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pattern in a telescopic system is calculated taking into account the radial polarization of
OTR. The obtained diffraction pattern is compared to the patterns obtained by other
authors and the effects of different parameters on the shape and on the size of the OTR
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shape of the diffraction pattern is outlined. An alternative method to calculate the OTR
diffraction pattern is also sketched.

Keywords: Electromagnetic field calculations; Radiation;
Electron beam devices; Instrumentation

*Corresponding author. Laboratoire de l'Acce!erateur Lineaire, bat. 200, IN2P3
CNRS, Universite de Paris-Sud, B.P. 34, F-91898 Orsay Cedex, France.
Fax: +33 169071499. E-mail: khonkava@lalc1s.in2p3.fr.

t Presently at CERN.

147



148

1 INTRODUCTION

K. HONKAVAARA et al.

Optical transition radiation (OTR) provides an attractive method for
beam diagnostics of charged particle beams and it has been used for
that purpose in the keV- MeV energy region for electron beams and in
the GeV region for proton beams. There have been, however, statements
that the geometrical resolution of OTR might deteriorate drastically at
high energies due to the diffraction phenomenon. Related to that, some
authors! have puta limit on the geometrical resolution at a ',A' value,
where I is the Lorentz factor and Athe wavelength ofobservation. Several
studies concerning the resolution of OTR (see Refs. [2-11]) have been
published in the last years and this paper extends these investigations
concentrating on the optical diffraction of OTR in a telescopic system.

In order to study the resolution of the OTR we shall calculate the
diffraction pattern of OTR on the image plane of a telescope, which is
situated in the direction of specular reflection of the incident particle
(i.e. only the case of backward OTR is considered). Naturally, the
results are valid on the image plane of any kind of imaging system.
Scalar diffraction theory (see, for example, Ref. [12] or Ref. [13]) used by
Rule and Fiorito in Refs. [3-5] does not take into account the polar
ization of the field. Precisely, in the case of OTR the polarization is
important, since the polarization ofOTR is not uniform, but radial (the
electric field is in a plane containing the wave vector and the direction
of the specular reflection). This can be taken into account by con
sidering separately the horizontal and the vertical field components.
The method is similar to that used by Hofmann and Meot in Ref. [14]
for synchrotron radiation. Our treatment yields a satisfactory descrip
tion of the diffraction phenomenon and provides a relatively simple,
clear and straightforward method to compute the transition radiation
diffraction pattern. The shape of the diffraction pattern calculated here
is identical to that obtained by Lebedev in Ref. [9] and more recently
by us in Ref. [10] and by Castellano and Verzilov in Ref. [11]. The
OTR diffraction pattern will also be compared to the "scalar" pattern
similar to that obtained by Rule and Fiorito in Refs. [3-5] and to the
standard' diffraction pattern (diffraction pattern of an ideal isotropic
point source). The effect of the radial polarization alone will be studied
by calculating the diffraction pattern of a source which is radially
polarized, but having an isotropic intensity.
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2 RECALLS

Before calculating the diffraction pattern ofOTR in a telescopic system,
we shall recall some basic characteristics of OTR and of the scalar dif
fraction theory.

2.1 Optical Transition Radiation

Transition radiation is emitted when a charged particle crosses a
boundary between two media of different optical properties. The emis
sion occurs both into the forward and backward hemispheres with
respect to the separating surface. Here, we shall consider the case of a
single boundary between a metal and vacuum. Due to metal opacity,
only forward (resp. backward) OTR is observed when the electron
moves from metal to vacuum (resp. vacuum to metal). If the surface
is perfectly reflecting (r == rll == r-l == -1), the angular distribution is
approximately given (in Gaussian units) by (see, for example, Ref. [15])

(1)

where () is the angle with respect to the electron velocity (forward OTR)
or to the direction of the specular reflection of that velocity (backward
OTR). ~ is the Lorentz factor of the electron, and Eq. (1) is valid for
~ » 1 and ()« 1. From now on we will consider the case of backward
OTR (Figure 1).

The emitted electric field has two polarization components: one in
the plane of observation (zsn-plane in Figure 1) and the other one in the
plane perpendicular to that. In the transverse plane perpendicular to
the direction of specular reflection (iy-plane in Figure 1), the electric
field is radially polarized and in that plane it can be decomposed into
horizontal (i-direction) and vertical (y-direction) components.

2.2 Transformation of Image Fields by an Optical System in the
Scalar Wave Diffraction Theory

Let us first consider a wave of frequency w == (cjn)k propagating
between two planes IT and IT' without any lenses between them. In the
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FIGURE 1 Definition of coordinates and planes.

scalar wave theory, with the approximation of Gaussian optics, the
amplitude 1/J(P') in the plane II' is related to the amplitude 1/Jo(P) in the
plane II by

(2)

where R is the distance between points P and P'. The time-dependent
factor e-iwt has been factored out both in 1/J and 1/Jo. We can treat the
(IIR)-factor as a constant (in the Gaussian optics approximation)
and write

'l/;(P') = A lrr 'l/;o(P)eikR dS

where A == i/(AL) and L is the distance between the two planes.

(3)
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Let us now consider the case where one or several "non
diaphragmed" lenses are inserted between the planes II and II'. By "non
diaphragmed" lens, we mean a lens with an aperture much larger than
the transverse size of the optical wave packet. Equation (3) can be
generalized as*

'ljJ(P') = A l 'ljJo(P)eikL:.(P,P
I

) dS (4)

where £(P, P ') is the optical distance between points P and P', i.e. the
integral

pI

£(P,P') = 1 ndl (5)

along the geometrical optical ray connecting P and P', n is the refractive
index. A is a complex factor, which depends only on the location of the
planes and which we will not calculate, since we are interested only in
the shape of the OTR image.

3 DIFFRACTION EFFECT OF
DIAPHRAGMS IN A TELESCOPE

In this section we consider diffraction effect caused by the diaphragms
of a telescope, and in the next one we will take into account also the
special properties of OTR.

We have taken the experimental set-up used in our experiment at
Orsay6 as the geometrical basis for the diffraction calculations. In this
experiment backward OTR emitted by a 2GeV electron beam was
measured in the direction of the specular reflection. The set-up con
sisted of an OTR radiator, two lenses in a telescopic configuration and
a CCD-camera; henceforth the CCD is referred to as a screen. The first
lens had a focal length of 1m and a diameter of 8 cm; the focal length
of the second one was 25 cm and the diameter 14 cm. The first lens with
a smaller diameter gives the effective aperture limitation of the system.
The telescope geometry is presented in Figure 2.

*Equation (4) is applicable provided that the planes II and II I are not mutually
conjugated.
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FIGURE 2 Schematic set-up.

We will treat the effect of the real diaphragm (at the first lens) in a
slightly approximate but convenient way, replacing this diaphragm
by a virtual one, with the same diameter, but located in the common
focal plane between the lenses. t In that plane, the spatial coordinate a
is directly related to the angle eof the emitted radiation (a ==-11 e) as
resulting from the particular geometry of telescope.

Our observation point pI is situated in the image plane of the tele
scope (see Figure 2) and, according to Eq. (4), the modulus of the field at
this point is related to the amplitude 'l/Jo in the common focal plane by

(6)

where A is a normalization factor. The integration is performed over the
aperture area E of the virtual diaphragm.

The coordinates of a point B in the virtual diaphragm are x ==

a sin ¢ and y ==- a cos ¢ (Figure 2). In the image plane we use "prime"

t The real and the virtual diaphragms are in practice equivalent, when ao » "1* (the
transverse size of the source) and aO/II» "I-I (the peak angle), where ao and 11 are
the radius and the focal length of the first lens. These two conditions are fulfilled in the
following calculations.
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coordinates: x' == p sin ¢' and y' == pcos ¢/. The angular directions v and
u in the small angle approximation can be written as

X' p. I . I
V == - == - SIn ¢ == a SIn ¢

12 12 '
I

U == ~ == f!.- cos ¢' == a cos ¢/.
12 12

(7)

(8)

In the phase factor of Eq. (6) we are interested in the relative phase
difference. All the rays leaving the diaphragm in a particular direction
are focused by the second lens into the same point of the screen (see
Figure 3). According to the theorem of Malus,16 all the rays perpen
dicular to a given surface (BF in Figure 3) have an equal optical path
length from the surface to the focus point (point pI in Figure 3), and
thus the optical path difference between the rays EApl and BDP' is

~

d == IEFI. This distance is the projection of the vector EB onto the
~ ~ ~~

direction of vector EA: d == IEB . (EA / IEA I) I == vx + uy, where x and
yare the coordinates of point B and v and u are the angular directions
given by Eqs. (7) and (8), respectively. The corresponding phase dif
ference can now be written as 8 == -kd == -k(vx + uy). In polar coordi
nates the last paranthesis can be written as

X' y' p
vx + uy = h x +y;Y =y;a cos (¢ - ¢/). (9)

Since OTR is symmetrical about the z-axis, there is no preferred value
of the angle ¢/, and we may select ¢' == 0 and write the modulus of the
diffracted amplitude in the point pIon the screen as

I
r27r rao ( 21r P ) I17jJ(PI) I= A Jo Jo 7jJo(a,¢) exp -i>:y;a cos¢ adad¢ (10)

where k == 21r/>.. and 1/Jo(a, ¢) is the amplitude of the wave in the inter
mediate focal plane. The integration is made in polar coordinates
and ao is the radius of the smaller lens (the limiting aperture of
the system). It should be noticed that Eq. (10) is a particular form of a
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FIGURE 3 Sketch of rays after the virtual diaphragm.

two-dimensional Fourier transform of the wave amplitude 1/Jo. We can
therefore say, in agreement with Ref. [17, Chap. 5, Section 5.2.2], that
the field in the image focal plane of the lens L 2 is proJportional to the
Fourier transform of the field in the object focal plane of L 2 . In our
derivation, this property appears essentially as a consequence of the
Malus theorem.

4 DIFFRACTION OF OTR IN THE TELESCOPE

In the calculation of the diffraction pattern of OTR (i.e. the OTR spot
in the image plane of the telescope) we need to consider both the ampli
tude and the polarization of the incident wave.

The scalar diffraction theory can be used without modification for
the vector case if the direction of the field is the same in each point on the
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diaphragm. The electric field of transition radiation is, however, radially
polarized i.e. at different azimuthal angles ¢ the field vector has a dif
ferent direction (it is always pointing to the center of symmetry). We
may take this characteristic into account by considering separately the
horizontal and vertical field components. The total intensity is the sum
of the intensities from these two components.

When we decompose transition radiation into plane waves with
directions of fJ, the vector amplitude is proportional to ffl (1-2 + fJ2),

-+ ----+
where fJ == CP IISCI (Figure 1). When considering the two polarization
components separately, ffcan be replaced by (fJ sin ¢) for the horizontal
and by (fJ cos ¢) for the vertical component. t The phase of these plane
waves is precisely zero in the electron impact point S.

A plane wave, whose direction of propagation has an angle fJ with
respect to the direction of specular reflection and whose azimuthal angle
is ¢, is focused to the point B == (a, ¢) on the virtual diaphragm (where
fJ == a/fl) and the modulus of the electric field amplitude in this point
is given by

IEw(B)1 = C' (a/ld 2

1-2 + (alfl)
(11 )

where!l is the focal length of the first lens and C' is a constant that takes
into account the normalization and units.

When considering horizontal and vertical components separately,
IEw(B) \ has to be multiplied by the factor (sin ¢) or (cos ¢), respectively,
and we can write

'l/JOh (a, ¢) == IEw(B) Isin ¢,

'l/Joy(a, ¢) == IEw(B) Icos ¢

(12)

(13)

where 'l/Joh(a, ¢) refers to the horizontal component and 'l/JOy(a, ¢) to the
vertical one. We should multiply Eqs. (12) and (13) by a phase factor
corresponding to the propagation between Sand B. However, because
E and B are on the same wave surface, the optical paths SE and SB are
equal (invoking the Malus theorem), and ifwe forget the constant phase

t Here the polar angle ¢ is defined with respect to the vertical axis.
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factor, we do not have any extra phase factors to add into Eqs. (12)
and (13).§

The total intensity at the point pI is the sum of the intensities from
the horizontal and the vertical components:

[(pI) == I£(pl) 12 == I£(pl) I~ + I£(pl) I~. (14)

In the case ofOTR in a telescope, 1£(PI)lh and 1£(PI)lv are obtained
by substituting Eqs. (12) and (13) into Eq. (10). By using the expression
given by Eq. (11), we obtain

1£(PI) Ih == All to [27f ~alII) sin 1>2exp (-i 2,1r
f
!!... acos ¢) ada d¢l,

io io ,2 + (a/II) /\ 2

(15)

I£(pl) Iv == All to [27f (aliI) cos 1>2 exp (-i 2,1r
f
!!...a cos ¢) a da d¢I

io io ,-2 + (a/II) /\ 2

(16)

where A I is a normalization constant.
The integration over ¢ in the horizontal component gives zero, thus

only the vertical component contributes to the total intensity, and we
obtain

[(PI) == 1£(PI)I~ == cl [a
o

a
2

2JI (2:
f
!!...a) da I

2

(17)
io ,-2 + (a/II) /\ 2

where J I is the first order Bessel function and C a generic normalization
constant.

We have defined the azimuthal angles ¢ and ¢' with respect to the
vertical axis. If we had defined them with respect to the horizontal axis,
we would have interchanged the sin ¢ and cos ¢-factors in Eqs. (12)
and (13) leading to same result for the total intensity.

§ The plane wave decomposition ofOTR is proportional to the two-dimensional Fourier
transform of the OTR field at the radiator. Therefore, Eq. (11), like Eq. (10), can be con
sidered as an application of Ref. [17, Chapter 5, Section 5.2.2], the lens being in this case L 1.
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When the observer is on the vertical axis, he sees only the vertical
polarization. If he is placed on the horizontal axis, he sees only the
horizontal polarization.

The integration over a in Eq. (17) can be performed numerically
and the result as a function of the radius p on the screen is shown in
Figure 4 for our experimental conditions (E == 2 GeV, 11 == 1m, 12 ==
25 cm, ao == 4 cm, 01 == aO/ll == 40 mrad, A== 500 nm). This distribution,
which represents the diffraction pattern of an OTR source taking into
account the radial polarization, is shown around the symmet~y axis.
Since we are not interested in the absolute intensity, the peak intensity is
normalized to unity. The magnification of the used telescope is M ==
12//1 == 0.25; if we use an imaging system with magnification of one,.
the diffraction pattern is naturally four times wider. The FWHM size
of the pattern in Figure 4 is about 4.5 Jlm (FWHM ~ 18 Jlm, when

E=2 GeV. f 1= 1 m, f2=O.25 m, M=O.25. 0 0=4 em, "=500 nm
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FIGURE 4 OTR diffraction pattern (intensity) around the symmetry axis on the
image plane of a telescope with magnification M = 0.25 (E = 2 GeV, 11 = 1m, 12 =
25 cm, M =/2111 = 0.25, ao = 4 cm, ()1 = aolll = 40 mrad, A= 500 nm). In a one-to-one
imaging system the size of the diffraction pattern is four times larger.
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M::=: 1). This pattern shape is in full agreement with that of Lebedev
obtained in Ref. [9]. Similar observations concerning this pattern shape
are presented in Refs. [10] and [11].

4.1 Effects of Different Parameters on the
OTR Diffraction Pattern

Next we study the effects ofdifferent parameters on the OTR diffraction
pattern. Since we are only interested in the size of the pattern, the peak
intensities are always scaled to unity. In all the figures the magnification
of the system is 0.25; when using a one-to-one imaging system, the
patterns are four times wider.

Figure 5 shows the OTR diffraction pattern for different wave
lengths. We can see, as expected, that the size of the pattern scales pro
portionally to the wavelength. The resolution can be improved when
using smaller wavelengths, but if we are out of the optical range (A;S
350 nm), we cannot use an optical imaging system and the experimental
conditions become more complicated.

In Figure 6 the geometrical size of the aperture (ao) is varied. Natu
rally, the decrease of the aperture size causes an enlargement of the
diffraction pattern.

Figure 7 shows OTR diffraction pattern for different energies in the
GeV energy range. The FWHM size of the distribution is independent
of {. The difference is in the tails: the higher is the energy, the stronger
are the tails.

In Refs. [2,6,18] and more recently also in Refs. [10] and [11], it has
been considered a possibility to use a mask,~ which removes the small
angles (i.e. the {-I peak), to improve the spatial resolution. The effect of
a mask can be taken into account by introducing into Eq. (17) an extra
pupil function representing the cut caused by the mask. It amounts to
setting the lower limit of integration in Eq. (17) to am instead of zero,
where am is the radius of the mask. II A mask reduces the tails, as can be
seen in Figure 8, where OTR diffraction pattern for E::=: 10GeV

~ A "stop" in Ref. [2].
II The mask should, in principle, be put in the common focal plane of lenses L I and L 2 .

However, it can be put on L I, if am » ,* and (am/!I»> ,-I (cf. similar conditions than
for the real diaphragm).
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E=2 GeV, f 1=1 m, f2=O.25 m, M=O.25, 0 0=4 em
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FIGURE 5 OTR diffraction pattern for different wavelengths (a) A= 100 nm,
(b) A= 500 nm and (c) A= 1~m on the image plane of a telescope with magnification
M = 0.25. The used parameters are the same as in Figure 4.

(M == 0.25) has been plotted with and without a mask (am == 2 mm).
However, it does not affect significantly the FWHM size of the pattern.

4.2 Diffraction of a Gaussian Emitter

So far, we have considered OTR emitted by a single electron. Diffrac
tion of OTR emitted by a Gaussian beam can be treated by convoluting
on the image plane the OTR diffraction pattern and a Gaussian dis
tribution, which is the image of the beam distribution. This is a two
dimensional convolution:
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E=2 GeV, f 1= 1 m, f z=0.25 m, M=0.25, :\=500 nm
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FIGURE 6 OTR diffraction pattern for different geometrical aperture sizes
(a) ao = 10 cm, (b) ao = 4 cm and (c) ao = 1cm on the image plane of a telescope with
magnification M = 0.25. The used parameters are the same as in Figure 4.

where lex, y) is the OTR diffraction pattern (Eq. (17)) in cartesian
coordinates (p == Jx2+ y2) and O(x,y) the image of the beam profile:

1 (x
2

) 1 (y2)O(x,y) ==--exp --2 --exp --2
~au 2au ~ary 2ary

(19)

where aix and aiy are the horizontal and vertical rms sizes of the
Gaussian beam image.

5 COMPARISON WITH STANDARD DIFFRACTION

Let us calculate for comparison the diffraction pattern of an ideal iso
tropic point source (the standard diffraction pattern) in a telescope.
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FIGURE 7 OTR diffraction pattern for different energies (a) E=2GeV,
(b) E=5GeV, (c) E= 10GeV and (d) E=20GeV on the image plane of a telescope
with magnification M = 0.25. The used parameters are the same as in Figure 4.

In that case 1./Jo(a, ¢) == constant. By substituting this into Eq. (10) and
squaring, we obtain

1

{27r {ao (21f P ) 1

2

I(P')=const* io io exp -i>:];acosq; adadq;

Integration over ¢ and a gives

(20)

(21 )

where J 1 is the first order Bessel function and C is a generic normal
ization constant.
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[=10 GeV, f 1=1 m, f2=0.25 m, M=0.25, 0 0=4 em, om=2 mm, :\=500 nm

a) no mask
b) with mask
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FIGURE 8 Effect of a mask with a radius am =2mm (am /ao=0.05). E= 10 GeV; the
used parameters are the same as in Figure 4.

In Figure 9 the standard diffraction pattern given by Eq. (21) (curve a)
is compared with the OTR diffraction pattern given by Eq. (17) (curve c)
in our experimental conditions. The peak intensities are both normal
ized to unity. We can see that the OTR diffraction pattern is wider (the
FWHM size is about 2.7 times that of the standard diffraction pattern)
and has a zero in the center.

6 DIFFRACTION OF "SCALAR OTR"

Ifwe do not take into account the radial polarization ofOTR, but only
the angular distribution of it, we can use the right hand side of Eq. (11)
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E=2 GeV, f1=1 m, f2 =0.25 m, M=0.25, 0 0=4 em, A=500 nm
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FIGURE 9 Standard diffraction pattern given by Eq. (21) (curve a), "vector" OTR
diffraction pattern given by Eq. (17) (curve c) and "scalar" OTR diffraction pattern
given by Eq. (23) (curve b) on the image plane of a telescope with magnification
M = 0.25. The used parameters are the same as in Figure 4.

as the algebraic amplitude. By substituting it into Eq. (10) we obtain

1£(P1)/==A/1 r27r rao
_ (alid 2exP(-i

2
:?,acos¢)adad¢l.

io io r 2 + (a/II) /\ J2

(22)

After integrating over ¢ we have

where Jo is the zero order Bessel function and C is a generic normal
ization constant.
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The integration over a can again be performed numerically and the
resulting diffraction pattern is plotted in Figure 9 (curve b). The peak
intensity is again normalized to unity. This pattern is similar to the
pattern obtained by Rule and Fiorito in Refs. [3-5]. The FWHM size of
this "scalar OTR" diffraction pattern is by a factor of rv 1.2 wider than
the FWHM size of the standard diffraction pattern; the FWHM size of
the "vector OTR" pattern given by Eq. (17) is by a factor of rv 2.2 wider
than the FWHM size of the "scalar" one (Eq. (23)).

7 IMPORTANCE OF THE RADIAL POLARIZATION
IN THE DIFFRACTION PHENOMENON

For a field which is invariant by rotation about the direction of the
specular reflection, the amplitude distribution and the polarization of
the field can be described by separate functions A and F, respectively.
According to Eq. (10) we can write

I
{27r {ao ( 27f P ) I1[(PI)lf = A Jo Jo A(a)Ff(¢)exp -i;:];a cos¢ adad¢ (24)

where index} refers to the horizontal or to the vertical component. The
total intensity is the sum of the intensities from different components:
[(PI) == I:j 1[(PI) I].

When the field is radially polarized, the polarization function is
F h (¢) == sin ¢ for the horizontal component and F v (¢) == cos ¢ for the
vertical one. The angle ¢ is again defined with respect to the vertical axis.
Let us consider a hypothetical case in which the field is constant in
the amplitude: A(a) == constant. By substituting these into Eq. (24), we
obtain

I
{27r tao (27f P ) I

j[(P')lh=const* Jo Jo sin¢exp -i;:];acos¢ adad¢, (25)
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The integration over ¢ in the horizontal component gives again zero
and we obtain for the total intensity

where C is a generic normalization constant.
Equation (27) is plotted in Figure 10 (curve a) together with the OTR

diffraction pattern (curve b). The peak intensities are both normalized
to unity. It is important to understand that the peculiar shape of the
OTR diffraction pattern in the central region with a zero in the center
is essentially determined by the radial polarization. The non-constant
angular distribution of OTR only widens the pattern a little: the
FWHM value is wider by a factor of rv 1.2, when the OTR angular
distribution is taken into account.

E=2 GeV, f 1=1 m, f2=0.25 m, M=0.25. 0 0=4 em, A=500 nm

8 10
P (um)

642o-8 -6 -4 -2

a) isotropic
b) OTR

0.2

0.6

0.8

0.4

FIGURE 10 Diffraction pattern on the image plane of a telescope with magnification
M = 0.25 given by radial polarization: (a) isotropic angular distribution (Eq. (27))
and (b) OTR angular distribution (Eq. (17)). The used parameters are the same as in
Figure 4.
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8 ANOTHER TREATMENT OF OTR DIFFRACTION

Diffraction of OTR can also be studied from a more theoretical point of
view. A detailed treatment of this kind is presented elsewhere10 and here
we only shortly show that we can obtain, using this method, the same
expression for diffraction pattern as obtained in Section 4.

The angular distribution of transition radiation in natural rational
units (c == n== EO == 1, e2

/ 41f == a == 1/137) can be written as

dN a ( () )2
I(w, ()) = wdwdD ':::' 7[2 r 2 + ()2 . (28)

In the case of forward radiation, Eq. (28) is the spectrum emitted by a
suddenly accelerated electron and in the backward case the spectrum
emitted by a suddenly stopped "image positron". The radiation field (in
the far-field region) can be decomposed in plane waves

(29)

(30)

with

~ -. q
E(k) ~ Ie -2 2

q + ,-2kL

where q and kLare the transverse and the longitudinal components of
the wave vector k, respectively.

The impact parameter profile** is related to the q-Fourier transform
ofE:

(31 )

** The impact parameter b is defined as the transverse distance of the photon to the
electron trajectory (forward OTR) or to the "image positron" trajectory (backward OTR)
and b = Ibl is related to the radial coordinate p in the image plane by b = p/M; M is the
magnification of the optical system.
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wheref(q) is a cut-off function:

f(q) == 8(q - qm)8(ql - q).

The parameters qo, ql and qrn are defined as

qo == ,-lkL ~ ,-lw,

ql == ()I W,

qm == ()mw,

(32)

(33)

(34)

(35)

where ()l is the upper cut-off angle determined by some diaphragm and
()rn the lower cut-off angle determined by some mask. If no mask is used,
()rn == 0 ---+ qrn == o.

Using the properties of Bessel functions Eq. (31) can be developed as

I(b) == 4all I d
2q

2 ~2 q !(q)eiii.
bI

2

(21r) q + q6

al-+I f(q) 1

2

== 2" \7b qdq-2--2 Jo(qb)
1r q + qo

a II 2 f(q) 1

2

== 2" q dq-2--2 J 1(qb) .
1r q + qo

(36)

If we substitute for f(q) , the sharp cut-off function Eq. (32), we obtain

(37)

This can be written using the angle () == q* and qo == ,-I *-1 (in
natural units w == *-1 )as

(38)
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If we rewrite the diffraction pattern given by Eq. (17) using a ==II(),

M == magnification ==/2/11 and the integration limits el == aO/li and
em == amIf1 (i.e. we have a mask), we obtain

(39)

We can see that this is identical (excluding the constant factor) to
Eq. (38) taking into account the image magnification p == Mb.

9 HIGH ENERGY OTR EXPERIMENTS

In order to study experimentally the spatial resolution of OTR, three
groups have carried out high energy OTR experiments. During 1995
1996 our group measured at the Orsay linear accelerator backward
OTR emitted by a 2 GeV electron beam crossing an aluminum foil. 6

Almost simultaneously there was an experiment at CEBAF (Thomas
Jefferson Laboratory, Virginia) by Denard et ale using forward OTR
from rv 4 GeV electrons. 7 More recently backward OTR emitted by
22 GeV electrons have been measured by Jung et ale at CERN. 8

In all these experiments rms beam widths smaller than' r*' have been
measured. The ratios (marked here by ry) between the 'r*' value and the
rms width in the different experiments were: ry rv 2 at Orsay (2 GeV),
TJ rv 5 at CEBAF (3.2 GeV) and ry rv 3 at CERN (22 GeV). These ratios
are obviously depending on the ability of obtaining very small beam
dimensions in a given optical channel of the accelerator.

10 SUMMARY AND CONCLUSIONS

In this paper, we have considered the limitations brought by the diffrac
tion to the resolution of OTR images of high energy charged particles.
Starting from the scalar wave theory, some basic formulas concerning
the wave propagation in an optical system were recalled. Choosing, for
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the optical system, a telescope which exhibits very simple and interesting
properties, we have calculated the diffraction pattern of the OTR wave
emitted by one electron. A virtual diaphragm, located in the common
focal plane between the lenses of the telescope, allowed us to express the
diffraction in a rather simple way. The radial polarization of OTR was
taken into account by considering the horizontal and vertical field
components separately.

Our results coincide with those ofLebedev9 and they are in qualitative
agreement with those of Rule and Fiorito obtained in the scalar wave
approximation. 3

-
s The obtained diffraction pattern was also compared

to the well known standard diffraction pattern. The FWHM .size of
the OTR diffraction pattern is about two times wider than that of the
"scalar OTR" pattern and about three times wider than that of the
standard diffraction pattern.

Consideration of the general shape of the OTR diffraction pattern
shows that the FWHM width is insensitive for the particle energy,
whereas the tails increase with the energy. These tails may be seen by very
sensitive detectors: in that case, a central optical mask constitutes an
effective cure.

The high energy OTR experiments in three laboratories, at different
energies, have also shown that the resolution limit is well below the
'rA'value.

In conclusion, up to energies considered (r rv 5 * 104
), the effects of

the diffraction, evaluated by the FWHM of the OTR diffraction
pattern, are not limiting the resolution. The resolution depends more
likely on the properties of the experimental set-up, the contrast sensi
tivity of the detector and the data treatment procedure.
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