ̄c and ζ̄ = −δ/δψc are the derivatives with respect to the two-

component classical fermion fields (ψ̄c and ψc, respectively) at the boundary x0 =

0, while ζ ′ and ζ̄ ′ are the corresponding derivatives at the boundary x0 = T . The

projection on the classical components is achieved by the projector P± defined by
1
2
(1±γ0). On the boundaries, the theory possesses only a global gauge invariance

that is preserved by the quantities defined above. The values of x0 (set to T/4)

and of the non-zero component of the momentum px (set to 2π/L) are both scaled

in units of L, which therefore remains the only scale besides the lattice spacing a.

The quantity f1 serves as a normalization factor that removes the wave function

renormalization constant of the ζ fields in order to isolate the running associated

with the operator in eq. (1) only.

The determination of the step scaling function in the continuum has been shown

to be universal with respect to the lattice action used in ref. [8]. From a fit to

its dependence upon the running coupling constant ḡ2, renormalized in the SF

scheme, we can extract the following “running” step scaling function:

σ(µ/µ0, ḡ
2(µ0)) = Z(1/µ)/Z(1/µ0) (8)

i.e. the renormalization constant normalized to the one at a reference scale µ0.

The running operator matrix element at the scale µ, which we denote generically

by the symbol O, can be defined in terms of the one at scale µ0 simply by:

Oren(µ) = Oren(µ0)σ(µ/µ0, ḡ
2(µ0)) . (9)

The scale dependence of the renormalized operator just reflects the one of its

renormalization constant governed by the equation:

dZ(1/µ)

d log(µ)
= Z(1/µ) · γO(g2(µ)) , (10)

from which follows:

dOren(µ)

d log(µ)
= Oren(µ) · γO(g2(µ)) . (11)

Following ref. [1] but using a slightly different normalization in taking out the

factor of 2b0, we define, for operators entering the Wilson operator product ex-

pansion, a renormalization group invariant matrix element:

Oren
INV = Oren(µ) · (ḡ2)−γ0/2b0 exp

{
−

∫ ḡ

0

dg

[
γ(g)

β(g)
− γ0

b0g

]}
, (12)
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where for the anomalous dimension function γ(g) and the β-function the ex-

pressions up to three loops may be inserted for values of g small enough that

perturbation theory can be trusted:

γ(g2(µ)) = γ0g
2(µ) + γ1g

4(µ) + γ2g
6(µ), (13)

β(g2(µ)) = β0g
4(µ) + β1g

6(µ) + β2g
8(µ). (14)

We note that for γ(g) we know the effective three-loop term from our non-

perturbative computation of γ2 [3], while γ0 and γ1 are given from perturbation

theory.

From eq. (8) once the Oren(µ0) is known in some scheme, for example the SF

scheme we have described, we can obtain the renormalization scheme invariant

matrix element by introducing an “ultraviolet invariant” running step scaling

function 2 defined by:

SUV
INV(µ0) = σ(µ/µ0, ḡ

2(µ0)) · (ḡ2(µ))−γ0/2b0 exp

{
−

∫ ḡ(µ)

0

dg

[
γ(g)

β(g)
− γ0

b0g

]}
(15)

as follows:

Oren
INV = Oren(µ0) ·SUV

INV(µ0) . (16)

The scale µ0 is in general a low-energy scale, where the hadronic matrix element

can be calculated without severe finite volume effects. In our case, it can be

identified with a low-energy scale at which the evolution of the renormalization

constant can be started. In particular we shall fix this scale to be 2Lmax as in

ref. [1]. Recently, Lmax has been computed in terms of the low energy reference

quantity r0 [9] in [10]. In order to “step down” from this scale, we will need the

step scaling function with s = 2, i.e. starting from ḡ2(Lmax) = 3.48, our largest

value of ḡ2, we evolve with a step size of 2 until contact with perturbation theory

can be made.

In this paper, we calculate, as a first step towards the computation of the renor-

malization group invariant matrix element, the quantity SUV
INV(µ0 = 1

2Lmax
). Note

2We remark that the invariance holds with respect to a change of the “ultraviolet” scale µ

and not of the “infrared” scale µ0.
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that SUV
INV(µ0) still depends on the reference scale µ0. The dependence on µ0 will

only disappear later, when it will be matched with the proper hadronic matrix

element, making Oren
INV renomalization scheme independent.

In order to rely on the perturbative expansion for the β- and γ-functions appear-

ing in eq. (15), we had to extend the calculation of our non-perturbative running

to higher scales. We added four more values of ḡ for the step scaling function that

now covers, in total, values of ḡ2(L) ranging from ḡ2(L) = 3.48 to ḡ2(L) = 0.8873.

For the results at the four lowest values of ḡ we used the non-perturbatively im-

proved clover action [11]; in figs. 1 and 2 we report the continuum extrapolation,

for the values of ḡ2 not presented already in ref. [8] of the step scaling function of

the quantities f1 and f2 of eq. (5) (σZ̄ and σf1 , respectively, see [3]): at smaller

length scales the effects of lattice artefacts for σZ̄ are progressively reduced and

the extrapolations become flatter.

From the results for σZ at the, in total, nine values of ḡ, we can make a fit to the

step scaling function as a function of ḡ2(L). The results for σZ at the five largest

values of ḡ2(L) are taken from the combined data presented in [8]. In ref. [3]

we have shown that, in the scheme we adopted, the coefficient of the two-loop

anomalous dimension is very large, when compared for example to the one in the

MS scheme. We have also shown that this coefficient reduces by changing the

expansion parameter, i.e. by using ḡ2(L/4) instead of ḡ2(L). The step scaling

function as a function of ḡ2(L/4) is well fitted numerically by a polynomial in

ḡ2(L/4) of the form:

σ(ḡ2(L/4)) = 1− γ0 log(2)ḡ2 + c4 · ḡ4 + c6 · ḡ6 + c8 · ḡ8 , (17)

where γ0 = 4/(9π2). The final results stay unchanged when we switch to a two-

parameter fit that also gives a very good χ2. We show our data for σZ as a

function of ḡ2(L/4) together with the fit of eq. (17) in fig. 3.

From this fit we can construct the running step scaling function of eq. (15) with

µ0 = (2Lmax)
−1. The result is shown in fig. 4, where we have used the two-loop

expression for γ(g) and the 3-loop expression for β(g). By using eq. (15) we can

finally estimate the value of SUV
INV(µ0): in the second column of table 1 we report

the values of SUV
INV(µ0) as a function of the scale µ: for large values of µ the

function, within the errors, approaches a plateau. We make a fit to a constant
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Figure 1: Continuum extrapolation of σf1 using a linear fit to the three data

points with smallest values of a/L for the most perturbative values of ḡ2 we have

used in our work, which are indicated in the figure.
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Figure 2: Continuum extrapolation of σZ̄ using a quadratic fit to all four data

points for the most perturbative values of ḡ2 we have used in our work, which are

indicated in the figure.
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µ/µ0 SUV
INV(µ0) SUV

INV(µ0) SUV
INV(µ0) SUV

INV(µ0)

ḡ(L/4) ḡ(L) ḡ(L/4) ḡ(L)

γO 2-loop γO 2-loop γO 3-loop γO 3-loop

21 1.09(1) 1.33(1) 1.16(1) 1.18(1)

22 1.10(2) 1.24(2) 1.15(2) 1.16(2)

23 1.11(2) 1.20(2) 1.14(2) 1.15(2)

24 1.11(3) 1.18(2) 1.14(3) 1.14(2)

25 1.11(3) 1.16(3) 1.13(3) 1.14(3)

26 1.11(4) 1.15(3) 1.13(4) 1.13(3)

27 1.11(4) 1.14(3) 1.12(4) 1.13(3)

28 1.10(5) 1.14(3) 1.12(5) 1.13(3)

29 1.10(5) 1.13(3) 1.11(5) 1.12(3)

Table 1: The values for SUV
INV(µ0) when different scales µ are taken for matching

with perturbation theory.

for the results ranging from µ/µ0 = 25 to µ/µ0 = 29, and we finally quote:

SUV
INV(µ0 = (2Lmax)

−1) = 1.11(2) . (18)

The invariant step scaling function is still scheme-dependent, because of the pres-

ence of the reference scale µ0. This will be cancelled only in the combination that

defines the invariant matrix element. However, at fixed µ0, it should be indepen-

dent of the choice of ḡ2(L/4) or of ḡ2(L) in the fit to the step scaling function.

We therefore repeated the whole procedure described above by fitting the step

scaling function as a function of ḡ2(L) and by using the correspondingly modified

gamma function to two loops. The results are given in the third column of ta-

ble 1. They are fully compatible with those obtained from the case L/4, although

the plateau starts at higher energies, as expected. We report the comparison of

both cases also in fig. 4. In the fourth and fifth column of table 1 we report the

result for the case “L/4” and “L” respectively, after including our estimate of

the three-loop anomalous dimensions for the two cases, determined in [3, 8]. Not

surprisingly, the two cases get close to each other more precociously. An estimate

of the renormalization group invariant yields SUV
INV(µ0 = 1

2Lmax
) = 1.14(2), again

consistent with our earlier results using ḡ(L/4) as expansion parameter.
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Figure 3: Our fit to the step scaling function.
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Figure 4: SUV
INV(µ0) as a function of the scale µ normalized to our reference scale

µ0 = (2Lmax)
−1.
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Matching the results of this paper with a non-perturbative calculation of the

hadronic matrix element, in the continuum, in the same scheme and at the same

reference energy scale, leads to the definition of a renormalization group invariant

matrix element that can be confronted with experiment at any scale and in a

preferred scheme. Such a calculation is in progress.
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[1] S. Capitani, M. Lüscher, R. Sommer and H. Wittig, DESY preprint, DESY-

98-154, hep-lat/9810063.

[2] A. Bucarelli, F. Palombi, R. Petronzio and A. Shindler, hep–lat/9808005.

[3] M. Guagnelli, K. Jansen and R. Petronzio, CERN preprint, CERN-TH/98-

265, hep-lat/9809009, to be published in Nucl. Phys. B.
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