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1 Introduction

In a physical system where the density of states grows exponentially with the energy,

ρ(E) ∼ E−kebE , (1.1)

there is a critical temperature, β−1 ≡ T = TH = b−1, at which various thermodynamical

quantities diverge [1]. In particular, the partition function Z and the mean energy U

develop power pole singularities:

Z(β) =
∫

dE ρ(E)e−βE ∼ 1

(β − b)(k−1)
,

U(β) = − ∂

∂β
lnZ ∼ (k − 1)

1

β − b
+ regular .

(1.2)

An alternative interpretation of the mean energy pole singularity follows from the

identification of the temperature with the inverse radius of a compactified Euclidean

time on S1. In this representation, the partition function is given by the (super)trace

over the thermal spectrum of the theory in one dimension less:

lnZ = Str lnM(β) . (1.3)

The pole singularity is then a manifestation of a thermal state that becomes massless

at the critical temperature. Thus, the knowledge of the thermal spectrum of the theory

M(β), as a function of the S1 radius R = β/2π, determines the critical temperature

[2]–[5].

Perturbative string theory provides an example of an exponentially growing density

of states, with k in Eq.(1.1) equal to the dimension of space-time, and the exponent b−1,

and thus the Hagedorn temperature, given as a theory-dependent constant in terms of

the string scale (α′)−1/2 [6, 7, 8, 4, 5]. In the picture where temperature is regarded as a

compactification on a circle of radiusR, one can exactly construct the partition function

Z(R) and identify the state that becomes tachyonic at the critical temperature [3, 5].

This state has necessarily a non-zero winding number n, as perturbative quantum field

theory is not able to generate a similar critical behaviour. A detailed discussion of this

phenomenon in perturbative string theory will be the subject of the next section.

It is interesting that one can go a long way into the discussion of thermal instabilities

due to non-perturbative string states, and then also, of non-perturbative field theory
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states. The first observation is that, in N4 = 4 supersymmetric strings1 (or N6 = 2),

the perturbative string states becoming tachyonic above the Hagedorn temperature are

(thermally-shifted) BPS states that preserve half of the supersymmetries (N4 = 2 or

N6 = 1). In these theories, the masses of non-perturbative BPS states are also known

from N4 = 4 supersymmetry [9, 10, 11] and one can identify among them the states

that are able to induce a thermal instability and the critical temperature at which they

become tachyonic. We will develop this argument in Section 3, using heterotic–type II

duality [12]–[15].

Notice that considering only those N4 = 4 BPS states preserving N4 = 2 supersym-

metries (1/2-BPS) is certainly sufficient to study thermal instabilities in, for instance,

non-perturbative heterotic strings in space-time dimensions D ≥ 6. BPS states pre-

serving less supersymmetries only arise in lower dimensions (1/4-BPS, with N4 = 1,

for D ≤ 5 or 1/8-BPS, with N2 = 1, for D ≤ 3). In dimension six or higher, it is

expected that thermal instabilities due to N4 = 2 BPS states are similar to those of

perturbative winding states, with an entropy growing linearly with the mass. This

statement, as we will see in the following sections, can be checked in six dimensions,

since heterotic–type II duality allows a non-perturbative behaviour on one side to be

turned to a perturbative one on the dual side. In dimensions lower than six, the 1/4-

or 1/8-BPS states singularities have to correspond to an entropy growing with the

mass faster than linearly. This statement is supported by the behaviour of black hole

entropy in four and five dimensions, which follows the area law [16]. In this case, the

temperature is fixed and the canonical ensemble does not exist [8]. However, we stress

that the analysis given in this paper is fully general in dimensions greater than (or

equal to) six, while it only applies to 1/2-BPS states in lower dimensions.

With this limitation in mind, the main result of this paper is a computation of

the exact effective potential for all the potentially tachyonic states, as a function of

the (universal2) temperature. It reproduces all known Hagedorn temperatures for het-

erotic and type II strings in the appropriate limits. The exact potential has a global

minimum in a domain of the six-dimensional string coupling that includes the pertur-

bative heterotic regime. In this phase, supersymmetry is perturbatively restored, the

temperature is fixed, T−1 = π
√

2α′
H and space-time geometry is that of the heterotic

1ND is the number of D-dimensional supersymmetries.
2Invariant under string dualities.
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or type IIA five-brane. More precisely, the system loses four units of central charge.

It describes a non-critical string in six dimensions with massless thermal excitations

extending the concept of particles with infinite correlation length in finite-temperature

field theory with a second-order phase transition. On the type II side, this phase is

characterized by a condensation of five-branes.

The present paper is organized as follows. In Section 2, we recall the aspects of

perturbative strings at finite temperature, which will be used in the non-perturbative

discussion. In Section 3, we discuss the temperature modification to the perturbative

and non-perturbative BPS spectra in D− 1 = 5 and D− 1 = 4 dimensions3. Section 4

presents the derivation of the effective Lagrangian for the potentially tachyonic states,

as a four-dimensional supergravity theory, and the discussion of the minima of the scalar

potential. Section 5 provides a detailed discussion of the high-temperature phase found

in perturbative heterotic strings, using the effective supergravity theory. We show that

a linear dilaton is a background of the effective supergravity, we study the structure

of the mass spectrum, the fate of supersymmetry, and consider various limits in this

background. This phase is further discussed in Section 6, in the framework of non-

critical strings with Nsc = 2 or Nsc = 4 superconformal symmetry. We demonstrate

the existence of massless excitations in twenty-eight N4 = 2 hypermultiplets. We

conclude in Section 7.

2 Perturbative analysis

To construct the thermal partition function of a system of fields, spin-statistics requires

the boundary condition around the S1 circle to be modified according to

Ψ(t+ 2LπR) = (−1)LaΨ(t) .

Under a 2π rotation (L = 1) of Euclidean time, bosons (a = 0) are periodic while

fermions (a = 1) are antiperiodic. The generalization to (perturbative) string theory

is dictated by modular invariance. It replaces the above sign with [3]–[5]

(−1)La+nb+δLn

for a state with winding numbers L and n along the two non-contractible loops on

the world-sheet torus. Here, a and b denote the fermionic spin structures along these
3As already mentioned, a D-dimensional theory at finite temperature can as well be studied as a

(D − 1)-dimensional theory, hence this notation.
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two cycles. Modular invariance indicates that the parameter δ is equal to one for the

heterotic string and zero for the type IIA and IIB strings4. It can be seen that the

consequence of this phase is to shift the lattice momenta of the S1 string coordinate

according to the rule5 [4, 5]

PL,R =
1

R

[

m+
a

2
− nδ

2
± nR2

α′

]

, (2.1)

and to reverse the GSO projection in the odd winding number sector.

It turns out that string theories withD-dimensional space-time supersymmetry look

at finite temperature as if supersymmetry were spontaneously broken in D− 1 dimen-

sions. Indeed, with a redefinition of m, a can be identified with the (D dimensional)

helicity operator: Q = integer+a/2. Then, the states of the thermal theory, viewed as

(D−1)-dimensional, are mapped to those of a supersymmetric theory compactified on

S1, without the temperature spin-statistics factor (−1)LQ+nb+δLn that induces helicity

shifts in the momenta (2.1). Explicitly, a state of the latter with momentum, winding

and helicity charges (m, n, Q) is mapped in the thermal case to

n→ n′ = n, m→ m′ = m+ ~e · ~Q− ~e · ~e n
2
, ~Q→ ~Q′ = ~Q− ~e n , (2.2)

where the helicity vector ~Q is constructed in terms of the left- and right-moving string

helicities ~Q = (QL, QR). The vector ~e = (1, 0) in the heterotic string and ~e = (1, 1) in

type II theories, and the inner product is Lorentzian: ~A· ~B = ALBL−ARBR. Note that

Q′ ≡ Q′
L +Q′

R is the helicity operator in D− 1 dimensions. The above shift of charges

follows from a Lorentzian boost, which keeps invariant the combination α′

2
~P · ~P + ~Q · ~Q

and thus preserves modular invariance.

The perturbative superstring mass formula can be read from the left-movers, which

carry world-sheet supersymmetry:

1

2
α′M2 =

4
∑

i=1

Q2
i − 1 +

1

2
α′P 2

L +
1

2
α′M2

others, (2.3)

where we have dropped the subscript L for notational simplicity, M2
others denotes the

contributions from oscillator modes as well as from the momenta of the remaining part

of the lattice, and PL is as in Eq.(2.1). The four (left-) charges Qi are the eigenvalues

4The thermal singularities of Type I strings are the same as for Type IIB, so that we will not refer
to open strings in the sequel.

5Whenever α′ is not explicitly mentioned in a formula, our convention is α′ = 2.

4



under the four U(1) helicities acting on the world-sheet fermions. One of them can

be identified with the contribution of left-movers to the (four-dimensional) space-time

helicity, QL, introduced in the discussion following Eq.(2.2). These charges Qi are

integers for space-time bosons (NS states), and half-integers for space-time fermions

(R states). The supersymmetric GSO projection implies that
∑4

i=1Qi is an odd integer

for NS states, while it is an even or odd integer for R states, depending on a free choice

of chirality. But in any case,
∑4

i=1Q
2
i is an odd integer. The lowest BPS states of the

supersymmetric theory have Mothers = 0 and
∑4

i=1Q
2
i = 1.

At finite temperature, the GSO projection is modified asQi gets shifted according to

Eq.(2.2), which also affects the momentum PL. Notice that for an even winding number

n, the thermal modification of PL defined in Eq.(2.2) can be regarded as a shift of m

and Q compatible with the (supersymmetric) GSO projection. As a consequence, the

spectrum in even n sectors is not different in the thermal and supersymmetric cases,

the mass formula for the (lightest) BPS fermions, gauge bosons and scalars with even

windings n remains M2 = P 2
L, with m modified as in Eq.(2.2), and tachyonic states are

not present. The situation is not the same for states with odd winding number n. In

this case the BPS mass formula becomes 1
2
α′M2 = 1

2
α′P 2

L +n(n−2QL). From the GSO

condition
∑4

i=1Q
2
i = 1, it follows that the only states that can become tachyonic are

those with n = ±1 and QL = ±1(= −QR for type II) [5]. They correspond to (D− 1)-

dimensional scalars coming from the longitudinal components of the D-dimensional

metric.

The Hagedorn temperature is identified with the critical value of the radius at

which the first tachyonic state appears, as 2πR = T−1 decreases. From the above mass

formula, its charges are:

heterotic : (m,n,Q) = ±(−1, 1, 1),

type II : (m,n,QL, QR) = ±(0, 1, 1,−1).
(2.4)

The Hagedorn temperatures are TH = 1√
2α′π

(
√

2 − 1) for the heterotic string6 and

TH = 1
2
√

2α′π
for type II theories.

The appearance of tachyons cannot take place in a perturbative supersymmetric

field theory, which behaves like the zero-winding sector of strings; all masses (squared)

are increased by finite temperature corrections, M2 = P 2, and a thermal instability is

6There is a second (higher) critical temperature due to temperature duality, R → α′/R, T →
(4π2α′T )−1.
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never generated by a state becoming tachyonic at high temperature. However, as we

will see below, in non-perturbative supersymmetric field theories such an instability

can arise from thermal dyonic modes, which behave as the odd winding string states.

Indeed, in theories with N4 = 4 supersymmetries the BPS mass formula is determined

by the central extension of the corresponding superalgebra [9]–[11] and dyonic field

theory states are mapped to string winding modes [14, 11]. Using heterotic–type II

duality, one can argue that the thermal shift of the BPS masses modifies only the

perturbative momentum charge m. In both heterotic and type II perturbative strings,

the thermal winding number n is not affected by the temperature shifts [see Eq.(2.2)].

Since, in dimensions lower than six, heterotic–type II duality exchanges the winding

numbers n of the two theories, and since the winding number of the one theory is

the magnetic charge of the other, it is inferred that field theory magnetic numbers are

not shifted at finite temperature. This in turn indicates how to modify the BPS mass

formula at finite temperature. In Section 4, we will give an independent argument

based only on spontaneously broken N4 = 4 supersymmetry and the nature of BPS

states.

3 String duality and BPS spectrum

Our goal is to study six- and five-dimensional string theories with N4 = 4 supersym-

metry, at finite temperature. The heterotic string is then compactified on T 4 and type

II theories on K3. In six dimensions, there is an S-duality that relates heterotic and

type IIA strings. Upon compactification to five dimensions on a circle, type IIA and

IIB theories are related by a T-duality.

In view of the observation that the thermal spectrum is obtained by the modifica-

tion (2.2) applied to the spectrum of the supersymmetric theory with the temperature

replaced by an ordinary circle, we start by describing the supersymmetric BPS spec-

trum in five and four dimensions. The states that can induce a thermal instability are

charged under the Kaluza-Klein U(1). Their mass depends on the temperature radius

R = (2πT )−1. The mass formula from the heterotic point of view and in α′
H units is

M2 =

(

m

R
+
nR

α′
H

+
ℓR

λ2
Hα

′
H

)2

, (3.1)

where m and n are the circle momentum and winding numbers, ℓ is the non-perturba-
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tive wrapping number for the heterotic five-brane around T 4 ×S1, with tension λ−2
H in

α′
H units, and λH is the string coupling in six dimensions7. The combination

g2
5 =

α′
H

R
λ2

H (3.2)

is the five-dimensional string coupling.

Performing an S-duality in Eq.(3.1),

λH =
1

λIIA
, λ2

Hα
′
H = α′

II , (3.3)

we find the mass formula for type IIA strings:

M2 =

(

m

R
+

nR

α′
IIλ

2
IIA

+
ℓR

α′
II

)2

. (3.4)

The momentum and winding numbers are nowm and ℓ, while n is the wrapping number

for the Neveu-Schwarz type IIA five-brane around K3 × S1.

From the six-dimensional viewpoint, the first term, m/R, is the Kaluza–Klein mo-

mentum, while the last two terms correspond to BPS (dyonic) strings with tension

Tp,q =
p

α′
H

+
q

α′
II

, (3.5)

where p, q are relatively primes, so that (n, ℓ) = k (p, q). The common divisor k defines

the wrapping of the Tp,q string around S1. On the type IIA side, q is the charge of the

fundamental string and p the magnetic charge of the solitonic string obtained by wrap-

ping the NS five-brane around K3. These Tp,q strings cannot become tensionless since

they are never associated to vanishing cycles of the internal manifold. Consequently,

their tension is always positive and p, q must be non-negative integers. On the other

hand, for ℓ = 0, the heterotic GSO projection implies mn ≥ 0, while for n = 0 the type

IIA projection implies ml ≥ 0. More generally, the Tp,q string implies that mk ≥ 0

[10].

Following the procedure described above, the temperature deformation transforms

Eq.(3.1) into:

M2
T =

(

m+Q′ + kp
2

R
+ k Tp,q R

)2

− 2 Tp,q δk,±1 δQ′,0 , (3.6)

7 The six-dimensional gravitational action in the string frame is − 1

2
(α′

H)−2
∫

d6xλ−2

H eR, so that
λH is dimensionless. Traditionally, λH is related to the dilaton by λ2

H = e2φ.
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where Q′ is the helicity operator in D − 1 = 5 dimensions [see Eq.(2.2)]. In fact, this

formula reproduces the perturbative result for both heterotic and type IIA theories, as

specified by Eq.(2.2). In the heterotic perturbative limit λH → 0, only the ℓ = 0 = q

states survive, while in the type IIA perturbative limit λII → 0, only the n = 0 = p

states survive. Note that in the general case of a Tp,q string with the temperature

deformation, the condition mk ≥ 0 becomes mk ≥ −1 because of the inversion of the

GSO projection.

It follows from Eq.(3.6) that if the heterotic coupling λH is smaller than the critical

value

λc
H =

√
2 + 1

2
(3.7)

the first tachyon has (m,n, ℓ, Q′) = ±(−1, 1, 0, 0) and it appears at R =
√

α′
H/2(

√
2 +

1), which corresponds to the heterotic Hagedorn temperature. On the other hand, if

the heterotic theory is strongly-coupled, λH > λc
H , the first tachyon has (m,n, ℓ, Q′) =

±(0, 0, 1, 0), and the critical radius is R =
√

2α′
H λH = 2

√

α′
II/2, which corresponds to

the type IIA Hagedorn temperature. Besides the above two would-be tachyons, mass

formula (3.6) leads in general to two series of potentially tachyonic states with m = −1:

p = 1, ∀q : R =

(√
2 ± 1√

2

)

1
√

T1,q

,

p = 2, ∀q odd : R =

√

2

T2,q

(3.8)

(which includes the first heterotic tachyon with p = 1, q = 0). The critical temperature

(2πR)−1 for each of the states in both series is always higher than the lowest Hagedorn

heterotic temperature while, as discussed above, the type IIA Hagedorn temperature

first appears when the heterotic coupling exceeds the critical value (3.7).

In order to include type IIB strings, we need to discuss five-dimensional theories at

finite temperature, taking into account the compactification radius R6 from six to five

dimensions. Type IIA and IIB strings are then related by the inversion of R6. The

extension to four dimensions of the mass formula (3.6) is straightforward. It depends

on three parameters, the string coupling gH , the temperature radii R and R6. It is

convenient to introduce the three combinations

t =
RR6

α′
H

, u =
R

R6
, s = g−2

H =
t

λ2
H

, (3.9)

8



in terms of which the BPS mass formula in the N4 = 4 supersymmetric case reads [11]:

M2 =
|m+ ntu+ i(m′u+ n′t) + is [m̃+ ñtu− i(m̃′u+ ñ′t)]|2

α′
Htu

=

[

m

R
+
nR

α′
H

+ g−2
H

(

m̃′

R6
+
ñ′R6

α′
H

)]2

+

[

m′

R6
+
n′R6

α′
H

+ g−2
H

(

m̃

R
+
ñR

α′
H

)]2

.

(3.10)

In this expression, the integers m,n,m′, n′ are the four electric momentum and wind-

ing numbers, corresponding to the four U(1) charges from T 2 compactification. The

numbers m̃, ñ, m̃′, ñ′ are their magnetic non-perturbative partners, from the heterotic

point of view.

The mass formula (3.10) has been defined for heterotic variables. To exhibit the

relation with the type IIB theory, we rewrite the above mass formula in terms of type

IIA variables (3.3) and perform a T-duality

R6 =
α′

II

RB
6

, λIIA = λIIB

√

α′
II

RB
6

. (3.11)

However, since8

R2 = α′
Htu = 2κ2stu

and R is by construction identical in all three string theories, the mass formula (3.10)

is invariant under the exchanges s↔ t, s↔ u and t↔ u. These operations correspond

respectively to heterotic–IIA, IIA–IIB and heterotic–IIB dualities. The mass formula

will then apply to all three theories, provided s, t and u are defined as in Eqs.(3.9),

but in terms of the appropriate variables α′, R6 and λ in each theory.

The five-dimensional IIA formula (3.1) is reobtained by choosing first m′ = n′ = 0,

which removes the second torus, and then taking the limit R6 → ∞ with λH kept fixed.

This limit implies m̃ = ñ = ñ′ = 0, and m̃′ is identified with ℓ in Eq.(3.1).

The five-dimensional IIB theory is obtained by taking m̃ = ñ = 0 and the limit

RB
6 → ∞, which implies n = m′ = n′ = 0. We reobtain Eq.(3.4) with IIB variables,

ℓ = ñ′, n = m̃′ and m unchanged. Similarly, the finite temperature mass formula is

identical to Eq.(3.6) with the same identification.

Finally the four-dimensional thermal mass formula is obtained from Eq.(3.10) by

8κ is the four-dimensional gravitational coupling, κ =
√

8πM−1

P = (2.4 × 1018 GeV)−1.

9



replacing m by m+Q′ + n/2:

M2
T =

(

m+Q′ + kp
2

R
+ k Tp,q,r R

)2

− 2 Tp,q,r δ|k|,1 δQ′,0 , (3.12)

where we have set m′ = n′ = m̃ = ñ = 0 corresponding to the lightest states, and we

defined k as before, as the common divisor of (n, m̃′, ñ′) ≡ k(p, q, r). Then Tp,q,r is an

effective string tension

Tp,q,r =
p

α′
H

+
q

λ2
Hα

′
H

+
rR2

6

λ2
H(α′

H)2
.

Note that m̃′ = kq corresponds to the wrapping number of the heterotic five-brane

around T 4 ×S1
R as in five dimensions, while ñ′ = kr corresponds to the same wrapping

number after performing a T-duality along the S1
R6

direction, which is orthogonal to

the five-brane. As we discussed in the previous section, all winding numbers n, m̃′, ñ′

correspond to magnetic charges from the field theory point of view. Their masses are

proportional to the temperature radius R and are not thermally shifted.

A nicer expression of the effective string tension Tp,q,r is:

Tp,q,r =
p

α′
H

+
q

α′
IIA

+
r

α′
IIB

, (3.13)

where the various α′ are

α′
H = 2κ2s, α′

IIA = 2κ2t, α′
IIB = 2κ2u, (3.14)

when expressed in Planck units. Note that α′
IIB defines a new type II theory obtained

by heterotic T-duality with respect to R6, in contrast to the type IIA–IIB T-duality

(3.11). In the following we will refer to this new theory as perturbative IIB.

We stress here that p, q, r are all non-negative relatively prime integers. This follows

from the constraints nm̃′ ≥ 0, nñ′ ≥ 0 and m̃′ñ′ ≥ 0, which are a consequence of the

BPS conditions and the s ↔ t ↔ u duality symmetry in the undeformed supersym-

metric theory. Futhermore, mk ≥ −1 because of the inversion of the GSO projection

in the temperature-deformed theory. Using these constraints, it is straightforward to

show that in general there are two potential tachyonic series with m = −1 and p = 1, 2,

generalizing the five-dimensional result (3.8):

p = 1, ∀(q, r) relat. primes : R =

(√
2 ± 1√

2

)

1
√

T1,q,r

,

p = 2, ∀(p, q, r) relat. primes : R =

√

2

T2,q,r

(3.15)
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One of the perturbative heterotic type IIA, or type IIB potential tachyons corre-

spond to a critical temperature that is always lower than the above two series. The

perturbative Hagedorn temperatures are:

heterotic tachyon : (m,n,Q′) = ±(−1, 1, 0), 2πT =
(√

2 − 1
)
√

2
α′

H

;

type IIA tachyon : (m, m̃′, Q′) = ±(0, 1, 0), 2πT = 1√
2α′

IIA

;

type IIB tachyon : (m, ñ′, Q′) = ±(0, 1, 0), 2πT = 1√
2α′

IIB

.

This discussion shows that the temperature modification of the mass formula in-

ferred from perturbative strings and applied to the non-perturbative BPS mass formula

produces the appropriate instabilities in terms of Hagedorn temperature. We will now

proceed to show that it is possible to go beyond the simple enumeration of Hage-

dorn temperatures. We will construct an effective supergravity Lagrangian that allows

a study of the nature of the non-perturbative instabilities and the dynamics of the

various thermal phases.

4 Four-dimensional effective supergravity

In the previous section, we have studied, at the level of the mass formula for N4 = 4

BPS states, the appearance of tachyonic states generating thermal instabilities. To

obtain information on dynamical aspects of these instabilities, we now construct the

full temperature-dependent effective potential associated with the would-be tachyonic

states.

Our procedure to construct the effective theory is as follows. We consider five-

dimensional N4 = 4 theories at finite temperature. They can then effectively be de-

scribed by four-dimensional theories, in which supersymmetry is spontaneously broken

by thermal effects. Since we want to limit ourselves to the description of instabilities,

it is sufficient to only retain, in the full N4 = 4 spectrum, the potentially massless and

tachyonic states. This restriction will lead us to consider only spin 0 and 1/2 states, the

graviton and the gravitino9. This sub-spectrum is described by an N4 = 1 supergravity

with chiral multiplets10.
9The four gravitinos remain degenerate at finite temperature; it is then sufficient to retain only

one of them.
10When considering six-dimensional theories at finite temperature, one is similarly led to consider

an N4 = 2 theory with vector and hypermultiplets. We will briefly return to this point later in Section
4.3.

11



The scalar manifold of a generic, unbroken, N4 = 4 theory is [17]–[20]

(

Sl(2, R)

U(1)

)

S

× G/H, G/H =

(

SO(6, r + n)

SO(6) × SO(r + n)

)

TI ,φA

. (4.1)

The manifold G/H of the N4 = 4 vector multiplets naturally splits into a part that

includes the 6r moduli TI , and a second part which includes the infinite number n→ ∞
of BPS states φA.

In the manifold G/H , we are only interested in keeping the six BPS states Z±
A ,

A = 1, 2, 3, which, according to our discussion in the previous section, generate thermal

instabilities in heterotic, IIA and IIB strings. For consistency, these states must be

supplemented by two moduli T and U among the TI ’s. We consider heterotic and type

II strings respectively on T 4 × S1
6 × S1

5 and K3 × S1
6 × S1

5 , where S1
6 is a trivial circle

and S1
5 is the temperature circle. The moduli T and U describe the T 2 ≡ S1

5 × S2
6

torus. Thus, r + n = 8 in the N4 = 4 manifold (4.1). To construct the appropriate

truncation of the scalar manifold G/H , which only retains the desired states of N4 = 1

chiral multiplets, we use a Z2 × Z2 subgroup contained in the SO(6) R-symmetry of

the coset G/H . This symmetry can be used as the point group of an N4 = 1 orbifold

compactification, but we will only use it for projecting out non-invariant states of the

N4 = 4 theory11 with r + n = 8.

A single Z2 would split H = SO(6)×SO(8) in [SO(2)×SO(2)]× [SO(4)×SO(6)],

and the scalar manifold would become
(

Sl(2, R)

U(1)

)

S

×
(

SO(2, 2)

SO(2) × SO(2)

)

TU

×
(

SO(4, 6)

SO(4) × SO(6)

)

φA

=

(

Sl(2, R)

U(1)

)

S

×
(

Sl(2, R)

U(1)

)

T

×
(

Sl(2, R)

U(1)

)

U

×
(

SO(4, 6)

SO(4) × SO(6)

)

φA

,

(4.2)

At this stage, the theory would have N4 = 2 supersymmetry and the first three factors

in the scalar manifold are vector multiplet couplings with prepotential F = iSTU/X0.

The last one is a quaternionic coupling of hypermultiplets. The second Z2 projection

acts on this factor and reduces it to
(

SO(2, 3)

SO(2) × SO(3)

)

Z+

A

×
(

SO(2, 3)

SO(2)× SO(3)

)

Z−

A

, A = 1, 2, 3. (4.3)

11Only untwisted states would contribute to thermal instabilities.
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This is a Kähler manifold for chiral multiplets coupled to N4 = 1 supergravity [21].

The second Z2 projection also truncates N4 = 2 vector multiplets into N4 = 1 chiral

multiplets.

The structure of the truncated scalar manifold indicates that the Kähler potential

can be written as

K = − log(S + S∗) − log(T + T ∗) − log(U + U∗)

− log Y (Z+
A , Z

+∗
A ) − log Y (Z−

A , Z
−∗
A ),

(4.4)

with

Y (Z±
A , Z

±∗
A ) = 1 − 2Z±

AZ
±∗
A + (Z±

AZ
±
A )(Z±∗

B Z±∗
B ). (4.5)

This choice is a solution to the N4 = 4 constraints. For the S-manifold SU(1, 1)/U(1)

∼ Sl(2, R)/U(1), the constraint is

|ϕ0| − |ϕ1|2 = 1/2. (4.6)

The solution we use reads

ϕ0 − ϕ1 =
1

(S + S)1/2
, ϕ0 + ϕ1 =

S

(S + S)1/2
. (4.7)

For an SO(2, nI)/SO(2)× SO(nI) manifold, the constraints are

|σ1
I |2 + |σ2

I |2 − |~φI |2 = 1/2,

(σ1
I )

2 + (σ2
I )

2 − (~φI)
2 = 0,

(4.8)

where ~φI has nI components and we introduced the index I, with values 0,+,−, because

we have three such manifolds, I = 0, nI = 2 for the moduli T and U , I = ±, nI = 3 for

the winding states Z+
A and Z−

A (A = 1, 2, 3 = n±). The standard parametrization for

the TU manifold, analogous to the choice of S, corresponds to the solution

σ1
0 =

1 + TU

2Y
1/2
TU

, σ2
0 = i

T + U

2Y
1/2
TU

, φ1
0 =

1 − TU

2Y
1/2
TU

, φ2
0 = i

T − U

2Y
1/2
TU

, (4.9)

with

YTU = (T + T )(U + U).

For the I = ± manifolds SO(2, 3)/SO(2)× SO(3), a convenient parametrization is

σ1
± =

1 + (Z±
A )2

2Y
1/2
±

, σ2
± = i

1 − (Z±
A )2

2Y
1/2
±

, φA
± =

Z±
A

Y±
, A = 1, 2, 3, (4.10)
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where Y± has been defined in Eq.(4.5). The Kähler function, which defines the N4 = 1

supergravity theory, can be determined by directly comparing the gravitino mass terms

in the N4 = 1 Lagrangian with the similar term obtained after Z2 × Z2 truncation of

the N4 = 4 theory:

eK/2W = (ϕ0 − ϕ1)fijkΦ
i
0Φ

j
+Φk

− + (ϕ0 + ϕ1)f̃ijkΦ
i
0Φ

j
+Φk

−, (4.11)

where

Φi
0,± = ( σ1

0,± , σ
2
0,± ,

~φ0,± ).

The structure constants fijk and f̃ ijk characterize the self-couplings of theN4 = 4 vector

multiplets. In this sense, they define the gauging of the N4 = 4 theory [19, 22, 23, 24].

They induce a scalar potential that can, when appropriately chosen, spontaneously

break supersymmetry [5].

The solutions (4.7), (4.9) and (4.10) to the N4 = 4 constraints indicate that the

non-analytic contribution to the gravitino mass (4.11) is [(S + S)YTUY+Y−]−1/2. This

is identified with eK/2 and leads to the expression (4.4) of the N4 = 1 Kähler potential.

The analytic superpotential then is

W = [(S + S)YTUY+Y−]1/2
[

(ϕ0 − ϕ1)fijkΦ
i
0Φ

j
+Φk

− + (ϕ0 + ϕ1)f̃ijkΦ
i
0Φ

j
+Φk

−
]

,

using the solutions to the N4 = 4 constraints, once the gauging has been specified.

The superpotential for generic N4 = 4 strings, after the Z2 × Z2 truncation to

N4 = 1, is:

Wsusy = [m1(σ
1
0 + φ1

0) + n1(σ
1
0 − φ1

0)] (ϕ0 − ϕ1)φ
(m1,n1)
+ φ

(m1,n1)
−

+ [m2(σ
2
0 + φ2

0) + n2(σ
2
0 − φ2

0)] (ϕ0 − ϕ1)φ
(m2,n2)
+ φ

(m2,n2)
−

+ [m̃1(σ
1
0 + φ1

0) + ñ1(σ
1
0 − φ1

0)] (ϕ0 + ϕ1)φ̃
(m̃1,ñ1)
+ φ̃

(m̃1,ñ1)
−

+ [m̃2(σ
2
0 + φ2

0) + ñ2(σ
1
0 − φ1

0)] (ϕ0 + ϕ1)φ̃
(m̃2,ñ2)
+ φ̃

(m̃2,ñ2)
− .

(4.12)

The contributions proportional to ϕ0−ϕ1 = (S+S)−1/2 give rise to the perturbative T 2

heterotic string spectrum, provided the numerical coefficients m1, m2, n1, n2 are equal

to the momentum and winding charges [22, 5]. These contributions define the structure

constants fijk in Eq.(4.11). The contributions proportional to ϕ0 + ϕ1 = S(S + S)−1/2

provide the mass spectrum of the non-perturbative magnetic T 2 torus, and correspond

to the structure constants f̃ijk. This superpotential summarizes the complete BPS mass
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spectrum valid for all (truncated) N4 = 4 strings (heterotic, type IIA and type IIB). It

is worth recalling that the expression of the superpotential, together with the Kähler

potential K, defines not only mass terms, but the full scalar sector and its coupling

to N4 = 1 supergravity. This allows to examine in principle the vacuum structure far

from large (or small) values of S + S.

The superpotential (4.12) does not, however, break supersymmetry and is not ap-

propriate to a finite-temperature theory. In general, breaking N4 = 4 supergravity

requires a gauging with non-zero structure constants cubic in the compensating fields

σ1,2
0+−. The appropriate finite-temperature gauging can be found either in field theory

from the N4 = 4 thermal spectrum or by examining the heterotic string spectrum at

finite temperature, which corresponds to the Scherk–Schwarz gauging [23, 24, 5]. The

result is to add

δW = e(ϕ0 − ϕ1)(σ
1
0 + φ1

0)σ
1
+σ

1
− (4.13)

to Wsusy. The numerical coefficient e is fixed by the thermal mass of the gravitino. In

addition, the coefficient m1 is shifted at finite temperature, according to the rule (2.2)

discussed in Section 2. Inserting the representation of the scalar field, and truncating

the spectrum to retain only the odd winding states, we find the superpotential

W = 2
√

2
[

1
2
(1 − Z+

AZ
+
A )(1 − Z−

BZ
−
B )

+ (TU − 1)Z+
1 Z

−
1 + SUZ+

2 Z
−
2 + STZ+

3 Z
−
3

]

.

(4.14)

As a check, the same result can be derived at the N4 = 2 level, considering a

single Z2 truncation of the N4 = 4 theory. The vector multiplets ate S, T and U with

manifold [Sl(2, R)/U(1)]3 with prepotential [25, 26]

F(S, T, U) = i
STU

X0
, (4.15)

whereX0 is the compensating scalar in the (superconformal) vector multiplet describing

the N4 = 2 graviphoton. The superpotential in N4 = 1 language has the general form

[27]

W = γ(mIX
I − nIFI)Φ

i
+Φi

−, FI =
∂

∂XI
F ,

with a numerical constant γ. The index I runs over X0, S, T and U . After perform-

ing the algebra, we take the Poincaré gauge X0 = 1. The part of the superpotential

that leaves supersymmetry unbroken corresponds to the φA
+− terms in Φi

+Φi
−. They
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provide the entire BPS mass terms, electric and magnetic. The compensator contri-

butions σi
+σ

i
− (i = 1, 2) provide the desired breaking terms and correspond to δW ,

Eq.(4.13). The N4 = 2 formulation can be useful to examine the finite temperature

non-perturbative behaviour of theories based upon more general prepotentials than

(4.15), such as K3 compactifications of heterotic strings or Calabi–Yau threefolds of

type II strings.

4.1 The scalar potential

We now analyse the thermal effective potential and its instabilities. It follows from

the general expression of N4 = 1 supergravity coupled to chiral multiplets, for a given

Kähler potential K and superpotential W .

Positivity of the kinetic energies and the form of the Kähler potential (4.4) impose

that s, t, u > 0, as well as non-trivial conditions on Z±
A . In particular,

∑

A

(Re Z±
A )2 < 1.

The scalar potential12

V = κ−4eK
[

(K−1)i
j(Wi +WKi)(W

j
+WKj) − 3|W |2

]

,

is of course complicated. It can, however, be written in a closed form, which is given in

the Appendix. From the analysis of the mass matrices around the vacuum Z±
A = 0, it

is apparent that the discussion of thermal instabilities and of possible phase transitions

only relies upon the scalar field directions

s = ReS, t = ReT, u = ReU, (4.16)

and, in the winding modes sector,

ReZ+
A = ReZ−

A ≡ zA.

Important simplifications in the potential occur then. For instance, the winding mode

Kähler metric becomes diagonal:

(K±)A
B =

∂2K

∂Z±
A∂Z

±
B

=
2

(1 − x2)2
δB
A , x2 =

∑

A

z2
A,

12Using the standard notation Ki = ∂K
∂zi , . . . Scalar fields are dimensionless.
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and the kinetic terms of the scalars zA are

4

(1 − x2)2
(∂µzA)(∂µzA). (4.17)

It is interesting to observe that the resulting scalar potential is a simple fourth-order

polynomial when expressed in terms of new field variables HA, taking values on the

entire real axis,

HA =
zA

1 − x2
, A = 1, 2, 3. (4.18)

Defining also

ξ1 = tu, ξ2 = su, ξ3 = st (4.19)

(ξi > 0), the potential can be nicely rewritten as

V = V1 + V2 + V3,

κ4V1 =
4

s

[

(ξ1 + ξ−1
1 )H4

1 +
1

4
(ξ1 − 6 + ξ−1

1 )H2
1

]

,

κ4V2 =
4

t

[

ξ2H
4
2 +

1

4
(ξ2 − 4)H2

2

]

,

κ4V3 =
4

u

[

ξ3H
4
3 +

1

4
(ξ3 − 4)H2

3

]

.

(4.20)

This expression displays the duality properties

ξ1 → ξ−1
1 : heterotic temperature duality;

t ↔ u, H2 ↔ H3: IIA–IIB duality.

Since at Hi = 0, the Kähler metric is 4δA
B, the scalar potential is normalized ac-

cording to V = 4κ2∑

Am
2
AH

2
A + . . . The masses m2

A correspond to the mass formula

for the heterotic, IIA and IIB tachyons respectively:

m2
1 =

1

4κ2s

[

ξ−1
1 + ξ1 − 6

]

=
1

2α′
H

[

α′
H

2R2
+

2R2

α′
H

− 6

]

(heterotic),

m2
2 =

1

4κ2t
[ξ2 − 4] =

1

2α′
IIA

[

2R2

α′
IIA

− 4

]

(IIA),

m2
3 =

1

4κ2u
[ξ3 − 4] =

1

2α′
IIB

[

2R2

α′
IIB

− 4

]

(IIB).

The three α′ scales are clearly as in Eqs.(3.14). Notice that the variables s, t and u

we are using in the finite-temperature case are, with respect to the case of unbroken

supersymmetry, scaled by a factor
√

2 when expressed in terms of stringy quantities:

ξ1 =
2R2

α′
H

, ξ2 =
2R2

α′
IIA

, ξ3 =
2R2

α′
IIB

. (4.21)
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4.2 Phase structure of the thermal effective theory

The scalar potential (4.20) derived from our effective supergravity possesses four dif-

ferent phases corresponding to specific regions of the s, t and u moduli space. Their

boundaries are defined by critical values of the moduli s, t, and u (or of ξi, i = 1, 2, 3),

or equivalently by critical values of the temperature, the (four-dimensional) string cou-

pling and the compactification radius R6. These four phases are:

1. The low-temperature phase:

T < (
√

2 − 1)1/2/(4πκ) ;

2. The high-temperature heterotic phase:

T > (
√

2 − 1)1/2/(4πκ) and g2
H < (2 +

√
2)/4 ;

3. The high-temperature type IIA phase:

T > (
√

2 − 1)1/2/(4πκ) , g2
H > (2 +

√
2)/4 and R6 >

√

α′
H ;

4. The high-temperature type IIB phase:

T > (
√

2 − 1)1/2/(4πκ) , g2
H > (2 +

√
2)/4 and R6 <

√

α′
H .

The distinction between phases 3 and 4 is, however, somewhat academic, since there

is no phase boundary at R6 =
√

α′
H .

4.2.1 Low-temperature phase

This phase, which is common to all three strings, is characterized by

H1 = H2 = H3 = 0, V1 = V2 = V3 = 0. (4.22)

The potential vanishes for all values of the moduli s, t and u, which are then restricted

only by the stability of the phase, namely the absence of tachyons in the mass spectrum

of the scalars Hi. This mass spectrum is analysed in detail in the appendix. This leads

to:

ξ1 > ξH = (
√

2 + 1)2, ξ2 > ξA = 4, ξ3 > ξB = 4. (4.23)

From the above condition, it follows in particular that the temperature must verify

T =
1

2πκ

(

1

ξ1ξ2ξ3

)1/4

<
(
√

2 − 1)1/2

4πκ
. (4.24)
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Since the (four-dimensional) string couplings are

s =
√

2g−2
H , t =

√
2g−2

A , u =
√

2g−2
B ,

this phase exists in the perturbative regime of all three strings. The relevant light

thermal states are just the massless modes of the five-dimensional N4 = 4 supergravity,

with thermal mass scaling like 1/R ∼ T .

4.2.2 High-temperature heterotic phase

This phase is defined by

ξH > ξ1 >
1

ξH
, ξ2 > 4, ξ3 > 4, (4.25)

with ξH = (
√

2 + 1)2, as in Eq.(4.23). The inequalities on ξ2 and ξ3 eliminates type II

instabilities. In this region of the moduli, and after minimization with respect to H1,

H2 and H3, the potential becomes

κ4V = −1

s

(ξ1 + ξ−1
1 − 6)2

16(ξ1 + ξ−1
1 )

.

It has a stable minimum for fixed s (for fixed α′
H) at the minimum of the self-dual13

quantity ξ1 + ξ−1
1 :

ξ1 = 1, H1 =
1

2
, H2 = H3 = 0, κ4V = − 1

2s
. (4.26)

The transition from the low-temperature vacuum is due to a condensation of the het-

erotic thermal winding mode H1, or equivalently by a condensation of type IIA NS

five-brane in the type IIA picture.

At the level of the potential only, this phase exhibits a runaway behaviour in s. We

will show in the next section that a stable solution to the effective action exists with

non-trivial metric and/or dilaton.

In heterotic language, s, t and u are particular combinations of the four-dimensional

gauge coupling gH , the temperature T = (2πR)−1 and the compactification radius from

six to five dimensions R6. The relations are

s =
√

2g−2
H , t =

√
2
RR6

α′
H

, u =
√

2
R

R6
,

ξ1 = tu =
2R2

α′
H

, ξ2 =
2R

g2
HR6

, ξ3 =
2RR6

α′
Hg

2
H

.

(4.27)

13With respect to heterotic temperature duality.
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As expected, ξ2 and ξ3 are related by radius inversion, R6 → α′
HR

−1
6 . Then, in Planck

units,

R =
1

2πT
= κ

√
stu = κ[ξ1ξ2ξ3]

1/4, R6 = κ
(

2st

u

)1/2

=

√
2κξ3

[ξ1ξ2ξ3]1/4
. (4.28)

The first equation indicates that the temperature, when expressed in units of the four-

dimensional gravitational coupling constant κ is invariant under string–string dualities.

In terms of heterotic variables, the critical temperatures (4.25) separating the het-

erotic phases are

ξ1 = ξH : 2πT<
H =

gH

21/4κ
(
√

2 − 1),

ξ1 = 1
ξH

: 2πT>
H =

gH

21/4κ
(
√

2 + 1).
(4.29)

In addition, heterotic phases are separated from type II instabilities by the following

critical temperatures:

IIA : ξ2 = 4, 2πTA =
R6

4
√

2κ2
,

IIB : ξ3 = 4, 2πTB =
1

2g2
HR6

.

(4.30)

Then the domain of the moduli space that avoids type II instabilities is defined by the

inequalities ξ2,3 > 4. In heterotic variables,

2πT <
1

2α′
Hg

2
H

min (R6 ; α′
H/R6) =

1

4
√

2κ2
min (R6 ; α′

H/R6) . (4.31)

Type II instabilities are unavoidable when T > Tself−dual, with

2πTself−dual =
1

2g2
H

√

α′
H

=
21/4

4κgH
.

The high-temperature heterotic phase cannot be reached14 for any value of the radius

R6 if

T<
H > Tself−dual,

or

g2
H >

√
2 + 1

2
√

2
∼ 0.8536. (4.32)

14From low heterotic temperature.
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In this case, T<
H always exceeds TA and TB. Only type II thermal instabilities exist in

this strong-coupling regime and the value of R6/
√

α′
H decides whether the type IIA or

IIB instability will have the lowest critical temperature, following Eq.(4.30).

If on the other hand the heterotic string is weakly coupled,

g2
H <

√
2 + 1

2
√

2
, (4.33)

the high-temperature heterotic phase is reached for values of the radius R6 verifying

T<
H < TA and T<

H < TB, or

2
√

2g2
H(

√
2 − 1) <

R6
√

α′
H

<
1

2
√

2g2
H(

√
2 − 1)

. (4.34)

The large and small R6 limits, with fixed coupling gH , again lead to either type IIA or

type IIB instability.

4.2.3 High-temperature type IIA and IIB phases

These phases are defined by inequalities:

ξ2 < 4 and/or ξ3 < 4. (4.35)

In this region of the parameter space, either H2 or H3 become tachyonic and acquire a

vacuum value:

H2
2 =

4 − ξ2
8ξ2

, κ4V2 = −1

t

(4 − ξ2)
2

16ξ2
, (4.36)

and/or

H2
3 =

4 − ξ3
8ξ3

, κ4V3 = −1

u

(4 − ξ3)
2

16ξ3
. (4.37)

In contrast with the high-temperature heterotic phase, the potential does not possess

stationary values of ξ2 and/or ξ3, besides the critical ξ2,3 = 4.

Suppose for instance that ξ2 < 4 and ξ3 > 4. The resulting potential is then V2

only and ξ2 slides to zero. In this limit,

V = − 1

stuκ4
,

and the dynamics of φ ≡ − log(stu) is described by the effective Lagrangian

Leff = − e

2κ2

[

R +
1

6
(∂µφ)2 − 2

κ2
eφ
]

.
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Other scalar components log(t/u) and log(s/u) have only derivative couplings, since

the potential only depends on φ. They can be taken to be constant and arbitrary.

The dynamics only restricts the temperature radius κ−2R2 = e−φ, R6 and the string

coupling are not constrained, besides inequalities (4.35).

In conformally flat gravity background, the equation of motion of the scalar φ is

2̂φ = − 6

κ2
eφ.

The solution of the above and the Einstein equations defines a non-trivial gravitational

φ-background. This solution will correspond to the high-temperature type II vacuum.

We will not study this solution further here. Instead, we will examine in detail in

Sections 5 and 6 the high-temperature heterotic phase.

4.3 Five- and six-dimensional limits

Since we have constructed the effective theory of five-dimensional strings at finite tem-

perature, an appropriate large radius limit should lead to a six-dimensional theory

at finite temperature. There should also be a small radius limit leading to a six-

dimensional theory at finite temperature, since torus compactification implies a radius

inversion symmetry. These decompactification limits should, however, be distinguished

from those on R6 which are taken with fixed four-dimensional coupling gH .

The large radius R6, type IIA limit keeps the temperature radius R and the five-

dimensional coupling

g2
5 = R6g

2
H ,

fixed. It corresponds to

t→ ∞, tu and t/s fixed. (4.38)

On the other hand, the type IIB, small R6 limit keeps R and the coupling

g2
5 =

α′
H

R6
g2

H

fixed. It corresponds to

u→ ∞, tu and u/s fixed. (4.39)

In both limits, the inequality that separates heterotic and type II instabilities is

g2
5 <

√

α′
H

2

√
2 + 1

2
. (4.40)
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This relation is similar to Eq.(4.33) and follows directly from inequalities (4.34). The

analysis of the five-dimensional finite-temperature mass formula has been done in Sec-

tion 3, in terms of the six-dimensional string coupling λH . Inequality (4.40) is indeed

equivalent to the bound (3.7), by simply defining the dimensionless λH , as in Eq.(3.2):

λ2
H = g2

5

R

α′
H

<

√
2 + 1

2

R
√

2α′
H

<

(√
2 + 1

2

)2

, (4.41)

in both type IIA and IIB theories.

As mentioned in Section 3, the above type IIB theory is defined by T-duality from

the heterotic side. It differs from the type IIB theory obtained by a T-duality from

type IIA [see Eq.(3.11)]. The five-dimensional limit of the latter corresponds to a limit

where the heterotic string coupling λH goes to infinity. This follows from the duality

relations (3.3) and (3.11) in the type IIB decompactification limit

RB
6 → ∞ with λIIB and α′

II fixed.

This takes us outside the bound (4.41), where the non-trivial high-temperature het-

erotic phase is defined. A separate analysis is then needed, which is beyond the scope

of this work.

An alternative type IIB theory can, however, be defined directly in five dimensions

by a T-duality from type IIA, reversing the temperature radius:

R → α′
II

R
, λII → λII

√

α′
II

R
.

The high-temperature heterotic phase fixes R =
√

α′
H or RB =

√

α′
IIλIIA in type IIA

units. In the above type IIB units, this corresponds to λB = 1, while the temperature

radius remains undetermined. However, in order to remain in the high temperature

heterotic phase, the bound (4.41) implies

RB <

√
2 + 1

2

√

α′
II . (4.42)

In the high-temperature heterotic phase, valid in the region (4.41), the temperature

is fixed in heterotic units:

R =
√

α′
H =

√

α′
IIλIIA =

α′
II

RB
, λH =

1

λIIA
=

√

α′
II

R
=

RB
√

α′
II

, λB = 1 .

(4.43)
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Thus, in this phase, the only way to change the temperature is by varying the het-

erotic string tension. In particular, the infinite temperature limit R → 0 is defined by

α′
H → 0, which corresponds to the zero slope field-theory limit of the corresponding

string vacuum. As we will see in the next sections, the latter is described by a non-

critical superstring in six dimensions, whose zero-slope limit contains a finite number

of N4 = 2 massless hypermultiplets. This result supports the conjecture that the high-

temperature phase is described by a topological theory [3]. From the type IIA side,

one may in principle take the infinite temperature limit by keeping the string tension

fixed and sending its coupling to zero. However, this correspond to λH → ∞, which

lies outside the domain of validity of the new phase.

Another interesting limit is the infinite type IIB temperature RB → 0, with its

string tension fixed. From Eq.(4.43), this corresponds to a zero temperature heterotic

theory (R → ∞) with vanishing tension and zero coupling but keeping the product

λ2
Hα

′
H fixed. Notice the similarity of this limit to the large-N limit in Yang–Mills theory,

with the Regge slope playing the role of the effective number of degrees of freedom.

This is a non-trivial limit since all genera in principle contribute. We will return to

the above limits in Section 6.

5 Analysis of the high-temperature heterotic

phase

The thermal phase relevant to weakly coupled, high-temperature heterotic strings at

intermediate values of the radius R6 [see inequalities (4.33) and (4.34)] has an interest-

ing interpretation; we study this here, using the information contained in its effective

theory, which is characterized by Eqs.(4.26):

tu = 1, H1 =
1

2
, H2 = H3 = 0. (5.1)

These values solve the equations of motion of all scalar fields with the exception of

s = ReS. The resulting bosonic effective Lagrangian describing the dynamics of s and

gµν is

Lbos = − 1

2κ2
eR− e

4κ2
(∂µ ln s)2 +

e

2κ4s
. (5.2)

For all (fixed) values of s, the cosmological constant is negative since V = −(2κ4s)−1

and the apparent geometry is anti-de Sitter. But the effective theory (5.1) does not
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stabilize s.

To study the bosonic Lagrangian, we first rewrite it in the string frame. Defining

the dilaton as

e−2φ = s, (5.3)

and rescaling the metric according to

gµν −→ 2κ2

α′
H

e−2φgµν , (5.4)

one obtains15

Lstring frame =
e−2φ

α′
H

[

−eR + 4e(∂µφ)(∂µφ) +
2e

α′
H

]

. (5.5)

The equation of motion for the dilaton then is

R + 4(∂µφ)(∂µφ) − 42φ =
2

α′
H

. (5.6)

Comparing with the two-dimensional sigma-model dilaton β-function [28] with central

charge deficit δc = D − 26, which leads to

R + 4(∂µφ)(∂µφ) − 42φ = − δc

3α′
H

, (5.7)

we find a central charge deficit δc = −6, or, for a superstring16,

δĉ =
2

3
δc = −4. (5.8)

In the string frame, a background for theory (5.5) has flat (sigma-model) metric17

g̃µν = ηµν and linear dilaton dependence [29] on a spatial coordinate, say x1:

φ̃ = Qx1, Q2 =
δĉ

8α′
H

=
1

2α′
H

. (5.9)

In the flat background, the Lagrangian density for the dilaton expanded up to quadratic

order in ϕ = φ−Qx1 is

Ldil. =
16Q

α′
H

e−2Qx1

ϕ(∂1ϕ) +
4

α′
H

e−2Qx1

(∂µϕ)(∂µϕ) − 8

α′2
H

e−2Qx1

ϕ2,

omitting a ϕ–independent contribution. Defining then the rescaled field

ϕ̂ = ϕ e−Qx1

,

15Since the rescaling gµν → e−2σgµν leads to e[R+ 6(∂µσ)2] → e−2σeR.
16The same analysis in Ref.[5] is in error by a factor 2.
17The notation ˜ is used for a background field.
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one obtains the equivalent Lagrangian

Ldil =
4

α′
H

[

(∂µϕ̂)(∂µϕ̂) +
1

2α′
H

ϕ̂2

]

, (5.10)

which indicates that a scalar field with mass

m2
dil =

1

2α′
H

= Q2 (5.11)

propagates in the background.

A similar analysis can be applied to the axionic partner ImS = a of the supergravity

dilaton s = ReS. Its (bosonic) Lagrangian is simply

La = − e

4s2κ2
(∂µa)(∂µa),

in the Einstein frame and

La,string = − e

2α′
H

e−2φ(∂µa)(∂µa)

in the string frame, according to rescaling (5.4). In the linear dilaton background

φ = φ̃ = Qx1, the rescaled axion â = e−Qx1

a has quadratic Lagrangian

− 1

2α′
H

[

(∂µâ)(∂µâ) +Q2â2
]

,

and its mass squared is again Q2. The same mass shift by the quantity Q2 = m2
3/2 will

appear in all scalar masses computed in the linear dilaton background [29].

Before turning to the complete analysis of the mass spectrum in the high-tempe-

rature heterotic phase, we now establish the residual supersymmetries expected in the

background chracterized by the linear dilaton dependence on x1.

5.1 Broken supersymmetry

The linear dilaton background breaks both four-dimensional Lorentz symmetry and

four-dimensional Poincaré supersymmetry. Since supersymmetry breaks spontaneous-

ly, one expects to find goldstino states in the fermionic mass spectrum and massive

spin 3/2 states. And, because of the non-trivial background, the theory in the high-

temperature heterotic phase is effectively a three-dimensional supergravity.

Local supersymmetry in three-dimensional space-time is notoriously difficult to

establish in the presence of massive states. This is because [30, 31] masses induce
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asymptotically a conical geometry [32], making Noether supercharges hard to define.

Supersymmetry of the vacuum does not necessarily imply supersymmetry of the mas-

sive spectrum. This phenomenon exists in (locally) flat background and the presence

of the linear dilaton does not simplify the matter. In the following paragraphs, we will

first consider the existence of goldstino fermions in the high-temperature vacuum, then

compute the mass spectrum, which will turn out to be supersymmetric for moduli T

and U (which are not massless) and perturbative heterotic windings Z±
1 . This super-

symmetry in the spectrum will however be broken in the non-perturbative sector Z±
2

and Z±
3 . Finally, by taking the five-dimensional limit discussed in the previous sec-

tion, we will observe that this non-perturbative breaking of supersymmetry persists,

indicating clearly, in five dimensions, broken supersymmetry.

To discuss the pattern of goldstino states, observe first that the supergravity ex-

tension of the bosonic Lagrangian (5.2) includes a non-zero gravitino mass term for all

values of s since

m2
3/2 = κ−2 eG =

1

4κ2s
=

1

2α′
H

= Q2. (5.12)

Notice also for future use that the potential at the vacuum verifies

V = − 2

κ4
eG = − 1

2κ4s
= − 2

κ2
m2

3/2. (5.13)

Then, consider the transformation of fermions in the chiral multiplet (zi, χi) 18:

δχLi =
1

2
κ( 6 ∂zi)ǫR − 1

2
eG/2 (G−1)j

iGj ǫL + . . . , (5.14)

omitting fermion contributions. In the high-temperature heterotic phase,

GS =
∂

∂S
G = − 1

2s
, Ga =

∂

∂za
G = 0, (5.15)

and the Kähler metric is diagonal with GS
S = (2s)−2. Since also

6 ∂s = −2Qsγ1, eG/2 = κQ,

only the fermionic partner χs of the dilaton s participates in supersymmetry breaking,

with the transformation

δχs =

√
s

2
(1 − γ1)ǫ. (5.16)

18The notation is as in Ref.[21], with sign-reversed G and σµν = 1

4
[γµ, γν ]. Indices i, j, . . ., enumerate

all chiral multiplets (zi, χi).
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Supersymmetries generated by (1 − γ1)ǫ are then broken in the linear dilaton back-

ground in the x1 direction while those with parameters (1 + γ1)ǫ remain unbroken.

Starting then from sixteen supercharges (N4 = 4 supersymmetry) at zero temperature,

the high-temperature heterotic vacuum has eight unbroken supercharges. Since the

effective space-time symmetry is three-dimensional, the high-temperature phase has

N3 = 4 supersymmetry: the linear dilaton background acts identically with respect to

the N4 = 4 spinorial charges. It simply breaks one half of the charges in each spinor.

Thus, the high-temperature phase is expected to be stable because of supersymmetry

of its effective field theory and because of its superconformal content19.

The pattern of supersymmetry breaking can be confirmed by computing the gra-

vitino–χs quadratic couplings, which generate the super-Higgs phenomenon. In the

linear dilaton background, the non-kinetic quadratic fermionic terms are:

e−1L3/2−1/2 = −Qψµσ
µνγ5ψν −

Q

2s
ψµ(1 + γ1)γµγ5χs −

3

2

Q

(2s)2
χsγ

1γ5χs. (5.17)

We then separate the three-dimensional gravitino ψm, m = 0, 2, 3 from the spinor ψ1,

with the redefinition

ψm +
1

2
γmγ

1ψ1 −→ ψm,

and the gravitino contributions become

−Qψmσ
mnγ5ψn − Q

2s
ψmγ

m(1 − γ1)γ5χs.

These terms identify the goldstino fermion as

ψG ∼ 1

2s
(1 − γ1)γ5χs, (5.18)

in agreement with the result (5.16), which indicates that supersymmetries with param-

eter (1 − γ1)ǫ are broken.

At the level of the background solution, one would conclude that one half of the

supersymmetries remain unbroken (N3 = 4). We now confront this statement with the

mass spectrum in the scalar and spin 1/2 sectors of the effective supergravity.

5.2 Mass spectrum

We now analyse the complete mass spectrum of the effective supergravity theory in

the linear dilaton background relevant to the high-temperature heterotic phase. This
19See next section.
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spectrum naturally splits in two sectors. First, as already discussed in the previous

paragraph, the heterotic dilaton multiplet, with scalar S and spin 1/2 partner χs, is

actively involved in the fate of supersymmetry in the high-temperature phase and in the

background. Secondly, all other chiral multiplets play a passive role in these respects.

To simplify the notation, we will in this paragraph collectively denote the scalar fields

T , U , Z+
A and Z−

A by ya, and their spin 1/2 partners by χa.

This splitting of the chiral multiplets arises because in the ‘vacuum’ defined by

Eqs.(5.1), the Kähler function G does not induce any mixing of (S, χs) with (ya, χa)

[see Eqs.(5.15)] and supersymmetry breaking is entirely decided in the S sector. The

Kähler metric is diagonal, GS
a = ∂2G

∂S∗∂za = 0, for all values of the fields. In addition,

GSa =
∂2

∂S∂ya
G = 0.

Notice, however, that GSab = ∂3G
∂S∂ya∂yb does not vanish: it will generate a contribution

to the mass spectrum in the ya sector.

The splitting of S and ya does not exist in the low-temperature phase H1 = H2 =

H3 = 0, in which

GS = −(2s)−1, GT = −(2t)−1, GU = −(2u)−1, (5.19)

with

ψG =
1

2s
χs +

1

2t
χt +

1

2u
χu

as goldstino state20. The low-temperature phase is symmetric in the moduli s, t and

u: it is common to the three dual strings, in their perturbative and non-perturbative

domains. In contrast, the high-temperature heterotic phase only exists in the per-

turbative domain of the heterotic string, where s is the dilaton, and, by duality, in

non-perturbative type II regimes.

We have already considered the gravitino states and fields of the chiral multiplet

(S = s + ia, χs). We now turn to the fermions χa and the scalars ya. It is useful to

recall that the Kähler metric in the high-temperature phase is diagonal and particularly

simple:

GS
S = (2s)−2, GT

T = (2t)−2, GU
U = (2u)−2, (tu = 1),

∂2G
∂Z±

A∂Z
±∗
B

=
2

(1 − z2
1)

2
δAB =

1

2z2
1

δAB, (A,B = 1, 2, 3).
(5.20)

20Expressed using non-normalized fermions. Canonical normalization of the spinors would lead to
ψG = χs + χt + χu.
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The last equality follows from H1 = z1/(1 − z2
1) = 1/2. These results will be used to

canonically normalize massive fields.

• Fermions χa:

The mass matrix of the spin 1/2 partners of T , U , Z+
A and Z−

A , with inverse Kähler

metric factors to canonically normalize fields, is simply

(M1/2)ab = κ−1 eG/2 (G−1/2)c
a

(

Gcd +
1

3
GcGd − GeG−1e

fGf
cd

)

(G−1/2)d
b .

Since the Kähler metric is diagonal, Gb = 0 and GS
cb = 0, the mass matrix simplifies to

(M1/2)ab = κ−1 eG/2 (G−1/2)c
aGcd(G−1/2)d

b = m3/2 (G−1/2)c
aGcd(G−1/2)d

b . (5.21)

Mixings can only arise from non-zero values of Gab due to superpotential contributions.

Since W includes a term proportional to TUZ+
1 Z

−
1 , these four fields, which are non-

zero at the vacuum, will get mixed. Masses will be completely determined (in m3/2

units) since all parameters are fixed in this sector. On the other hand, the two fermion

masses in the Z±
2 sector are m3/2[su± 1] and m3/2[st± 1] in the Z±

3 sector.

• Scalars ya:

The high-temperature ‘vacuum’ is a minimum of the potential for the scalars ya, Va =

∂V
∂ya = 0, and also Ga = 0, according to Eq.(5.15). Again, since

∂2V

∂S∂ya
=

∂2V

∂S∂y∗a
= 0,

at the minimum, the scalar mass matrix splits into mass terms for S and a mass matrix

for the scalars ya, which is given by

M2
0 = κ−2

(

[G−1/2]ae [G−1/2]fc
)





V e
g V eh

Vfg V h
f









[G−1/2]gb

[G−1/2]dh



 .

The metric factors [G−1/2] normalize the fields canonically. Each term can be computed

at the high-temperature vacuum and one obtains

M2
0 = m2

3/2

(

[G−1/2]ae [G−1/2]fc
)





GenG−1r
nGrg −2sW−1W ehS

−2sW−1WfgS GfmG−1m
p Gph









[G−1/2]gb

[G−1/2]dh





−m2
3/2





δa
b 0

0 δd
c



 .

30



As already observed, the linear dilaton background further shifts this mass matrix by a

quantity that precisely cancels the last contribution. The physical scalar mass matrix

then becomes

M2
0 = m2

3/2

(

[G−1/2]ae [G−1/2]fc
)





GenG−1r
nGrg −2sW−1W ehS

−2sW−1WfgS GfmG−1m
p Gph









[G−1/2]gb

[G−1/2]dh



 .

(5.22)

Comparing with the fermion mass matrix (5.21), one observes that the spectrum would

be supersymmetric21 without the off-diagonal term proportional to 2sW−1W Sij. Since

supersymmetry breaks in the S direction, these off-diagonal contributions generate

O’Raifeartaigh-type bosonic mass shifts for states that couple in the superpotential to

S: these are the heterotic dyonic states Z±
2 and Z±

3 , which generate type II thermal

instabilities. As observed in Ref.[5], heterotic perturbative states have a supersymm-

metric spectrum.

These supersymmetry-breaking contributions to the scalar mass spectrum imply the

existence of non-perturbative modes lighter than their fermionic partners. Explicitly,

since

−2sW−1 ∂3W

∂S∂Z+
2 ∂Z

−
2

= −su
z2
1

, −2sW−1 ∂3W

∂S∂Z+
3 ∂Z

−
3

= −st
z2
1

, (t = 1/u),

the scalar mass matrix in the Z2 sector reads

Z+
2 :

Z−
2 :

Z+∗
2 :

Z−∗
2 :

m2
3/2





















(su)2 + 1 −2su 0 −2su

−2su (su)2 + 1 −2su 0

0 −2su (su)2 + 1 −2su

−2su 0 −2su (su)2 + 1





















.

The eigenvalues are

m2
3/2[(su− 1)2 ± 2su], m2

3/2[(su+ 1)2 ± 2su],

to be compared with the fermion masses |su − 1|m3/2 and |su + 1|m3/2. The mass

pattern in the Z±
3 sector is obtained by substituting u for t in the Z±

2 sector.

To summarize, the spectrum is supersymmetric in the perturbative heterotic and

moduli sector (T, U, Z±
1 ), and with O’Raifeartaigh pattern in the non-perturbative

21In the sense of equal boson and fermion masses.
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sectors:
Z±

2 : m2
bosons = m2

fermions ± 2sum2
3/2,

Z±
3 : m2

bosons = m2
fermions ± 2stm2

3/2.

This phenomenon persists in the five-dimensional type IIA [and type IIB] limit

(4.38) [and (4.39)], in which the Z±
3 [Z±

2 ] states become superheavy and decouple

while the Z±
2 [Z±

3 ] scalar masses are shifted by a non-perturbative amount, since in

this limit su = 1/λ2
H [st = 1/λ2

H]. Thus, supersymmetry appears to be broken by

non-perturbative effects. Note again, however, that this statement may not hold in

the case of the four-dimensional background solution with a dilaton motion in one

direction. In this case, there is only an effective three-dimensional Poincaré invariance,

which does not imply in general mass degeneracy within a massive multiplet, even if

local supersymmetry is unbroken [30, 31].

In the special infinite heterotic temperature limit discussed at the end of Section

4, where α′
H → 0, all massive states decouple and consequently one recovers N4 =

2 unbroken (rigid) supersymmetry in the effective (topological) field theory of the

remaining massless hypermultiplets.

6 The high-T Heterotic Phase Transition

As we discussed in Sections 4 and 5, the high-temperature phase of N4 = 4 strings is

described by a non-critical string with central charge deficit δĉ = −4, provided the (six-

dimensional) heterotic string is in the weakly coupled regime with λH ≤ (
√

2 + 1)/2.

One possible description is in terms of the (5+1) super-Liouville theory compactified (at

least) on the temperature circle with radius fixed at the fermionic point R =
√

α′
H . The

perturbative stability of this ground state is guaranteed when there is at least Nsc = 2

superconformal symmetry on the world-sheet, implying at least N4 = 1 supersymmetry

in space-time. However, our analysis of the previous section shows that the boson–

fermion degeneracy is lost at the non-perturbative level, although the ground state

remains supersymmetric.

An explicit example with Nsc = 4 superconformal was given in Ref.[33, 34]. It is

obtained when together with the temperature circle there is an additional compacti-

fied coordinate on S1 with radius R6 =
√

α′
H . These two circles are equivalent to a

compactification on [SU(2) × SU(2)]k at the limiting value of level k = 0. Indeed, at
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k = 0, only the 6 world-sheet fermionic SU(2)×SU(2) coordinates survive, describing

a ĉ = 2 system instead of ĉ = 6 of k → ∞, consistently with the decoupling of four

supercoordinates, δĉ = −4. The central charge deficit is compensated by the linear

motion of the dilaton associated to the Liouville field, φ = Qµxµ with Q2 = 1/(2α′
H) so

that δĉL = 8α′
H Q2 = 4. Using the techniques developed in Refs.[35, 34], one can derive

the one-loop (perturbative) partition function in terms of the left- and right-moving

degrees of freedom on the world-sheet. Namely:

1. The four left- and right-moving non-compact coordinates xµ (which include the

Liouville coordinate) together with the reparametrization ghosts b, c; b, c. Their

contribution to the partition function is:

Z{xµ, b, c; b, c} =
Imτ−1

η2 η2
; (6.1)

2. The two left- and right-moving coordinates φ1, φ2 compactified on S1
R × S1

R6

at the fermionic point, R = R6 =
√

α′
H . By fermionization the currents ∂φ1,

∂φ2 and ∂φ1, ∂φ2 are equivalent to four left- and four right-moving world-sheet

fermions χI , and χI , (I = 1, 2, 3, 4) giving rise to an SO(4)left×SO(4)right current

algebra. Their contribution to the partition function is given in terms of the

SO(4)left × SO(4)right characters:

Z{χI , χI} =
1

η2 η2
θ2
[

α+h
β+g

]

θ
2
[

α+h
β+g

]

, (6.2)

where the spin structures α, β, α, β, h and g take values 0 or 1.

3. The remaining left-moving degrees of freedom Ψµ, µ = 1, . . . , 6, are the super-

partners of the coordinates xµ, φ1, φ2, and the super-reparametrization ghosts

β, γ. Their partition function reads:

Z{Ψµ, β, γ} =
1

η4
θ2
[

α
β

]

. (6.3)

4. The right-moving degrees of freedom also include a conformal system, which can

be described by 28 fermions ΨA, with central charge:

cR[ΨA] = 26 − 4 (from xµ) − 2 (from φ1, φ2) − 6
(

from
3

2
δĉ
)

= 14 .

Their contribution to the partition function in terms of SO(28) characters is:

Z{ΨA} =
1

η14
θ

14
[

α
β

]

. (6.4)
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Assembling the above conformal blocks, one obtains the partition function of the (5+1)-

dimensional Liouville model, with the desired Nsc = 4 superconformal symmetry:

ZLiouv[SU(2) × SU(2)]k=0 =
Imτ−1

η6 η18

1

8

∑

α,β,α,β,h,g

(−)α+β+αβ

× θ 2
[

α
β

]

θ
[

α+h
β+g

]

θ
[

α−h
β−g

]

θ
[

α+h
β+g

]

θ
[

α−h
β−g

]

θ
14
[

α
β

]

.

(6.5)

This partition function encodes a number of properties, which deserve some comments:

• The initial N4 = 4 supersymmetry is reduced to N4 = 2 (or N3 = 4) because of

the Z2 projection generated by (h, g). This agrees with our effective field theory

analysis of the high-temperature phase given in Section 5. The (perturbative)

bosonic and fermionic mass fluctuations are degenerate due to the remaining

N4 = 2 supersymmetry.

• The h = 0 sector does not have any massless fluctuations due to the linear dilaton

background or to the temperature coupling. The linear dilaton background shift

the bosonic masses (squared) bym2
3/2, so that all bosons in this sector have masses

larger than or equal to m3/2. This is again in agreement with our effective theory

analysis. Similarly, fermion masses are shifted by the same amount because of

the S1
R temperature modification.

• In the h = 1 “twisted”, sector there are massless excitations as expected from

the (5+1) super-Liouville theory [36, 37, 34].

• The 5+1 Liouville background can be regarded as a Euclidean five-brane solution

wraped on S1 ×S1 preserving one-half of the space-time supersymmetries (N4 =

2).

• The massless space-time fermions coming from the h = 1 sector are six-dimen-

sional spinors constructed with the Ψµ and β, γ. They are also spinors under the

SO(4)right constructed using χI , and vectors under SO(28) constructed with ΨA.

• The massless space-time bosons are in the same right-moving representation

e.g. SO(4)right spinors and SO(28) vectors. In addition, they are spinors un-

der SO(4)left constructed with χI . Together with the massless fermions, they

form 28 N4 = 2 hypermultiplets.

34



These 28 massless hypermultiplets are the only states that survive in the zero-slope

limit and their effective field theory is described by a N4 = 2 sigma-model on a hyper-

Kähler manifold. This topological theory corresponds to the infinite temperature limit

of the N4 = 4 strings after the heterotic Haggedorn phase transition.

Although the 5+1 Liouville background is perturbatively stable due to the Nsc = 4

superconformal symmetry, its stability is not ensured at the non-perturbative level

when the heterotic coupling is large:

g2
H(xµ) = e2(φ0−Qµxµ) >

√
2 + 1

2
√

2
∼ 0.8536. (6.6)

Indeed, as we explained in Paragraph 4.2, the high-temperature heterotic phase only

exists if g2
H(xµ) is lower than a critical value separating the heterotic and Type II

high-temperature phases. Thus one expects a domain wall in space-time, at x0
µ = 0,

separating these two phases: g2
H(Qµx0

µ) ∼ 0.8536. This domain wall problem can be

avoided by replacing the (5 + 1) super-Liouville background with a more appropriate

one with the same superconformal properties, Nsc = 4, obeying however the additional

perturbative constraint g2
H(xµ) << 1 in the entire space-time.

Exact superstring solutions based on gauged WZW two-dimensional models with

Nsc = 4 superconformal symmetries have been studied in the literature [38, 39, 33, 34,

40]. We now consider the relevant candidates with δĉ = −4.

The first one is the 5 + 1 super-Liouville with δĉ = 4, already examined above. It

is based on the 2d-current algebra:

U(1)δĉ=4 × U(1)3 × U(1)R2=α′
H
× U(1)R2

6
=α′

H

≡ U(1)δĉ=4 × U(1)3 × SO(4)k=1. (6.7)

Another class of candidate background is made up of the non-compact parafermionic

spaces described by gauged WZW models:

[

SL(2,R)
U(1)V,A

]

k=4
×
[

SL(2,R)
U(1)V,A

]

k=4
× U(1)R2=α′

H
× U(1)R2

6
=α′

H

≡
[

SL(2,R)
U(1)V,A

]

k=4
×
[

SL(2,R)
U(1)V,A

]

k=4
× SO(4)k=1 ,

(6.8)

where indices A and B stand for the “axial” and “vector” WZW U(1) gaugings.

Then, many backgrounds can be obtained by marginal deformations of the above,

preserving at least Nsc = 2, or also by acting with S- or T-dualities on them.
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As already explained, the appropriate background must verify the weak-coupling

constraint:

g2
H(xµ) = e2φ <<∼ 0.8536 , (6.9)

in order to avoid the domain-wall problem, and in order to trust the perturbative

validity of the heterotic string background. This weak-coupling limitation is realized in

the “axial” parafermionic space. In this background, g2
H(xµ) is bounded in the entire

non-compact four-dimensional space, with coordinates xµ = {z, z∗, w, w∗}, provided

the initial value of g2
0 = g2

H(xµ = 0) is small.

1

g2
H(xµ)

= e−2φ =
1

g2
0

(1 + zz∗) (1 + ww∗) ≥ 1

g2
0

. (6.10)

The metric of this background is everywhere regular:

ds2 =
4dzdz∗

1 + zz∗
+

4dwdw∗

1 + ww∗ . (6.11)

The Ricci tensor

Rz z∗ =
1

(1 + zz∗)2
, Rw w∗ =

1

(1 + ww∗)2
. (6.12)

The scalar curvature

R =
1

4(1 + zz∗)
+

1

4(1 + ww∗)

vanishes for asymptotically large values of |z| and |w| (asymptotically flat space). This

space has maximal curvature when |z| = |w| = 0. This solution has a behaviour similar

to that of the Liouville solution in the asymptotic regime |z|, |w| → ∞. In this limit,

the dilaton φ becomes linear when expressed in terms of the flat coordinates xi:

φ = −Re[logz] − Re[logw] = −Q1|x1| −Q2|x2|, (6.13)

where

x1 = −Re[logz], x2 = −Re[logw], x3 = Im[logz], x4 = Im[logw],

and the line element is ds2 = 4(dxi)
2. The important point here is that, for large

values of |x1| and |x2|, φ ≪ 0, in contrast to the Liouville background in which φ =

Q1x1+Q2x2, the dilaton becomes positive and arbitrarily large in one half of the space,

violating the weak-coupling constraint (6.9).
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We then conclude that the high-temperature phase is described by the above

parafermionic space, which is stable because of N4 = 2 supersymmetry. Since it is

perturbative everywhere, the perturbative massive bosonic and fermionic fluctuations

are always degenerate, while the non-perturbative ones are superheavy and decouple

in the limit of vanishing coupling.

7 Conclusions

In this work we studied string theory at finite temperature T and the issue of Hagedorn

transition, using the recent non-perturbative understanding of the theory based on

string dualities. For simplicity, we restricted ourselves to the simplest case of N4 = 4

compactifications in D = 6 dimensions, obtained by compactifying the heterotic string

on T 4 or the type II string on K3. As usual, the thermodynamics can be described by

introducing an additional compactification of the (Euclidean) time on a circle of radius

R = 1/(2πT ). In this context, finite temperature boundary conditions correspond

to a particular gauging of the N4 = 4 supersymmetry, while Hagedorn instabilities

of different perturbative string descriptions appear as thermal dyonic 1/2-BPS modes

that become massless (and then tachyonic) at (above) the corresponding Hagedorn

temperature.

Going to four dimensions and using techniques of N4 = 4 supergravity, we were able

to compute the exact effective potential of all potential tachyonic modes, describing

all three perturbative instabilities of N4 = 4 strings (heterotic, type IIA and type

IIB) simultaneously. We find that this potential has a global stable minimum in a

region where the heterotic string is weakly coupled, so that the 6D string coupling

λH < (
√

2 + 1)/2. At the minimum, the temperature is fixed in terms of the heterotic

string tension (or in terms of the string coupling in type IIA units), the four internal

supercoordinates decouple, and the system is described by a non-critical superstring in

six dimensions. Supersymmetry, although restored in perturbation theory, appears to

be broken at the non-perturbative level.

On the heterotic or type IIA side, the high-temperature limit corresponds to a topo-

logical theory described by an N4 = 2 supersymmetric sigma-model on a non-trivial

hyper-Kähler manifold. On the type IIB side, on the other hand, the high-temperature

phase corresponds to a tensionless string defined by a limit that generalizes the large-
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N limit of Yang–Mills theory. It is very interesting to study in detail the properties

of these theories describing the high-temperature phase of string theory, to generalize

these results to other compactifications with a lower number of supersymmetries, and

to study possible physical implications, e.g. in cosmology as well as in the case of TeV

strings.
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hospitality during various stages of this research. This work was partially supported

by the EEC under the contracts TMR-ERBFMRX-CT96-0045 and TMR-ERBFMRX-

CT96-0090.

Appendix

The N = 1 supergravity scalar potential generated by the Kähler function (4.4) and

the superpotential (4.14) can be written

V = κ−4eK (∆S + ∆T + ∆U + ∆+ + ∆−) , (A.1)

with

∆S = |W − 2sWS|2 − |W |2,
∆T = |W − 2tWT |2 − |W |2,
∆U = |W − 2uWU |2 − |W |2,
∆+ = |W |2 + 1

2
Y +WA+(WA+)∗ + 2|Z+|2|W −WA+Z+

A |2

+[1 + Z+2(Z+2)∗]|WA+Z+∗
A |2 − |W −WA+Z+

A − Z+2WA+Z+∗
A |2,

∆− = |W |2 + 1
2
Y −WA−(WA−)∗ + 2|Z−|2|W −WA−Z−

A |2

+[1 + Z−2(Z−2)∗]|WA−Z−∗
A |2 − |W −WA−Z−

A − Z−2WA−Z−∗
A |2.

(A.2)

Each of the above quantities is a polynomial in the fields S, T , U , Z±
A . The notation is

WS = ∂W
∂S
, WT = ∂W

∂T
,

WU = ∂W
∂U
, WA± = ∂W

∂Z±

A

,
(A.3)
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repeated indices are summed over A,B = 1, 2, 3, Y ± has been defined in Eq.(4.5),

|Z±|2 = Z±
AZ

±∗
A , Z±2 = Z±

AZ
±
A

and eK = (8stuY +Y −)−1. Expressions (A.1 and (A.2) follow from the Kähler function

K only; the structure of the superpotential has not been used. Notice also that V

depends on quadratic combinations of the fields Z±
A and their conjugates. It is then

invariant under Z±
A → −Z±

A and stationary at Z±
A = 0 with respect to these fields.

Since V (S, T, U, Z±
A = 0) ≡ 0, Z±

A = 0 is a stable extremum for all values of S, T

and U . We will in this appendix analyse this vacuum, which corresponds to the low-

temperature phase common to the three strings, compare the scalar spectrum with

masses of perturbative string states, and identify the truncation relevant to the study

of thermal instabilities that is used in the body of the paper.

The calculation of the scalar mass matrices is a straightforward exercise, using

GA± =
∂G
∂Z±

A

= 0, GS = − 1

2s
, GT = − 1

2t
, GU = − 1

2u
,

with G = K + log |W |2. The mass matrix splits into four sectors: Z±
1 (heterotic

winding modes), Z±
2 (IIA windings), Z±

3 (IIB windings), S, T, U (moduli). As already

mentioned, the moduli sector is trivially massless since the potential at Z±
A = 0 is flat.

1) Z±
1 :

In terms of the gravitino mass

m2
3/2 = κ−2eG =

1

4κ2stu
=

1

2α′
Htu

=
1

2α′
IIAsu

=
1

2α′
IIBst

, (A.4)

the mass matrix in the Z±
1 sector is:

Z+
1 :

Z−
1 :

Z+∗
1 :

Z−∗
1 :

m2
3/2





















(tu− 1)2 + 2 −2(tu − 1) −2 −2(tu+ 1)

−2(tu− 1) (tu− 1)2 + 2 −2(tu+ 1) −2

−2 −2(tu+ 1) (tu− 1)2 + 2 −2(tu− 1)

−2(tu+ 1) −2 −2(tu− 1) (tu− 1)2 + 2





















.

(A.5)

Using mass formula (3.12), the eigenstates and their masses can be identified with

(perturbative) heterotic states with momentum and winding numbers m and n:
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1
2
Re(Z+

1 + Z−
1 ) : mass2 = 1

2α′
H

[tu+ (tu)−1 − 6] , m = ±1, n = ∓1;

1
2
Im(Z+

1 − Z−
1 ) : mass2 = 1

2α′
H

[tu+ (tu)−1 − 2] , m = 0, n = ±1;

1
2
Re(Z+

1 − Z−
1 ) : mass2 = 1

2α′
H

[tu+ (tu)−1 + 2] , m = 0, n = ±1;

1
2
Im(Z+

1 + Z−
1 ) : mass2 = 1

2α′
H

[tu+ 9(tu)−1 − 2] , m = ±1, n = ±1.

The first state is the lowest would-be tachyon at the origin of the heterotic Hagedorn

temperatures. The other three states cannot become tachyonic and it is then sufficient

to truncate the spectrum to 1
2
Re(Z+

1 + Z−
1 ) to study the thermal instabilities induced

by perturbative heterotic states.

2) Z±
2 :

The mass matrix is:

Z+
2 :

Z−
2 :

Z+∗
2 :

Z−∗
2 :

m2
3/2





















(su)2 + 2 −2su −2 −2su

−2su (su)2 + 2 −2su −2

−2 −2su (su)2 + 2 −2su

−2su −2 −2su (su)2 + 2





















.

Again, using mass formula (3.12), the eigenstates and their masses can be identified

with (perturbative) type IIA states with momentum and winding numbers m and m̃′:

1
2
Re(Z+

2 + Z−
2 ) : mass2 = 1

2α′
IIA

[su− 4] , m = 0, m̃′ = ±1;

1
2
Im(Z+

2 + Z−
2 ) : mass2 = 1

2α′
IIA

[su+ 4(su)−1] , m = ±1, m̃′ = ±1;

1
2
Im(Z+

2 − Z−
2 ) : mass2 = 1

2α′
IIA

[su+ 4(su)−1] , m = ±1, m̃′ = ±1;

1
2
Re(Z+

2 − Z−
2 ) : mass2 = 1

2α′
IIA

[su+ 4] , m = 0, m̃′ = ±1.

The first state is the lowest potential tachyon and one can truncate the theory to this

direction only for the study of thermal instabilities induced by type IIA perturbative

states.

3) Z±
3 :

The scalar mass matrix is obtained by replacing u by t in the Z±
2 mass matrix, as a

result of IIA–IIB duality. The discussion of the mass spectrum is then similar for string

states with momentum number m and IIB winding ñ′. Again, thermal instabilities are

generated in the field direction 1
2
Re(Z+

3 + Z−
3 ) only.
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In the body of the paper, we have used, in general, the scalar potential truncated

to directions Z+
A = Z−

A = (Z+
A )∗ = (Z−

A )∗ only to enumerate the thermal phases of the

theory. But we have also checked by computing the complete mass matrices that this

phase structure is not modified by tachyons arising in other directions in the scalar

field space.
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