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Abstract

We discuss the thermodynamics of a gas of black holes in five-dimensional anti-
de-Sitter (AdS) space, showing that they are described by a van der Waals equation
of state. Motivated by the Maldacena conjecture, we relate the energy density and
pressure of this non-ideal AdS black-hole gas to those of four-dimensional gauge
theory in the unconfined phase. We find that the energy density rises rapidly above
the deconfinement transition temperature, whilst the pressure rises more slowly
towards its asymptotic high-temperature value, in qualitative agreement with lattice
simulations.
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1 Introduction

The striking conjecture of Maldacena [1] on the equivalence of large-NV,. supercon-
formal quantum gauge theories on d-dimensional Minkowski space My - considered
as the boundary of (d + 1)-dimensional anti-de Sitter space AdSgy1 - to classi-
cal supergravity in the AdS bulk, has opened a new dialogue between students
of non-perturbative gauge theories and string theorists. Quantities in the strong-
coupling limit of gauge theory may be calculable using classical correlators in AdS
(super)gravity, and/or non-perturbative aspects of string theory may be related to
correlators in gauge theories [2, 3], in a holographic spirit [4]. In particular, the
AdS approach was used in [5] to relax the assumption of four-dimensional super-
symmetry by starting from a supersymmetric theory in six dimensions, which was
one of the cases for which the conjecture was thought to be valid, and compact-
ifying appropriately two of the dimensions. The resulting compactification led to
a high-temperature regime for the four-dimensional boundary theory, which had
broken supersymmetry. In this way, confinement at low temperatures and decon-
finement at high temperatures could be demonstrated. However, the gauge theory
was still conformal, and asymptotic freedom was therefore not present. Nevertheless,
this approach has motivated intriguing estimates of glueball masses [6], the quark-
antiquark potential [7] and QCD vacuum condensates [8] that agree surprisingly well
with lattice and other phenomenological estimates.

Two of us (J.E. and N.E.M.) have proposed [9] a generalization of this holo-
graphic approach to the AdSyy1/My correspondence which is based on Liouville
string theory [10, 11], in which conformal symmetry and supersymmetry need not
be assumed, provided world-sheet defects [12] are taken into account properly in
the Liouville-dressed theory. The Liouville field itself provides an extra bulk dimen-
sion, and the AdS structure is induced by the recoil of the world-sheet defect, when
considered in interaction with a closed-string loop [13]. Within this approach, it
was possible to demonstrate the formation of a condensate of world-sheet defects
at low temperatures, which was related to the condensation of magnetic monopoles
in target space and induced confinement [9]. It was also possible to demonstrate
the logarithmic running of the gauge coupling strength. Although this Liouville ap-
proach is somewhat heuristic, it opens up a new way to discuss non-supersymmetric
QCD in the strong-coupling regime and at finite temperature. In particular, the
target-space quark-hadron deconfinement-confinement transition may be viewed as
a Berezinskii-Kosterlitz-Thouless phase transition of world-sheet vortices [14, 12],
which can also be related to the phase transition of black holes in AdS [15].

In this paper we embark on a heuristic attempt to use this approach to model
aspects of quark-hadron phase transition. Lattice analyses [16] indicate that the
free energy of pure QCD rises relatively rapidly above the critical temperature to
approach the asymptotic ideal-gas value as predicted in perturbative QCD. On the
other hand, the pressure is calculated [16] to rise much more slowly towards its
asymptotic ideal-gas value, and one possible interpretation is that massive effective
degress of freedom are important close to the transition, causing a larger departure



from the ideal-gas picture for the pressure than is the case for the free energy. Calcu-
lations close to the phase transition necessarily require non-perturbative techniques,
such as the lattice, and our hope is that the M,/AdSs correspondence may also
prove useful in this region.

Specifically, we model aspects of the gluon plasma using a non-ideal gas of black
holes in AdSs, interacting via forces of van der Waals type, and described by an
effective van der Waals equation of state that we derive in this paper.

In order to set this approach up in the most reliable way, and to relate it most
closely to previous work [5], we first consider the high-temperature limit. Here the
black holes in AdS; are stable as well as massive, and hence suitable for interpre-
tation as ‘molecules’ of a non-relativistic gas with small velocities |u;| < 1. We
demonstrate in this limit how the AdS structure of the ambient bulk space-time
itself may be translated into non-ideal-gas interactions between the massive black-
hole ‘gas molecules’. The question then arises how to extend this description down
to lower temperatures.

According to the world-sheet point of view, target-space black holes may be
viewed as ‘spike’ defects on the world sheet [12], which are dual to ‘vortex’ defects,
that in turn correspond to D particles in space-time [17]. In the above-mentioned
high-temperature limit, these D particles are light, and difficult to treat using the
Liouville approach. However, the Liouville approach is well-adapted for a discussion
of a dual limit, in which the D particles become very heavy [9].

It should be emphasized, though, that both of these limits correspond to tem-
peratures that are high compared to those in the confining phase. In both QCD [18§]
and AdS gravity [15], three distinct transition temperatures have been identified:
Ty, below which only the confined phase of the gauge theory exists and black holes
condense leaving a residual gas of radiation; 77, at which the free energies of the
confined and deconfined phases (or black-hole and radiation phases) are equal; and
T,, beyond which only the deconfined and stable-black-hole phases exist. In the
world-sheet picture, these correspond to the temperatures of Berezinskii-Kosterlitz-
Thouless transitions for vortex and spike condensation [9]. The high-temperature
limit [5] we take corresponds to T' ~ T, and above, and our lower-temperature limit
corresponds to T' & Ty. We aim to establish a judicious interpolation between these
two limits that describes qualitatively correctly the intermediate region T ~ Tj.

The layout of this paper is as follows. In section 2 we discuss in more detail
general features of our approach to the thermodynamics of AdS black holes. Then,
in section 3 we discuss the high-energy limit in which the D particles are light [5],
and section 4 contains an application of Liouville string theory [9] to the lower-
temperature limit. Finally, in sections 5 and 6 we pull together a general picture of
the quark-hadron phase transition using the information we have obtained from our
studies of the thermodynamics of AdS black holes, and relate it to lattice results [16].



2 Thermodynamics of a Gas of AdS Black Holes

We consider a homogeneous gas of AdS black holes, each of mass M, and restrict
ourselves to the case where the characteristic velocity of a generic black hole in the
ensemble is either zero or very small: |u;| < 1, corresponding to the case of very
massive black holes. We consider first the static case: w; = 0. This will help in
gaining insight into the u; # 0 case, which we treat later as a perturbation of the
static case.

We consider an ensemble of N indistinguishable Schwarzschild black holes in
a five-dimensional AdS space-time with radius b, which is related to the critical

temperature 77 above which massive black holes are stable: T3 = 1/(wb). The
invariant line element is be taken to be (in Minkowskian signature) [15, 5]:
2 2 -1
9 re wyMY e wyM 9 o
ds-—<1+b—2— 2 )dt+<1+b—2— 7"2> dr® 4 r°d2; (1)

where the AdS radius b is related to the negative cosmological constant A by b =
\/—3/A, and wy = 8G /3w, where G is the five-dimensional Newton constant that
is related to the Planck length ¢p via Gy = (%, and M is the ADM mass of the

black hole. The outer horizon of the black hole is defined to be the larger positive
root r; of the equation
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namely

1 1 1/2
= b <—5 oyt 4w4M/b2) . 3)

For the purposes of calculating the partition function and other thermodynamic
quantities of the ensemble, a Wick rotation to a Euclidean AdS geometry: ¢t — it,
will always be understood. The Fuclideanized AdS-Schwarzschild space-time has
been found to be smooth [15], provided the Euclidean time direction is perodic at a
particular radius [y: ,
R dmbory
bo=Tn = Ar2 4202
where Ty is the Hawking temperature of the black hole.
In subsequent sections of this paper, we consider two limits of (4) that correspond
to high Hawking temperatures Ty 2 Ty, namely (i) b* < r3 and (ii) b > r3, where
we assume in each case that (5 < r3,b%. It is easy to check using (3) that in
the limit (i) we also have wsM/r2 ~ 13 /b? whereas in the limit (ii) we also have
r3 >~ wyM > (3, so that we are consistent with the static limit in both cases.
According to the analysis of [15], the thermodynamic ensemble of black holes is
stable in the limit (i): {3 < b* < r7 < wyM, which was considered in [5]. This
corresponds to the region T~ Tj. The limit (ii): (3 < 15 ~ wsM < b*, where the
radius of the AdS space-time is large compared to the outer horizon, was studied
perturbatively in [9], using the Liouville approach where b ~ 62 — oo, with § — 0™

(4)
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a parameter appropriately defined to regulate the recoil operators. According to [15],
this limit corresponds to a temperature 7' 2 Ty. However, the intermediate regime
of the phase transition where 7" ~ T}, lying between the regions (i) and (ii), cannot
be studied reliably by analytic methods, and we resort later to continuity arguments
in order to describe the energy and pressure curves in this region.

3 Is there a Phase Transition?

To answer this question and to investigate its order, one should examine the equation
of state for an ensemble of AdS black holes in appropriate regimes of the parameters.
We consider first the limit (i) above.

Using standard General Relativity, the effective static potential U(r) between
two black holes in the ensemble with a radial separation r is given by the temporal
metric component goo, that can be obtained from (1):

r? wa M

goo = —1—2U(r), U(r) = %2~ 92 (5)

provided the potential is weak. We note that the potential (5) vanishes at a radius
To-

Ulrg) =0 — o = (widat?)'”" . (6)

Using (3), we see that rqg ~ r, + % . Therefore, if we restrict ourselves to a thin
shell outside the horizon: r, <r <r,+¢, the potential is indeed small, and one can
take € = (ro—ry) ~ b*/4r, to a good approximation. Since the potential varies very
little over the range 7, < r < r, +e¢, we make the second approximation U(r) ~ U ,
where U is a constant, justified because 6U ~ . The fact that the absolute value of
the constant U is a small number also justifies our weak-field approximation. These
statements can be checked more precisely using the following formulae:

U(r) = U = const = kN/ASQ
2 5
_ o A
— (1/N) /r+ ' U(r) ~ [ 5 w4M5r+] (7)
where the effective volume A = Qy — Q) is the size of the four-volume of the shell
ry <r <ry+¢and N is the number of black holes in the ensemble. We denote by
Qo the four-volume inside the horizon. From the expression (7) for x, one can easily
check that U < 1. We shall see that the above approximations lead to analytic
expressions for thermodynamic quantities of our AdS black-hole system.
We first evaluate the classical partition function Z of the system, assuming that
it is in thermal equilibrium at a Hawking temperature T' = 3~

N
vi\J ey

= (27rﬂ> (/ diz e AU ) = % <%>2NAQN653MN. (8)
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Some remarks are in order at this point. First, in the static case which we are
considering now, the kinetic term of the black holes has no physical meaning and
serves only as a cut-off for the momentum integrals. Secondly, the spatial integral
is understood to be taken over the prescribed shell v, < r < r, 4 ¢, which give rise
to the volume factor A€). Finally, we underline that we have made explicit use of
the approximations mentioned above.

Before proceeding to compute other thermodynamic quantities, we also examine
the low-velocity non-static case. As we shall see, the difference between the static
and the non static cases can be described effectively by a renormalisation shift of
the mass term M — M + T in the partition function above (8). To prove this,
we note that in the non-static case, where the heavy black holes move with a small
velocity |u;| < 1 relative to each other, we may employ both the small-velocity and
weak-potential approximations simultaneously. To obtain the velocity corrections
to the potentials, we use the Minkowski-signature Lagrangian:

ds

L= —M%, ds® = —gapdetdz®, A, B=0.4 9)

where ds? is given by (1). We then write

ds dxt dzi —
N e (10
and set A
goo = —1—2U(r), 9ij = 0ij + hij , rt=>al (11)
i=1

from which we see that ds/dt = \/1 +2U — |u;|? — hjjuiu?. Expanding in powers of
both U and u? to leading non-trivial order, we find:

1 1 . ]

Parametrising with a generalized velocity-dependent potential U in the Lagrangian:
L =—M+ sMlu;|* — MU(T, u), we get

~ 1 1 . ;

which clearly reduces to U in the static limit u; — 0.

The partition function for slowly-moving black holes can be computed in a
straightforward manner. First, we note that the generalized momenta are given
by

oL :
giving rise to the Hamiltonian:
) 1 .
H:piuZ—L:M(1+U)+§piuZ. (15)



Taking into account the facts that h;; = 2Ux;x;/r* and u; ~ 22[0;;(1+U) — hy;], we
can re-express the Hamiltonian as:

1 1
H = opikip; + MU, Kij = 571051+ U) = Dy (16)
which resembles the Hamiltonian of a particle with momenta p; in a ‘curved space’
whose ‘metric’ K;; depends solely on the potential U and not on the velocity u; (to

this order). The resulting partition function is

N
7 = L /d4$d4p e_ﬂ[%pilcijpj‘f'MU(r)]
N! (2m)4

N
eﬁU(T)M) (17)

_ L <£> . /d4.fL' 1
N\ 27p \Jdet(K M)
where

det(K M) = Det((1+ U)d;; — hyy)]Y2 = exp [%Tr(Uéij ) + ] ~ el (18)

Thus, one has, upon approximating U ~ U (c.f. (7)):

1 M N N _—N(BM+1)U
Z ~ N <2 ) AQVe (19)

which, when compared with (8), demonstrates the aforementioned renormalisation
shift in the mass by T'. In view of this simple change, from now on we shall deal
with the general velocity-dependent case.

The energy of the system is defined as

_ 0
E =5 (~LnZ 4 5un) (20)

where the ‘ground-state energy’ due to the chemical potential = dLnZ/ON has
been appropriately added. The pressure of the system is defined as:

_ 10LnZ

= 5 oA0 (21)
which upon using (8) yields the following equation of state:
3 N2
NT = (P—/@Mm> (Q4 — Q) , (22)

where the Boltzmann constant has been put to unity and M represents the shifted
mass appearing in the partition function (19).



The relation (22) is nothing other than a van der Waals equation of state. In our
view, this leads to the prima facie expectation that a first-order phase transition
takes place in the bulk, though this remains to be verified.

For the non-static case (19), the quantity E is

_ o3 (OM 1 M M
E = —NLoN - N-2N=— <8ﬁ 2W6—2W62>(1—ﬁ)+2NLH(%)+
N 0AQ — _

In the limit under consideration, we may use (4) to relate the black-hole mass to
the temperature:
4
M ~ o7 (24)
Wq
for a five-dimensional AdS-Schwarzschild black hole. ' We assume (see later) that
the AdS radius b scales with the temperature as

b~ coT™H, (25)

where ¢y is taken sufficiently large to ensure that wsM > b?>. Thus F is easily
evaluated:

E = const + 2NT — 6 NLnT + "UNT 2 — 2'NUT 3 (26)

where U < 0, and is assumed constant, and we have used LnN! ~ NLnN for large
N. The constant in (26) can be set to zero by an appropriate normalization of the
energy, since only energy differences matter.

The energy density p for the four-dimensional system on the boundary of AdSs is
obtained by dividing E by the three-volume which, in view of the above discussion,
scales like 773, Thus

p/T* o« 2N — 6NT'LnT + 'UNT 3 - 2'"NUT* (27)

As for the energy density, the pressure in four dimensions (three space dimensions,
one periodic temperature dimension), denoted by p, is computed from the equation
of state (22) after writing it in the form

p = bP = const X NT (28)

1
AQy
using (7) and assuming that the variations of the potential with the volume are small.
The quantity bP simply represents the fact that the three-space pressure should be
computed with respect to a three-volume shell, AQ23, and not a four-volume shell,
AS€),. The former scales with one length dimension less compared to the latter, and

n the case of an (n + 1)-dimensional AdS-Schwarzschild black hole of large mass M, the
temperature scales as T™.



thus the quantity bp in (22) has the right scaling with 7. With in this mind, we
remark that AQs scales like 773 in the very-high-temperature regime, beyond the
upper phase transition, and hence that

p/T* ~ const . (29)

The constant term in (29) may be fixed by the fact that in the very-high-temperature
regime the system is supposed to represent a gas of massless gluons, and hence, from
the classical statistical mechanics of a ideal gas of massless Bose particles, the energy
density is three times the pressure.

The energy density curve is plotted in Figure 1. We observe that the qualitative
features of QCD are correctly captured by our classical statistical system of AdS
black holes. The energy density drops sharply as we approach low temperatures,
and it is tempting to identify this region might with the deconfined region of QCD,
approached from the high-temperature unconfined phase. Our approximate calcu-
lation exhibits a bump in the energy-density curve before the ‘confined’ region is
reached, due to the —T'LnT term in (27). However, the limit (i) that we have used
above is valid only for high temperatures, and should not be trusted quantitatively
in this region. On the other hand, the appearance of this bump may indicate the
existence of a thermodynamic instability, given that the ‘bump’ region is followed
by a sharp drop in the energy density as the ‘confined’ region is approached.

\

T

Figure 1: The scaled energy density p/T* (dashed line) and pressure 3p/T* (contin-
uous line) in a gauge theory, plotted as functions of the temperature T, as calculated
in the high-temperature limit (1) b < ry [5] using a typical set of parameters for N
indistinguishable AdS black holes. The bump in the energy density is reminiscent of
the transition from a gas of pions to a deconfined quark-gluon plasma in the QCD
case, but the approximations made in the limit (i) are not reliable in the regions
where the lines are dotted.



4 Another View of the Phase Transition

In this section we shall look at the phase transition from the opposite viewpoint,
described by the limit (ii) defined above: (3, < r? ~ wysM < b*. The approxima-
tions made in the analysis of the previous section are also valid in this parameter
regime, though in a different way. When there is a large separation between any
pair of black holes in the ensemble: r; < r < b, it is again a good approximation
to take U(r) ~ U, where U is a positive constant, because the potential varies very
little over the range r, < r < b. Not only that, but the constant U is also a small
number and hence one can again make a weak-field approximation. The analogues
of the formulae (7) are in this case:

U(r) ~ U = const = kN/Q

b 7T2 7"6
— 4 _ 4 + 2 2

where, as before, the effective volume Q = €y — ) is the size of the four-volume
of the shell r, < r < b, and N is the number of black holes in the ensemble.
Given that Q ~ b*, and using the above formula (30) for %, one can easily check
that U < 1. Notice that the potential is attractive in the region r,. < r < ro and
repulsive in the region ro < r < b. In this region, (4) tells us that the black-hole
mass is related to the temperature by:

62

M ~ .
4wy

(31)

One can perform calculations for the partition function, energy and pressure of the
ensemble that are similar to those described in the previous section, which we do
not reproduce in detail here.

As in the limit (i), we find again in the limit (ii) a van der Waals equation of
state, as in (22).

To understand qualitatively the physics in the lower end of the transition region
T ~ T, we recall that, as we approach the transition region from above, we enter
a regime where the Liouville theory takes over. In this theory the radius b may be
assumed to be independent of temperature [9], and large. In this limit of large b
and T-independence, a different approximation is needed to capture correctly the
features of the transition region, since the classical description of a gas of stable
black-hole particles breaks down in this case. However, we can still obtain qualitative
ideas of the dynamics by applying the above statistical-mechanical approach to this
case. Notice that the smallness of wysM compared to b implies that the AdS space
is regular for large r. This is the regime discussed in the Liouville approach of [9].

We have calculated the energy density p and the pressure 3p, with the results
shown in Figure 2. We observe that the pressure is almost constant near the tran-
sition region, whilst the energy increases and exhibits a bump. As compared to our
results in limit (i), this bump is rather smoother. The constant value of the pres-
sure is again fixed by the fact that at low temperatures the system again enters an



ideal-gas regime, where in this case the physical degrees of freedom are the bound
states, i.e., massless pions in the case of QCD, so that the relation p = 3p should
again be valid.

\

3p/T4

T

Figure 2: As in Fig. 1, but in the limit (ii): r* < b [9], conjectured to represent
the start of the phase transition regime. The pressure curve lies below the energy
density curve and is almost constant: the bump in the energy density is less marked
than indicated in the limit (i).

5 Relating the Two Descriptions

The regime (i) which describes the high-temperature tail of the phase transition
must connect smoothly with the regime (ii) as the scales cross: 7 < b. Since one
expects that the temperature should rise after the phase transition, we assume that
Tlis < Ty . At the boundary of the two regions, one has rf ~ vwsMp ~ bg, and
the temperature T ~ 1/bp should therefore lie in the range 7(;;) < Tp < T(). A
natural way to arrange this crossover is to keep r, fixed at the boundary value and
study the variations of the other parameters as we go from one regime to the other.
Clearly this puts the following bounds on the other parameters:

b(i) < bg K b(ii) , M(Z-Z-) ~ Mp < M(Z-) . (32)

These bounds seem natural and consistent with the definitions of the limits (i) and
(ii). In particular, one outcome of this crossover, namely that the black-hole degrees
of freedom are more massive in region (i) and hence decouple from infrared physics,
seems consistent for describing the region just above the phase transition, which,
according to (32), is associated with lower-mass black holes: M;;) ~ Mp < M) in
region (ii).

We would also like to comment on the behaviour of the AdS radius b in the
transition region. The scaling (25) is justified in the Liouville approach of [9], in
which the recoil-induced AdS radius b is proportional to a homotopic ‘time’ variable.
In the analysis of [9], this homotopic time was identified with the target time X°
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in a real-time formulation of Liouville QCD. In this real-time formalism, the time
X" should not be confused with the temperature. However, from the equivalence of
the real-time and Matsubara formalisms, where one identifies the temperature with
the inverse radius of a compactified Euclidean time, it is natural to assume that, at
least in the high-temperature regime where one assumes thermal equilibrium with
a heat bath of temperature T, the scaling (25) should be valid.

An alternative way to justify the scaling (25) is to notice that, in order to ar-
rive at the regime where the analysis of [9] is valid, one needs to go to very low
temperatures, where b is huge. This result is not in contradiction with our above
procedure of identifying b with 1/7". However, in the low-temperature regime b is
almost constant [9], and not scaling with temperature. We conjecture that there are
in general competing contributions to b, so that

b~ 62+ 0(1)T), (33)

and that the =2 term dominates in the low-temperature regime, whilst ¢ is compar-
atively large in the high-temperature regime, and the 1/7" term dominates. In [9],
0 was identified with the area of the Wilson loop that generated the world sheet of
the string. This is consistent with the above picture: for low temperatures in the
confining regime, the dominant degrees of freedom are related to large world-sheet
areas, in the sense that the (temporal Polyakov or spatial Wilson) loops that define
the order parameters relevant for confinement are large. It is these quark-antiquark
loops that can be described by weakly-coupled string theory, for which the analysis
of [9] is valid. At high temperatures, on the other hand, the areas defined by the
dominant order parameters (Wilson and/or Polyakov loops) are relatively small or
microscopic, as remarked in [9]. This corresponds to the pure stringy limit =2 — 0.
In that limit the perturbative string theory approach of [9] is invalid, and should
be replaced by the above semi-classical picture [5] of a gas of very massive black
holes. We now remark that, in our approximate treatment of near-horizon distances
r, where the potential is weak, one obtains the typical order of magnitude estimate

rt o~ waMb? + O(b*\ wyMb=2) (34)

Combining (3),(24) and (25), we find that the volume Qy o 4 varies with T as T,
and hence
AQ=Q —Qoocr? —r} =T (35)

where ¢ is a constant.

As commented above and in [15], the phase transition of the five-dimensional
black-hole system is expected to be of first order. Moreover, it is here identified
with a deconfining transition in gauge theory. However, at present our analysis
cannot determine the precise order of these associated transitions, and this remains
an open issue. A related issue is whether holography [4] survives the first-order
phase transitions associated with the boundary and bulk dynamics. Based on the
Liouville renormalization argument given above, we would expect so, but this issue
is also open.
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6 Comparison with QCD

Here we comment on the temperature-dependence of the pressure, and relate it to
what is known for QCD from lattice simulations. We recall from the discussion of
section 4 that in low-temperature limit (i) of the phase transition region (see Fig. 3),
where b is roughly T-independent and the mass of the black hole M ~ T*, there is
no difference in scaling between the four- and five-dimensional pressures, and hence
3p/T* in (28) is initially approximately constant and then increases slightly (due to
the smallness of §) as the temperature increases. Thus the pressure curve does not
increase as abruptly as the energy density, and always lies beneath it as long as it
can be calculated reliably.

As the temperature increases towards the upper end of the phase transition, the
increase in the pressure may be obtained from terms that have been ignored so far in
deriving (22). These include terms that express fluctuations of the potential U with
the volume €24 — €2y. These are required by continuity between the two asymptotic
regimes for the pressure computed above. The generic (approximate) form of such
terms may be found by representing the potential fluctuations as

— N
~ !
U_U+6—Q4_QO

(36)
where €' is small and positive. Such a dependence of the potential on € results in
extra terms on the right-hand side of the equation of state. Thus, for example, in
the high-temperature phase we expect the the boundary pressure to have the form:

1
p/T* ~ const o [NT + ¢ N* (M + T) /(S - Q)] - (37)
We now recall that, on the high-temperature side of the phase transition, A3 scales
like T3, (€24 — ) scales like T4, and the mass of the black hole scales like T2
The mass is sufficiently large that the M-dependent term is still dominant. Hence,
from (36) one obtains a linear increase for 3p/T":

3p/T* ~ const + O (const’ X e’NQT) : (38)

As the temperature increases, the ¢ term becomes smaller and smaller, and one
recovers a constant temperature at the end of the of the transition region. The pro-
portionality constants are again fixed by requiring that this scaling should describe
at high temperature an almost ideal gas of massless particles, in which case we have
the relation p = 3p in three space dimensions.

We display in Fig. 3 heuristic interpolations of p and 3p between the high- and
low-temperature limits (i) and (ii). These curves can be compared with those calcu-
lated for QCD on the lattice [16]. In both cases, there appears to be a sharp jump of
the energy density at the onset of the deconfining phase transition, from the value
where the system is equivalent to a gas of pions, towards that where the system
is described by an almost ideal gas of quarks and gluons. On the other hand, the
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Figure 3: Interpolations of the scaled energy density p/T* (dashed line) and pres-

sure 3p/T* (continuous line), including the transition region between the limits (i)
and (i1) shown in Figs. 1 and 2, respectively. The behaviours of the energy density
and pressure in the intermediate-temperature region are reminiscent of lattice cal-
culations [16]: in particular, the pressure curve rises more slowly than that of the
energy density.

increase in the pressure is much smoother in both the lattice and our AdS calcula-
tions. This is related in our approach to the weak-field assumption for the potential:
|U| < 1, which is valid for near-horizon AdS geometries in the high-temperature
phase.

We should repeat that our analysis in the limit (ii) is not yet quantitative at low
temperatures. However, the Liouville world-sheet approach of [9], which describes
the dynamics of world-sheet defects via D particles, describes this regime qualita-
tively correctly, leading in particular to confinement as a low-temperature property.
In this case, the space-time obtained from D-particle recoil is indeed of AdS type
with M — 0in (1) [13, 9]. We have shown in this paper that this approach has,
moreover, a plausible regular continuation to the high-temperature limit (i) explored
in [5]. This gives us further reason to hope that the Liouville string approach may be
suitable for development into a reliable tool for describing non-perturbative gauge
dynamics, and therefore may contribute to the new avenue for non-perturbative
gauge-theory calculations opened up in [1, 5, 6, 7, 8].
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