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Abstract

Tomography – the reconstruction of a two-dimensional image from a series of its
one-dimensional projections – is now a very broad topic with a wealth of algo-
rithms for the reconstruction of both qualitative and quantitative images. One of
the simplest algorithms has been modified to take into account the non-linearity
of large-amplitude synchrotron motion in a particle accelerator. This permits the
accurate reconstruction of longitudinal phase space density from one-dimensional
bunch profile data. The algorithm was developed in MathematicaTM in order to
exploit the extensive built-in functions and graphics. Subsequently, it has been re-
coded in Fortran 90 with the aim of reducing the execution time by at least a factor
of one hundred. The choice of Fortran 90 was governed by the desire ultimately
to exploit parallel architectures, but sequential compilation and execution have al-
ready largely yielded the required gain in speed. The use of the method to produce
longitudinal phase space plots, animated sequences of the evolution of phase space
density and to estimate accelerator parameters is presented. More generally, the
new algorithm constitutes an extension of computerized tomography which caters
for non-rigid bodies whose projections cannot be measured simultaneously.
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1 INTRODUCTION

The underlying principle of tomography is to combine the information in a sufficiently
large number of projections to be able to reconstruct unambiguously the fuller picture with
the extra dimension reinstated. Thus, for example, many one-dimensional profiles of x-ray
transparency taken from different angles can give doctors an image of a two-dimensional
slice through a patient.

The application of tomography to longitudinal phase space in an accelerator becomes
obvious once it is realised that a bunch of particles performing synchrotron motion is
analogous to a patient rotating in a stationary body scanner. On each turn around the
machine, a longitudinal pick-up provides a “snapshot” of the bunch projected at a slightly
different angle. It only remains to combine such profiles tomographically to obtain a two-
dimensional picture of phase space density [1, 2].

2 RECONSTRUCTION

Back projection is a key process by which the contents of the bins of a one-dimensional
histogram are redistributed over the two-dimensional array of cells which comprise the
reconstructed image. Given no a priori knowledge of the original two-dimensional distri-
bution, the contents of one bin is shared over all the cells that could have contributed to
that bin. The back projection of all bins of all profiles yields a first approximation to the
original distribution.

Algebraic Reconstruction Techniques (ART) [3] exploit the fact that the coefficients for
sharing bins in back projection can also be used to project the contents of cells into
those bins. Hence a set of projections can be obtained from the first approximation. Back
projection of the bin-by-bin difference between the original set of profiles and this new
one yields an improved approximation. Further iterations converge more rapidly if any
cell whose contents has become negative is reset to zero.

The problem with conventional ART is that its strategies for estimating the redistribution
coefficients are based on straight-line back projection geometry. This implies either rigid,
circular motion of the two-dimensional distribution or that its projections be measured
simultaneously. An alternative approach is to consider how the contents of one cell gets
projected into the bins of a particular profile. By launching a small number of test particles
which, initially, are uniformly distributed within the cell, the calculation of coefficients
becomes a simple matter of counting how many particles end up in each bin at the par-
ticular instant when the profile was measured. Thus, a hybrid algorithm which combines
particle tracking with ART allows large-amplitude synchrotron motion to be taken into
account since the trajectories of the test particles need not be assumed circular. Although
iteration proceeds as before, there is a price to be paid: a large map of (projection) coef-
ficients must first be built and its inverse (for back projection) derived for every profile
in the set of measured data. On the other hand, since most of the computational effort is
invested in building the maps, it becomes trivial to repeat a calculation with fresh data
taken under the same conditions.

The method is very robust. Since the iterations converge to the consensus of the infor-
mation in the profiles, trigger jitter and noise in the data have only a minor effect. In
addition, since the test particles are only tracked for a relatively brief period to build the
maps, moderate errors in the accelerator parameters used in the tracking model are not
serious.
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Figure 1: Simulated proton distribution and its reconstruction (on the same density scale).
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Figure 2: Measured profiles and reconstructed contour plot of a bunch after phase mod-
ulation at 1 GeV.

3 SOME RESULTS

The first part of Fig. 1 shows a simulated distribution comprising an unmatched bunch.
These particles were tracked over an entire synchrotron period to obtain 72 profiles as
the distribution filamented. Taking these profiles as the input dataset, the new algorithm
yields the accurate reconstruction of the second part of Fig. 1.

The 72 profiles of Fig. 2 were measured every 48 turns at the CERN Booster during at-
tempts to move empty phase space into the centre of a normal bunch by phase modulation
of the rf. Without tomography, it would be difficult to deduce anything from the bunch
shape information.

Arbitrarily complex rf systems can be treated. The “mountain range” plot of Fig. 3 shows
a series of measurements every 50 turns during bunch splitting in the CERN PS. Splitting
is achieved by increasing the second-harmonic voltage component of a dual-harmonic rf
system while reducing the fundamental. The data span 10 ms and the details of the two
voltage programmes during this period were incorporated in the tracking model of the
algorithm to produce the corresponding reconstructed image. Since the origin in time at
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Figure 3: Quasi-adiabatic bunch splitting at 3.5 GeV/c.
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Figure 4: Discrepancy versus normalized rf voltage.

which the test particles are launched can be chosen freely within the measurement interval,
the reconstruction can be at any instant during that period. In Fig. 3, the reconstruction
is at the time of the 84th profile (out of 92). An animation of the entire process can be
made by repeating the calculation for all time slices.

“Discrepancy” [3] expresses in a single figure of merit the residual differences between the
projections of a reconstructed distribution and the original profiles. As such it may be used
to monitor convergence. It is an obvious conjecture that, in the limit of many iterations,
the lowest discrepancy should be obtained when the parameters used in the tracking
model match most closely the reality of the machine. Reconstruction of the simulated
data of Fig. 1 assuming different rf voltages supports this idea. The discrepancy after one
hundred iterations exhibits a sharp minimum at precisely the value of the rf voltage that
was used to generate the data in the first place (see Fig. 4). Arguably, this constitutes a
voltage measurement.
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4 COMPUTER CODE

4.1 Program philosophy

The algorithm was originally developed in MathematicaTM, a choice mainly motivated
by the rich set of built-in functions for graphics and for the manipulation of arrays.
However, the objective was merely to establish a proof of principle. Consequently, with
the aim of reducing the execution time by a factor of at least one hundred, the code was
translated into Fortran 90/High Performance Fortran (HPF). This was done with the
view to use parallel architectures. Mathematical toolkits with the associated definition
modules from Numerical Recipes [4] were integrated in the program from the outset to
avoid unnecessary duplication of standard numerical routines. The entire issue of providing
a user interface for the demanding control room environment of the CERN accelerator
complex was separated out as an independent development. This has now been started
and will be discussed in Section 4.6. For the development of the numerical part of the code,
simple input and output files were used to avoid any possible complications associated
with the choice of a particular graphics package. The display of resulting graphs and
surfaces has been done with MathematicaTM throughout the development phase.

The fact that the method could be applicable to processes other than synchrotron motion
implied a division of the code into generic modules and modules specific to longitudinal
beam dynamics. Furthermore, all parameters characterizing the considered process are
passed to the program as input at execution time, making the code to a large extent
data-driven. In Fig. 5 a schematic view of the structure of the program is presented.

CERN accelerator control

CERN central parallel computer

Fast digital
oscilloscope

JAVA application
program

JAVA
API

VME front end
computer

Main Fortran 90
program

Fortran 90 module
generic tomography

Fortran 90 module
libraries (e.g.
Numerical Recipies)

Fortran 90 module
with routines specific
for transverse beam
tomography

Fortran 90 module
with routines specific
for longitudinal beam
tomography

Figure 5: A schematic view of a future on-line tomography system. To the left, the hard-
ware and Graphical User Interface (GUI) configuration is drawn and, to the right, the
structure of the present numerical part of the code. The data flow is indicated with broad
arrows and the command flow with narrow ones.
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4.2 Coding considerations

In the original MathematicaTM code there is extensive use of floating-point operations
and many very large and very sparse matrices. In the Fortran 90 version, the number of
floating-point operations is reduced by the use of integer representation until the final step
in each number manipulation, while a pointer-like re-allocatable vector representation was
created to deal with the sparse matrices. The sparse matrices are stored in an array with
sufficient depth to contain most of the data. Where additional depth is needed the excess
data are stored in a supplementary array and the index to the array element used is stored
in the last element of the original matrix. The supplementary array is re-allocatable and
this procedure can obviously be repeated any number of times. Consequently, the actual
depth of the matrix is only limited by the available memory during execution. The built-
in pointer facility of Fortran 90 was avoided because it would make the efficient use of
parallel architectures with shared memory impossible.

A fundamental part of the algorithm is the construction of the forward and backward
projection maps by tracking a small number of test particles launched from each cell in the
two-dimensional image. The individual test particles are tracked without considering any
particle-to-particle interaction. Consequently, the launching and tracking of all particles
for all cells can be done in parallel, a fact which was taken into consideration from the
beginning and is fully exploited in a parallel version.

4.3 Optimization

A first execution time analysis showed that more than 90% of the time was spent in
the tracking procedure longtrack, 75% in evaluating sine functions (despite the use of
fast libraries). In the case of Fig. 3, for example, longtrack was called 91 times to make
50 updates to some 6×105 floating-point numbers representing the test particles. A total
approaching 3× 109 sines have to be evaluated for one such image.

As a first step, the call to the Fortran library SIN function was replaced by an inline
procedure using classic polynomial approximations for cos(x) to 4th and 10th order in x
with a maximum error of about 10−3 and 2×10−9, respectively [6]. Further statement level
profiling showed a very significant part of the time was now spent reducing the argument
range to 0 ≤ x < π/2. The precision of the first approximation was considered inadequate
and that of the second unnecessary since it would easily be swamped by errors in the
parameters of the accelerator model.

The sine function evaluation was therefore replaced by a look-up procedure over the range
−2π to 2π. Tests with a table of 8192 values per quadrant produced satisfactory results
and required 512 kBytes, not too much compared with an application of some 16 MBytes.
Choosing a power of two for the number of tabulated values enables division to be per-
formed by shifting. The removal of all tests, branches and functions from the procedure
allows full pipe-lining or vectorisation on processors with the appropriate architecture.

The influence of each of the approximations outlined above was tested using simulated
data generated from a known two-dimensional distribution.

Timing measurements in a production environment turned out to be heavily dependent
on the system load. While this effect is still under investigation, dividing the matrices into
blocks not only produced a further improvement due to better usage of the cache, but
also reduced the timing variations. This technique also removed the need for some large
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temporary matrices generated by the compiler.

All the optimizations have somewhat reduced the generality of the code, but the same
techniques can be easily applied to new rf voltage programmes. The necessary changes
are confined to a single subroutine in the tracking module:

SUBROUTINE longtrack(direction,nrep,yp,xp,turnnow)
USE nrstuff
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xp,yp
INTEGER :: i,nrep,direction,turnnow
INTEGER, PARAMETER :: nblock=100
INTEGER, PARAMETER :: steps=4*8192
REAL(SP), PARAMETER :: delta=twopi/steps
REAL(SP), PARAMETER :: deltareciproc=1.0_SP/delta
REAL(SP), DIMENSION(-steps+1:steps-1), SAVE :: sine
REAL(SP), SAVE :: hratiod
REAL(SP), DIMENSION(nblock) :: dphi,denergy
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: avrf1,avrf2
REAL(SP) :: ang1,ang2,s1,s2
INTEGER :: ind1,ind2
INTEGER :: t,j,j1,nleft,first
DATA first/1/
IF (first.EQ.1) THEN

first=0
ALLOCATE(avrf1(1:nrep),avrf2(1:nrep))
hratiod=hratio*deltareciproc
sine(0)= 0.0_SP
DO j=1,steps-1
sine(j)=SIN((j+0.5_SP)*delta)
sine(-j)=-sine(j)

ENDDO
ENDIF
t=turnnow
IF (direction.GT.0) THEN

DO i=1,nrep
avrf1(i)=q*(VRF1+VRF1dot*tatturn(t+i))
avrf2(i)=q*(VRF2+VRF2dot*tatturn(t+i))

END DO
DO j1=1,SIZE(xp),nblock
nleft=SIZE(xp)-j1+1
IF (nleft.gt.nblock) nleft=nblock
t=turnnow
DO j=1,nleft

dphi(j)=(xp(j1+j-1)+xorigin)*h*omegarev0(t)*&
dtbin-phi0(t)

denergy(j)=(yp(j1+j-1)-yat0)*dEbin
END DO
DO i=1,nrep

t=t+1
DO j=1,nleft
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dphi(j)=dphi(j)-c1(t-1)*denergy(j)
ang1=dphi(j)+phi0(t)
sine(0)=ang1
ind1=(deltareciproc*ang1)
ind1=ind1-(ind1/steps)*steps
s1=sine(ind1)
ang2=ang1-phi12
sine(0)=ang2
ind2=(hratiod*ang2)
ind2=ind2-(ind2/steps)*steps
s2=sine(ind2)
denergy(j)=denergy(j)+&
avrf1(i)*s1+avrf2(i)*s2-c2(t)

END DO
END DO
DO j=1,nleft

xp(j1+j-1)=(dphi(j)+phi0(t))/&
(h*omegarev0(t)*dtbin)-xorigin

yp(j1+j-1)=denergy(j)/dEbin+yat0
END DO

END DO
ELSE

DO i=1,nrep
avrf1(i)=q*(VRF1+VRF1dot*tatturn(t-i+1))
avrf2(i)=q*(VRF2+VRF2dot*tatturn(t-i+1))

END DO
DO j1=1,SIZE(xp),nblock
nleft=SIZE(xp)-j1+1
IF (nleft.gt.nblock) nleft=nblock
t=turnnow
DO j=1,nleft

dphi(j)=(xp(j1+j-1)+xorigin)*h*omegarev0(t)*&
dtbin-phi0(t)

denergy(j)=(yp(j1+j-1)-yat0)*dEbin
END DO
DO i=1,nrep

DO j=1,nleft
ang1=dphi(j)+phi0(t)
sine(0)=ang1
ind1=(deltareciproc*ang1)
ind1=ind1-(ind1/steps)*steps
s1=sine(ind1)
ang2=ang1-phi12
sine(0)=ang2
ind2=(hratiod*ang2)
ind2=ind2-(ind2/steps)*steps
s2=sine(ind2)
denergy(j)=denergy(j)-&
avrf1(i)*s1-avrf2(i)*s2+c2(t)
dphi(j)=dphi(j)+c1(t-1)*denergy(j)

END DO
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t=t-1
END DO
DO j=1,nleft

xp(j1+j-1)=(dphi(j)+phi0(t))/&
(h*omegarev0(t)*dtbin)-xorigin

yp(j1+j-1)=denergy(j)/dEbin+yat0
END DO

END DO
END IF
turnnow=t

END SUBROUTINE longtrack

4.4 Timing results for Digital Alpha and IBM Power PC

Timing results for different processors are shown in Tab. 1. Here, PPC refers to a 332 MHz
Model 43P-140 IBM Power PC, Alpha to a 500 MHz Digital EV56 Alpha Workstation
and Turbo to a 350 MHz Digital EV5 10 CPU Turbolaser. An overall speed-up by a factor
of more than two has been obtained. The largest gain was for the Power PC, where there
is presumably a greater imbalance between processor and memory speed. There are no
platform-specific optimizations other than compiler options.

Table 1: CPU time in seconds for the reconstruction of three well-resolved images using
different processors and different versions of the sine function.

Version Alpha Turbo PPC
Original F90 code (F90 fast library SIN) 475 655 1060
Optimized code 228 322 233

4.5 Parallelization

Although the optimizations described above have reduced the CPU time per call to the
tracking procedure to the order of one second, the use of multiple processors with HPF
directives and the parallel FORALL statement is still under study. A parallel version of
the code could provide the same performance at lower cost by using a dual or quadruple
CPU PC instead of a high performance workstation.

Since a large part of the execution time is spent in the longtrack subroutine, an HPF/F95
version of longtrack has been developed. First tests with this routine showed a speed-up
of two on a dual processor machine. The parallelized code follows:

SUBROUTINE longtrack(direction,nrep,yp,xp,turnnow)
USE nrstuff
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xp,yp
REAL(SP), DIMENSION(SIZE(xp)) :: dphi,denergy

!HPF$ distribute dphi(block)
!HPF$ align with dphi :: denergy
integer :: mm
INTEGER :: i,nrep,direction,turnnow
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dphi=(xp+xorigin)*omegarev0(turnnow)*h*dtbin-phi0(turnnow)
denergy=(yp-yat0)*dEbin
IF (direction.GE.0) THEN

DO i=1,nrep
forall(mm=1:size(xp)) dphi(mm)=dphi(mm)-c1(turnnow)*denergy(mm)
forall(mm=1:size(xp)) denergy(mm)=denergy(mm)+ &

( q*((VRF1+VRF1dot*tatturn(turnnow+1))* &
SIN(dphi(mm)+phi0(turnnow+1))+ &
(VRF2+VRF2dot*tatturn(turnnow+1))* &
SIN(hratio*(dphi(mm)+phi0(turnnow+1)-phi12)))- &

c2(turnnow+1) )
turnnow=turnnow+1

END DO
ELSE

DO i=1,nrep
forall(mm=1:size(xp)) denergy(mm)=denergy(mm)- &

( q*((VRF1+VRF1dot*tatturn(turnnow))* &
SIN(dphi(mm)+phi0(turnnow))+ &
(VRF2+VRF2dot*tatturn(turnnow))* &
SIN(hratio*(dphi(mm)+phi0(turnnow)-phi12))) )+ &

c2(turnnow)
forall(mm=1:size(xp)) dphi(mm)=dphi(mm)+c1(turnnow-1)*denergy(mm)
turnnow=turnnow-1

END DO
END IF
xp=(dphi+phi0(turnnow))/(h*omegarev0(turnnow)*dtbin)-xorigin
yp=denergy/dEbin+yat0

END SUBROUTINE longtrack

4.6 User interface

The present trend at CERN is towards a common control environment for all the accel-
erators with the console software written in Java communicating with the control system
through a Java Application Program Interface (API) [5]. The GUI for the tomography
program is presently being specified (see Fig. 5). The plan is to write the GUI and the
hardware interface in Java with the execution of the numerically demanding part of the
code in a parallel environment. The call to the parallel environment could be made us-
ing several different mechanisms, but the one presently favoured is through remote job
submission where the job is passed as well as the input and output data. The necessary
response time, defined as the time from the start of the measurement until the tomograph-
ically reconstructed image is visible on the screen, is set by the CERN machine cycle and
should ideally be of the order of 15 seconds for a well-resolved image.

4.7 Usage notes

Successful reconstruction requires that the measured data span an interval of the order
of at least half a synchrotron period. In addition, normalization requires that each profile
encompass the same number of particles. Together, these constraints suggest that no
particles exist outside the largest closed phase space trajectory that can be drawn inside
the image width. Consequently, in order to reduce computation time, map coefficients are
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only derived for those cells of the image that lie within this limiting trajectory at the
reconstruction time. The cells of interest can be further restricted to a range of columns
between upper and lower limits supplied as input parameters. This effectively declares the
profile bins that lie outside this range to be empty at the reconstruction time, although
they may well be populated at other times. In the event that the closed trajectory is too
restrictive to permit the reconstruction of the entire distribution, a flag may be set to
extend the region of interest up to a fixed off-energy limit for all columns in the specified
range. If this flag is not set and there is no second-harmonic rf component, the cell height
is chosen such that small-amplitude trajectories in the reconstructed image are circular.

Although a mechanism is provided to reconstruct at multiple time slices within the mea-
surement interval and hence produce an animation of phase space motion, the original
concept was to build a single “snapshot” of phase space from the information contained
in a brief span of data. In this spirit, the particle tracking is very elementary and the only
parameter variations considered are constant first-order time derivatives of the dipole
magnetic field and rf voltages.

5 CONCLUSIONS

An algorithm has been developed for longitudinal phase space tomography in which the
contents of the reconstructed array is effectively rotated instead of inclining profile bins
in order to make a projection. This allows a different mapping to be applied to each cell
in the array so that rigid, circular motion of the phase space distribution need not be
assumed.

Simulated proton data have shown the method to be both accurate and robust. Valuable
tomographic measurements have been made during machine experiments. The algorithm
is a hybrid one and, consequently, arbitrarily complex rf systems can be catered for by
modifying a small part of the code. Likewise the method may be extended to cover other
non-rigid bodies whose deformation is governed by a known model.

The recent advances with optimization of the numerical part of the code are very promis-
ing. It seems possible that a GUI in Java together with number crunching in parallel
structures will yield response times of less than one minute for a single image, making
on-line machine optimization with tomography possible.
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