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Abstract

Within the context of a super-critical (Liouville) string, we discuss (target-space) two-

dimensional string cosmology. A numerical analysis indicates that the identification of

time with the Liouville mode results in an expanding universe with matter which exhibits

an inflationary phase, and ‘graceful exit’ from it, tending asymptotically to a flat-metric

fixed point. This fixed point is characterized by a dilaton configuration which, depending

on the initial conditions, either decreases linearly with the cosmic time, or is a finite

constant. This implies that, in contrast to the critical string case, the string coupling

remains bounded during the exit from the inflationary phase, and, thus, the pertinent

dynamics can be reliably described in terms of a tree-level string effective action. The rôle

of matter in inducing such phenomena is emphasized. It is also interesting to note that

the asymptotic value of the vacuum energy, which in the σ-model framework is identified

with the ‘running’ central charge deficit, depends crucially on the set of initial conditions.

Thus, although preliminary, this toy model seems to share all the features expected to

characterize a phenomenologically acceptable cosmological string model.
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1 Introduction

There is a vast number of inflationary models in the literature [1] which try to give
a satisfactory answer to the traditional cosmological problems as the age,size and
flatness of the universe.Almost all of these theories relay on a potential of a scalar
field the so called “inflaton”. The properties of this potential determine at a large
extent the success of the model.The scalar potential can arise in various theories
depending on the taste of the authors. An intriguing aspect of all inflationary
theories to date is the way inflation ends, the so-called ‘graceful exit’ problem.There
is currently a vast literature on the subject [1],dealing with this problem from both
the theoretical and the phenomenological points of view.

In string theory there were a lot of attempts to develop a consistent theory of string
cosmology,in which inflation plays a dominant rôle. There were found solutions to
the non-linear σ-model equations for the graviton,dilaton and antisymmetric tensor
in a Friedman-Robertson-Walker (FRW) background.Then the FRW spaces were
interpreted as conformal field theories capable of being embedded in consistent string
theories [2, 3]. The advandange of this string cosmological model is,that at tree level,
does not depend on a scalar potential,so any inflationary solution will depend on
the dynamics of the scalar field,and on its couplings to the other massless string
modes. Unfortunately, these tree level β-functions of the background fields, do not
have any inflationary solution.To get inflation, these equations must be modified by
a non-trivial dilaton potential which is generated by string loop effects.

Veneziano and his collaborators [4] have suggested that the dilaton of (critical)
string theory plays the rôle of the inflaton field of conventional inflationary theo-
ries [1]. In an implementation of this idea,they suggested a pre-big-bang cosmology
in which the kinetic energy of a massless dilaton drives the inflation toward a singu-
larity.Before the singularity is reached,stringy and/or nonperturbative effects bring
an end to the inflationary phase and a transition occurs to the standard Friedman-
Robertson-Walker (FRW) Universe. Considerable effort has been focused on the
details of the graceful exit from the inflationary era.It is still not at all clear that
this can be done.The reason is that such dilaton scenaria require knowledge of the
precise underlying dynamics, in particular the dilaton potential V (Φ). The dila-
ton field is strictly massless in the critical-dimension string theories and one would
naively expect that there is no dilaton potential.

However, compactification to four dimensions, as appropriate for any attempt to
discuss realistic physics of the inflationary Universe, or inclusion of higher world-
sheet topologies (string loops), may lead to all sorts of complications, and non-trivial
interactions for the dilaton field, including the possibility of spontaneous breaking
of scale symmetry, leading to a (small) mass for Φ. The inclusion of higher string
topologies seems unavoidable in the framework of [4] due to the fact that the space-
time configurations involved are characterized by a curvature growth and a dilaton



Φ increasing linearly with the cosmic time. Since the string coupling gs ∼ eΦ, it
is evident that for large times t → ∞ one enters the regime of strong coupling,
which makes the framework of the lowest-order (tree level) effective action inade-
quate. However, even under the inclusion of higher loops, or the construction of
exact conformal field theories to take into account non-perturbatively such higher
topologies [5], one could not avoid such indefinetely-growing string coupling situa-
tions [6]. The system was not attracted by fixed points characterized by a constant,
or decreasing with time, dilaton configurations corresponding to bounded string
coupling, thereby making the computations based on perturbative string theory
unreliable. Thus, the exit problem in such string cosmologies persists.

In addition to the lack of knowledge on the precise four-dimensional dilaton dy-
namics, the inflationary period is an out of equilibrium process. Indeed, in many
recent attempts [7] to study inflation, the concept of a stochastic process governing
the inflationary phase, began to emerge, which requires means of non-equilibrium
field theories. In the context of critical-dimension string theory, where the various
space-time field configurations obey world-sheet conformal-invariance conditions [8],
equivalent to classical solutions of the low-energy field equations, it is rather hard
to incorporate the non equilibrium dynamics of the “rolling-down-the-hill” phase of
inflation.

In this work we will present a two-dimensional stringy cosmological toy model in
which inflation relays on the dynamic evolution of scalar fields, and the transition
from the inflationary phase to a FRW Universe occurs in a natural way as a result
of the time evolution of the theory. To implement such a scenario, we modify the
β-functions of the background fields of a critical string theory in such a way so as
to include friction terms for all the fields involved. A consistent way to do that is to
consider a non-critical (supercritical) string theory and idendify the time with the
(time-like) Liouville mode [9, 10]. As emphasized in [10], such scenaria lead naturally
to stochastic-type inflation [7]. In the context of the two-dimensional cosmological
string model, it will be shown that the flow of (Liouville) time is such that the
system is attracted by a fixed point characterized by a flat metric and a dilaton that,
depending on the initial conditions, either decreases linearly with the cosmic time,
or tends to a constant value. This situation implies that the string coupling remains
bounded during the transition from the inflation to the post-inflation period, in
contrast to the critical string situation [4, 6]. We note here that to get a non-critical
string we have to include matter, the rôle of which is played here by the Tachyon
field, which in two-dimensional target-space times is a massless matter field.

The structure of the article is as follows: We first review in brief the generic for-
malism of time as a Liouville mode [9], and we discuss the generalized conditions of
Liouville - restored conformal invariance. These replace the critical-string conformal
(Weyl) invariance conditions resulting in the vanishing of the world-sheet general-
ized β-functions (Weyl anomaly coefficients) for the set of σ-model background fields.



Next we examine the specific case of two-dimensional string cosmology. We solve
the generalized set of Liouville-restored conformal invariance conditions for back-
grounds corresponding to the matter and spacetime metric fields. The cosmological
nature of the problem requires that such backgrounds exhibit solely Liouville (=
time) dependence. We seek, and find, solutions for the metric field, which exhibit
inflationary behaviour at a certain stage of Liouville evolution, and we pay particular
attention to demonstrate a “graceful exit” from the inflationary phase. Asymptot-
ically in time, the spacetime becomes an ordinary flat universe. There is also a
linear expansion at a late stage of the Liouville evolution. As a byproduct of our
analysis we note that the above cosmological model is characterized by a non-zero
Liouville(= time)-dependent vacuum energy, which relaxes to an asymptotic time
independent value. The asymptotic value of the cosmological constant depends on
the initial conditions; there are cases where this asymptotic value vanishes.

Our solutions are at present numerical. However we consider it a non-trivial
fact that consistent inflationary scenaria, with the right properties to account for a
“graceful exit” from the exponential expansion phase, can be found, at least numer-
ically, within the framework of non-critical Liouville strings. It is highly non-trivial
that the Liouville-restored conformal invariance conditions yield this behaviour upon
the identification of the Liouville field with time [9, 11]. The existence of such solu-
tions in the two-dimensional toy cosmological model we consider here is encouraging
for the extension of such analyses to higher-target-space-dimensional string theories.
This is left for future investigations.

We also stress the fact that the Liouville-restored conformal invariance conditions
differ (to lowest order O(α)′ in the Regge-slope expansion) from Einstein’s equations
for the metric, encountered in analogous treatments of critical string models. From
a “field-theoretic” point of view, this is to be expected from the fact that non
critical Liouville dynamics is describing out-of-equilibrium (non-classical) physical
processes [9], believed to characterize the inflationary Universe. This is an important
generic feature of Liouville dynamics, in the picture where one identifies the Liouville
mode with the target time [9, 11].

2 Liouville String formalism

After this introduction, we now proceed with the analysis of our pilot two-dimensional
cosmological model. We commence with a brief description of the Liouville-dressing
procedure for non-critical string, with the Liouville mode viewed as a local world-
sheet renormalization group scale [9]. Consider a conformal σ-model, described by
an action S∗ on the world-sheet Σ, which is deformed by (non conformal) deforma-
tions

∫

Σ giVid
2σ, with Vi appropriate vertex operators.

Sg = S∗ +
∫

Σ
giVid

2σ (1)



The non-conformal nature of the couplings gi implies that their (flat)world-sheet
renormalization-group β-functions, βi, are non vanishing. The generic structure of
such β-functions, close to a fixed point, {gi = 0} reads:

βi = (hi − 2)gi + ci
jkg

jgk + o(g3). (2)

In the context of Liouville strings, world-sheet gravitational dressing is required.
The “gravitationally”-dressed couplings, λi(g, t), which from our point of view cor-
respond to renormalized couplings in a curved space, read to O(g2) [12, 13]:

λi(g, t) = gieαit +
π

Q ± 2αi

ci
jkg

jgkteαit + O(g3), Q2 = c − 25 (3)

where t is the (zero mode) of the Liouville mode, Q2 is the central charge deficit,
and αi are the gravitational anomalous dimensions:

αi(αi + Q) = hi − 2 for c ≥ 25 (4)

Below we shall concentrate exclusively to the supercritical string case, Q2 ≥ 0,
which from the point of view of identifying the Liouville mode with target time,
corresponds to a Minkowskian signature spacetime manifold [2].

Due to the renormalization (3), the critical-string conformal invariance conditions,
amounting to the vanishing of flat-space β-functions, are now substituted by:

λ̈i + Qλ̇i = −βi(λ) for c ≥ 25. (5)

where the notation βi(λ) denotes flat-world-sheet β-functions but with the formal
substitution gi → λi(g, t). Note the minus sign in front of the flat-world-sheet β-
functions βi in (5), which is characteristic of the supercriticality of the string [12, 13].
As we see later, for our two-dimensional string cosmology, the sign will be crucial
for the existence of acceptable inflationary solutions demonstrating “graceful exit”
from the exponential expansion phase. Upon the identification of the Liouville mode
with the target time the dot denotes temporal derivative.

An important comment we would like to make concerns the possibility of deriving
the set of equations (5) from a target space action. This issue has been discussed in
the affirmative in ref.[10], where it was shown that the set of equations (5) satisfies
the Helmholtz conditions for the existence of an action in the ‘space of couplings’ {gi}
of the non-critical string. Upon the identification of target time with the Liouville
mode [9] this action becomes identical with the target space action describing the
off-shell dynamics of the Liouville string. We should stress the fact that the action
is off shell, in the sense that the on-shell conditions correspond to the vanishing of
the β-functions βi. In our case βi 6= 0, and the identification of the Liouville mode
with the target time implies that the space-time graviton β-function on the right-
hand-side of (5), as well as other target-space tensorial structures, appearing inside
the βi functions for the various modes, contain temporal (Liouville) components as



well. In this respect, our non-equilibrium Liouville string approach to the temporal
evolution [2] should be contrasted with the naive interpetation of a Liouville string
as a critical equilibrium string living in a space time with one extra dimension. In
that case the corresponding β functions of the Liouville-dressed theory would satisfy
classical equations of motion. As mentioned above, in our approach the conditions
describing the restoration of conformal invariance by means of Liouville dressing are
not to be intepreted as classical equations of motion of a string living in a space-time
with one extra target dimension. Thus our analysis below should be distinguished
from previous analyses on Liouville cosmology [14].

A generic feature of Liouville dynamics, is that in terms of the world-sheet ac-
tion, the normalization of the Liouville kinetic term can always be arranged (by
chosing appropriate counterterms) to correspond to a target spacetime of Friedman-
Robertson-Walker (FRW) type; i.e. the time-like metric component (under the
assumption that the Liouville mode is time) is:

G00 = −1. (6)

We remind the reader that the Minkowskian signature is due to supercriticality
(Q2 = c − 25 ≥ 0) assumption. This will be understood in what follows.

Before proceeding to discuss our two-dimensional cosmology, we would like to
make a final remark concerning the physical origin of deviations from criticality in
string theories. This will hopefully shed more light in the physics underlying our
scenario. Deviations from conformal invariance imply, from a target-space view-
point, that the relevant background field is “off-shell”, i.e. is not a classical solution
of some equations of motion. As argued in [9], such a situation may be encountered
in the context of effective low-energy theories of quantum gravity. Due to quan-
tum fluctuations of the metric field, corresponding to microscopic event horizons
(spacetime boundaries), there is the possibility for low-energy propagating matter
to be trapped inside or on such boundaries. This can be explicitly demonstrated,
for instance, in the case of a Dirichlet (D) brane representation of such defects on
spacetime. A low energy closed string state can split into open strings with their
ends attached to the D-brane. Such trapping processes cannot be measured by a
low-energy observer who performs local scattering experiments “asymptotically far”
from these microscopic horizons. From the observer’s point of view, therefore, the
appearance of singular metric fluctuations will result in making the low-energy mat-
ter system, consisting of propagating degrees of freedom only, an “open” quantum
system. Information is “lost” into degrees of freedom pertaining to the quantum
recoil of the D-brane horizon. In turn, such recoil degrees of freedom cause a suffi-
cient distortion of spacetime, characterized by non-trivial particle creation, leading
to decoherence of the low-energy matter system. A detailed analysis and formalism
of such issues has been documented in [15], where we refer the interested reader for
details.



For our purposes below we assume that, within the context of a two-dimensional
cosmological model, such quantum processes in the early Universe have resulted in a
matter deformation of the stringy σ-model, which does not satisfy classical equations
of motion and hence, from a conformal point of view, departs from the critical string
case. Back-reaction of such matter onto spacetime structure, prevents the metric
from satisfying Einstein’s equations (to lowest order in the α′ expansion, where we
concetrate ourselves throughout this work.)

With these in mind, our proposal for the two-dimensional string cosmology may
now be formulated as follows: the low-energy (local, propagating) fields are the
metric, Gij , the dilaton, Φ, and “tachyon”, T , fields 1. In flat space times, the two-
dimensional tachyon field is actualy massless and constitutes our low-energy matter.
As we shall see the presence of such matter is crucial for the inflationary scenario.

The O(α′) β-functions, corresponding to these fields, read:

Graviton β̃G
ij = α′ (Rij + 2∇i∇jΦ −∇iT∇jT )

Dilaton β̃Φ = −R + 4∇iΦ∇iΦ − 4∇2Φ + ∇iT∇iT − 2T 2 + Q2

Tachyon β̃T = −2∇2T + 4∇iΦ∇iT − 4T. (7)

In the above we have taken into account the freedom to fix the tachyon potential
in string theory [16], by appropriate field redefinitions, such that it only incorporates
T 2 terms (V (T ) = −2T 2). The tilde denotes Weyl anomaly coefficients, which
replace the ordinary renormalization-group β-functions in the case of stringy σ-
models, as a result of target-space local diffeomorphisms [14, 17].

In the context of critical strings the vanishing of these β̃-functions can be inter-
preted as equations of motion from the action

S =
∫

d2x
√−g

{

e−2Φ
[

R + 4(∇Φ)2 − (∇T )2 − V (T ) − Q2
]}

, (8)

In this notation the string coupling is gs = eΦ. As a general remark we stress that in
two target-space-time dimensions there is no Einstein frame, i.e. a frame in which
the conformal dilaton factor e−2Φ in front of the curvature term in the action (8)
can be removed by a field redefinition. Thus, in this case the σ-model frame is also
the ‘physical’ frame. This will always be understood in the following.

1Due to the Abelian Gauge symmetry BMN → BMN +∂[MΛN ], in two-dimensional space times
the antisymmetric tensor field has no propagating modes, given that it may be eliminated from
the low-energy action. The remaining discrete mode is thereby considered part of the unobservable
gravitational environment.



In our non-critical string context the Weyl-anomaly coefficients β̃ are related off-
shell with variations of the above action [18],

β̃i ∼ Gij δS

δgj
(9)

where Gij is related to the (inverse) Zamolodchikov metric in theory space [21], given
by the world-sheet two-point function of vertex operators. As mentioned previously,
the set of equations (5,9) satisfies the Helmholtz conditions for its being derived
from an off-shell action in theory space of the non-critical string [10]. The purpose
of this article is to point out that, upon the identification of the Liouville mode with
the target time, this specific set of field equations will yield cosmological solutions,
capable of describing inflationary phase of an expanding string universe and graceful
exit from it.

To this end we combine (5) with (7), where now the indices i, j = 1, 2 span a
two-dimensional target space time. The dots refer to (Liouville) time t derivatives,
and the cosmological model is obtained by assuming that the various background
fields exhibit only (Liouville) time t dependence. The metric is assumed to have the
FRW form:

Gij =

(

−1 0
0 eb(t)

)

(10)

The important comment we wish to make concerns the fact that, due to the
renormalizability of the (non-critical) σ-model, there is an additional equation [19]
which should supplement (5), the Curci-Paffutti relation, which relates the dilaton
β function, and hence the effective running central charge of the theory, with the
rest of the β functions:

−∇iβ̃
Φ + 2Glj∇lβ

G
ij − 4Glj∇lΦβG

ij + ∇iβ̃
T = 0 (11)

Although this equation holds formally in the flat world-sheet case, however in our
framework it should also hold for the βi(λ) functions, i.e. the flat-world-sheet β
functions upon the substitution of the σ-model couplings with the Liouville dressed
ones. It will provide a highly non-trivial constraint, which should be respected by
the process of identifying the Liouville (world-sheet) renormalization scale with the
target time [9].

We are now seeking solutions to the system of equations (5), (7),(11) exhibiting
at a certain stage in Liouville time t inflationary behaviour (exponential expansion
in the spatial volume). Given the choice for the metric (10), and the assumption
that all the fields are time dependent only, the equations (5) take the form:

3

2
b̈ +

5

4
ḃ2 + ḃ(Q − Φ̇) = 0



b̈

2
+

ḃ2

4
− 2Φ̈ + Ṫ 2 = 0

5Φ̈ − b̈ − 1

2
ḃ2 − 4Φ̇2 + Φ̇(Q + 2ḃ) − Ṫ 2 − 2T 2 + Q2 = 0

3T̈ + Ṫ (ḃ − 4Φ̇ + Q) − 4T = 0
˙̈
b − 4 ˙̈Φ + ḃb̈ + 8Φ̇Φ̈ − 2b̈Φ̇ − 2Φ̈ḃ + Ṫ 2(ḃ − 4Φ̇) + 4T̈ Ṫ − Q̇Q = 0, (12)

where the first four refer to the diagonal components of the metric, the dilaton
and the tachyon fields and the last one is the time component of the Curci-Paffuti
equation (11). Note that the equation for the non-diagonal component of the metric
and the space component of the Curci-Paffuti equation are trivially satisfied.

It can be seen, for example, from the first of the equations in (12) that in principle
there are both inflationary and non-inflationary solutions. In particular if we assume
that the dilaton and the central charge are slowly varying with time, then negative
values of the quantity (Q(t) − Φ̇(t)), gives an exponentially growing scale factor
(exp(b(t))), while positive values of the same quantity yields power-law scale factor.
Thus we have to see if our system of equations gives the right relative magnitude to
the dilaton and the central charge in order to ensure an inflationary era followed by
a power-law expansion, leading asymptotically to flat space.

Using the first the second and the fourth equations in (12) we solve for the second
derivatives of the fields b, Φ and T , and eliminate their higher derivatives from the
last one, concluding to the following set of four equations:

b̈ = −2Qḃ

3
+

2Φ̇ ḃ

3
− 5ḃ2

6

Φ̈ = −Qḃ

6
+

Φ̇ḃ

6
− ḃ2

12
+

Ṫ 2

2

T̈ =
4T

3
− QṪ

3
+

4Φ̇Ṫ

3
− ḃṪ

3

Q Q̇ =
Qḃ2

3
+

ḃ3

6
+

2

3
ḃ2Φ̇. (13)

The equation coming from the dilaton β-function (third equation in (12)) is left as
a compatibility condition.

3 Inflationary Solutions in Liouville String The-

ory

In order to get solutions it seems necessary to distinguish two major cases: (i)
solutions where the central charge deficit Q2(t) → const 6= 0 as t → ∞, and (ii)
solutions where Q2(t) → 0, as t → ∞. Although, as we shall see, from an effective



field theory view point, both cases seem plausible, however, at least at present, it
is not clear to us whether both situations can be met in an actual string theory
framework. Indeed, in case (i), the asymptotic string theory will be a standard
non-critical string theory in two-dimensional target-space, with the constant central
charge deficit compensating the non-critical dimensionality of the target space [12, 2].
Such string theories are known to exist as exact conformal field theory models. In
case (ii), however, the resulting string theory will be a critical string theory. The
asymptotic vanishing of the central charge, which plays the rôle of a target-space
cosmological constant, may be understood in that case as a result of the effects of
the higher-level string modes of the target-space two-dimensional string. At present,
we do not have an exact conformal field theory description of such models, but in
view of the existence of consistent non-trivial examples in the case of stringy black-
holes [20] we conjecture that such a case can also represent consistent cosmological
string backgrounds.

3.1 Solutions attracted by a linear-dilaton fixed point

We start our analysis from case (i). To obtain the solutions of (13) in this case we
adopt the following ”quasi-linear” method. We separate the fields in their asymp-
totic values plus fields which tend asymptotically to zero, namely:

Φ̇ ≡ d +φ1

Q ≡ Q0 + Q1

ḃ ≡ b1

T ≡ T0 , Ṫ ≡ T1, (14)

where the constants d and Q0 are related through the relation Q0 = −d(1+
√

17)/2,
which results from the requirement that the dilaton equation is satisfied, and the
fields (φ1, b1, T1, T0, Q1) vanish asymptotically. We assume that the constant d < 0
in order to have weak gravity asymptotically in time. (The case d = 0 will be
discussed separately).

The system can be written in the form

~̇x = A~x + ~F(~x) (15)

where ~x = (φ1, b1, T1, T0, Q1)
⊥, A is the 5 × 5 matrix determining the linear part

of the system and ~F(~x) gives the nonlinear terms.
The solution of the system can be given in an iterative form:

~x(n+1)(t) = ~x(n)(t) +
∫ t

t0

dsY(t)Y−1(s)~F
[

~x(n)(s)
]

, (16)

where the matrix Y satisfies the equation

Ẏ = AY. (17)



Note that the iteration in (16) converges to the full solution. The starting point of the
iteration procedure is the solution of the linear system with the correct asymptotic
behaviour, which reads:

b1 = C1exp

[

2(d − Q0)t

3

]

φ1 =
C1

4
exp

[

2(d − Q0)t

3

]

T0 = C2exp [(A − B)t]

T1 = C2(A − B)exp [(A − B)t] ,

Q1 = 0 (18)

where A = (4d − Q0)/6 and B =
√

(4d − Q0)2 + 48/6. Note that the constant of
integration C1 has to be positive. Note also that the matter field vanishes exponen-
tially with time, a characteristic shared also by the full solution as we shall see later
on.

Now at the first step in the iteration the solution is given by:

~x(t) = Y(t) ~C + Y(t)
∫ t

t0

dsY(t)Y−1(s)~F
[

Y(s) ~C
]

, (19)

where Y(t) ~C, is the solution of the linear part of the system while Y(t0) ~C is the
set of initial conditions. Even from the first step of the iteration one can see that
there are regions of the parameters (e.g C1 ≫ C2) for which the dilaton field remains
practically constant and the scale factor of the metric increases exponentially. We
remind the reader that this is a common feature of all inflationary scenaria, where
the rôle of the inflaton is played in this case by the dilaton field. Of course the
solutions at this order although instructive are not full solutions of the system. So
we proceed to present full numerical solutions. In order to get these solutions we use
the iteration up to second order. In this way we take expressions for the fields which
are almost exact asymptotically due to the convergence of the iteration. Then we
use the values of these expressions at a certain point (in time) as initial conditions
and we let the system evolve numerically.

One of the basic features of all solutions is the existence of an initial singularity
(t → −∞). Of course our consideration starts immediately after the singularity since
a proper treatment of true initial conditions of the Universe is an issue which has to
take into account the full quantum gravity effects. Indeed, we do not expect a proper
string theoretic cosmological model to be described only in terms of an effective field
theory based on the low-string-level fields. In the context of our non-critical string
scenario, the existence of an initial singularity, describes quite naturally the effects of
higher-string level degrees of freedom, including the quantum-mechanical (discrete)
ones, responsible for the non-criticality of the effective field theory [9]. The effects of



such modes are expected to be strong at very early stages of the Universe. Moreover,
higher curvature terms, as well as higher order string loop corrections should also
be taken into account at such early stages, given that the string coupling gs grows
infinitely strong near the initial singularity.

We now note that the signature of the inflationary era is the sign of the difference
Q(t) − Φ̇(t) as is already mentioned. This difference becomes negative for a certain
period provided that the density of the matter field (T ) becomes weak immediately
after the singularity. In particular in the inflationary era it is of the order of mag-
nitude of the asymptotic value of Q, (Q0). In the figures that follow we present a
particular solution in which the abovementioned characteristics become more clear.

In figure 1 the scale factor (exp[b(t)]) is plotted. It is clear that it exhibits an
exponential growth period. The exit from the inlfation comes by a power-law scale
factor which settles down to a flat space-time metric. From figure 2 it is clear that
the difference Q(t) − Φ̇(t) being negative (certifying the inflation) at early times
turns to positive values indicating thus the exit from inflation. In figure 3 the
dilaton field is plotted. Note that it remains practically constant during inflation,
whilst at later times it decreases linearly with the cosmic time. This latter feature is
very important, as it implies that the string coupling gs ∼ eΦ → 0, as t → ∞, and
therefore the tree-level effective action (8) is sufficient to describe the transition from
the inflationary to post-inflationary era. This feature is due to the supercriticality

of the initial stringy configurations, C > 25. It is the opposite situation from what
is happening in critical strings [4, 6], thereby making our super-critical (Liouville)
string model a viable model to describe ‘graceful exit’ from the inflationary era.
As mentioned previously, of course, our tree-level effective-field theory description
breaks down for very early stages, near the initial singularity.

In figure 4 we show the matter field (T ). We see here that at the beginning of
the inflation the value of the matter field is of the order of the asymptotic value
of Q. Solutions with matter density one order of magnitude bigger than Q0 do
not have inflationary era. This can be understood since in a condensed enough
Universe gravitational forces prevent exponential expansion. In figure 5 we show
the evolution of Q. We see that during the inflationary period it is almost linerly
dependent on time and it relaxes to a constant (non-zero value) asymptotically. We
also note that Q(t) changes sign at the end of inflation. Finally in figure 6 we show,
for completeness, the time dependence of the ‘running’ central charge deficit Q2(t).
Note that, in contrast to the inflationary phase where Q2(t) decreases rapidly with
time, the post-inflationary period is characterized by an increasing with time Q2(t)
before the latter settles to its final (equilibrium) constant value asymptotically. This
is in agreement with the fact that the Liouville mode is a non-unitary world-sheet
field for supercritical strings [2]. Thus, the conditions of ref. [21] for a monotonic
decrease of the running central charge are not valid. However, as we see from figure



6, there is an overall decrease of the central charge deficit during the flow from its
initial (‘near the singularity’) to the final (equilibrium) value. We point out that
a similar situation, where the central charge decreases overall, but oscillates before
settling to its non-trivial world-sheet fixed point value, also characterizes the dilaton
cosmology of [14].

The overall decrease of Q2(t) in Liouville strings is expected on general grounds [22],
given the connection of the irreversibility of the world-sheet renormalization group
flow with ‘loss of information’ associated with stringy modes having world-sheet mo-
menta beyond the ultraviolet cut-off of the effective theory [21, 9]. This world-sheet
cut-off should not be confused with a space-time cut-off. However, one may find a
proper mapping to a target-space ultraviolet scale, as a result of the embedding of
the world sheet in a target space time. It is in this sense that the non-criticality
of the effective string describes information loss due to stringy modes unobserv-
able in the context of the low-energy effective field theory describing cosmological
observations.

3.2 Solutions attracted by a constant dilaton fixed point

We next turn our attention to demonstrating the existence of solutions to (13)
which are characterized by an asymptotic vanishing of the central charge deficit
Q2(t → ∞) → 0. Such solutions are known to characterize certain two-dimensional
black hole models [20], and it may be the case that exact conformal field theories
exist which also describe cosmological models. From the inflationary scenaria view
point such solutions are important in that they are characterized by a relaxing
to zero cosmological constant in target space [20], something which might be a
phenomenological requirement when one extends such scenaria to four dimensional
space times.

The method adopted previously is not convenient to find these solutions. The
main reason is that if we set d = Q0 = 0 in (14) the linear part of the system (13)
becomes trivial and does not permit the iteration (16). Nevertheless we can see that
there exist such solutions with the desired features (inflationary era and asymptotic
flatness), using a different method which we describe shortly in the following.

To this end we first note that, upon using the first of equations (13), the relation

Q = −ḃ (20)

solves the last of these equations. Hence, in the following we shall seek solutions
satisfying the relation (20) between the central charge and the field b. From the so-
lutions we have already obtained in our analysis above we see that this relation holds
immediately after the (initial) singularity. If we assume this feature to characterize
also the asymptotic region (t → ∞), then we observe that it is possible to enforce



the central charge deficit to vanish asymptotically, Q2(t) → 0. The second fact that
we infer from the solutions we have obtained above is that the field b is monotonic
in time. If we assume this to hold in the case of asymptotically vanishing central
charge deficit as well, then we can consider the fields Φ and T being functions of b.
Anticipating flat space time solutions asymptotically (t → ∞), we shall concentrate
on the case of weak b → 0 field, for which a perturbative expansion of the solutions
in powers of b is valid. Indeed, rewriting the system of equations (13) in terms of
the new variable, b, we can find a series solution for these fields. We omit the details
for brevity, and we only state the final result for the solution:

T (b) = c2

{

−b − b2

6
− 55 + 12c2

2

216
b3 − 109 + 60c2

2

2592
b4

}

+ O(b5)

Φ(b) =
b

4
+

1 + 4c2
2

16
b2 +

c2
2

18
b3 +

212c2
2 − 3

3456
b4 + O(b5). (21)

This solution gives asymtotically vanishing matter density and asymptotically con-
stant dilaton. This constant can be set equal to zero since our equations are insen-
sitive in constant dilaton shifts. For the field b itself we find the equation:

ḃ2(t) = b2(t) + a3(c2)b
3(t) + a4(c2)b

4(t) (22)

where the constants a3(c2), a4(c2) are complicated expressions of c2 which can be
found from the expression:

ḃ2 =
2T 2(b)

13
12

+ 7
6
φ′(b) − 4φ′2(b) + 3

2
T ′2(b)

. (23)

Solving now the equation (22) for b as a function of time the solution (relevant for
our purpose) is of the form:

b(t) = − 4et+c0

a2
3 − 4a4 + 2a3et+c0 + e2(t+c0)

. (24)

We therefore see clearly that there are solutions which asymptotically in time (t → 0)
lead to flat space with constant dilaton and vanishing central charge deficit. Already
from the above approximate expression we can distinguish two major cases: (i) if
we consider solutions with a4 > 0 the expression in (24) yields an exponential factor
of the form already presented in figure 1. (ii) On the other hand in the case of
a4 < 0 the expression in (24) indicates a scale factor leading to flat space in both
asymptotic regions with a deep throat in the middle region. Although this latter
class is interesting it lies beyond the scope of this article. Of course these expressions
are approximate, but the two classes of solutions can be confirmed numerically, upon
using initial conditions for the fields consistent with the above approximate solutions.



4 Instead of Conclusions

From the analysis presented in this article it seems that a simple two-dimensional
cosmological model, based on super-critical (Liouville) strings, is characterized by
phenomenologically acceptable features: exponential expansion (inflation), ‘graceful
exit’ from it, and relaxation towards an asymptotically ‘flat’ string universe with
a non-zero or zero constant vacuum energy (depending on the initial conditions).
The most important feature is that the ‘graceful exit’ from the inflationary phase is
achieved because of the fact that the Liouville σ-model is attracted by the linear-
or constant- dilaton fixed points (depending on the initial conditions), in such a
way that the string coupling always remains bounded during the inflationary and
post-inflationary periods. Thus, higher world-sheet topologies do not play a rôle in
the physics of the asymptotic time region t → ∞. This should be contrasted with
the critical-string situation.

The rôle of the non-criticality of the string, viewed as a non-equilibrium system
was crucial. In this respect we note that in our approach there is non-trivial entropy
production [9], determined by the overall decrease of the effective (‘running’) central
charge of the theory, Q2(t) > 0, during the flow towards a non-trivial fixed point.
The entropy change expresses the amount of information carried by (string) modes
whose world-sheet ‘momenta’ lie above the ultraviolet cut-off scale of the effective
theory. The issue of precise estimates of the entropy production in the context of
non-critical strings is left for future investigations.

An additional important feature of our approach was the rôle of matter in induc-
ing the above-described temporal evolution of the non-critical string universe. It is
not clear to us whether the existence of an initial singularity, which seems to char-
acterize the solutions, is an inevitable feature of all such non-critical string scenaria,
even in higher dimensions, or just a peculiarity of the two-dimensional toy model.
It would be interesting to attempt to extend this analysis to higher dimensional
theories, based on non-critical strings, including finite temperature considerations.
This would allow for a study of more realistic inflationary scenaria, including the
issue of reheating, a currently “hot”’ subject.

It should be stressed once again that above we have worked in the so-called σ-
model (string) frame, in which lengths have been measured in string ‘rods’. Thus
the inflationary scenaria we have found represent a true expansion of the stringy
universe. In two-dimensions this is the only frame, and one is free from the ambigu-
ities characterizing the four dimensional case, where a simple linear dilaton solution
in the Einstein frame may be interpreted [23] as an equilibrium solution correspond-
ing to a non-expanding constant universe, provided the measurement of distances
is done in ‘string rods’. In such a case one expects that inflationary, or in general
expanding-universe, scenaria would be described by more complicated space time
configurations.



It should also be born in mind that, at present, our results are preliminary, and one
cannot make definite claims regarding the ‘exit problem’ from the inflationary phase
of (non-critical) string theory. Many issues, such as the rôle of metric fluctuations
on the ‘exit’ phase, entropy estimates and bounds in our non-critical string universe,
reheating etc, are left open. These will hopefully constitute topics of future work.
However, we believe that the current results are sufficiently interesting to encour-
age further studies of inflationary scenaria based on non-critical (non-equilibrium)
Liouville strings.
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Figure 1: The scale factor eb(t) is plotted versus the cosmic time t, in our
supercritical-string-inspired cosmological model. The system is characterized by
a period of exponential growth (inflation), which in the units of the figure lies in
the time interval between -10 and -5, succeeded by a period of power-law expansion,
and, eventually, a stationary phase for t > 10.
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Figure 2: The difference Q(t)− Φ̇ versus the cosmic time t, whose sign is crucial for
the existence of the inflationary period. During the inflationary period this quantity
is negative. Then, its sign changes, signalling the exit from the inflationary era.
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Figure 3: The dilaton configuration versus the cosmic time. The dilaton starts
from positive values. Near the initial singularity (not exhibited in the figure) the
dilaton approaches positive infinity. Its value drops sharply towards the inflationary
era. During inflation the dilaton remains finite and almost constant (positive). it
changes sign during the exit period, and becomes linearly decreasing with cosmic
time asymptotically.
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Figure 4: The matter field (Tachyon) as a function of the cosmic time. During the
inflationary period it drops sharply from large values, of order of the central charge
deficit Q, to practically zero value.
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Figure 5: The evolution of Q(t) versus the cosmic time t. Note that the inflationary
period is characterized by an almost linear dependence on time.
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Figure 6: The evolution (versus the cosmic time t) of the central charge deficit
Q2(t) ≥ 0 in our supercritical string model. Note that Q2(t) decreases rapidly with
t during inflation. In contrast, the post-inflationary period is characterized by an
increasing with time central charge deficit until the latter settles to its final (equilib-
rium) value. The increase of Q2(t) is in agreement with the fact that the Liouville
mode is a non-unitary world-sheet field. However, there is an overall decrease of
the central charge deficit during the flow from its initial (‘near the singularity’) to
a final (equilibrium) value, as expected on general grounds.


