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1 Introduction

At finite temperatures the partition function Z(β) and the mean energy U(β) develop

power pole singularities in β ≡ T−1 if the density of states of a system grows exponen-

tially with the energy:

ρ(E) ∼ E−k ebE ,

Z(β) =
∫

dE ρ(E) e−βE ∼ 1

(β − b)(k−1)
,

U(β) = − ∂

∂β
lnZ ∼ (k − 1)

1

β − b
+ ... (1.1)

At the critical temperature, TH = b−1, various thermodynamical quantities diverge

[1]. An alternative interpretation of the pole singularity in U(β) follows from the

identification of the temperature with the inverse radius of a compactified Euclidean

time on S1: 2πT = 1/R. In this representation, the partition function is given by the

(super-)trace over the thermal spectrum of the theory in (D − 1) dimensions:

ln Z(β) = Str lnM(β). (1.2)

The pole singularity is then a manifestation of a thermal state becomes massless at the

Hagedorn temperature TH . Thus, the knowledge of the thermal spectrum M(β) as a

function of the S1 radius R = β/2π, determines TH [2].

Perturbative string theories provide examples of an exponentially growing density

of states, with k = D, the dimension of space-time, and b−1 ∼ O(α′)−1/2 [6]–[8].

In superstrings the states that become tachyonic at TH have necessarily a non-zero

winding number n [3, 4, 5].

From the perturbative study of the N = 4 strings we can see that the states that

become tachyonic above TH correspond to the N = 4 BPS states that preserve half of

the supersymmetries (N = 2) [9]. However, in the N = 4 theories the the masses of the

non-perturbative BPS states are known as well thanks to the N = 4 supersymmetry

algebra with central extension [10]–[12]. We can therefore identify all perturbative

and non-perturbative BPS states that are able to induce high-T instabilities using the

string duality properties among the heterotic–type IIA–type IIB–type I strings with

N = 4 supersymmetry [13]–[16].

In this talk I will summarize the results of Ref. [9] concerning non-perturbative

N = 4 theories at finite temperatures.
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2 Thermally modified N = 4 BPS masses

In order to obtain the thermal partition function one modifies the boundary condi-

tions around the S1-Euclidean time by a spin-statistical phase. In perturbative string

theories the consequence of this phase is to shift the Kaluza–Klein momenta of the S1

PL,R =

(
m + Q− nδ

2

R
± nR

α′

)2

, (2.3)

and reverse the GSO projection in the n-odd winding sector; Q = QL + QR is the

helicity operator while δ = 1 in the heterotic string and δ = 0 in type II strings

[3, 4, 5, 9].

The left- (and right- ) supersymmetric GSO projection(s) implies that in the even

winding sector all states have M2 ≥ 0. However, some of the states with odd winding

number can become tachyonic by a reversion of the GSO-projection [3, 4, 5, 9]. The

only states that can become tachyonic have n = ±1 and left-helicity QL = ±1 (right-

helicity = −QR for type II). They are scalars in (D − 1)-dimensions (the longitudinal

components of the D-dimensional gravitons). The Hagedorn temperature corresponds

to the critical value of the S1 radius at which the first tachyonic state appears when

2πR = T−1 decreases.

The appearance of tachyons can never arise in any perturbative supersymmetric

field theory, since it behaves like the zero-winding sector of strings. In non-perturbative

supersymmetric field theories, however, such an instability can arise due to thermal

dyonic modes, which behave like the odd winding string states. Indeed, before the

temperature modification, the heterotic–type II duality in five dimensions exchanges

the winding number n with the magnetic charge `:

M2 =

(
m

R
+

nR

α′
H

+
`R

λ2
Hα′

H

)2

, (2.4)

where m and n are the S1 momentum and winding numbers, and ` is the non-

perturbative wrapping number for the heterotic 5-brane around T 4 × S1; λH is the

string coupling in D = 6; the tension of the 5-brane T5=1/λ2
H in α′

H units. Using the

S-duality relations:

λH =
1

λIIA
, λ2

Hα′
H = α′

II , (2.5)
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we can express the above mass formula in terms of type IIA parameters:

M2 =

(
m

R
+

nR

α′
IIλ

2
IIA

+
`R

α′
II

)2

=

(
m

R
+

nR

α′
H

+
`R

α′
II

)2

. (2.6)

The momentum and winding numbers are now m and `; n is the wrapping number for

the type IIA NS 5-brane around K3 × S1. From the six-dimensional viewpoint, m/R

is the Kaluza–Klein momentum, while the last two terms correspond to BPS strings

with tension

Tp,q =
p

α′
H

+
q

α′
II

, (2.7)

where p, q are relatively prime integers, (n, l) = k (p, q). The common divisor k defines

the wrapping of the Tp,q string around S1; q is the charge of the fundamental string

and p the magnetic charge of the solitonic string obtained by wrapping the NS 5-brane

around K3. The Tp,q-strings cannot become tensionless since thet never are associated

to vanishing cycles of the internal manifold.

The five-dimensional thermal mass formula is obtained by the non-perturbative

generalization of the temperature deformation using the (p, q)-string picture of the

non-perturbative BPS spectrum by replacing m → m+Q′ + n
2

and reversing the GSO-

projection in the k-odd sector of the (p, q)-strings (Q′ is the helicity operator of the

5D-thermal theory):

M2
T =

(
m + Q′ + kp

2

R
+ k Tp,q R

)2

− 2 Tp,q δk,±1 δQ′,0 . (2.8)

This thermal formula reproduces the perturbative result for both heterotic and type IIA

theories. In the heterotic perturbative limit λH → 0, only the ` = 0 = q states survive,

while in the type IIA perturbative limit λII → 0, only the n = 0 = p states survive.

Note that in the general case of a Tp,q string with the temperature deformation, the

condition mk ≥ 0 becomes mk ≥ −1, because of the inversion of the GSO-projection.

From Eq. (2.8), it follows that if the heterotic coupling λH is smaller than the

critical value

λH < λc
H =

√
2 + 1

2
, (2.9)

the first tachyon appears at R = (
√

2 + 1)
√

α′
H/2, which corresponds to the heterotic

Hagedorn temperature. On the other hand, if the heterotic theory is strongly coupled,

λH > λc
H , the first tachyon appears at R =

√
2α′

H λH = 2
√

α′
II/2; this corresponds to
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the type IIA Hagedorn temperature. Besides the above two would-be tachyons, the

mass formula (2.8) leads in general to two series of potentially tachyonic states with

m = −1. However the critical temperature (2πR)−1 for each of the states in both series

is always higher than the lowest Hagedorn heterotic temperature while, as discussed

above, the type IIA Hagedorn temperature first appears when the heterotic coupling

exceeds the critical value λc
H (2.9).

In order to include the type IIB dual N = 4 string, we need to discuss five-

dimensional theories at finite temperature, taking into account the compactification

radius R6 from six to five dimensions. Type IIA and IIB strings are then related by

the inversion of R6. The extension to four dimensions of the mass formula (2.8) is

straightforward. It depends on three parameters, the string coupling gH , the temper-

ature radii R and R6. It is convenient to introduce the three combinations

t =
RR6

α′
H

, u =
R

R6
, s = g−2

H =
t

λ2
H

, (2.10)

in terms of which the thermally shifted BPS mass formula reads [9]:

M2
T =

(
m + Q′ + kp

2

R
+ k Tp,q,r R

)2

− 2 Tp,q,r δ|k|,1 δQ′,0 , (2.11)

where Tp,q,r is then an effective string tension

Tp,q,r =
p

α′
H

+
q

λ2
Hα′

H

+
rR2

6

λ2
H(α′

H)2
=

p

α′
H

+
q

α′
IIA

+
r

α′
IIB

; (2.12)

here, the various α′ and the radius R are expresed in terms of s, t, u and in termes of

the four-dimensional Planck scale κ =
√

8πM−1
P :

α′
H = 2κ2s, α′

IIA = 2κ2t, α′
IIB = 2κ2u, R2 = α′

Htu = 2κ2stu (2.13)

The temperature radius R is by construction identical in all three string theories. Note

that l = kq corresponds to the wrapping number of the heterotic 5-brane around

T 4×S1
R as in five dimensions, while l′ = kr corresponds to the same wrapping number

after performing a T -duality along the S1
R6

direction, which is orthogonal to the 5-

brane. All winding numbers, n, l, l′, correspond to magnetic charged states from the

field theory point of view. Their masses are proportional to the temperature-radius

R and are not thermally shifted; p, q, r are all non-negative relatively prime integers.

This follows from the BPS conditions and the s ↔ t ↔ u duality symmetry in the
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undeformed supersymmetric theory. Futhermore, mk ≥ −1 because of the inversion of

the GSO projection in the temperature-deformed theory. Using these constraints, one

can show that there are, in general, two potential tachyonic series with m = −1 and

p = 1, 2 [9] generalizing the five-dimensional result. One of the perturbative heterotic,

type IIA, or type IIB potential tachyons corresponds to a critical temperature that is

always lower than those of the two series with p = 1, 2.

The above discussion shows that the temperature modification of the mass formula

inferred from perturbative strings and applied to the non-perturbative BPS mass for-

mula produces the appropriate instabilities in terms of the Hagedorn temperatures. In

Ref. [9] we show that it is possible to go beyond the simple enumeration of Hagedorn

temperatures and construct the full temperature-dependent effective potential associ-

ated with the would-be tachyonic states. This will allow a study of the nature of the

non-perturbative instabilities and the dynamics of the various thermal phases.

3 Thermal effective potential

Our procedure to construct the thermal effective theory is as follows: we consider

five-dimensional N = 4 theories at finite temperature. They can then effectively be de-

scribed by four-dimensional theories, in which supersymmetry is spontaneously broken

by thermal effects. Since we want to limit ourselves to the description of instabilities,

it is sufficient to retain, in the full N = 4 spectrum, only the potentially massless

and tachyonic states. This restriction will lead us to consider only spin 0 and 1/2

states, the graviton and one of the gravitinos. This sub-spectrum is described by an

N = 1 supergravity with six chiral multiplets: the three moduli S, T, U , and the three

would-be tachyonic states ZA, A = 1, 2, 3. Using the properties of the N = 4 (gauged)

supergravities in four dimensions [17]–[19],[5], it is possible to derive the temperature

motification associated to the Scherk-Schwarz temperature gauging [21, 22, 5, 4]. This

is done in Ref. [9], where the Kähler manifold K and the superpotential W of the

effective N = 1 supergravity [23] are derived:

K = − log(S + S∗)− log(T + T ∗)− log(U + U∗)− 2 log(1− 2|ZA|2 + |Z2
A|2) ,

W = 2
√

2
[
1

2
(1− Z2

A)2 + (TU − 1)Z2
1 + SUZ2

2 + STZ+
3 Z2

3

]
. (3.14)
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The resulting scalar potential has a complicated expression. Important simplifications

occur, however, when we restrict ourselves to the would-be tachyonic states, zA = Re ZA

and in s = Re S, t = Re T , u = Re U . Following the analysis of Ref. [9] only these

directions are relevant to the vacuum structure of the potential and to possible phase

transitions. The resulting scalar potential V is:

V = V1 + V2 + V3,

κ4V1 =
4

s

[
(ξ1 + ξ−1

1 )H4
1 +

1

4
(ξ1 − 6 + ξ−1

1 )H2
1

]
,

κ4V2 =
4

t

[
ξ2H

4
2 +

1

4
(ξ2 − 4)H2

2

]
,

κ4V3 =
4

u

[
ξ3H

4
3 +

1

4
(ξ3 − 4)H2

3

]
,

(3.15)

where the moduli fields ξi are given in terms of R2 and the various α′:

ξ1 = tu =
2R2

α′
H

, ξ2 = su =
2R2

α′
IIA

, ξ3 = st =
2R2

α′
IIB

. (3.16)

V is a simple fourth-order polynomial, when expressed in terms of new field variables

HA, A = 1, 2, 3,

HA =
zA

(1− x2)
, x2 =

(
1−

∑
A

Z2
A

)
, (3.17)

that take values on the entire real axis. At Hi = 0, the Kähler metric is 4δA
B, the

scalar potential is normalized according to V = 4κ2∑
A m2

AH2
A + . . .. The masses m2

A

correspond to the mass formula for the heterotic, IIA and IIB tachyons.

Having the full effective thermal potential of the theory we able to study the phase

structure of the thermal effective theory. There are four different phases corresponding

to specific regions of the s, t and u moduli space. Their boundaries are defined by

critical values of the moduli s, t, and u (or of ξi, i = 1, 2, 3), or equivalently by critical

values of the temperature, the (four-dimensional) string coupling and the compactifi-

cation radius R6. These four phases are [9]:

1. The low-temperature phase:

T < (
√

2− 1)1/2/(4πκ) .

2. The high-temperature heterotic phase:

T > (
√

2− 1)1/2/(4πκ) and g2
H < (2 +

√
2)/4 .
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3. The high-temperature type IIA phase:

T > (
√

2− 1)1/2/(4πκ) , g2
H > (2 +

√
2)/4 and R6 >

√
α′

H .

4. The high-temperature type IIB phase:

T > (
√

2− 1)1/2/(4πκ) , g2
H > (2 +

√
2)/4 and R6 <

√
α′

H .

• The low-temperature phase, which is common to all three strings, is characterized

by

H1 = H2 = H3 = 0, V1 = V2 = V3 = 0. (3.18)

The potential vanishes for all values of the moduli s, t and u, which are then only

restricted by the stability of the phase, namely the absence of tachyons in the mass

spectrum of the scalars HA. Since the (four-dimensional) string couplings are

s =
√

2g−2
H , t =

√
2g−2

A , u =
√

2g−2
B ,

this phase exists in the perturbative regime of all three strings. The relevant light

thermal states are just the massless modes of the five-dimensional N = 4 supergravity,

with thermal mass scaling like 1/R ∼ T .

• The high-temperature heterotic phase is defined by

ξH > ξ1 >
1

ξH
, ξ2 > 4, ξ3 > 4, (3.19)

with ξH = (
√

2 + 1)2. The inequalities on ξ2 and ξ3 eliminate type II instabilities. In

this region of the moduli, the potential becomes, after minimization with respect to

H1, H2 and H3:

κ4V = −1

s

(ξ1 + ξ−1
1 − 6)2

16(ξ1 + ξ−1
1 )

.

It has a stable minimum for fixed s (for fixed α′
H) at the minimum of the self-dual

quantity ξ1 + ξ−1
1 :

ξ1 = 1, H1 =
1

2
, H2 = H3 = 0, κ4V = − 1

2s
. (3.20)

The transition from the low-temperature vacuum is due to a condensation of the het-

erotic thermal winding mode H1 or, equivalently, to a condensation of type IIA NS

5-brane in the type IIA picture. At the level of the potential only, this phase exhibits

a runaway behaviour in s. We will show in the next section that a stable solution to

the effective action exists with non-trivial metric and/or dilaton.
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• The high-temperature type IIA and IIB phases are defined by the inequalities

ξ2 < 4 and/or ξ3 < 4. (3.21)

In this region of the parameter space, either H2 or H3 become tachyonic and acquire a

vacuum value:

H2
2 =

4− ξ2

8ξ2
, κ4V2 = −1

t

(4− ξ2)
2

16ξ2
, (3.22)

and/or

H2
3 =

4− ξ3

8ξ3

, κ4V3 = −1

u

(4− ξ3)
2

16ξ3

. (3.23)

In contrast with the high-temperature heterotic phase, the potential does not possess

stationary values of ξ2 and/or ξ3, besides the critical points ξ2,3 = 4. Suppose for

instance that ξ2 < 4 and ξ3 > 4. The resulting potential is then V2 only and ξ2 slides to

zero. In this limit, V = − 1/(stuκ4), and the dynamics of φ ≡ − log(stu) is described

by the effective Lagrangian

LII
eff = − e

2κ2

[
R +

1

6
(∂µφ)2 − 2

κ2
eφ
]
.

The other scalar components log(t/u) and log(s/u) have only derivative couplings

since the potential only depends on φ. They can be taken as constant and arbitrary.

The dynamics only restricts the temperature radius κ−2R2 = e−φ, R6 and the string

coupling is not constrained. The ground state of this phase corresponds to a non-trivial

gravitational and dilaton background satisfying the Einstein and φ equations of LII
eff .

This background solution defines the high-temperature type II vacuum. We will not

study this solution further. Instead, we will examine in more detail the high-T heterotic

phase.

4 The high-T heterotic phase transition

Using the information contained in the effective theory, which is characterized by Eqs.

(3.20), the equations of motion of all scalar fields are satisfied, with the exception of

the dilaton s = Re S. The resulting bosonic effective Lagrangian that describes the

dynamics of s and gµν is:

LH
bos = − 1

2κ2
eR− e

4κ2
(∂µ ln s)2 +

e

2κ4s
. (4.24)
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For all (fixed) values of s, the cosmological constant is negative, since V = −(2κ4s)−1

and the apparent geometry is anti-de Sitter. But the effective theory (4.24) does not

stabilize s. Rewriting LH
bos in the heterotic string frame,

e−2φ = s and gstr
µν =

2κ2

α′
H

e−2φgµν , (4.25)

we obtain

LH
str =

e−2φ

α′
H

[
−eR + 4e(∂µφ)(∂µφ) +

2e

α′
H

]
; (4.26)

it is easy to show that the φ-equation of motion is that of a 2D-sigma-model β-function

equation with βφ = 0 [25] and with central charge deficit

δĉ =
2

3
δc = −4. (4.27)

In the string frame, a background solution (4.26) has a flat (sigma-model) metric

g̃str
µν = ηµν and a linear dilaton background on a spatial coordinate:

φ̃ = Qµxµ, with Q2 =
δĉ

8α′
H

=
1

2α′
H

. (4.28)

In this background there is a shift for all boson masses, M2
B → M2

B + Q2 = M2
B + m2

3/2

because of the non-trivial dilaton. The fermionic masses are also shifted because of the

temperature. As a result, the perturbative heterotic mass spectrum shows, fermion–

boson mass degenerany due to a residual supersymmetry existing in this background

[5, 9]. At the non-perturbative level, however, this degeneracy is lost in the non-

perturbative massive sector of the theory, although the ground state remains super-

symmetric [9]. Thus, the high-T phase is expected to be stable in the weak coupling

heterotic regime, because of the N = 2 residual supersymmetry. The reader can find

more details at this point in Ref. [9].

5 The high-T non-critical string

As we discussed above, the high-T phase of N = 4 strings is described by a non-critical

string with central charge deficit δĉ = −4, provided the (six-dimensional) heterotic

string is in the weakly coupled regime, λH ≤ (
√

2 + 1)/2. One possible description is

in terms of the (5+1) super-Liouville theory compactified (at least) on S1
R, with radius

fixed at the fermionic point R =
√

α′
H/2. The perturbative stability of this ground
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state is guaranteed when there is at least Nsc = 2 superconformal symmetry on the

world-sheet, implying at least N = 1 supersymmetry in space-time.

An explicit example withNsc = 4 superconformal was given in Refs. [26, 27, 9]. It is

obtained when, together with the temperature S1
R, there is an additional compactified

coordinate on S1
R6

, with radius fixed at the fermionic point R6 =
√

α′
H/2. These two

circles are equivalent to a compactification on [SU(2)× SU(2)]k at the limiting value

of level k = 0. Indeed, at k = 0, only the six world-sheet fermionic coordinates survive

describing a ĉ = 2 system (with an SO(4)k=1 current algebra) instead of ĉ = 6 of

k → ∞, consistently with the decoupling of four supercoordinates, δĉ = −4. The

central-charge deficit is compensated by the linear motion of the dilaton associated to

the Liouville field, φ = Qµxµ with Q2 = 1/(2α′
H), so that δĉL = 8Q2α′

H = 4.

Using the techniques developed in Ref. [28, 27], we derive in Refs. [9] the one-loop

(perturbative) partition function in the high-T heterotic phase. Here I stress some of

our results. More details will appear in Ref. [9].

• The initial N = 4 supersymmetry is reduced in the high-T heterotic phase to N =

2. This agrees with the effective field theory analysis of the high-T phase. The

(perturbative) bosonic and fermionic mass fluctuations are degenerate because

of the remaining N = 2 supersymmetry (Nsc = 4 superconformal on the world-

sheet).

• The spectrum of the theory contains two sectors, h = 0 and h = 1: the h = 0

sector has no massless fluctuations; the bosonic and fermionic masses (squared)

are shifted by m2
3/2 because of the dilaton background and the temperature cou-

pling; all masses are larger than or equal to m3/2. This is again in agreement

with the effective theory analysis.

• In the h = 1 sector there are massless excitations, as expected from the (5+1)

super-Liouville theory [29, 27].

• The 5+1 Liouville background can be regarded as an Euclidean 5-brane solution

wrapped on S1 × S1 preserving one-half (N = 2) of the initial N = 4 space-time

supersymmetries.

• The massless space-time fermions coming from the h = 1 sector are six-dimensional

space-time spinors; they are also spinors under the SO(4)k=2 right-moving group
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defined at the fermionic point of the S1
R × S1

R6
compactification; they are also in

the vector representation of an SO(28)k=1 heterotic right-moving group.

• The massless space-time bosons are in the same right-moving representation, e.g.

spinors under SO(4)k=1 and vectors under SO(28)k=1 right-moving groups. In

addition, they are spinors under SO(4)k=1 left-moving group. Together with the

massless fermions, they form 28 N = 2 hypermultiplets sitting on the special

quaternionic space:

H =
SO(4, 28)

SO(4)× SO(28)
.

The 28 massless hypermultiplets in the h = 1 sector are the only states that survive

in the zero-slope limit. Their effective field theory is described by an N = 2 4D-sigma-

model on a hyper-Kähler manifold K, which is obtained from H in the decoupling limit

of gravity. This topological theory corresponds to the infinite temperature limit of the

N = 4 strings after the heterotic Hagedorn phase transition [9].

Although the 5 + 1 Liouville background is perturbatively stable, owing to the

Nsc = 4 superconformal symmetry, its stability is not ensured at the non-perturbative

level when the heterotic coupling is large:

g2
H(xµ) = e2(φ0−Qµxµ) > g2

crt =

√
2 + 1

2
√

2
∼ 0.8536 . (5.29)

As we explained above, the high-T heterotic phase exists only if g2
H(xµ) is lower than a

critical value that separates the heterotic and Type II high-T phases. Thus one expects

a domain-wall in space-time, at Qµx0
µ = 0, separating these two phases: g2

H(Qµx0
µ) ∼

g2
crt. The domain wall problem can be avoided by replacing the (5 + 1) super-Liouville

background by a more appropriate one having the same superconformal properties,

Nsc = 4, obeying however the additional perturbative constraint g2
H(xµ) � g2

crt in the

entire space-time.

Exact superstring solutions based on gauged WZW two-dimensional models with

Nsc = 4 superconformal symmetries have been studied in the literature [30, 26, 27, 31].

In Ref. [9], various candidate backgrounds with δĉ = −4 are considered. The first one

is that of (5 + 1) super-Liouville (δĉL = 4) already examined above. Another class of

candidate backgrounds is based on the non-compact parafermionic spaces M4
P that are

described by gauged WZW models:

M4
p =

[
SL(2, R)

U(1)V,A

]
k=4

×
[
SL(2, R)

U(1)V,A

]
k=4

× U(1)R2=α′
H

/2 × U(1)R2
6=α′

H
/2
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≡
[
SL(2, R)

U(1)V,A

]
k=4

×
[
SL(2, R)

U(1)V,A

]
k=4

× SO(4)k=1 ; (5.30)

the indices A and V stand for the “axial” and “vector” WZW U(1) gaugings. Then,

many backgrounds can be obtained by marginal deformations of the above, which

preserve at least Nsc = 2, or also by performing S- or T -duality transformations on

them.

As already explained, the appropriate background must verify the weak-coupling

constraint (5.29). This weak-coupling limitation is achieved in the “axial” parafermionic

space M4
p(axial). Indeed, in this background, g2

H(xµ) is bounded in the entire non-

compact four-dimensional space, with coordinates xµ = {z, z∗, w, w∗}, provided the

initial value of g2
0 = g2

H(xµ = 0) is small:

1

g2
H(xµ)

= e−2φ =
1

g2
0

(1 + zz∗) (1 + ww∗) ≥ 1

g2
0

� 1

g2
crt

. (5.31)

The metric of this background is everywhere regular,

ds2 =
4dzdz∗

1 + zz∗
+

4dwdw∗

1 + ww∗ , (5.32)

while the Ricci tensor and the scalar curvature

Rz z∗ =
1

(1 + zz∗)2
, Rw w∗ =

1

(1 + ww∗)2
, R =

1

4(1 + zz∗)
+

1

4(1 + ww∗)

vanish for asymptotically large values of |z| and |w| (asymptotically flat space). This

space has maximal curvature when |z| = |w| = 0. This solution has a behaviour similar

to the one of the Liouville solution in the asymptotic regime |z|, |w| → ∞. In this

limit, the dilaton φ becomes linear when expressed in terms of the flat coordinates xi:

φ = −Re[logz]− Re[logw] = −Q1|x1| −Q2|x2|,

x1 = −Re[logz], x2 = −Re[logw], x3 = Im[logz], x4 = Im[logw]. (5.33)

In the large- |z| and |w| limit, M4
P is flat with ds2 = 4(dxi)

2. The important point here

is that for large values of |x1| and |x2|, φ � 0, in contrast to the Liouville background

in which φ = Q1x1+Q2x2 and therefore the dilaton is becoming positive and arbitrarily

large in one half of the space, thus violating the weak-coupling constraint (5.29).

We then conclude that the high-T heterotic phase is well described by theM4
p(axial).

This space is N = 2 supersymmetric and stable when g2
0 � 1, since it is everywhere

12



perturbative with degenerate massive bosonic and fermionic fluctuations. The non-

perturbative states are superheavy and decouple in the limit of vanishing coupling

g2
0 →∞.

On the heterotic or type IIA side, the high-temperature limit after the high-T

heterotic phase transition corresponds to a topological N = 2 supersymmetric theory

described by a 4D-sigma-model on a non-trivial hyper-Kähler manifold. On the type

IIB side, on the other hand, the high-T phase corresponds to a tensionless string

defined by a limit that generalizes the large-N limit of Yang–Mills theory, α′
H → ∞,

λH → 0, with α′
HλH fixed [9]. It is very interesting to study further the properties

of these theories that describe the high-T phase of string theory, in more general

compactifications with lower number of supersymmetries, and to study their possible

cosmological implications.
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