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ABSTRACT:

Two-particle momentum correlations between pairs of identical particles produced in relativistic
heavy-ion reactions can be analyzed to extract the space-time structure of the collision fireball.
We review recent progress in the application of this method, based on newly developed theo-
retical tools and new high-quality data from heavy-ion collision experiments. Implications for
our understanding of the collision dynamics and for the search for the quark-gluon plasma are
discussed.
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1 INTRODUCTION AND OVERVIEW

1.1 Intensity Interferometry

The method of two-particle intensity interferometry was discovered in the early
1950’s by Hanbury Brown and Twiss (HBT) [1] who applied it to the measure-
ment of the angular diameter of stars and other astronomical objects. These first
measurements used two-photon correlations. An independent development oc-
curred in the field of particle physics in 1960 by Goldhaber, Goldhaber, Lee and
Pais [2] who extracted from two-pion correlations the spatial extent of the annihi-
lation fireball in proton-antiproton reactions. The method exploits the fact that
identical particles which sit nearby in phase-space experience quantum statistical
effects resulting from the (anti)symmetrization of the multiparticle wave function.
For bosons, therefore, the two-particle coincidence rate shows an enhancement at
small momentum difference between the particles. The momentum range of this
enhancement can be related to the size of the particle source in coordinate space.

HBT interferometry differs from ordinary amplitude interferometry that it
compares intensities rather than amplitudes at different points. It shows the
effects of Bose or Fermi statistics even if the phase of the (light or matter) wave
is disturbed by uncontrollable random fluctuations (as is, for example, the case
for starlight propagating through the earth’s atmosphere) or if the counting rate
is very low. To illustrate how the method works and how its applications in astro-
nomy and in particle physics differ let us consider the following simple model [3,4]:
two random point sources a and b on a distant emitter, separated by the distance
R, emit identical particles with identical energies Ep = (m2 + p2)1/2 which, after
travelling a distance L, are measured by two detectors 1 and 2, separated by the
distance d (see Figure 1a). L should to be much larger than R or d. The total
amplitude measured at detector 1 is then

A1 =
1
L

(
α ei(pr1a+φa) + β ei(pr1b+φb)

)
, (1)

where α, β are the amplitudes emitted by points a and b, φa, φb are their random
phases, r1a, r1b are their distances to detector 1. The total intensity in 1 is

I1 =
1
L2

(
|α|2 + |β|2 + 2Re α∗β ei[p(r1b−r1a)+(φb−φa)]

)
, (2)

with a similar result for I2. The last term in (2) contains information on the
distance R between the sources a and b, but it vanishes after averaging the signal

2
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Figure 1: Measurement of the separation R of two sources a and b by correlating
the intensities in detectors 1 and 2 at varying distances d. a: The general scheme.
b: The specific situation in astronomy. c: The specific situation in particle
physics.

over some time, i.e. over the random phases φa,b:

〈I1〉 = 〈I2〉 =
1
L2

(
|α|2 + |β|2

)
. (3)

The product of the averaged intensities 〈I1〉〈I2〉 is thus independent of both R
and d.

The same is not true for the time-averaged coincidence rate which is obtained
by multiplying the two intensities before averaging:

〈I1I2〉 = 〈I1〉〈I2〉+
2
L4
|α|2|β|2 cos

(
p(r1a − r2a − r1b + r2b)

)
. (4)

The two-particle intensity correlation function is thus given by

C(R,d) =
〈I1I2〉
〈I1〉〈I2〉 = 1 +

2|α|2|β|2
(|α|2 + |β|2)2 cos

(
p(r1a − r2a − r1b + r2b)

)
. (5)

For large L � R, d, the argument of the second, oscillating term becomes

r1a − r2a − r1b + r2b −→ dR

L

(
cos(d,R)− cos(d,L) cos(R,L)

)
. (6)

Note the symmetry of this expression in d and R, the separations of the detectors
and of the emitters; this symmetry is lost in the two practically relevant limits:

1. In astronomical applications the emission points a and b are part of a star’s
surface or of even larger objects, while the detectors on earth are only a few
meters or kilometers apart: R � d. In this limit (see Figure 1b) the cosine-
term in (5) reduces to cos(d·(pa−pb)), with pa,b = p ea,b, the unit vectors
ea,b giving the directions from the detectors to the two emission points a, b.
Experimentally one varies the distance d between the detectors, and from
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the resulting oscillation of the signal one extracts the angular separation θ of
the two emitters via |pa−pb| ∼ θ/λ. Absolute determination of the source
separation R is possible only if their distance L is known from elsewhere.

2. In nuclear and particle physics the emitters are very much smaller than
the detector separation, R � d. Then (see Figure 1c) the cosine-term
in (5) becomes cos(R·(p1−p2)), in similar notation as above. Now the
experimental control variable is the momentum difference p1−p2, and R is
extracted from the oscillation period.

In real life one has, instead of two discrete ones, a continuum of sources described
by a distribution ρ(R) of their relative distances. For the case R � d, after
averaging (5) over this relative distance distribution, the measured correlation
function is then given by the Fourier transform of ρ(R):

C(p1 − p2)− 1 ∼
∫

d3R ρ(R) cos(R · (p1 − p2)) . (7)

As we will see, this expression is only applicable to static sources. The assumption
of a static source is adequate for stars. The particles emitted in high energy
hadron or nuclear reactions, however, come from sources which feature strong
dynamical evolution both along the beam direction and transverse to it. As
a result, two-particle correlation measurements in heavy-ion physics exhibit a
much richer structure, but their interpretation is also considerably more involved.
The present review covers the technical tools required to access this richness of
information and their practical application in heavy-ion reactions.

1.2 HBT Interferometry for Heavy-Ion Collisions

High energy heavy-ion collisions produce hadronic matter under intense condi-
tions of temperature and density. While the highest densities are reached in the
early stages of the collision, most of the observed particles are hadrons, which
are emitted rather late in the evolution of the collision. For this reason, the
measured momentum spectra and correlations contain direct information only
about the size, shape, and dynamics of the source at “freeze-out”, i.e. when the
hadrons cease to interact.

The dynamical information is of particular importance as it allows us to connect
the observed final state with the hot and dense early stages. Therefore much of
the effort in the last few years has gone into the extraction of this dynamics.
It turns out that both the single-particle spectra and two-particle correlations
are sensitive to certain combinations of thermal and collective motion in the
source. A simultaneous analysis of particles with different masses allows for
a separation of the two effects: while the thermal motion generates a common
momentum distribution in the source, the collective motion creates a flow velocity
which combines with the thermal momentum proportionally to the particle’s
mass. Further discrimination is achieved by combining the spectra with the
two-particle correlations which reflect the collective source dynamics through a
characteristic momentum dependence of their width parameters.

The aim of HBT (or two-particle Bose-Einstein) interferometry is therefore to
provide, in conjunction with a simultaneous analysis of single-particle spectra, a
complete and quantitative characterization (both geometrically and dynamically)
of the emitting source at “freeze-out”. Such a characterization can be used for
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backward extrapolations into the interesting dense earlier stages of the collision,
and it provides stringent constraints on dynamical models aiming to describe the
kinetic evolution of these stages.

1.3 New Developments During the Last Decade

The last decade has brought great strides in measurement, theory, and inter-
pretation of two-particle correlations. Dedicated experiments, optimized for mo-
mentum resolution, allow measurement of correlations to very small momentum
difference. Much increased statistics of particle pairs has opened the possibility
of multidimensional correlation analysis. Correlation functions of identified kaons
have become available; as many fewer kaons arise from resonance decays, they
provide a more direct picture of the emitting source than the more prevalent
pions. Correlations of proton pairs, which will not be discussed here, are also
measured in heavy-ion collisions. The experimental programs at the CERN SPS
and Brookhaven AGS have allowed comparison between small and large systems
at different energies, using S and Pb beams at CERN and lower energy Si and
Au beams at the AGS. The comparisons are greatly aided by the development of
a commonly accepted analysis formalism among the experiments. Furthermore,
the pair momentum dependence of the correlations is now being used to provide
dynamical information about the space-time structure of the particle source.

Intensive modeling with event generators, combined with methods to extract
correlation functions from them, has been used to study experimental effects such
as acceptance and to verify the usefulness of simple model parameterizations in
theory. New parametrizations of the two-particle correlation function have been
developed which are particularly well adapted for the sources created in high
energy collisions. Recently, the necessity of separating geometrical, temporal
and dynamical aspects of the correlations has been recognized, and methods to
do so have been developed. Intensity interferometry has thus developed into a
quantitative tool which at the present stage yields important source parameters
at the level of 20% accuracy.

2 THEORETICAL TOOLS FOR ANALYZING TWO-PARTI-
CLE CORRELATIONS

2.1 1- and 2-Particle Spectra and Their Relation to the Emitting Source

The 2-particle correlation function is defined as the ratio of the Lorentz-invariant
2-particle coincidence cross section and the product of the two single particle
distributions:

C(p1,p2) =
E1E2dN/(d3p1d

3p2)
(E1dN/d3p1)(E2dN/d3p2)

. (8)

The single- and two-particle cross sections are normalized to the average number
of particles per event 〈N〉 and the average number of particles in pairs 〈N(N−1)〉,
respectively. Different normalizations of the correlation function are sometimes
used in the literature [5,6]. Careful consideration of the normalization is required
when analyzing multi-particle symmetrization effects [7–11].
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2.1.1 Pure quantum statistical correlations

The most direct connection between the measured two-particle correlations in
momentum space and the source distribution in coordinate space can be estab-
lished if the particles are emitted independently (“chaotic source”) and propagate
freely from source to detector. Several approaches to derive this connection [12]
are worked out in the literature, parametrizing the source as a covariant super-
position of classical currents [5,13–18] or using a superposition of nonrelativistic
wave packets [9, 10]. One finds the simple relations (with the upper (lower) sign
for bosons (fermions))

Ep
dN

d3p
=

∫
d4xS(x, p) , (9)

C(q,K) = 1±
∣∣∫ d4xS(x,K) eiq·x∣∣2∫

d4xS(x,K + 1
2q)

∫
d4y S(y,K − 1

2q)
, (10)

where the emission function S(x,K) is an effective single-particle Wigner phase-
space density of the particles in the source. (Wigner densities are real but not
necessarily everywhere positive.) For the single-particle spectrum (9) this Wigner
function must be evaluated on-shell, i.e. at p0=Ep=(m2+p2)1/2. The correla-
tion function (10) was expressed in terms of the relative momentum q=p1−p2,
q0=E1−E2, and average (pair) momentum K=(p1+p2)/2, K0=(E1+E2)/2. As
the two measured particles are on-shell, p0

1,2=E1,2=(m2+p2
1,2)

1/2, the 4-momenta
q and K are off-shell. They satisfy the orthogonality relation

q ·K = 0 . (11)

That on the rhs of Eq. (10) one needs the emission function for off-shell momenta
K may at first seem troublesome. In practice, however, the on-shell approxi-
mation K0 ≈ EK=(m2+K2)1/2 is very accurate in heavy-ion collisions: the
corrections of order q2/(8E2

K) are small in the interesting domain of small rel-
ative momenta q, as a result of the large source sizes and the rest masses of
the measured particles. A further simplification is achieved by making in the
denominator of (10) the smoothness approximation [19,20], taking the product of
single-particle spectra at their average momentum K:

C(q,K) ≈ 1±
∣∣∣∣∣
∫

d4xS(x,K) eiq·x∫
d4xS(x,K)

∣∣∣∣∣
2

≡ 1±
∣∣∣〈eiq·x〉(K)

∣∣∣2 . (12)

It is exact for exponential single-particle spectra, with corrections proportional
to their curvature in logarithmic representation. Both approximations can a
posteriori be corrected for in the correlation radii (“HBT radii”, see below),
using information from the measured single-particle spectra [21]. For heavy-ion
collisions, such corrections are usually negligible [20,21].

We call S(x,K) an effective single-particle Wigner density since different deri-
vations of the relation (10) yield different microscopic interpretations for S. For
a detailed discussion of this point we refer to [22]. The differences can become
conceptually important in sources with high phase-space density [11]. So far,
in heavy-ion collisions the phase-space densities at freeze-out appear to be low
enough to neglect them [23,24].
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2.1.2 The invertibility problem

The mass-shell constraint (11) eliminates one of the four components of the rel-
ative momentum q; for example, it can be resolved as

q0 = β · q , β = K/K0 ≈ K/EK , (13)

which gives the energy difference q0 in terms of q and the velocity β of the pair.
With only three independent q-components, the Fourier transform in (12) cannot
be inverted, i.e. the space-time structure of S(x,K) cannot be fully recovered
from the measured correlator:

C(q,K)−1 ≈ ±
∣∣∣∣∣
∫
x eiq·(x−βt)S(x,K)∫

x S(x,K)

∣∣∣∣∣
2

= ±
∣∣∣∣∣
∫
x eiq·xS(t,x + βt;K)∫

x S(x,K)

∣∣∣∣∣
2

. (14)

Separation of the spatial and temporal structure of the source thus requires ad-
ditional model assumptions about S(x,K).

We can connect (14) with (7) by introducing the normalized relative distance
distribution which is a folding of the single-particle emission function with itself:

d(x,K) =
∫

X
s
(
X + x

2 ,K
)
s
(
X − x

2 ,K
)
, s(x′,K) =

S(x′,K)∫
x′ S(x′,K)

. (15)

d is an even function of x. It allows to rewrite [22] the correlator in the form (7):

C(q,K)− 1 ≈ ±
∫

d4x cos(q · x) d(x,K) = ±
∫

d3x cos(q · x)SK(x) . (16)

In the second equation we used (13) and introduced the relative source function

SK(x) =
∫

dt d(t,x + βt;K, EK) . (17)

In the pair rest frame where β = 0, SK(x) is the time integral of the relative
distance distribution d, and the time structure of the source is completely inte-
grated out. On the other hand, SK(x) is, for each pair momentum K, fully re-
constructible from the measured correlator C(q,K) by inverting the last Fourier
transform in (16). This “imaging method” was recently exploited in [25]. As we
will see, interesting information about the source dynamics and time structure
is then hidden in the K-dependence of SK(r); the latter can, however, not be
unfolded without additional model assumptions about the source.

2.1.3 Final state interactions and unlike particle correlations

HBT measurements in high energy physics are mostly performed with charged
particles. These suffer long-range Coulomb repulsion effects on the way from the
source to the detector which, even for boson pairs, cause a suppression of the
measured correlator at q = 0. Moreover, the charged particle pair feels the total
electric charge of the source from which it is emitted. Final state effects from
strong interactions play a dominant role in proton-proton correlations [26], due to
the existence of a strong s-wave resonance in the two-nucleon channel just above
threshold. Such final state interaction (FSI) effects are sensitive to the average
separation of the two particles at their emission points and thus also contain
relevant information about the source size [26,27,4].
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This has recently led to an increased effort to understand and exploit FSI-
induced two-particle correlations which also exist between pairs of unlike particles
[28–32]. The particular interest in such correlations arises from the fact that,
for particles with unequal masses, they allow under certain circumstances to
determine the sign of the time difference between the emission points of the
two particles or the direction of their separation at emission [28–32]; this is not
possible with correlations between identical particles. In most practical cases,
however, the FSI-induced correlations are considerably weaker than the Bose-
Einstein correlations between pairs of identical particles.

At the level of accuracy of Eqs. (12,16) which use the smoothness approxima-
tion, the correlator can be easily corrected for 2-body final state interactions by
replacing eiq·x with a suitable distorted wave. Instead of (16) one thus obtains [26]

C(q,K) =
∫

d3r SK(r)
∣∣∣Φq/2(r)

∣∣∣2 . (18)

A slightly more general result which avoids the smoothness approximation was
derived in [33]. For simplicity the integral in (18) is written in coordinates of the
pair rest frame where K = 0. Φq/2(r) is an FSI distorted scattering wave for the
relative motion of the two particles with asymptotic relative momentum q; for
Coulomb FSI it is given by a confluent hypergeometric function:

ΦCoul
q/2 (r) = Γ(1 + η) e−

1
2
πη e

i
2
q·r F (−iη; 1; z−) , (19)

z± = 1
2(qr ± q · r) = 1

2qr(1± cos θ), η =
α m

q
, (20)

where α = e2/4π. It describes the propagation of the particle pair from an initial
separation r in the pair rest frame, at the time when the second particle was
emitted [33], under the influence of the mutual FSI. For identical particle pairs it
must be properly symmetrized: Φq/2 7→ 1√

2
(Φq/2±Φ−q/2). For a pointlike source

SK(x) = δ(x) the correlator (18) with (19) reduces to the Gamov factor G(η)
(to 2G(η) for identical particles):

G(η) =
∣∣∣Γ(1 + iη)e−

1
2
πη
∣∣∣2 =

2πη

e2πη − 1
. (21)

For Coulomb FSI it was recently shown [34] that a very good approximation
for the Coulomb correction can be taken from measured unlike-sign particle pairs
in the following form:

C±±
corr.(q,K) =

C+−
meas.(q,K)C±±

meas(q,K)
G(η)G(−η)

. (22)

The denominator (which deviates from unity for small q <∼ 8mα) corrects for the
fact that even for a pointlike source the like-sign and unlike-sign Coulomb corre-
lations are not exactly each other’s inverse. The important observation in [34] is
that this correction is essentially independent of the source size.

The effects of the central charge of the remaining fireball on the charged particle
pair were studied in [27, 35]. For a static source it was found that at large
pair momenta the FSI reduces (increases) the apparent size (HBT radius) for
positively (negatively) charged pairs [27, 35] whereas for small pair momenta
the apparent radius increases for both charge states [35]. Expanding sources
have not yet been studied in this context, nor has this effect been quantitatively
confirmed by experiment. Also, combining the central interaction with two-body
FSI remains an unsolved theoretical challenge.
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2.2 Source Sizes and Particle Emission Times from HBT Correlations

The two-particle correlation function is usually parametrized by a Gaussian in the
relative momentum components. We now discuss different Gaussian parametriza-
tions and establish the relationship of the corresponding width parameters (HBT
radii) with the space-time structure of the source.

2.2.1 HBT radii as homogeneity lengths

The space-time interpretation of the HBT radii is based on a Gaussian approxima-
tion to the space-time dependence of the emission function S(x,K) [36,21,37–41].
Characterizing the effective source of particles of momentum K by its space-time
variances (“rms widths”)

〈x̃µx̃ν〉(K) ≡ 〈(x− x̄)µ(x− x̄)ν〉, (23)

where 〈. . .〉 denotes the (K-dependent) space-time average over the emission func-
tion defined in (12) and x̄(K) = 〈x〉 is the center of the effective source, one ob-
tains from (12) the following generic Gaussian form for the correlator [36,37,41]:

C(q,K) = 1± exp [−qµqν〈x̃µx̃ν〉(K)] . (24)

This involves the smoothness and on-shell approximations discussed in section
2.1.1 which permit to write the space-time variances 〈x̃µx̃ν〉 as functions of K
only. Eq. (24) expresses the width of the correlation function in terms of the
rms widths of the single-particle Wigner density S(x,K). Note that the absolute
space-time position x̄(K) of the source center does not appear explicitly and thus
cannot be measured.

Instead of the widths of the single-particle function S(x,K) we can also use
the widths of the relative distance distribution d(x,K) (see (15)) to characterize
the correlation function. Starting from (15) one finds within the same Gaussian
approximation C(q,K) = 1± exp

[
−1

2qµqν〈xµxν〉d(K)
]
; here 〈. . .〉d denotes the

average with the relative distance distribution d. Since d is even, 〈xµ〉d ≡ 0. One
sees that the rms widths of S and d are related by a factor 2: 〈xµxν〉d = 2〈x̃µx̃ν〉S .
This shows that for a Gaussian parametrization of the correlator according to
(24), without a factor 1

2 in the exponent, the width parameters are directly re-
lated to the rms widths of the single-particle emission function S whereas a similar
parametrization which includes a factor 1

2 in the exponent gives as width param-
eters the rms widths of the relative distance distribution d (or of the relative
source function SK(r)). While the latter interpretation may be mathematically
more accurate, the former is more intuitive and has therefore been preferred in
the recent literature.

In either case, the two-particle correlator yields rms widths of the effective
source of particles with momentum K. In general, these width parameters do
not characterize the total extension of the collision region. They rather measure
the size of the system through a filter of wavelength K. In the language intro-
duced by Sinyukov [42] this size is the “region of homogeneity”, the region from
which particle pairs with momentum K are most likely emitted. The space-time
variances 〈x̃µx̃ν〉 coincide with total source extensions only in the special case that
the emission function shows no position-momentum correlations and factorizes,
S(x,K) = f(x) g(K).
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2.2.2 Gaussian parametrizations and interpretation of HBT radii

Relating (24) to experimental data requires first the elimination of one of the four
q-components via the mass-shell constraint (11). Depending on the choice of the
three independent components different Gaussian parametrizations exist.

A convenient choice of coordinate axes for heavy-ion collisions is the osl-system
[13, 43], with l denoting the longitudinal (or xl) direction along the beam, o the
outward (or xo) direction along the transverse pair momentum vector K⊥, and s
the third Cartesian direction, the sideward (or xs) direction. In this system the
sideward component βs of the pair velocity β in (13) vanishes by definition.

The Cartesian parametrization [44] of the correlator (often referred to,
historically somewhat incorrectly, as Pratt [13] - Bertsch [43] parametrization) is
based on an elimination of q0 in (24) via (13):

C(q,K) = 1± exp

− ∑
i,j=o,s,l

R2
ij(K) qi qj

 . (25)

The Gaussian width parameters (HBT correlation radii) Rij of the Cartesian
parametrization are related to the space-time variances of the emission function
by [45,36,46]

R2
ij(K) =

〈
(x̃i − βit̃)(x̃j − βj t̃)

〉
, i, j = o, s, l. (26)

These are 6 functions of three variables: the pair rapidity Y , the modulus K⊥
and the azimuthal angle Φ between the transverse pair momentum K⊥ and the
impact parameter b. Only these 6 combinations of the 10 independent space-time
variances 〈x̃µx̃ν〉 can be measured.

For azimuthally symmetric collision ensembles the emission function has a re-
flection symmetry xs → −xs, eliminating 3 of the 10 space-time variances, and
the correlator is symmetric under qs → −qs [37]. Then R2

os = R2
sl = 0, and the

correlator is fully characterized by 4 functions of only two variables K⊥ and Y :

C(q,K) = 1± exp
[
−R2

sq
2
s −R2

oq
2
o −R2

l q
2
l − 2R2

olqoql

]
, (27)

with

R2
s(K⊥, Y ) = 〈x̃2

s〉 , R2
o(K⊥, Y ) = 〈(x̃o − β⊥t̃)2〉 ,

R2
l (K⊥, Y ) = 〈(x̃l − βl t̃)2〉 , R2

ol(K⊥, Y ) = 〈(x̃o − β⊥ t̃)(x̃l − βl t̃)〉 . (28)

These “HBT radii” mix spatial and temporal information on the source in a non-
trivial way, and their interpretation depends on the frame in which the relative
momenta q are specified. Extensive discussions of these parameters (including the
cross-term R2

ol which originally appeared in the important, but widely neglected
paper [44], was recently rediscovered [36] and then experimentally confirmed [47,
23]) can be found in Refs. [18,21,36–41,52,48–51]. The cross-term vanishes in any
longitudinal reference frame in which the source is symmetric under xl → −xl [44]
(e.g. for pion pairs with vanishing rapidity in the center-of-momentum system
(CMS) of a symmetric collision); in general it does not vanish for pion pairs
with non-zero CMS rapidity, not even in the longitudinally co-moving system
(LCMS [53]) [48].

For azimuthally symmetric collisions no direction is distinguished for pairs with
K⊥ = 0. As long as for K⊥ → 0 the emission function reduces to an azimuthally
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symmetric expression (an exception is a certain class of opaque source models
discussed in section 2.3.4), one has at K⊥ = 0 the identities [37] 〈x̃2

o − x̃2
s〉 =

〈x̃ox̃l〉 = 〈t̃x̃o〉 = 0; these imply that R2
o − R2

s and the cross-term R2
ol vanish

at K⊥ = 0. At non-zero K⊥ these identities for the space-time variances may
be broken by transverse position-momentum correlations in the source, as e.g.
generated by transverse collective flow. If the latter are sufficiently weak the
leading K⊥-dependence of the difference

R2
diff ≡ R2

o −R2
s = β2

⊥〈t̃2〉 − 2β⊥〈x̃ot̃〉+ 〈x̃2
o − x̃2

s〉 (29)

is given by the explicit β⊥-dependence of the first term on the rhs. This yields
the duration of the particle emission process ∆t =

√〈t2〉 − 〈t〉2 for particles
with small K⊥ [54, 55, 53]. (This is sometimes loosely called the “lifetime” of
the effective source, but should not to be confused with the total time duration
between nuclear impact and freeze-out which is not directly measurable.)

The possibility to extract the emission duration from correlation measurements,
pointed out by Bertsch and Pratt [54, 55, 53], provided the main motivation for
the construction of second generation experiments to measure high quality, high
statistics correlation functions. Subsequent model studies for relativistic heavy-
ion collisions [56, 52, 57–59] where the emission duration is expected to be rela-
tively short (of the order of the transverse source extension) showed, however,
that the extraction of ∆t is somewhat model dependent; the relative smallness
of the last two terms in (29) cannot always be guaranteed, and their implicit
K⊥-dependence can mix with the explicit one of the interesting first term.

The Yano-Koonin-Podgoretskĭı (YKP) parametrization is an alterna-
tive Gaussian parametrization of the correlator for azimuthally symmetric col-
lisions. It uses the mass-shell constraint (11) to express (24) in terms of q⊥ =√

q2
o + q2

s , ql and q0 [60, 44,37,41]:

C(q,K) = 1± exp
[
−R2

⊥q2
⊥ −R2

‖
(
q2
l − (q0)2

)
−
(
R2

0 + R2
‖
)
(q · U)2

]
. (30)

Like (27) it has 4 (K⊥, Y )-dependent fit parameters: the three radius parameters
R⊥(K), R‖(K), R0(K), and a velocity parameter U(K) with only a longitudinal
spatial component:

U(K) = γ(K)(1, 0, 0, v(K)), γ = (1− v2)−1/2. (31)

The advantage of fitting the form (30) to data is that the extracted YKP radii
R⊥, R‖, R0 do not depend on the longitudinal velocity of the measurement frame,
while the fourth fit parameter v(K) is simply boosted by that velocity. The frame
in which v(K) = 0 is called the Yano-Koonin (YK) frame; the YKP radii are
most easily interpreted in terms of coordinates measured in this frame [37]:

R2
⊥(K) = R2

s(K) = 〈x̃2
s〉 , (32)

R2
‖(K) = 〈(x̃l − (βl/β⊥)x̃o)2〉 − (βl/β⊥)2〈x̃2

s〉 ≈ 〈x̃2
l 〉 , (33)

R2
0(K) = 〈(t̃− x̃o/β⊥)2〉 − 〈x̃2

s〉/β2
⊥ ≈ 〈t̃2〉 , (34)

where the approximations in the last two lines are equivalent to dropping the last
two terms in (29) (see discussion above). To the extent that these hold, the three
YKP radii thus have a straightforward interpretation as the transverse, longitu-
dinal and temporal homogeneity lengths in the YK frame. In particular the time
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structure of the source only enters in R0. For sources with strong longitudinal
expansion, like those created in relativistic heavy-ion collisions, it was shown in
extensive model studies [41,52,57–59] that the YK velocity v(K) very accurately
reflects the longitudinal velocity at the center x̄(K) of the “homogeneity region”
of particles of momentum K. The YK frame can thus be interpreted as the rest
frame of the effective source of particles with momentum K, and the YKP radii
measure the transverse, longitudinal and temporal size of this effective source in
its own rest frame.

The parametrizations (27) and (30) use different independent components of q
but are mathematically equivalent. The YKP parameters can thus be calculated
from the Cartesian ones and vice versa [41]. The corresponding relations are

R2
s = R2

⊥ , (35)

R2
diff = R2

o −R2
s = β2

⊥γ2
(
R2

0 + v2R2
‖
)

, (36)

R2
l =

(
1− β2

l

)
R2
‖ + γ2 (βl − v)2

(
R2

0 + R2
‖
)

, (37)

R2
ol = β⊥

(
−βlR

2
‖ + γ2 (βl − v)

(
R2

0 + R2
‖
))

, (38)

whose inversion reads

R2
‖ = B − v C, R2

0 = A− v C, v =
A + B

2C

1−
√

1−
(

2C
A + B

)2
 , (39)

A =
1

β2
⊥

R2
diff , B = R2

l−2
βl

β⊥
R2

ol+
β2

l

β2
⊥

R2
diff , C = − 1

β⊥
R2

ol+
βl

β2
⊥

R2
diff . (40)

These last definitions hold in an arbitrary longitudinal reference frame. According
to (39) v is zero in the frame where C vanishes. However, (39) also shows that the
YKP parametrization becomes ill-defined if the argument of the square root turns
negative. This can indeed happen, in particular for opaque sources [61, 58]; this
has motivated the introduction of a modified YKP parametrization in [52,58,59]
which avoids this problem at the expense of a less intuitive interpretation of the
modified YKP radii. These remarks show that these relations provide an essential
check for the internal consistency of the Gaussian fit to the measured correlation
function and for the physical interpretation of the resulting HBT parameters.

2.3 Collective Expansion and K-Dependence of the Correlator

If the particle momenta are correlated with their emission points (“x-p-corre-
lations”), the space-time variances in (24) depend on the pair momentum K.
Various mechanisms can lead to such correlations; the most important one for
heavy-ion collisions is collective expansion of the source. Recently a major effort
has been launched to extract the collective flow pattern at freeze-out from the K-
dependence of the HBT parameters. However, thermalized sources may exhibit
temperature gradients along the freeze-out surface which cause additional x-p-
correlations. Moreover, pion spectra receive sizeable contributions from the decay
of unstable resonances some time after freeze-out. These decay pions tend to come
from a somewhat larger space-time region than the directly emitted ones and, due
to the decay kinematics, they preferentially populate the low-momentum region.
Together these two effects also generate x-p-correlations for the emitted pions
even if the original source did not have them [62].



TWO-PARTICLE CORRELATIONS IN HEAVY-ION COLLISIONS 13

The separation of these different effects requires extensive model studies some
of which will be reviewed below. For didactical reasons we will discuss them
in the context of the YKP parametrization where certain mechanisms can be
demonstrated most transparently. A translation for the Cartesian fit parameters
via the cross-check relations (35)-(38) is straightforward. Furthermore we will
show that for sources with strong longitudinal expansion the YK frame (effective
source rest frame) is usually rather close to the LCMS (in which the pairs have
vanishing longitudinal momentum), i.e. v(K) ≈ 0 in the LCMS. This allows,
at least qualitatively, for a rather direct extraction of source properties in its
own rest frame from the Cartesian HBT radius parameters in the LCMS. This is
important since initially most multi-dimensional HBT analyses were done with
the Cartesian parametrization in the LCMS, before the YKP parametrization
became popular.

We will concentrate on the discussion of azimuthally symmetric sources (central
collisions) for which extensive knowledge, both theoretical and experimental, has
been accumulated in the last few years. Many analytical model studies [21,36,37,
39,38,42,40,41,52,48,50,57–59,63,64] are based on the following parametrization
of the emission function (or slight variations thereof):

S(x,K)=
M⊥ cosh(η−Y )

8π4∆τ
exp

[
−K·u(x)

T (x)
− (τ−τ0)2

2(∆τ)2
− r2

2R2(η)
− (η−η0)2

2(∆η)2

]
. (41)

Here r2=x2+y2, η=1
2 ln[(t+z)/(t−z)], and τ=(t2−z2)1/2 parametrize the space-

time coordinates xµ, with d4x = τ dτ dη r dr dφ. Y =1
2 ln[(EK+KL)/(EK−KL)]

and M⊥=(m2+K2
⊥)1/2 parametrize the pair momentum K.

√
2R is the 2-di-

mensional transverse rms radius of the source (〈r2〉 = 2R2); R is usually taken
as a constant. τ0 is the average freeze-out proper time, ∆τ the mean duration
of particle emission, and ∆η controls the longitudinal size of the source, L ∼
τ0 sinh η. Note that S(x,K) describes the phase-space distribution at freeze-out
and not the dynamical evolution of the source from initial conditions; the latter
is described by hydrodynamical or microscopic kinetic models, discussed below.

The Boltzmann factor exp[−K·u(x)/T (x)] parametrizes the momentum-space
structure of the source in terms of a collective, directed component, given by a
flow velocity field uµ(x), and a randomly fluctuating component, characterized
by an exponential spectrum with local slope T (x), as suggested by the shape of
the measured single-particle spectra. Although this parametrization is somewhat
restrictive because it implies that the random component is locally isotropic, it
does not require thermalization of the source at freeze-out. But if it turns out
that all particle species can be described simultaneously by the emission function
(41), with the same temperature and velocity fields T (x), u(x), this would indeed
suggest thermalization as the most natural explanation.

It is convenient to decompose uµ(x) in the form

uµ(x) = (cosh ηl cosh ηt, sinh ηt er, sinh ηl cosh ηt) , (42)

with longitudinal and transverse flow rapidities ηl(x) and ηt(x). A simple boost-
invariant longitudinal flow ηl(τ, η, r) = η (vl = z/t) is commonly assumed. For
the transverse flow rapidity profile the simplest choice is

ηt(τ, η, r) = ηf (τ, η)
(

r

R(η)

)
(43)



14 ULRICH HEINZ & BARBARA V. JACAK

with a scale parameter ηf . (In our notation, ηf denotes the transverse collective
flow rapidity, whereas β⊥ is the transverse velocity of the particle pair.) In most
studies ηf was (like R) set constant such that ηt(r) was a function of r only. This
cannot reproduce the observed rapidity dependence of 〈p⊥〉 and of the inverse
slopes of the m⊥-spectra [65, 66]. In [63, 64] it was shown that an η-dependence
of R, with R(η) shrinking in the backward and forward rapidity regions keeping
the slope ηf/R in (43) fixed, is sufficient to fully repair this deficiency. Here we
discuss only the simpler case of constant R, ηf .

With these assumptions the exponent of the Boltzmann factor in (41) becomes

K · u(x) = M⊥ cosh(Y − η) cosh ηt(r)−K⊥·er sinh ηt(r) . (44)

For vanishing transverse flow (ηf = 0) the source depends only on M⊥ and
remains azimuthally symmetric for all K⊥. Since in the absence of transverse
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Figure 2: The YKP radii R⊥, R‖, and R0 (top to bottom) as functions of M⊥
for pairs at Ycm = 0. Left: no transverse flow. Right: ηf = 0.6. Solid (dashed)
lines are for pions (kaons). Note the breaking of M⊥-scaling by transverse flow.
Source parameters: T = 140 MeV, ∆η = 1.2, R = 3 fm, τ0 = 3 fm/c, ∆τ = 1
fm/c. (Figure taken from [49].)

flow the β-dependent terms in (33) and (34) vanish and the source itself depends
only on M⊥, all three YKP radius parameters then show perfect M⊥-scaling:
plotted as functions of M⊥, they coincide for pion and kaon pairs (see Figure 2,
left column). This remains true if T (x) varies with x; temperature gradients in
the source do not destroy the M⊥-scaling.
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For ηf 6= 0 (right column) this M⊥-scaling is broken by two effects: (1) The
thermal exponent (44) receives an additional contribution proportional to K⊥.
(2) The terms which were neglected in the approximations (33,34) are non-zero,
and they also depend on β⊥ = K⊥/EK . Both induce an explicit rest mass
dependence and destroy the M⊥-scaling of the YKP size parameters.

2.3.1 Longitudinal flow: Yano-Koonin rapidity and M⊥-dependence of R‖

At each point in an expanding source the local velocity distribution is centered
around the average fluid velocity u(x). Thus two fluid elements moving rapidly
relative to each other are unlikely to contribute particles with small relative mo-
menta. Only source regions moving with velocities close to that of the observed
particle pair contribute to the correlation function. How close is controlled by the
width of the random component in the momentum distribution: the larger the
local “thermal smearing”, the more the differences in the fluid velocities can be
balanced out, and the larger the “regions of homogeneity” in the source become.

Longitudinal expansion is most clearly reflected in the behaviour of the Yano-
Koonin (YK) rapidity Y

YK
=1

2 ln[(1+v)/(1−v)]. Figure 3 shows (for pion pairs)
its dependence on the pair momentum K. Transverse flow is seen to have a
negligible influence on the YK rapidity. On the other hand, the linear dependence
of YYK on the pair rapidity Y (Figure 3a) is a direct reflection of the longitudinal
expansion flow [41]; for a non-expanding source YYK would be independent of Y .
The correlation between the velocities of the pair (Y ) and of the emission region
(Y

YK
) strengthens as the thermal smearing decreases. For the Boltzmann form

(41) the latter is controlled by T/M⊥, and correspondingly Y
YK

(K⊥, Y ) → Y
as K⊥ → ∞. For small K⊥, thermal smearing weakens the correlation, and
the effective source moves somewhat more slowly than the observed pairs, whose
longitudinal velocities have an additional thermal component.

If the ratio of the longitudinal source velocity gradient to the thermal smearing
factor, defined in (46) below, is large, R‖ becomes small and the longitudinal
rapidity Y

YK
of the effective source becomes equal to that of the emitted pairs, Y .

This can be true even for slow longitudinal expansion as long as it is strong enough
compared to the thermal smearing. Consequently, observation of a behaviour
like the one shown in Figure 3a demonstrates strong, but not necessarily boost-
invariant longitudinal flow.

Longitudinal expansion is also reflected in the M⊥-dependence of R‖ (second
row of Figure 2). Comparison of the left with the right diagram shows only
minor effects from transverse expansion; longitudinal and transverse dynamics
are thus cleanly separated. A qualitative understanding of the M⊥-dependence
is provided by the following expression, valid for pairs with Y = 0, which can be
derived by evaluating (33) via saddle-point integration [67,21,38,39]:

R2
‖ ≈ L2

∗ ≡
L2

flow

1 + (Lflow/τ0∆η)2
, (45)

Lflow(M⊥) =
1

∂·ul

√
T

M⊥
= τ0

√
T

M⊥
, (46)

Eq. (46) shows explicitly the competition between the longitudinal velocity gra-
dient ∂·ul and the thermal smearing factor T/M⊥. For strong longitudinal ex-
pansion (large velocity gradient and/or weak thermal smearing) and/or large
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geometric longitudinal extension τ0∆η of the source the second term in the de-
nominator can be neglected, and R‖ drops steeply as 1/

√
M⊥ [67]. Note that

quantitative corrections to (45) are not always small [40].
We emphasize that only the first equation in (46) is general. The appearance

of the parameter τ0 in the second equation is due to the choice of a Bjorken
profile for the longitudinal flow for which the longitudinal velocity gradient is
given by the total proper time τ0 between impact and freeze-out. This is not true
in general; the interpretation of the length R‖ in terms of the total expansion
time is therefore a highly model-dependent procedure which should be avoided.
As a matter of principle, the absolute temporal position of the freeze-out point
is not measurable, see section 2.2.1.
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Figure 3: (a) The Yano-Koonin rapidity for pion pairs, as a function of the pair
c.m. rapidity Y , for various values of K⊥ and two values for the transverse flow
ηf . (b) The same, but plotted against K⊥ for various values of Y and ηf . Source
parameters as in Fig. 2. (Figure taken from [41].)

Strong longitudinal x-p-correlations also occur in string fragmentation. In fact,
in the Schwinger model of string breaking [68] the quark pairs created from
the chromoelectric field are assumed to have longitudinal momentum Y = η,
without thermal fluctuations. Thus a similar linear rise of the YK-rapidity with
the pair rapidity and a strong decrease of R‖(M⊥) would also be expected in
jet fragmentation (with the xl-axis oriented along the jet axis). It would be
interesting to confirm this prediction [57] in e+e− or pp collisions.

2.3.2 Transverse flow: M⊥-dependence of R⊥

Just as longitudinal expansion affects R‖, transverse flow causes an M⊥-depen-
dence of R⊥. This is seen in the first row of diagrams in Figure 2, which also
shows that longitudinal flow does not contribute to this feature: for ηf = 0 the
transverse radius does not depend on M⊥, in spite of strong longitudinal expan-
sion of the source. A qualitative understanding of this behaviour is given by
the analogue of (45), again obtained by evaluating (32) via saddle point integra-
tion [21,39,37]:

R2
⊥ ≈ R2

∗ ≡
R2

1 + (R/Rflow)2
=

R2

1 + η2
f (M⊥/T )

, (47)

Rflow(M⊥) =
1

∂ηt(r)/∂r

√
T

M⊥
=

R

ηf

√
T

M⊥
. (48)
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Once again there is competition between flow velocity gradients in the source, this
time in the transverse direction, which tend to reduce the homogeneity regions,
and thermal smearing by the factor T/M⊥ resulting from the random compo-
nent in the momentum distribution, enlarging the regions of homogeneity. The
left equations in (47,48) are generic while the right ones apply to the specific
transverse flow profile (43).

Transverse flow must be built up from zero during the collision while longi-
tudinal x-p-correlations may contain a sizeable primordial component from in-
complete stopping of the two nuclei and/or the particle production process (e.g.
string fragmentation, see above). One thus expects generically weaker transverse
than longitudinal flow effects at freeze-out. Correspondingly, in realistic simula-
tions (e.g. [39, 57, 56]) the longitudinal homogeneity length R‖ turns out to be
dominated by the expansion (i.e. by Lflow) while in the transverse direction the
geometric size R dominates at small M⊥, with flow effects taking over only at
larger values of M⊥. Correspondingly, R⊥(M⊥) decreases more slowly at small
M⊥ than R‖(M⊥) [40,57].

2.3.3 The emission duration

Saddle-point integration of (34) with the source (41) yields, with L∗ from (45),

R2
0 ≈ (∆t∗)2 ≡ (∆τ)2 + 2

(√
τ2
0 + L2∗ − τ0

)2

. (49)

The M⊥-dependence of L∗ thus induces an M⊥-dependence of the temporal YKP
parameter. Eq. (49) reflects the proper time freeze-out assumed in the model
(41): particles emitted at different points z are also emitted at different global
times t, and the total temporal width of the effective source is thus given by the
Gaussian width ∆τ plus the additional variation along the proper time hyperbola,
integrated over the longitudinal homogeneity region L∗ [40].

Although (49) suggests that the proper emission duration ∆τ can be measured
via R0 in the limit M⊥ →∞ (where L∗ → 0), this is has not been true in systems
studied to date. For transversely expanding sources R0 receives additional con-
tributions from the β⊥-dependent terms in (34), in particular at large M⊥ (see
Figure 2). The most important correction is due to the term 〈x̃2

o− x̃2
s〉/β2

⊥ which
can have either sign and usually grows with M⊥ [57, 59, 61]. The extraction of
the emission duration must thus be considered the most model-dependent aspect
of the HBT analysis.

2.3.4 Temperature gradients and opacity effects

A different source of transverse x-p-correlations which can compete with trans-
verse flow in generating an M⊥-dependence of R⊥ are transverse temperature
gradients in the emission function. Since particle densities and mean free paths
(which control the freeze-out process [69, 70]) depend very strongly on temper-
ature, one would a priori not expect strong temperature variations across the
freeze-out surface [71]. While transverse temperature gradients and transverse
flow affect R⊥ similarly (except that the latter weakly breaks the M⊥-scaling),
they have quite different effects on the single particle spectra [39,50]: transverse
temperature gradients strongly reduce the flattening effect of transverse flow on
the m⊥-spectra which is needed to reproduce the data [70,72]. Thus constrained
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by single-particle data, their phenomenological usefulness is limited. Temporal
temperature gradients only reduce the emission duration, but do not affect the
transverse R-parameter [39,50].

One possible source feature that parametrization (41) cannot describe is “opac-
ity”, i.e. surface dominated emission. Heiselberg and Vischer generated opaque
sources by multiplying (41) (or a similar source with bulk freeze-out) with an
exponential absorption factor [61] (see also [58])

Sopaque(x, p) = S(x, p) exp
[
−
√

8/π (leff/λmfp)
]
, (50)

leff = leff(r, φ) = e−
x2

s
2R2

∫ ∞

xo

e−
x′2
2R2 dx′ . (51)

The ratio λmfp/R controls the degree of opacity of the source; as λmfp/R → 0,
the source becomes an infinitely thin radiating shell. The parametrization (50)
together with (41) leads to sources with negative 〈x̃2

o − x̃2
s〉 for all values of K⊥

(including the limit K⊥ → 0). According to (29) and (34) this leads to negative
values of R2

diff and R2
0 (R2

0 even diverges as K⊥ → 0 [58]); the data (see below)
are consistent with vanishing or positive R2

diff at small K⊥.
A non-vanishing difference 〈x̃2

o−x̃2
s〉 in the limit K⊥ → 0 violates the postulated

azimuthal symmetry of the source (see discussion before Eq. (29)). It is easy to
see that short-lived sources can never be opaque for particles with K⊥ → 0: the
source shrinks to zero before such particles can be reabsorbed. The particular
behaviour excluded in [58] is thus anyhow rather unphysical. At larger K⊥, on
the other hand, the “opacity signal” 〈x̃2

o−x̃2
s〉 < 0 (leading, if strong enough,

to R2
o < R2

s [61]) can be “faked” by other mechanisms: Tomášik found [52, 59]
that expanding sources with a box-like transverse density profile generate exactly
such a signature. At the moment it is thus unclear how to uniquely distinguish
“opaque” from “transparent” sources.

2.4 Non-Gaussian Features of the Correlator and q-Moments

The (K-dependent) HBT radii provide a full characterization of the two-particle
correlation function only if it is a Gaussian in q or, equivalently, if the effective
source S(x,K) is a Gaussian in x. However, in many physical situations the
source is not characterized by just one, but by several distinct length scales. In
this case the Gaussian approximation of section 2.2 breaks down.

2.4.1 Resonance decays

The most important physical processes leading to a non-Gaussian shape of the
correlator are resonance decays [62, 73–77, 18]. Especially longlived resonances
which decay into pions cause a long-range exponential tail in the pion emission
function which distorts the two-particle correlation function at small relative
momentum q (see example in Figure 4 below). According to [77,78] the resonances
can be classified into three classes:

1. Short-lived resonances (Γ > 30 MeV) which (especially if heavy) decay
very close to their production point. Their most important effect is to
add a contribution proportional to their lifetime to the emission dura-
tion [74, 77], thereby affecting R2

l and R2
o in the Cartesian and R2

0 in the
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YKP parametrization, but not the transverse radius R⊥. They do not spoil
the Gaussian parametrization.

2. Long-lived resonances (Γ � 1 MeV), mostly the η, η′,K0
S and hyperons.

These resonances travel far outside the original source before decaying. The
resulting wide tail in the emission function contributes to the correlator only
at very small relative momenta. This region is experimentally inaccessible
due to finite two-track and momentum resolution, and the contribution from
this “halo” [76] to the correlator is thus missed in the experiment. The result
is an apparent decrease of the correlation strength (i.e. the intercept λ). In
the measurable q-range the shape of the correlator is not affected.

3. The ω meson (Γ = 8.4 MeV) is not sufficiently longlived to escape detection
in the correlator. Its lifetime is, however, long enough to create a measurable
exponential tail in the pion emission function which distorts the shape of
the correlator, giving it extra weight at small q and destroying its Gaussian
form.

In practice the pions from short-lived resonances can thus be simply added
to the directly emitted ones into an emission function for the “core” [73, 76].
The “halo” from long-lived resonances is accounted for by a reduced intercept
parameter

λ(K) =

(
1−

∑
r

fr(K)

)2

, (52)

where the sum goes over all longlived resonances and fr(K) is the fraction of pions
with momentum K stemming from resonance r. A correspondingly modified
Cartesian parametrization for the correlator reads

C(q,K) = 1± λ(K) exp

−∑
ij

R2
ij(K)qiqj

 . (53)

Pions from ω decays must, however, be considered explicitly and, if sufficiently
abundant, the resulting correlator is no longer well described by the ansatz (53).

In heavy-ion collisions the resonance fractions fr are unknown since most reso-
nances cannot be reconstructed in the high-multiplicity environment. Thus λ(K)
in (53) is an additional fit parameter. Its value is very sensitive to non-Gaussian
distortions in the correlator, and so are the HBT radii extracted from a fit to the
function (53). In theoretical studies [77] it was found that differences of more
than 1 fm in the fitted HBT radii can occur if the fit is performed with λ fixed
to its theoretical value (52) or if, as done in experiment, λ is fitted together
with the radii. In the latter case resonance contributions (including the ω) af-
fect the fitted radii much less than in the former. This difference in procedure
may largely explain the consistently larger resonance contributions to the HBT
radii found by Schlei et al. [73,75], compared to the much weaker effects reported
in [77]. Whereas Schlei et al. [73,75] find that resonances, whose decay pions con-
tribute only to the region of small K⊥, add considerably to the M⊥-dependence
of Rs = R⊥ and thus contaminate the transverse flow signature, practically no
such effect was found in [77].



20 ULRICH HEINZ & BARBARA V. JACAK

2.4.2 q-moments

In view of these systematic uncertainties one may ask for a more quantitative
characterization of correlation functions whose shape deviates from a Gaussian.
This can be achieved via the so-called q-moments of the correlator [77]. In this
approach the matrix of Cartesian HBT parameters R ≡ (R2

ij(K)) (i, j = o, s, l)
and the correlation strength λ(K) are calculated from the following integrals:

1
2

(
R−1

)
ij

= 〈〈qi qj〉〉(K) =
∫

d3q qi qj [C(q,K)− 1]∫
d3q [C(q,K)− 1]

, (54)

λ(K) =
√

detR(K)/π3

∫
d3q [C(q,K)− 1]. (55)

Similar expressions exist for the YKP parameters [77]. For a Gaussian corre-
lator this gives the same HBT parameters as a Gaussian fit; for non-Gaussian
correlators the HBT radius parameters and intercept are defined by (54,55).

Deviations of the correlator from a Gaussian shape are then quantified by
higher order q-moments. Formally they can be obtained as derivatives at the
origin of the relative source function SK(r) which acts as generating function [77]:

〈〈qi1 · · · qin〉〉(K) =
(−i∂)n

∂ri1 · · · ∂rin

ln SK(r)
∣∣∣
r=0

. (56)

Practical applications of this method are limited by severe statistical requirements
for the measured correlator. So far they have been restricted to uni-directional
moments along one of the three q-axes. The leading deviation of C(q,K) from a
Gaussian shape is then given by the kurtosis [77]

∆i(K) =
〈〈q4

i 〉〉
3〈〈q2

i 〉〉2
(K)− 1 , i = o, s, l. (57)

In [77] the influence of transverse flow and resonance decays on the transverse
HBT radius Rs = R⊥ on the kurtosis ∆s(K⊥) was studied for sources of the type
(41). It was found that decay pions give a positive contribution to the kurtosis
which disappears at large K⊥ together with the resonance fractions fr(K). Trans-
verse flow, on the other hand, leads to a vanishing or very small negative kurtosis
which tends to become larger with K⊥. The sign and K⊥-dependence of the
kurtosis thus provide a possibility to check whether a measured K⊥-dependence
of Rs is really due to transverse flow or “faked” by resonance decays [77].

2.5 The Average Freeze-out Phase-Space Density

Bertsch [79] pointed out that by combining measurements of single-particle mo-
mentum spectra and two-particle correlations one can determine the spatially
averaged phase-space density at freeze-out and thereby test local thermal equi-
librium in the pion source created in high energy nuclear collisions:

〈f〉(p) =
∫
Σ f2(x, p) pµd3σµ(x)∫
Σ f(x, p) pµd3σµ(x)

. (58)

Here d3σ(x) is the normal vector on a space-like space-time hypersurface Σ(x).
According to Liouville’s theorem, Σ is arbitrary as long as its time arguments are
later than the time tf(x) at which the last pion passing the surface at point x
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was produced. If the measured single-particle p⊥-spectrum is parametrized by an
exponential with inverse slope parameter Teff(y) and the two-particle correlation
function by the Gaussian (27), one finds [23,79,22]

〈f〉(K⊥, Y ) =
√

λ(K⊥, Y ) (dn/dY ) (2πT 2
eff (Y ))−1 e−K⊥/Teff (Y )

π−3/2 Ep Rs(K⊥, Y )
√

R2
o(K⊥, Y )R2

l (K⊥, Y )−R4
ol(K⊥, Y )

. (59)

The numerator (where dn/dY denotes the multiplicity density of a single charge
state) gives the momentum-space density at freeze-out while the denominator re-
flects the space-time structure of the source and can be interpreted as its covariant
homogeneity volume for particles of momentum K. The factor

√
λ ensures [23]

that only the contributions of pions from the decays of short-lived resonances,
which happen close to the primary production points, are included in the average
phase-space density (see section 2.4.1).

2.6 The Usefulness of 3-Particle Correlations

Two-particle correlations are insensitive to the phase of the two-particle exchange
amplitude: writing the latter for two particles with momenta pi,j as∫

d4xS
(
x, 1

2(pi + pj)
)

ei(pi−pj)·x = ρij eiφij , (60)

the phase φij is seen to drop out from the correlator (12). This is no longer true
for higher-order multiparticle correlations. For example, for a completely chaotic
source the true 3-particle correlator, with all two-particle correlation contribu-
tions R2(i, j) = C(pi,pj)− 1 removed,

R3(p1,p2,p3) = C3(p1,p2,p3)−R2(1, 2) −R2(2, 3) −R2(3, 1) − 1, (61)

and properly normalized,

r3(p1,p2,p3) =
R3(p1,p2,p3)√

R2(1, 2)R2(2, 3)R2(3, 1)
, (62)

gives the sum of phases of the three two-particle exchange amplitudes [80]:

r3(p1,p2,p3) = 2 cos (φ12 + φ23 + φ31) ≡ 2 cos Φ . (63)

Expanding the two-particle exchange amplitude (60) for small relative momenta
one finds [80]

Φ =
1
2

qµ
12 qν

23

[
∂〈xµ〉3
∂K̄ν

− ∂〈xν〉3
∂K̄µ

]
− 1

24
[qµ

12 qν
12 qλ

23 + qµ
23 qν

23 qλ
12]

[
∂2〈xµ〉3

∂K̄ν∂K̄λ
+

∂2〈xν〉3
∂K̄λ∂K̄µ

+
∂2〈xλ〉3

∂K̄µ∂K̄ν

]

−1
2
qµ
12 qν

23 (q12 + q23)λ 〈x̃µx̃ν x̃λ〉3 + O(q4) . (64)

Here qij = pi−pj (with q12 +q23 +q31 = 0) are the two-particle relative momenta
and K̄ = (p1 + p2 + p3)/3 is the average momentum of the particle triplet; the
averages 〈. . .〉3 are calculated with the emission function S(x, K̄). Eq. (64) shows
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that Φ depends on the odd space-time variances 〈x̃3〉 etc. of the emission function
and on the derivatives with respect to K̄ of the point of highest emissivity 〈x〉3.
These reflect the asymmetries of the source around its center. In the Gaussian
approximation of section 2.2.1 they vanish.

These considerations show that the true three-particle correlator contains ad-
ditional information which is not accessible via two-particle correlations. In prac-
tice, however, it is difficult to extract this information. The leading contribution
to Φ is of second order in the relative momenta qij , and in many reasonable models
it even vanishes [81]. Therefore new information typically enters r3(p1,p2,p3) at
sixth order in q. The measurement of the phase Φ is thus very sensitive to an
accurate removal of all leading q2-dependences by a proper determination and
normalization of the two-particle correlator.

On the other hand, it was pointed out that the intercept of the normalized true
three-particle correlation parameter r3 may provide a good test for the chaoticity
of the source. Writing the emission function for a partially coherent source as
S = Scha + Scoh and denoting the chaotic fraction of the single-particle spectrum
at momentum p as ε(p), the intercept of r3 is given by [80,82]

λ3(K̄) ≡ r3(K̄, K̄, K̄) = 2
√

ε(K̄)
3− 2ε(K̄)

(2− ε(K̄))3/2
. (65)

This relation is useful since, contrary to the two-particle correlation strength λ,
the intercept (65) of the normalized three-particle correlator is not affected by
decay contributions from long-lived resonances which cancel in the ratio (62) [80].

Complete small-q expansions of R2 and R3 which generalize the Gaussian
parametrization (24) to the case of partially coherent sources and to three-particle
correlations, improving on earlier results in [82,83], can be found in [80]. Within
a multidimensional analysis of 2- and 3-pion correlations they allow separate de-
termination of the sizes of the homogeneity regions of the chaotic and coherent
source components as well as the distance between their centers.

3 TWO-PARTICLE CORRELATIONS FROM DYNAMICAL
MODELS

Interpretation of correlation functions measured in heavy-ion collisions requires
understanding the true relationship of the parameters extracted from fitting the
data and the actual single-particle distributions at freeze-out. The level to which
this works in practice can be established by using an event generator to model
the collision dynamics, particle production and hadronic rescattering, and then
constructing a two-particle correlation function. These functions can be fit in the
same way as experimental correlation functions and the fit parameters compared
to the single-particle freeze-out distribution in the event generator [78,84].

The event generator correlation functions are constructed from the positions
and momenta representing the single particle emission distribution at the time
of the last strong interaction (i.e. at freeze-out). The subsequent calculation
of correlation functions uses particle pairs drawn randomly from this list and
constructs a two-particle symmetrized wave function [85, 55, 78, 22]. Coulomb
wave functions for the particles are used. As for experimental data, a Coulomb
correction is applied to the correlation function before fitting [78].

As the event generator yields a correlation function while simultaneously know-
ing the space-time distribution and history of the same particles, discrepancies
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between the fit parameters and freeze-out distributions may be resolved. Fur-
thermore, the generated particles may be subjected to experimental acceptance
cuts and treated like real data. This allows evaluation of the effects of experi-
mental acceptances and analysis techniques. Since a significant number of the
observed hadrons arise from decay of long-lived resonances, the event generators
can also quantify their effects on the correlation functions. Such studies were
performed using the RQMD [86,78,87–89] and ARC event generators [90,84] as
well as hydrodynamical simulations [73,91,75,92–94].

3.1 RQMD

Many experiments use the RQMD event generator [86], as it satisfactorily repro-
duces single-particle distributions. RQMD simulates the microscopic phase-space
evolution, using resonance and string excitation as primary processes, followed
by fragmentation, decays and subsequent hadronic collisions. Many features in
p-nucleus and nucleus-nucleus collisions which can be related to secondary scat-
tering are well described by RQMD [95, 96]. The numerous secondary collisions
result in considerable transverse flow of RQMD events before freeze-out [78,97,56].

3.1.1 Collective expansion

Figure 4 shows a comparison of RQMD freezeout positions and correlation func-
tions for S+Pb collisions at 200 GeV/nucleon [78]. The top half shows the pion
(solid lines) and kaon (dotted lines) position distributions at freeze-out along and

Figure 4: Comparison of position distributions at freeze-out and calculated corre-
lation functions, both from RQMD events. The lines in the bottom figures show
1 + |ρ̃(q)|2 where ρ̃(q) is the Fourier transform of the corresponding distribution
in the upper figures. The notation on the axes q

PAR
, q

TSIDE
, q

TOUT
corresponds to

ql, qs, qo used elsewhere in this review. (Figure taken from [78].)

transverse to the beam direction as well as in time, integrated over their momenta.
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The kaon distributions are narrower than those of the pions. The lower section of
the figure shows correlation functions calculated from the RQMD events, plotted
as functions of the Cartesian variables. The points show the calculated correlation
functions using the NA35 experimental acceptance, while the solid and dashed
lines indicate Fourier transforms of the relevant components of the pion and kaon
freeze-out distributions in the top row of figures. If the particle positions and
momenta were uncorrelated, HBT interferometry should reproduce the full size
of the freeze-out distribution, and in the lower panels the lines should agree with
the corresponding points. Instead, the correlation functions calculated from the
RQMD phase-space distribution are much wider in ql than expected from the
Fourier transform, indicating a smaller effective source. This reflects longitudinal
position-momentum correlations arising from a strong longitudinal expansion of
the source. As will be seen later, this prediction by RQMD and hydrodynamical
models is confirmed by the data. An analogous effect is seen in the sideward
direction where especially the calculated kaon correlation function is wider than
expected from the Fourier transform of their momentum-integrated transverse
spatial distribution. This can be traced back to transverse position-momentum
correlations in the RQMD freeze-out distribution, induced by collective trans-
verse expansion. As discussed above, these correlations increase with increasing
transverse mass of the particles and are thus more strongly reflected in the kaon
correlation function. The resulting decrease of the transverse effective source size
extracted from kaon correlations is again confirmed by the data.

Event generators like RQMD can be used to study the influence of experimen-
tal acceptance cuts on the K⊥-dependence of the HBT fit parameters induced
by collective flow. RQMD was shown to reproduce the K⊥-dependence of the
correlation functions both at SPS [87–89] and AGS [98, 99] energies. It is note-
worthy that by analyzing the same set of RQMD events with the NA35 and NA44
acceptances, good agreement with both data sets was obtained even though the
K⊥-dependence of Rs appears to be somewhat stronger in NA44 [56].

The shrinking of the effective source size as a result of collective flow is il-
lustrated in Figure 5. The collective flow velocity has the effect of “focussing”
particles arising from nearby regions of the source. As the correlation selects
particles of small momentum difference, it is sensitive to this focussing. Figure 5
shows the freeze-out distributions of all pions (open histograms) and of those pi-
ons accepted in two NA44 spectrometer settings (44mr is the low K⊥ setting and
131mr high K⊥). Higher K⊥ pairs have a narrower distribution at freeze-out due
to the larger effect of the flow velocity. Note that this is the focussing from flow
and not an experimental acceptance effect. The correlation function only “sees”
particles which are flowing in the same direction; particles from the far side of
the source flow away in an expanding source. This is why the characteristic drop
of apparent source size with increasing K⊥ is observed by both NA35 and NA44
even though one experiment has large acceptance and one narrow.

3.1.2 Emission duration

The emission duration is usually calculated from the fit parameters via Eq. (29),
using the leading term only. Comparison of this emission time estimate with the
actual width of the freeze-out time distribution from RQMD events determines
the validity of neglecting the position-momentum correlation effects on the space-
time variances. Fields et al. [56] found that only for K⊥ below ≈ 100 MeV/c
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Figure 5: RQMD freeze-out distributions for pions. The open histograms give
all pions from RQMD, the hatched ones only those accepted by NA44 at various
spectrometer settings. x, y, z indicate the out-, side- and longitudinal directions
in the collision center of mass system. (Figure taken from [89].)

does this method yield the actual emission duration. For higher K⊥ particles,
the true emission duration (3-6 fm/c for S+Pb [56] and 7-8.5 fm/c for Pb+Pb
[89]) is shorter due to flow-induced position-momentum correlations, but the
value derived from the difference between R2

o and R2
s underrepresents even this.

Consequently, extraction of the emission duration from experimental correlation
functions should only be attempted at low K⊥.

Of course, the total lifetime of the source between impact and freeze-out is
considerably larger.

3.1.3 Resonance decays

In RQMD as many as half of the low K⊥ pions in heavy-ion collisions arise from
the decay of long-lived resonances [78]. Very long-lived resonances produce a
long tail in the pion freeze-out position distribution, visible in Figure 4. This
corresponds to a component of the correlation function too narrow to measure
and reduces the correlation strength λ [78]. In S+Pb collisions the fraction of
pions from ω, η, η′ resonances is 30% at low p⊥ and falls to 5 % at p⊥= 800
MeV/c [56]. These pions cause a departure from a Gaussian source shape, which
impacts the quality of fits with a Gaussian parametrization.

Resonance decay contributions to kaons are smaller, which makes the interpre-
tation of their correlation functions cleaner. Due to their rest mass they always
have a sizeable M⊥, and so their correlation functions are more sensitive to flow.
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3.2 Hydrodynamical Models

A more macroscopic approach to describe the dynamical evolution of the reac-
tion zone treats it as a locally thermalized ideal fluid and solves the relativistic
hydrodynamical equations. Initial conditions are usually set after an initial pre-
equilibrium stage and suitably parametrized [73,75,91,100]. Freeze-out is usually
enforced at a fixed energy density or temperature. After the end of the simu-
lation those fluid cells which satisfy this freeze-out criterium are identified, and
the local energy and baryon density in these cells are converted into temperature
and chemical potentials using the equation of state of an ideal resonance gas in
thermal and chemical equilibrium. Each such cell thus emits a thermal hadron
spectrum boosted by the local fluid velocity. This determines the emission func-
tion S(x, p) of the model from which spectra and correlation functions can be
calculated [73,75,92,93].

Measured spectra and correlation functions put constraints on the output of
such simulations which can be used to identify allowed combinations of initial
conditions and equations of state [100,94]. In this way certain classes of evolution
scenarios can be eliminated while successful combinations can be used to predict
other observables for further discrimination or hadronic one- and two-particle
spectra at future colliders [101].

4 TWO-PARTICLE CORRELATIONS IN HEAVY-ION EXPE-
RIMENTS

4.1 General Remarks and Short Overview of the Experiments

4.1.1 Construction of the correlation function

Experimentally, correlation functions are constructed by counting events with
boson pairs of given pair and relative momenta and dividing by a properly nor-
malized [6, 102] “background” sample with no enhancement:

Cexpmt.
2 (q,K) = A(q,K)/B(q,K). (66)

Typically, B(q,K) is generated by creating artificial pairs by combining single
tracks from different events, or by using unlike-sign pions. Generally, analyses
bin both the data and the background in the chosen variables. The correlation
functions are then corrected for Coulomb interactions, experimental resolution
and two-particle acceptance (generally by Monte Carlo techniques), residual two-
particle effects on the single-particle spectrum constructed from mixed pairs,
particle misidentification (if contamination is significant); see [106, 103–105] for
details.

4.1.2 Fit procedures

Correlation functions are customarily fit by a Gaussian in q which assumes a
Gaussian-distributed source. This is a simplification, since the source may well
have a more complex shape. However, the Gaussian assumption provides a rea-
sonable representation of the data [103,107] and continues to be used. One should
keep in mind, however, that the measured correlation functions are usually not
perfect Gaussians and that this leads to systematic uncertainties of the order of
10-20% in the extracted fit parameters.
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High statistics data samples are now analyzed using multi-dimensional fits
[13,36,37,41,57]. Unlike many lower-dimensional parametrizations these do not
require the unrealistic assumption of a spherical source and are more sensitive
to the collision dynamics [84]. Some analyses do, however, use lower-dimensional
parameterizations due to statistical or acceptance limitations. These carry the
danger of producing misleading results, but they can be useful if they are based
on a complete parametrization and make proper projections [98].

4.1.3 Coulomb corrections in experiment

Initially, experimental correlation functions were corrected for 2-body Coulomb
interactions using the Gamov factor. However, as measurements of heavier sys-
tems were made, the point source approximation became increasingly inappro-
priate. Several different techniques have been used for improved corrections.

The first experimental improvement was achieved by integrating expression
(18) with Coulomb wave functions using a technique developed by Pratt [108].
For the relative source function SK(r) one usually takes a spherically symmetric
Gaussian in the pair rest frame with a size parameter which is iterated. In S+Pb
collisions, NA44 found that the improved Coulomb correction resulted in a 5-
10% increase in the fitted radius parameters for pions and kaons [103,104,88]. In
Pb+Pb collisions, the difference is 8-12%, with λ decreasing by 3-6% [89].

The Coulomb correction can be investigated experimentally by measuring cor-
relation functions of oppositely charged particle pairs, where quantum mechanical
symmetrization effects are absent [109]. The measured Coulomb attraction re-
flects the (non-zero) source size [27], and can be used to parametrize a Coulomb
correction for same sign pairs. This technique is used by NA49 [107].

4.1.4 Short description of the experiments

We now briefly describe the experiments whose data will be discussed in the fol-
lowing. E802/859/866 at the AGS is a wide acceptance magnetic spectrometer
experiment, tracking particles with drift chambers and identifying them via time-
of-flight. E814/877 at the AGS is a multipurpose experiment which includes a
hadron spectrometer covering forward angles. Particle identification is achieved
using time-of-flight with a very long flight path. The angular range of the accep-
tance limits the identified hadrons to rather small p⊥. E895 is a time projection
chamber (TPC) at the AGS, which identifies hadrons through their energy loss
in the gas-filled detector volume.

At the CERN SPS, NA44 is a second generation experiment which measures
single and two-particle distributions at midrapidity. It is characterized by excel-
lent particle identification, with contaminations at the 1% level. As a focussing
spectrometer, its acceptance for particle pairs with small momentum difference
is optimized, allowing for high statistics in the region of the Bose-Einstein cor-
relation signal. NA35 is a streamer chamber and TPC experiment at CERN,
with a large acceptance for pions from 200 A GeV S-nucleus collisions. NA49,
the successor to NA35, uses four TPC’s and two time-of-flight walls to track and
identify particles in Pb+Pb collisions. For the correlation functions NA35 and
NA49 use charged tracks without particle identification; they are fit as a function
of pair rapidity and transverse momentum.

Different experiments analyze correlations in different reference frames. The
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NA44 Collaboration [104, 88] use the LCMS in which the longitudinal pair mo-
mentum vanishes. This frame couples the lifetime information solely to qo and
ensures that the source velocity in the analysis frame is usually small [57]. The
NA35/NA49 Collaboration [105,87] and E802/E859/E866 [106,110,111] analyze
in the nucleon-nucleon center of mass frame which is similar (but for asymmetric
collision systems not identical) to the LCMS at mid-rapidity.

4.1.5 Square roots of 2, 3, and 5

Confusion can easily arise when comparing fitted HBT radius parameters with
the rms or hard sphere radii of the colliding nuclei. As is well known, the 3-
dimensional rms radius Rrms,3d and the hard sphere radius Rbox = 1.2A1/3 fm
are related by a factor

√
3/5:

R2
rms,3d = 〈r2〉 = 〈x2

o + x2
s + x2

l 〉 =
∫Rbox
0 r2 d3r∫Rbox

0 d3r
=

3
5
R2

box. (67)

The HBT radii are 1-dimensional rms radii (e.g. R2
s = 〈x2

s〉) and thus another
factor

√
3 smaller than Rrms,3d. If a cold spherical nucleus in its ground state

could be induced to emit pion pairs, one would thus measure

Rcold
s =

Rrms,3d√
3

=
Rbox√

5
. (68)

We will call the ratio of the actually measured Rs to this naive expectation the
“expansion factor” ξ.

At high energies it is often useful to compare with the 2-dimensional rms radius
of the nuclear overlap region in the transverse plane, Rrms,2d = 〈x2

o+x2
s〉1/2, which

is a factor
√

2 larger than the corresponding sideward radius Rs = R⊥.

4.2 A Measured Correlation Function

Collision systems with light projectiles (S+S and S+Pb at the SPS and Si+Au
at the AGS) have been studied by several experiments, with some systematic
differences in the results. NA35 included a factor of 1

2 in the exponent of the
Gaussian fit function, which yields R parameters larger by

√
2 than those from

other experiments.
Figure 6 shows three-dimensional correlation functions of π+ and K+ pairs in

14.6 A GeV Si+Au collisions, measured by E859 [111]. Shown are the projections
in the three Cartesian directions, with narrow cuts on the momentum differences
in the other two directions. However, the fits are performed in three dimensions,
not upon the projections. The solid line shows a Gaussian fit in the CM system
(Y =1.25) according to (53) without the cross-terms; the shape of the data is
reproduced quite well.

The fit parameters extracted by E859 from pion and kaon correlations are
shown in Table 1. The radius parameters from kaons are considerably smaller
than those from pions, but the λ parameter is larger [106, 110]. Both trends
are expected from the fact that kaons are less affected by resonance decays than
pions [112]; from the discussion in Sec. 2.4.1, however, the effect on the radius
parameters should have been weaker. It was also postulated that, due to their
smaller cross section with nucleons, kaons may freeze out earlier than pions [113],
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Figure 6: π+π+ and K+K+ correlation functions for 14.6 A GeV Si+Au colli-
sions from E859 [111]. The analysis was done in the participant center of mass
(Y =1.25). For the projections the remaining two components of the relative mo-
mentum were cut to 5 MeV/c < qperp < 35 (65) MeV/c for pions (kaons). The
solid lines show a 3-d Gaussian fit. (Figure taken with permission from [111].)

reflecting a smaller source if the latter expands. The E859 analysis [111] showed,
however, within a fit of reduced dimensionality (2 instead of 3 radius parame-
ters) that also the pion correlation radii decrease systematically with increasing
transverse mass of the pair. However, the interpretation of such a 2-dimensional
fit is not straightforward.

4.3 Asymmetric Collision Systems: First Signs of M⊥-Dependence

The first 3-dimensional and K-dependent correlation analysis was achieved in
sulphur-induced collisions at the SPS. Table 2 summarizes the R parameters
extracted by NA44 from a 3-dimensional analysis of pion and kaon correlations
in 450 GeV p+Pb and 200 A GeV S+Pb collisions at the SPS [114, 104]. They
were extracted from a fit to

C(q,K) = 1 + λ(K) exp(−R2
s(K)q2

s −R2
o(K)q2

o −R2
l (K)q2

l ) . (69)

One sees the same trends as observed by E802/859 at lower beam energy [110,
111]: the R parameters for kaons are consistently smaller than for pions and the
correlation strength λ is larger. That the R parameters are larger in S+Pb than
in p+Pb collisions should be expected. However, Rs in S+Pb collisions is also
(much) larger than the projectile, even for kaons: for 32S we should compare
Rs to Rbox/

√
5 = 3.8 fm/2.23 = 1.7 fm. Thus the system must have expanded

significantly before freezeout.
This is supported by the additional observation (see Figure 7) that all three R



30 ULRICH HEINZ & BARBARA V. JACAK

pair Rl Rs Ro λ
π+π+ 2.75±0.15 2.95±0.19 3.77±0.13 0.65±0.02
K+K+ 1.71±0.14 2.09±0.20 2.07±0.16 0.83±0.08

Table 1: E859 correlation function fit parameters [111]. Pions have rapidities
1.2 < y < 1.8 and transverse momenta 100 MeV/c < p⊥ < 800 MeV/c, while
kaons are accepted for 1.0 < y < 1.7 and 100 MeV/c < p⊥ < 900 MeV/c.

Rs Ro Rl λ
S + Pb π+ 4.15±0.27 4.02±0.14 4.73±0.26 0.56±0.02
p + Pb π+ 2.00±0.25 1.92±0.13 2.34±0.36 0.41±0.02
S + Pb K+ 2.55±0.20 2.77±0.12 3.02±0.20 0.82±0.04
p + Pb K+ 1.22±0.76 1.53±0.17 2.40±0.30 0.70±0.07

Table 2: HBT parameters in the LCMS measured by NA44 for 450 GeV p+Pb
and 200 A GeV S+Pb collisions [114,104]. Pions are measured in 3.2 < y < 4.2,
kaons in 2.7 < y < 3.3. The p⊥ acceptance is 0 < p⊥ < 0.6 GeV/c for both.

parameters show a strong dependence on the transverse mass M⊥ of the pairs.
In [88] they were compared to a common 1/

√
M⊥-law (see Figure 7) which si-

multaneously reproduces the two pion points and one kaon point in each of the
three Cartesian directions. This points to a dependence on M⊥ (rather than on
m0 and K⊥ separately), as expected for a thermalized expanding source [39].

NA44 compared correlations of K+ and K− pairs, to investigate possible effects
of their different cross sections with nucleons on the freeze-out distribution. No
significant differences were found, indicating that at SPS energies the KN cross
section plays a subdominant role in the freeze-out process. This is to be expected
from the small measured nucleon/pion ratio: p/π+ = 0.12 [115]; Kπ scattering
dominates and is similar for K+ and K−.

The fit function (69) did not include the cross-term Rol. It is expected to be
small near mid-rapidity where the NA44 acceptance is concentrated. Subsequent
analyses showed [89] that including the cross-term changes the R parameters by
<∼ 10%, less than the 20% systematic uncertainty on their absolute values.

NA35 has measured the rapidity and transverse momentum dependence of the
three source radius parameters Rs, Ro, and Rl for central S+S, S+Cu, S+Ag,
and S+Au collisions [105], by fitting the correlation functions to Eq. (69) in the
nucleon-nucleon center of mass. The rapidity dependence of the transverse radius
parameters is minimal. Rl depends strongly on the pair rapidity and is well
described by Rl ∼ 1/ cosh(Y−Y

CM
), indicating approximately boost-invariant

longitudinal expansion [67] as was predicted for collisions at these energies [116].
If this Y -dependence in the CM frame were exact, Rl would be independent of Y
in the LCMS. One should remember, however, that the analysis of [105] was done
without including the Rol cross-term which was shown [47] to become sizeable in
the CM at large Y − Y

CM
.

All systems show a similar dependence of Rl on the transverse pair momentum
K⊥, with Rl decreasing with increasing K⊥ at a similar rate as found by NA44
(see above). This provides further evidence for longitudinal expansion of the
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Figure 7: M⊥-dependence of the three Cartesian radius parameters in 200 A
GeV S+Pb collisions measured by NA44 [88]. The open (filled) symbols indicate
values extracted from π+π+ (K+K+) correlations. The solid line is given by
R = 2 fm/

√
M⊥ (M⊥ in GeV).

source (see Sec. 2.3), and this behaviour is also predicted by hydrodynamical
simulations of the collisions [92,105].

Compared to Rl, the transverse parameters Rs, Ro from the NA35 analysis
[105] show a weaker K⊥-dependence, indicating that the longitudal and transverse
expansions differ. Such a tendency is generically expected from hydrodynamic
simulations of the collision dynamics [92,93] and from the model studies presented
in Sec. 2.3. As discussed in section 3.1.1, the apparently stronger K⊥-dependence
of the transverse R parameters observed by NA44 in S+Pb collisions [88] can be
understood in terms of the different experimental acceptances.

4.4 Au+Au Collisions at the AGS

Collective transverse expansion of the emitting source was also observed at the
AGS. A characteristic K⊥ dependence of the transverse radius parameter R⊥ was
found in Au+Au collisions at 11 GeV/nucleon by E866 [98]. Decreasing values of
all three Cartesian source parameters with increasing K⊥ are observed in Au +
Au collisions at energies as low as 2 GeV/nucleon by the E895 collaboration [99],
although at their lowest beam energy of 2 Gev/nucleon the K⊥ dependence of
Rs and Ro seems to disappear. Though the hadron densities at such energies are
much less than at 158 GeV/nucleon, they are still quite large. Even here, the
hadronic scattering can generate pressure and cause the source to expand. In
fact, pair momentum dependence of the fit parameters was already observed in
streamer chamber data at the Bevalac by Beavis et al. [117] in a 1-dimensional
analysis of pion correlations from 1.8 GeV/nucleon Ar+Pb collisions. Already at
that time the dependence was interpreted as evidence for expansion of the source
before freeze-out [117].
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4.5 Pb+Pb Collisions at the SPS

4.5.1 Cartesian parametrization

Figure 8 shows projections of the 3-dimensional correlation functions for π− and
π+ pairs from 158 GeV/nucleon Pb+Pb collisions, measured by NA44 (closed
points) [89]. The left column shows a 1-dimensional analysis in qinv for com-
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Figure 8: Comparison of NA44 Pb+Pb π+π+ correlation data (solid circles)
and RQMD predictions (open triangles). The 1-dimensional projections of the
3-dimensional correlation function are averaged over the lowest 20 MeV/c in the
other momentum differences. (Figure taken from [89].)

parison with older data from other colliding systems. Two angular settings of
the spectrometer cover p⊥-ranges of 0-0.4 GeV/c and 0.3-0.8 GeV/c. The fitted
source parameters, with and without the Rol cross-term, are given in Table 3 [89].
As in the case of sulphur-induced collisions, all R parameters are seen to become
significantly smaller as K⊥ increases, again pointing to collective longitudinal and
transverse flow of the source. At small K⊥ Rs is once again much larger than the
corresponding value (3.1 fm) of a cold Pb nucleus, indicating that the transverse
flow also leads to transverse growth of the collision zone before freeze-out.

The cross-term R2
ol is non-zero for all data sets, and it is rather large for the
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pair (〈K⊥〉) λ Ro (fm) Rs (fm) Rl (fm) R2
ol (fm2)

π−π−(≈ 170) 0.495±0.023 4.88±0.21 4.45±0.32 6.03±0.35
π+π+(≈ 170) 0.569±0.035 5.50±0.26 5.87±0.58 6.58±0.48
π+π+(≈ 480) 0.679±0.034 4.39±0.18 4.39±0.31 3.96±0.23
π−π−(≈ 170) 0.524±0.026 5.35±0.25 5.07±0.35 6.68±0.39 10.7±2.9
π+π+(≈ 170) 0.658±0.035 5.98±0.23 6.94±0.48 7.39±0.40 28.1±3.5
π+π+(≈ 480) 0.693±0.037 4.59±0.21 4.71±0.36 4.15±0.25 3.1±1.4

Table 3: Cartesian radius parameters from a Gaussian fit to NA44 correlation
functions for Pb+Pb collisions [89] using the Coulomb wave correction. The fitted
results with and without the cross-term R2

ol are shown. (〈K⊥〉 in MeV/c.)

low-K⊥ π+ pairs. As explained above, this term should be non-zero in the LCMS
frame (where these data were analyzed) if the source is not reflection symmetric
in beam direction. Since the NA44 low-K⊥ acceptance is slightly forward of
midrapidity, this condition of symmetry is not fulfilled. The fitted R parameters
all become larger when the cross-term is included. The higher K⊥ acceptance is
nearer midrapidity, and the cross-term is indeed smaller.

It should be noted that the fit parameters for positively and negatively charged
pions differ in an apparently significant way. However, calculation of the χ2 per
degree of freedom between the two measured correlation functions yields a value
of 450/440 [89]. As this is near unity, the experimenters concluded that the
correlation functions do not, in fact, differ. This illustrates an important system-
atic limitation in extracting source parameters from Gaussian fits to measured
correlation functions. Such problems are certainly exacerbated when compar-
ing data from different experiments where statistical and systematic errors de-
pend differently on q. These limitations hold regardless of the choice of source
parametrization, but a comparison of different parametrizations (in which the
available q-space is differently populated) via the cross-check relations given in
Sec. 2.2 could provide an estimate for the corresponding systematic uncertainties.

Figure 8 also shows pion correlation functions calculated from the RQMD event
generator [86], using the same charged multiplicity as selected by the experiment
and a filter simulating the NA44 acceptance. RQMD predicts source size param-
eters which are slightly larger than the measured ones [89], but agrees remarkably
well with the general trend of the data. It reproduces the larger values of Rl com-
pared to the transverse R parameters for low K⊥ and predicts radius parameters
similar to the measured ones at high K⊥. It overpredicts, however, significantly
the value of the correlation strength λ. This discrepancy is likely due to non-
Gaussian distortions of the correlation function by pions from resonance decays
and the resulting systematic uncertainties in Gaussian fits (see Sec. 2.4.1).

4.5.2 Yano-Koonin-Podgoretskĭı parametrization

An analysis of charged particle correlations from 158 A GeV Pb+Pb collisions
with the Yano-Koonin-Podgoretskĭı parametrization (30) (amended by a correla-
tion strength parameter λ) was performed by the NA49 Collaboration [118,107].
The analysis is not based on identified pions, and the non-pion contamination
(which contributes to the mixed-pair background but not to the correlated pairs)
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reduces the value of λ significantly. However, the values of the YKP fit parame-
ters are affected only at the 2-6% level [107].

The left part of Figure 9 shows the fit results for the parameters R‖, R⊥ and R0,
both as a function of pair rapidity Y ≡ Yππ for small transverse pair momentum
0.1 < K⊥ < 0.2 GeV/c and as a function of K⊥ for forward moving pairs at
3.9 < Y < 4.4. R‖ and R⊥ peak at midrapidity, the maximum of R‖ (≈ 7 − 8
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Figure 9: Left: YKP radius parameters for pion pairs from 158 A GeV Pb+Pb
collisions measured by NA49, as functions of the transverse momentum K⊥ and
rapidity Y ≡ Yππ as indicated in the Figure. Right: Effective source rapidity Y

YK

for pions as a function of pair rapidity Y ≡ Yππ, for pairs with small transverse
momenta (0.1 < K⊥ < 0.2 GeV). The dashed horizontal line indicates the ex-
pectation from a non-expanding source. Filled circles are measured data, open
circles are reflected about midrapidity (Yππ = 2.9). (Figure taken with permission
from [107].)

fm) being somewhat larger than that of R⊥ (≈ 6 fm, more than twice as large as
expected from the initial nuclear overlap region). Since at midrapidity Rl = R‖,
the NA49 YKP radius parameters R‖, R⊥ can be compared with Rl, Rs from
NA44; they are consistent. While all three YKP radius parameters are decreasing
functions of K⊥, the K⊥-dependence of R‖ is clearly stronger than that of R⊥,
indicating dominant longitudinal and somewhat weaker transverse expansion.

The right diagram in Figure 9 shows a strong correlation between the effec-
tive source rapidity Y

YK
extracted from the YKP fit and the pair rapidity Yππ.

Following the discussion in Sec. 2.3.1 this is again evidence for very strong longi-
tudinal expansion of the source. The data points in the Figure seem to indicate a
slope slightly below unity, as expected from thermal smearing effects at low K⊥
(see Figure 3).

The data were compared [107] to the expanding source model (41). In each Y -
bin the K⊥-dependence of the R-parameters can be successfully described by the
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model, and in particular the strong K⊥-dependence is reproduced very well by the
assumption of boost-invariant longitudinal flow. The rapidity dependence of R⊥,
however, cannot be reproduced by a constant transverse Gaussian radius R of the
source; it requires R (and thereby the average transverse flow) to decrease away
from midrapidity [63, 64]. Near midrapidity one finds for the model parameter
R in (41) R ≈ 8 fm, shrinking to R ≈ 7 fm at 3.9 < Y < 4.4 [107]. From (47)
one obtains the ratio η2

f/T = 3.7± 1.6 GeV−1 [107]. For freeze-out temperatures
in the range 100-140 MeV this implies transverse flow rapidities ηf of 0.6-0.72,
corresponding to average transverse flow velocities of 0.5-0.6c.

4.5.3 Emission duration

In sulphur-induced collisions at the SPS [105, 88] and in Pb+Pb collisions ana-
lyzed by NA44 with the Cartesian parameterization [89] the emission duration
was found to be very short – consistent with 0-2 fm/c (with considerable sta-
tistical and systematic uncertainties). NA49 found from their YKP fit to the
Pb+Pb data a non-zero emission duration of approximately 3 fm/c [107]. All
these numbers are rather short compared to the emission duration predicted by
RQMD, namely 3-6 fm/c for S+Pb [56] and 7-8.5 fm/c for Pb+Pb [89], despite
the fact that RQMD provides a good representation of the particle distributions.
This illustrates the difficulty and model dependence of extracting the emission
duration in relativistic heavy ion collisions, discussed in the previous sections.

This is different for low-energy heavy-ion collisions at E/A=30-80 MeV where
emission durations of up to 1400 fm/c were measured [119] – the typical evap-
oration time of a compound nucleus. Such large times can be extracted with
relatively much less model uncertainty. If the creation of a quark-gluon plasma
led to a very long-lived intermediate stage near the critical temperature Tc for
hadronization, it could emit hadrons from the surface over much longer periods of
time than presently measured. This might leave more easily interpretable traces
in R2

diff or R2
0 [43, 54,91].

5 COMBINING SINGLE- AND TWO-PARTICLE SPECTRA

It has been shown that the single-particle m⊥-distributions of pions and heav-
ier hadrons reflect a transversely expanding source [72, 120, 65]. Such spectra
are sensitive to a different combination of T and ηf [70, 72]. Combining this
information with that from the two-particle correlation functions thus allows a
separation of the collective and thermal momentum components described by ηf

and T [121,39,122,63].
NA49 has analyzed negative hadron and deuteron spectra in Pb+Pb collisions

at the SPS and combined the fit parameters with their correlation function anal-
ysis near midrapidity [107]. Figure 10 shows the allowed regions of freeze-out
temperature and radial velocity as bands of ±σ around each of the three inde-
pendent fits. These favor a narrowly defined overlap region with T = 120 ± 12
MeV and ηf = 0.55 ± 0.12 [107]. From the model parameter, ηf , one can calcu-
late the average transverse flow velocity 〈v⊥〉 (see below), given the density and
velocity profiles. The fit to the h− spectrum in [107] was made without explicit
consideration of the contributions from resonance decays and heavier hadrons;
once these are included [123], the band labelled “h−” in Figure 10 no longer
bends over at small T , and the crossing region is shifted slightly downward.
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Figure 10: Allowed regions of freeze-out temperature T and transverse flow ra-
pidity ηf (here denoted as β⊥) for central Pb+Pb collisions near midrapidity.
The bands labelled h− and d indicate fits to the negative hadron and deuteron
spectra; the third band stems from a fit to the sideward radius parameter from
2-pion correlations. (Figure taken with permission from [107].)

A simultaneous fit to all the available one- and two-particle distributions was
done on Si+Au data from the AGS by Chapman and Nix [63]. They found a
freeze-out temperature T ' 90−95 MeV and an average radial flow velocity of
〈v⊥〉 ' 0.34 c. A comprehensive analysis of single-particle spectra from Au+Au
collisions at the AGS (for which the 2-particle correlations still await publication)
confirms [64] the low freeze-out temperature T ≈ 90 MeV, with an even larger
average transverse flow 〈v⊥〉 ≈ 0.45 c. A preliminary simultaneous analysis of
spectra and correlations from Pb+Pb collisions at the SPS measured by NA44
[124] gave T ∼ 95−100 MeV and 〈v⊥〉 ≈ 0.34 c. A simultaneous fit to the NA49
Pb+Pb h− spectra and correlations [125] yielded T ≈ 100 MeV with ηf = 0.6,
corresponding to an average transverse expansion velocity 〈v⊥〉 ≈ 0.5 c. These
freeze-out temperatures are somewhat lower (and the radial expansion velocity
correspondingly higher) than the values extracted from single particle spectra
alone [120,72,126].

Knowing the average transverse flow velocity 〈v⊥〉 and the transverse size R
at freeze-out, a lower estimate for the total expansion time can be obtained.
Comparing for the Pb+Pb collisions at the SPS the 1-d rms radius at midrapidity,
R ≈ 8 fm (see Sec. 4.5.2), with the corresponding value of a cold Pb nucleus, 3.2
fm, one arrives with 〈v⊥〉<∼ 0.5 c at a lower limit of 10 fm/c for the total duration of
the transverse expansion. This is larger than the value τ0 ≈ 8 fm/c extracted [107]
from the measured midrapidity value of R‖ using (46). This illustrates the already
mentioned problems of interpreting τ0 directly as the total expansion time, and
it also indicates that the longitudinal expansion was not always boost-invariant,
but that the system underwent longitudinal acceleration before freeze-out.
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6 GLOBAL TRENDS

6.1 From p+p to Pb+Pb Collisions

Analysis of correlation functions in p+p and π/K+p collisions yields source pa-
rameters R of approximately 1 fm [127,128]. Proton collisions upon nuclei yield
larger effective sources. As shown above, Rs from p+Pb collisions at 450 GeV is
approximately 2 fm, smaller than the corresponding value (3.2 fm) for a cold Pb
nucleus. The density of produced particles in such collisions is not large and so
significant expansion should not be expected; the increase relative to pp is more
likely due to cascading of the struck target nucleons.

In heavy-ion collisions at both AGS and SPS energies significant flow is ob-
served via the M⊥ dependence of the source parameters. Consequently, Rs mea-
sured with pairs of finite M⊥ provides only a lower limit to the actual size of the
source. Even so, the measured values reflect effective sources which are already
considerably larger than the initial nuclear overlap region. For Si+Au collisions
at 14.6 GeV/nucleon, the ratio ξ of Rs to Rcold

s (as defined after Eq. (68)) shows
that the source expands by at least a factor ξ = 1.8. As their measured correla-
tion functions agreed with those from the RMQD model, the E814 collaboration
used RQMD to correct for the flow effects [97]. They inferred an expansion fac-
tor ξ = 2.7 by comparing Rt =

√〈x2 + y2〉 from RQMD with the 2-dimensional
radius of the projectile in the transverse plane (see Sec. 4.1.5).

For Au+Au collisions at the AGS, the lower limit on the expansion factor
from Rs is ξ >∼ 1.6, while for Pb+Pb at CERN it is ξ ≈ 2. Data from symmetric
collisions of Fe, Nb, and La at the Bevalac [130, 129] at 1.3-1.7 GeV/nucleon
indicate expansion factors ξ of at least 1.2–1.4.

6.2 Beam Energy Dependence

Central Au+Au collisions at 2, 4, 6, and 8 GeV/A were measured by E895 [99]
and analyzed with the parametrizations described in Sec. 2.2.2. Though the
analysis is still preliminary, some very interesting trends are evident. The K⊥-
dependence of Rs characteristic of radial flow is observed in all but the lowest
energy collisions, where pion statistics limit the measurement. Longitudinal flow
(via R‖(K⊥)) is seen at all energies. The transverse expansion factor ξ ranges
from 1.5 to 2.0. It is intriguing that the largest expansion is at the lowest energy,
where the relative importance of the radial flow appears to be smallest. It is
tempting to conclude that lower expansion velocity coupled with large final size
implies a long-lived source. However, the data indicate that the emission duration
in all cases is quite short, leaving one to wonder why surface emission of pions
appears to be missing.

Direct comparisons with Bevalac data are complicated by the inability to select
the most central collisions. However, the fits use the function C(q⊥, q‖, q0) =
1+λ exp[(−q2

⊥R2
⊥−q2

‖R
2
‖−(q0)2τ2)/2], so R⊥ may be compared with Rs. Studies

of 1.7 GeV/A Fe+Fe, 1.5 GeV/A Nb+Nb [129] and 1.3 GeV/A La+La collisions
[130] yield R⊥ values (corrected by

√
2 for comparison with the AGS fits) of 2.8,

3.4, and 3.2 fm, respectively. These give ξ = 1.2–1.4. The disagreement with the
low-energy AGS results may be due to the centrality difference of the collisions.

Collecting all of the data together, one may look for trends with
√

s in the
region between 2 and 20 GeV covered by present data. For asymmetric heavy ion
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collisions with small projectiles, Rs or R⊥ is always 3-4 fm, regardless of
√

s. For
small symmetric systems (A < 100), Rs is likewise approximately independent
of
√

s, in the range 2.5-3.5 fm. For symmetric systems with A > 100, it is
more instructive to look at the expansion factor ξ which appears to increase with√

s. This conclusion relies heavily, however, upon the La+La measurement [130]
which is low (ξ = 1.2).

7 CONCLUSIONS AND FUTURE PERSPECTIVES

7.1 Where Do We Stand?

In this review we have described the development of a sophisticated framework
with which to extract physics from two-particle correlation measurements in
heavy-ion collisions. Theoretical and experimental progress in the past decade
allows characterization of the particle source in these rather complex systems and
gives access, for the first time, to the dynamical evolution. At last the promise of
elucidating the space-time evolution of the particle source directly from measured
quantities has been realized. These new techniques are now also being applied to
e+e− collisions.

Two-particle correlations measure collective flow of the matter, via the pair
momentum dependence of the homogeneity region, thus fixing the ratio of the
freezeout temperature and average flow velocities. Combining this information
with an analysis of the single particle spectra uniquely separates temperature
and flow. The detailed characterization of the final state which is now possible
provides stringent constraints on models simulating the dynamical evolution of
the reaction zone.

7.1.1 Heavy-ion collision dynamics

Analysis of correlation functions has shown that tremendous expansion of the
system takes place before the hadrons decouple. Longitudinally the source at
freeze-out features approximately boost-invariant flow while the transverse dy-
namics is slightly weaker. Still, the transverse radius of the particle emitting
source approximately doubles from initial impact to freeze-out. These features
indicate action of a significant pressure, though the hadronic observables are not
able to indicate which degrees of freedom are responsible for its build-up.

Already at Bevalac energies, below 2 GeV/nucleon, the hadronic matter ex-
pands. However, both the radial flow velocity of the matter and the final source
size tend to increase with increasing beam energy. High energy collisions at the
SPS result in hadron sources which develop average transverse flow velocities
of 0.5 c; the hadrons freeze out at temperatures near 100 MeV. Kaons and pions
flow together, and the observations are consistent with freeze-out from a common
source. From the onset of expansion to freeze-out, the transverse radius increases
by a factor of 2.5; given the difference in expansion velocities, the longitudinal
growth should be about twice that. The total source volume in Pb+Pb collisions
thus grows by a factor of 30!

7.1.2 Initial conditions

The single and two-particle distributions are consistent with formation of a ther-
malized, flowing hadron gas. The behavior of such a gas may be used to ex-



TWO-PARTICLE CORRELATIONS IN HEAVY-ION COLLISIONS 39

trapolate back to the early times in the collision, using the measured freeze-out
conditions and flow gradients constrained by the data. The freeze-out temper-
ature, via the equation of state of an ideal resonance gas, provides an estimate
for the local energy density at decoupling (≈ 80 MeV/fm3 at T ≈ 100 MeV), the
measured transverse flow velocity provides the Lorentz contraction factor γ2 to
correct for the kinetic energy of the expanding matter in the lab frame (γ2 ≈ 1.3
for 〈v⊥〉 ≈ 0.5). This gives a freeze-out energy density of about 100 MeV/fm3.
With the total expansion factor 30 given above, the initial energy density, at the
onset of transverse expansion, should have been of the order of 3 GeV/fm3, i.e.
well above the critical energy density εs

<∼ 1 GeV/fm3 for color deconfinement as
given by lattice calculations [131]. Since the initialization of transverse expansion
requires pressure, this large energy density must have been at least partially ther-
malized. This estimate of the initial energy density (which is averaged over the
transverse area of the source) agrees in order of magnitude with simple estimates
which use the Bjorken formula [116] with the measured multiplicity density and
assume an initial thermalization time τeq = 1 fm/c. Compared to the latter it has,
however, the advantage that it replaces several features of the highly idealized
Bjorken expansion model [116] (e.g. the parameter τeq) by measured quantities,
extracted from the HBT analysis.

7.2 The Future

Experimental measurements in the coming years will develop in several directions.
Let us mention a few in which serious activities are already now visible:

7.2.1 Heavy-ion collisions at higher energies

Higher energy collisions (factor of 10 increase in
√

s) will be available at the
Relativistic Heavy Ion Collider (RHIC) in late 1999. Experiments will use the
techniques described here to map the freeze-out conditions. Quantifying the
transverse and longitudinal flow velocities will allow determination of the pres-
sure build-up in the early stages of the collisions. Armed with the extracted
velocities, one will be able to back-extrapolate from freeze-out to the time of
hadron formation. Full analysis of kaon and proton correlations both extends the
accessible K⊥ range and will verify whether these hadrons are emitted from a
common source with the pions.

7.2.2 Azimuthally sensitive HBT analysis

We have only discussed the analysis of azimuthally symmetric sources. Even if im-
pact parameter b = 0 never occurs, the “central” event ensemble from which the
correlation function is constructed is azimuthally symmetric since one averages
over the orientation of the collision plane. On the other hand, reconstructing the
latter event-by-event opens up an even richer field of activities and phenomena.
Azimuthal anisotropies of global event features (in particular directed and elliptic
flow, for reviews see [132, 133]) have been studied since the days of the Bevalac,
and azimuthally sensitive analyses of single-particle spectra from non-central col-
lisions have recently attracted a lot of attention [134]. The measured elliptic flow
of pions and protons at the SPS [135] may play an important role in extracting
the pressure in the early collision stage [136]. The next question is how these
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azimuthal deformations in momentum-space are correlated with corresponding
deformations in coordinate-space. The tools for extracting this information from
azimuthally sensitive HBT analyses were developed in [137–139].

Without azimuthal symmetry of the source, the correlator in Gaussian approx-
imation is characterized by 6 functions of 3 variables, see (26). Following the pio-
neering studies of Voloshin and Cleland [137], it was shown by Wiedemann [138]
that for sources whose transverse geometric and dynamical deformations have a
dominant quadrupole component this can be reduced to 6 functions of only 2
variables (K⊥, Y ). The dependence on the angle Φ between K⊥ and the impact
parameter b is made explicit in the Wiedemann parametrization:

C(q,K) = 1± exp[−R2
sq

2
s −R2

oq
2
o −R2

l q
2
l − 2R2

olqoql]
× exp[−α1 cos Φ(3q2

o + q2
s) + 2α1 sinΦqoqs]

× exp[−α2 cos(2Φ)(q2
o − q2

s) + 2α2 sin(2Φ)qoqs] . (70)

The parameters Rs, Ro, Rl, Rol are the same as in (27); they are given by the Φ-
averages of the corresponding functions of K=(Y,K⊥,Φ) in (25) and describe the
homogeneity regions of the azimuthally averaged deformed source. The two new
parameters α1,2(K⊥, Y ) are related to the first and second harmonic coefficients
of Rs in the azimuthal angle Φ. They were shown [138] to characterize dynamic
and geometric elliptic anisotropies in the source, respectively.

7.2.3 The average phase-space density at freeze-out

Determination of the phase-space density of particles at freeze-out will be impor-
tant to check whether the collisions at higher energies produce a source consistent
with local thermal equilibrium. It has been speculated that the higher densities
of produced particles might cause a pion condensate [7]. Here, a comparison of
pion and kaon phase-space densities may be particularly illuminating.

The average phase-space density of pions at freeze-out has already been studied
at AGS and SPS energies and found to be consistent with particle emission from
a source in local thermal equilibrium. Using Eq. (59), E877 analyzed positive
and negative pions from 10.8 A GeV Au+Au collisions near beam rapidity. They
found [23] that transverse flow is not needed, and the data are well-described
by a thermal source. Study of a compilation [24] of data from S+nucleus and
Pb+Pb collisions at the SPS showed a nearly universal behavior of the phase-
space density of pions at freeze-out. The data are again consistent with freeze-out
from a locally equilibrated source. However, the p⊥-dependence of the spatially
averaged phase-space density at mid-rapidity is less steep than that of a Bose-
Einstein distribution. Such a deviation is expected due to transverse flow.

7.2.4 Three-pion correlations

Higher order Bose-Einstein correlations will be studied to seek evidence of cohe-
rence in the source. An analysis as described in Sec. 2.6 was done by NA44 [140],
albeit due to limited statistics only in one dimension. A three-pion correlation
function C3(q3) = 1 + λ3 exp(−R2

3Q
2
3), with Q2

3=(p1−p2)2+(p2−p3)2+(p3−p1)2,
was constructed from central S+Pb collisions at 200 A GeV; it is shown on the
left side of Figure 11. The upper dashed line shows the three-pion correlation
function expected if the source is totally chaotic and symmetric, while the lower
shows the case of vanishing r3 (see Sec. 2.6). The right side of the Figure shows



TWO-PARTICLE CORRELATIONS IN HEAVY-ION COLLISIONS 41

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300
Q3(MeV/c)

C
3

S+Pb Three-Particle Correlation Function

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60
Q3(MeV/c)

ω

Weight factor

1

1

Figure 11: Left panel: Three-pion correlation function from S+Pb collisions mea-
sured by NA44, as a function of Q3 (see text). Right panel: Half the normalized
true 3-pion correlator r3 (here called ω) as a function of Q3. (Figure taken with
permission from [140].)

that the normalized three-pion correlation function r3 (which is experimentally
determined as a weight factor called ω [140]) deviates from 1 in the experiment
in the accessible Q3-range; if this behaviour persisted down to Q3=0, this would
imply partial coherence of the source. It is hoped that the much higher statistics
expected at RHIC will settle this important question.
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