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Abstract

In the context of the free–fermionic formulation of the heterotic superstring, we construct
a three generation N = 1 supersymmetric SU(4)×SU(2)L×SU(2)R model supplemented
by an SU(8) hidden gauge symmetry and five Abelian factors. The symmetry breaking to
the standard model is achieved using vacuum expectation values of a Higgs pair in (4, 2R)+
(4̄, 2R) at a high scale. One linear combination of the Abelian symmetries is anomalous
and is broken by vacuum expectation values of singlet fields along the flat directions of the
superpotential. All consistent string vacua of the model are completely classified by solving
the corresponding system of F− and D−flatness equations including non–renormalizable
terms up to sixth order. The requirement of existence of electroweak massless doublets
further restricts the phenomenologically viable vacua. The third generation fermions receive
masses from the tree–level superpotential. Further, a complete calculation of all non–
renormalizable fermion mass terms up to fifth order shows that in certain string vacua the
hierarchy of the fermion families is naturally obtained in the model as the second and third
generation fermions earn their mass from fourth and fifth order terms. Along certain flat
directions it is shown that the ratio of the SU(4) breaking scale and the reduced Planck
mass is equal to the up quark ratio mc/mt at the string scale. An additional prediction of
the model, is the existence of a U(1) symmetry carried by the fields of the hidden sector,
ensuring thus the stability of the lightest hidden state. It is proposed that the hidden states
may account for the invisible matter of the universe.
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1 Introduction

During the last decade, a lot of work has been devoted in the construction of effective low
energy models of elementary particles from the heterotic superstring. Several old successful
N = 1 supersymmetric grand unified theories (GUTs) have been recovered through the
string approach [1, 2, 3, 4, 5, 6], however only few of them were able to rederive a number
of successful predictions of their predecessors. Yet, new avenues and radical ideas that were
previously not considered or only poorly explored, have now been painstakingly investigated
in the context of string derived or even string inspired effective theories. Among them,
the issue of the additional U(1)–symmetries which naturally appear in string models and
the systematic derivation of non–renormalizable terms boosted our understanding of the
observed mass hierarchies and impelled people to systematically classify all possible textures
consistent with the low energy phenomenology. Further, new and astonishingly simpler
mechanisms of GUT symmetry breaking were introduced due to the absence of large Higgs
representations, at least in the simplest Kac–Moody level (k = 1) string constructions.

In addition to the above good omen, some embarrassing difficulties have also appeared,
such as the existence of unconfined fractionally charged states – which belong to repre-
sentations not incorporated in the usual GUTs – and the very high unification scale. The
new representations come as a result of the breaking of the large string symmetry via the
GSO projections. The appearance of such states are not necessarily an ominous warning
for a particular model, although a mechanism should be invented to make them disappear
from the light spectrum. The real major difficulty however, was the generic property of the
high string scale in contrast to the usual supersymmetric GUTs which unify at about two
orders of magnitude below the string mass. In the weakly coupled heterotic string theory,
this problem can find a solution in specific models, when extra matter multiplets exist to
properly modify the running of the gauge couplings, or possible intermediate symmetries
and string threshold effects [7] can help gauge couplings converge to their experimentally
determined values at low energies.

In this paper, we derive an improved version of a string model proposed in [5], based on
the observable gauge symmetry SO(6)× O(4) (isomorphic to SU(4) × SU(2)L × SU(2)R
Pati–Salam (PS) gauge group [8]) in the context of the free–fermionic formulation of the
four dimensional superstring. As shown in [4] this gauge symmetry breaks down to the
standard model without the use of the adjoint or any higher representation thus it can be
built directly at the k = 1 Kac–Moody level. (Higher Kac–Moody level models are also
possible to build, however, they imply small unification scale values of sin2 θW [9].)

The models based on the PS gauge symmetry have also certain phenomenological ad-
vantages. Among them, is the absence of coloured gauge fields mediating proton decay.
This fact allows for the possibility of having a low SU(4) breaking scale compared to that
of other GUTs, provided that the Higgs coloured fields do not have dangerous Yukawa cou-
plings with ordinary matter. Possible ways to avoid fast proton decay have been discussed
also recently in the literature [10].

Moreover, specific GUT relations among the Yukawa couplings, like the bottom–tau
equality, give successful predictions at low energies, while at the same time such relations
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reduce the number of arbitrary Yukawa couplings even in the field–theory version.

The above nice features are exhibited in the present string construction. Using a variant
of the original string basis and the GSO projection coefficients [5], we obtain an effective
field theory model with three generations and exactly one Higgs pair to break the SU(4)×
SU(2)R gauge symmetry. The effective low energy theory is the N = 1 supersymmetric
SU(3) × SU(2) × U(1) electroweak standard gauge symmetry broken to SU(3) × U(1)em
by the two Higgs doublet fields. We derive the complete massless spectrum of the model
and the Yukawa interactions including non–renormalizable terms up to sixth order. Among
the massless states, a mirror (half)–family is also obtained which acquires mass at a very
large scale. There are also singlet fields and exotic doublet representations with a sufficient
number of Yukawa couplings. All the observable and hidden fields appear with charges
under five surplus U(1) factors where one linear combination of them is anomalous. The
anomalous U(1) symmetry generates a D–term contribution, which can be cancelled if
some of the singlet fields acquire non–zero vacuum expectation values (vevs). To find the
true vacua, we solve the F− and D−flatness conditions and classify all possible solutions
involving observable fields with non–zero vevs. We analyze in detail three characteristic
cases where superpotential contributions up to sixth order suffice to provide fermion mass
terms for all generations. Phenomenologically interesting alternative solutions are also
proposed in the case where some of the hidden fields develop vevs too.

Among the novel features of the present model is the existence of a U(1) symmetry –
carried by hidden and exotic fields – which remains unbroken. As a consequence, the lightest
hidden state is stable. These states form various potential mass terms in the superpotential
of the model. In our analysis, we show the existence of proper flat directions where the
lightest state obtains a mass at an intermediate scale, leading to interesting cosmological
implications.

The paper is organized as follows: In Section 2 we give a brief description of the super-
symmetric version of the model and discuss various phenomenological features, including
the economical Higgs mechanism, the mass spectrum and the renormalization group. In
particular we show how the Pati–Salam symmetry dispenses with the use of Higgs fields in
the adjoint of SU(4) to break down to the standard model. In Section 3, we propose the
string basis as well as the GSO projections which yield the desired gauge symmetry and
the massless spectrum. In Section 4 the gauge symmetry breaking of the string version
is analyzed. Moreover, due to the existence of additional U(1) symmetries, the issue of
new (non–standard) hypercharge embeddings is discussed. Particular embeddings where
all fractionally charged states obtain integral charges are discussed in some detail. In Sec-
tion 5 we derive the superpotential couplings and present a preliminary phenomenological
analysis to set the low energy constraints and reduce the number of phenomenologically
acceptable string vacua. In Section 6 we classify all solutions of the F– and D–flatness
equations including non–renormalizable superpotential contributions up to sixth order. A
detailed phenomenological analysis of the promising string vacua in connection with their
low energy predictions is presented in Section 7. Particular attention is given in the dou-
blet higgs mass matrix, the fermion mass hierarchy and the colour triplet mass matrix.
In Section 8, we present a brief discussion on the role of the hidden sector and extend

2



the solutions of string vacua including hidden field vevs. Finally, in the Appendices A–D
we present tables with the complete string spectrum, details about the derivation of the
higher order non–renormalizable superpotential terms, the D– and F– flatness equations
with non-renormalizable contributions and the complete list of their tree–level solutions.

2 The Supersymmetric SU(4)× SO(4) Model

There is a minimal supersymmetric SU(4) × O(4) Model which can be considered as a
surrogate effective GUT of the possible viable string versions, incorporating all the basic
features of a phenomenologically viable string model. The Yukawa couplings are determined
by the Pati–Salam (PS) gauge symmetry and possible additional U(1)–family symmetries
which are usually added (as in any other GUT) by phenomenological requirements, (i.e.,
fermion mass hierarchy, proton stability etc). This GUT version, however, provides us
with insight in constructing the fully realistic string version. Therefore, here we briefly
summarize the parts of the model relevant for our analysis [4]. The gauge group is SU(4)×
O(4), or equivalently the PS gauge symmetry [8]

SU(4)× SU(2)L × SU(2)R. (1)

The left–handed quarks and leptons are accommodated in the following representations,

F iαa
L = (4, 2, 1) =

(
uα ν
dα e

)i
(2)

F̄ i
xαR = (4̄, 1, 2) =

(
dcα ec

ucα νc

)i
(3)

where α = 1, . . . , 4 is an SU(4) index, a, x = 1, 2 are SU(2)L,R indices, and i = 1, 2, 3 is a
family index. The Higgs fields are contained in the following representations,

hxa = (1, 2, 2) =

(
h+

u h0
d

h0
u h−

d

)
(4)

where hd and hu are the low energy Higgs superfields associated with the minimal super-
symmetric standard model (MSSM). The two ‘GUT’ breaking higgs representations are

Hαb = (4, 1, 2) =

(
uαH νH
dαH eH

)
(5)

and

H̄αx = (4̄, 1, 2) =

(
ucαH ecH
ucαH νcH

)
. (6)

Fermion generation multiplets transform to each other under the changes 4 → 4̄ and
2L → 2R while the bidoublet higgs multiplet transforms to itself. However, the pair of
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fourplet–higgs fields does not have this property, discriminating 2L and 2R. Thus, when
they develop vevs along their neutral components ν̃H , ν̃

c
H ,

〈H〉 = 〈ν̃H〉 ∼MGUT , 〈H̄〉 = 〈ν̃cH〉 ∼MGUT (7)

they break the SU(4) × SU(2)R part of the gauge group, leading to the standard model
symmetry at MGUT

SU(4)× SU(2)L × SU(2)R −→ SU(3)C × SU(2)L ×U(1)Y . (8)

Under the symmetry breaking in Eq. (8), the bidoublet Higgs field h in Eq. (4) splits into
two Higgs doublets hu, hd whose neutral components subsequently develop weak scale vevs,

〈hd0〉 = v1, 〈hu0〉 = v2 (9)

with tan β ≡ v2/v1.

In addition to the Higgs fields in Eqs. (5),(6) the model also involves an SU(4) sextet
field D = (6, 1, 1) and four singlets φ0 and ϕi, i = 1, 2, 3. φ0 is going to acquire a vev
of the order of the electroweak scale in order to realize the Higgs doublet mixing, while
ϕi will participate in an extended ‘see–saw’ mechanism to obtain light majorana masses
for the left–handed neutrinos. Under the symmetry property ϕ1,2,3 → (−1) × ϕ1,2,3 and
H(H̄) → (−1) ×H(H̄) the tree–level mass terms of the superpotential of the model read
[4]:

W = λij1 FiLF̄jRh+ λ2HHD + λ3H̄H̄D + λij4 HF̄jRϕi + µϕiϕj + µhh (10)

where µ = 〈φ0〉 ∼ O(mW ). The last term generates the higgs mixing between the two SM
Higgs doublets in order to prevent the appearance of a massless electroweak axion. The
following decompositions take place under the symmetry breaking (8):

FL(4, 2, 1) → Q(3, 2,−1

6
) + `(1, 2,

1

2
)

F̄R(4̄, 1, 2) → uc(3̄, 1,
2

3
) + dc(3̄, 1,−1

3
) + νc(1, 1, 0) + ec(1, 1,−1)

H̄(4̄, 1, 2) → ucH(3̄, 1,
2

3
) + dcH(3̄, 1,−1

3
) + νcH(1, 1, 0) + ecH(1, 1,−1)

H(4, 1, 2) → uH(3, 1,−2

3
) + dH(3, 1,

1

3
) + νH(1, 1, 0) + eH(1, 1, 1)

D(6, 1, 1) → D3(3, 1,
1

3
) + D̄3(3̄, 1,−1

3
)

h(1, 2, 2) → hd(1, 2,
1

2
) + hu(1, 2,−1

2
)

where the fields on the left appear with their quantum numbers under the PS gauge sym-
metry, while the fields on the right are shown with their quantum numbers under the SM
symmetry.

The superpotential Eq. (10) leads to the following neutrino mass matrix [4]

Mν,νc,ϕ =

 0 mij
u 0

mji
u 0 MGUT

0 MGUT µ

 (11)
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in the basis (νi, ν
c
j , ϕk). Diagonalization of the above gives three light neutrinos with masses

of the order µ(mij
u /MGUT )2 as required by the low energy data, and leaves right–handed

majorana neutrinos with masses of the order MGUT . Additional terms not included in
Eq. (10) may be forbidden by imposing suitable discrete or continuous symmetries [11, 12]
which, in fact, mimic the role of various U(1) factors and string selection rules appearing in
realistic string models. The sextet field D(6, 1, 1) carries colour, while after the symmetry
breaking it decomposes in a triplet/triplet–bar pair with the same quantum numbers of
the down quarks. Now, the terms in Eq. (10) HHD and H̄H̄D combine the uneaten
(down quark–type) colour triplet parts of H , H̄ with those of the sextet D into acceptable
GUT–scale mass terms [4]. When the H fields attain their vevs at MGUT ∼ 1016 GeV,
the superpotential of Eq. (10) reduces to that of the MSSM augmented by right-handed
neutrinos. Below MGUT the part of the superpotential involving matter superfields is just

W = λijUQiu
c
jh2 + λijDQid

c
jh1n+ λijE`ie

c
jh1 + λijNLiν

c
jh2 + · · · (12)

The Yukawa couplings in Eq. (12) satisfy the boundary conditions

λij1 (MGUT ) ≡ λijU (MGUT ) = λijD(MGUT ) = λijE(MGUT ) = λijN(MGUT ). (13)

Thus, Eq. (13) retains the successful relation mτ = mb at MGUT . Moreover from the
relation λijU (MGUT ) = λijN(MGUT ), and the fourth term in Eq. (10), through the see–saw
mechanism we obtain light neutrino masses which satisfy the experimental limits. The U(1)
symmetries imposed by hand in this simple construction play the role of family symmetries
U(1)A, broken at a scale MA > MGUT by the vevs of two SU(4)×O(4) singlets θ, θ̄, carrying
charge under the family symmetries and leading to operators of the form

Oij ∼ (FiF̄j)h

(
HH̄

M2

)r (
θnθ̄m

M ′n+m

)
+ h.c. (14)

obtained from non–renormalizable (NR) contributions to the superpotential. Here, M ′

represents a high scale M ′ > MGUT which may be identified either with the U(1)A breaking
scale MA or with the string scale Mstring. Such terms have the task of filling in the entries
of fermion mass matrices, creating textures with a hierarchical mass spectrum and mixing
effects between the fermion generations.

Before we proceed to the construction of a particular string model let us examine how
a three–generation SU(4)× SU(2)L × SU(2)R model can be realized. As we have already
explained the fermion generations are accommodated in FL(4, 2, 1) + F̄R(4̄, 1, 2) while
the Higgs fields are accommodated in FR(4, 1, 2) + F̄R(4̄, 1, 2) representations. In the
free–fermionic formulation the SU(2)L × SU(2)R is realized as O(4) and the 2L and 2R
representations are the two spinor representations (2±) of O(4). Calling n+, n−, n̄+, n̄− the
number of (4, 2+), (4, 2−),(4̄, 2+) and (4̄, 2−) representations we come to the conclusion
that one minimal three generation model is obtained for

~nmin = (n+, n−, n̄+, n̄−) = (3, 1, 0, 4)

where 2L is identified with 2+. A mirror minimal model can be obtained by interchanging
the two SU(2)’s, i.e. L↔ R, and identifying 2+ ∼ 2R

~nmin = (n+, n−, n̄+, n̄−) = (1, 3, 4, 0).
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Furthermore, one can consider the existence of vector–like states that do not affect the
net number of generations since, in principle they can obtain superheavy masses. Thus a
general three–generation SU(4)×SU(2)L×SU(2)R model corresponds to one the following
vectors

~nrs = (n+, n−, n̄+, n̄−) = (3 + r, 1 + s, r, 4 + s) , r, s = 0, 1, . . .

or
~nrs = (n+, n−, n̄+, n̄−) = (1 + s, 3 + r, 4 + s, r) , r, s = 0, 1, . . .

We can rewrite the above relations in a more compact form

n+ + n− = n̄+ + n̄− = 4 + p, p = 0, 1, 2, . . .

n+ − n̄+ = n̄− − n− = ±3 (15)

Thus, there exist an infinity of three–generation SU(4)×O(4) ∼ SU(4)×SU(2)L×SU(2)R
models each of them uniquely characterized by an integer (p) related to the differences (15)
and a sign (±). We will therefore refer to a particular model using the notation k± that is
the two minimal models will be referred as 0+ and 0−.

As stressed in the introduction, one severe problem that has to be resolved in a candidate
string model is the discrepancy between the unification scale as this is found when the
minimal supersymmetric spectrum is considered, and the two orders higher string scale
implied by theoretical calculations. In previous works, it was shown that this difficulty
may be overcome in several ways [13, 14]. In particular, the class of string models as that
of Ref. [5] predict additional matter fields which can help the couplings merge at the high
string scale without disturbing the low energy values of sin2 θW and αs. Perhaps the most
elegant way to achieve this, is to make the couplings run closely from the string to the
phenomenological unification scale MU ∼ 1016GeV. As a first step one may add the mirror
fields [14]

M = (4, 2, 1); M̄ = (4̄, 2, 1) (16)

which guarantee the equality of the SU(2)L and SU(2)R gauge couplings gL = gR between
the two scales. According to the classification proposed to the previous paragraph, this
model is classified as 1+ or 1−. The running of the SU(4) coupling can be adjusted by
an additional number of extra colour sextets which are in general available in the string
versions of the present model. Indeed, with three generations and denoting collectively the
number of fourplet sets with n4 the beta functions now become

b2L ≡ b2R = −1− 4n4; b4 = 6− n6 − 4n4 (17)

which show that a sufficient number of sextet fields may guarantee a g4 running almost
identical with that of gL,R. The string model we are proposing in the next section has
exactly one mirror pair and four sextet fields, whereas additional exotic states may also
contribute to the beta functions if they remain in the light spectrum.

The introduction of the mirror representations (16) leads to the existence of another
symmetry in the model: we observe that the whole spectrum now is completely symmetric
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with respect to the two SU(2)’s in the sense that under the simultaneous change 2L ↔ 2R
and the 4 ↔ 4̄ of SU(4), it remains invariant. More precisely, under this symmetry the
representations of the model are mapped as follows

F̄R ↔ FL

H, H̄ ↔ M̄,M (18)

D, h, φi ↔ D, h, φi

This symmetry persists also in the present string model, while tree–level as well as higher
order Yukawa interactions are also invariant under these changes. As we will see, this
symmetry is broken by the vacuum which will be determined by the specific solutions of
the flatness conditions.

After the above short description, we are ready to present the string derived model
where most of the above features appear naturally. In addition, novel predictions will
emerge such as the appearance of exotic states with charges which are fractions of those of
ordinary quarks and leptons, a hidden ‘world’ and a low energy U(1) symmetry.

3 The String Model

In the four dimensional free–fermionic formulation of the heterotic superstring, fermionic
degrees of freedom on the world sheet are introduced to cancel the conformal anomaly. The
right–moving non–supersymmetric sector in the light–cone gauge contains the two trans-
verse space–time bosonic coordinates X̄µ and 44 free fermions. The supersymmetric left
moving sector, in addition to the space–time bosons Xµ and their fermionic superpartners
ψµ includes also 18 real free fermions χI , yI , ωI (I = 1, ..., 6) among which supersymmetry
is non–linearly realized. The world–sheet supercurrent is

TF = ψµ∂Xµ +
∑
I

χI yIωI (19)

Then, the theory is invariant under infinitesimal super–reparametrizations of the world–
sheet as the conformal anomaly cancels separately in each sector. Each world–sheet
fermion fi is allowed to pick up a phase αfi

ε(−1, 1] under parallel transport around a
non–contractible loop of the world–sheet

fi → −eıπαfifi (20)

A spin structure is then defined as a specific set of phases for all world–sheet fermions,

α = [αfr
1
, αfr

2
, . . . , αfr

k
;αfc

1
, αfc

2
, . . . , αfc

l
] (21)

where r stands for real, c for complex and k + 2l = 64. For real fermions the phases αfr
i

have to be integers while αψµ is independent of the space–time index µ.

The partition function is then defined as a sum over a set of spin structures (Ξ)

Z(τ) ∝ ∑
α,β∈Ξ

c

(
α
β

)
Z

(
α
β

)
, (22)
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where Z
(
α
β

)
is the contribution of the sector with boundary conditions α, β along the two

non–contractible circles of the torus and c
(
α
β

)
a phase related to the GSO projection. Both

Ξ and c
(
α
β

)
are subject to string constraints which guarantee the consistency of the theory.

A string model in the context of free fermionic formulation of the four–dimensional
superstring is constructed by specifying a set of n basis vectors 1 (b0 = 1, b1, b2, . . . , bn−1)

of the form (21) (which generate Ξ =
∑
imibi) and a set of n(n−1)

2
+ 1 independent phases

c
(
bi
bj

)
. Once a consistent set of basis vectors and a choice of projection coefficients is

made, the gauge symmetry, the massless spectrum and the superpotential of the theory
are completely determined. In particular, the massless states of a certain sector α =
(αL;αR) ∈ Ξ are obtained by acting on the vacuum |0〉α with the bosonic and fermionic
mode operators. The massless states (M2

L = M2
R = 0) are found by the Virassoro mass

formula

M2
L = −1

2
+
αL · αL

8
+
∑
f

frequencies

M2
R = −1 +

αR · αR
8

+
∑
f

frequencies

where the sum is over the oscillator frequencies

νf =
1 + αfi

2
+ integer, νf∗ =

1− αfi

2
+ integer (23)

The physical states are obtained after the application of the GSO projections demanding(
eıπbiFα − δαc

∗
(
α

bi

))
|physical state〉α = 0 (24)

where δα = −1 if ψµ is periodic in the sector α and δα = +1 when ψµ is antiperiodic. The
operator biFα is

biFα =

 ∑
f∈left

− ∑
f∈right

 bi(f)Fα(f) (25)

where Fα(f) is the fermion number operator counting each fermion mode f once and its
complex conjugate f ∗ minus once. It should be remarked that in the sector where all the
fermions are antiperiodic there is always a state |µ, ν〉 = Ψµ

−1/2(∂X)ν−1 |0〉0 which survives
all projections and includes the graviton, the dilaton and the two–index antisymmetric
tensor.

The present string model is defined in terms of nine basis vectors {S, b1, b2, b3, b4, b5, b6, α,
ζ} and a suitable choice of the GSO projection coefficient matrix. The resulting gauge group
has a Pati–Salam (SU(4)× SU(2)L× SU(2)R) non–Abelian observable part, accompanied

1By 1 we denote the vector where all fermions are periodic.
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by four Abelian (U(1)) factors and a hidden SU(8) × U(1)′ symmetry. The nine basis
vectors are the following

ζ = { ; Φ̄1...8}
S = {ψµ, χ1...6, ; }
b1 = {ψµ, χ12, (yȳ)3456, ; Ψ̄1...5, η̄1}
b2 = {ψµ, χ34, (yȳ)12, (ωω̄)56 ; Ψ̄1...5, η̄2}
b3 = {ψµ, χ56, (ωω̄)1234 ; Ψ̄1...5, η̄3}
b4 = {ψµ, χ12, (yȳ)36, (ωω̄)45 ; Ψ̄1...5, η̄1}
b5 = {ψµ, χ34, (yȳ)26, (ωω̄)15 ; Ψ̄1...5, η̄2}
b6 = { ; Ψ̄1...5, η̄123, Φ̄1...4}
α = { (yȳ)36, (ωω̄)36ω̄24 ; Ψ̄123, η̄23, Φ̄45}

(26)

The specific projection coefficients we are using are given in terms of the exponent coeffi-
cients cij in the following matrix

cij =



z S b1 b2 b3 b4 b5 b6 α

z 1 1 1 1 1 1 1 0 0
S 1 0 0 0 0 0 0 1 1
b1 1 1 1 1 1 1 1 1 1
b2 1 1 1 1 1 1 1 1 1
b3 1 1 1 1 1 1 1 1 1
b4 1 1 1 1 1 1 1 1 1
b5 1 1 1 1 1 1 1 1 0
b6 0 1 0 0 0 0 0 0 0
α 1 1 1 1 1 1 0 1 1


(27)

where the relation of cij with c(bi, bj) is

c

(
bi
bj

)
= eıπcij

All world–sheet fermions appearing in the vectors of the above basis are assumed to have pe-
riodic boundary conditions. Those not appearing in each vector are taken with antiperiodic
ones. We follow the standard notation used in references [3, 5]. Thus, ψµ, χ1...6, (y/ω)1...6 are
real left, (ȳ/ω̄)1...6 are real right, and Ψ̄1...5η̄123Φ̄1...8 are complex right world sheet fermions.
In the above, 1 = b1 + b2 + b3 + ζ and the basis element S plays the role of the supersym-
metry generator as it includes exactly eight left movers. Further, b1,2,3 elements reduce the
N = 4 supersymmetries into N = 1, while the initial O(44) symmetry of the right–moving
sector results to an observable SO(10) × SO(6) gauge group at this stage. The SO(10)
part corresponds to the five Ψ̄1...5 complex world sheet fermions while all chiral families at
this stage belong to the 16 representation of the SO(10). Vectors b4,5 reduce further the
symmetry of the left moving sector, while the introduction of the vector b6 deals with the
hidden part of the symmetry. Finally, the choice of the vector α determines the final gauge
symmetry (observable and hidden sector) of the model which is

SU(4)× O(4)× U(1)4 × {U(1)′ × SU(8)}hidden. (28)
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The observable gauge group consists of the non–Abelian SO(6) × O(4) symmetry which
is isomorphic to the left–right Pati–Salam symmetry [8]. There are also four U(1)i=1,...,4

factors related to η̄1,2,3-complex and the ω̄24-real pair of world–sheet fermions of the right–
moving sector. All the superfields of the observable sector carry non–zero charges under
these four U(1) symmetries. Therefore, the latter are expected to play a very important
role in the determination of the Yukawa couplings, the fermion mass textures, R-parity
violation and in general in all types of Yukawa interactions of the model. We note here
that the observable fields do not carry charges under U(1)′.

The Abelian part of the group deserves a separate treatment since this class of models
in general possess U(1) symmetries which are anomalous. Indeed, while we find two of
the U(1) factors to be traceless TrU(1)1 = TrU(1)′ = 0, the other three are traceful, with
TrU(1)2 = TrU(1)3 = TrU(1)4 = 24. However, the U(1) charges can be defined in such a
way that only one combination is anomalous. Indeed, the linear combination

U(1)A = U(1)2 + U(1)3 + U(1)4, (29)

has TrŨ(1)A = 72, while there are other three combinations orthogonal to the one above,
which are free of gauge and gravitational anomalies. These are,

Ũ(1)1 = U(1)1

Ũ(1)2 = U(1)2 − U(1)3 (30)

Ũ(1)2 = U(1)2 + U(1)3 − 2U(1)4.

The choice of the projection coefficients shown in (27) has led to the desired three
generation model as well as some refinements of the previously proposed theory [5] which
are phenomenologically appealing and deserve some discussion. The most important are,
the new Yukawa couplings which give fermions masses, the mirror symmetry of the massless
spectrum and the number of SU(4) Higgs multiplets.

We start with the enumeration of representations candidates for families and SU(4)×
SU(2)R breaking Higgs fields as they appear in Appendix A. We first note that due to
the presence of the various U(1)-factors, there is an arbitrariness in the embedding of the
electromagnetic charge operator. We will discuss this in detail in the end of this section,
however, to start with, we assume first the simplest case where U(1)em is defined in the
standard way, (as in the original PS–symmetry), i.e:

Y =
1√
6
T4 +

1

2
TL +

1

2
TR (31)

where T6, TL, TR are the diagonal SU(4), SU(2)L and SU(2)R generators respectively. Then,
the massless spectrum is classified with respect to its group properties as follows:

• There are three copies of [(4, 2, 1) + (4̄, 1, 2)] representations, available to accommo-
date the three generations.

• There is one [(4̄, 1, 2)+(4, 1, 2)] pair which is interpreted as the Higgs pair triggering
the SU(4)× SU(2)R breaking.
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• One pair [(4, 2, 1) + (4̄, 2, 1)], (mirror to each other) replaces the second Higgs pair
of the old string version [5]. Clearly, since there are no mirror families observed in
the light spectrum, they should decouple at some high scale by forming a heavy mass
state.

• There are a large number of singlet fields with zero electric charge, while carrying
quantum numbers under the four U(1) factors. In the determination of the flat
directions of the model, their vevs have to be chosen in such a way so as to cancel the
D–term. These singlets couple to ordinary matter via superpotential terms. When
they develop vevs along certain flat directions they may create a hierarchical fermion
mass spectrum through non–renormalizable couplings.

• There are eight hidden SU(8)-octet and octet–bar superfields (charged under the
U(1)4 × U(1)′), which are also neutral under the usual charge definition. They can
also acquire non–zero vevs leading to additional mass terms for ordinary or exotic
matter fields.

• The exotic states of the model fall into two categories:
i) There are two SU(4) fourplets H4 = (4, 1, 1), H̄4 = (4̄, 1, 1). After the symmetry
breaking, they result to a 3 and 3̄ pair with charges ±1

6
respectively and two singlets

with charges ±1
2
.

ii) The second kind of exotic fields includes ten left–handed doublets XiL and an
equal number of right–handed ones XiR with charges ±1

2
. The presence of exotic

particles in the massless spectrum of the theory is a generic feature of level k = 1
string constructions. Such states in general, are regarded as string models’ “Achilles
heel” since it is likely that they remain in the light spectrum down to the electroweak
scale. There are mainly three solutions to this problem : first, one may choose a
suitable flat direction where all of them become massive at a relatively large scale; as
a second possibility, one can properly modify the string boundary conditions on the
basis vectors, so that these states appear with non–trivial transformation properties
under a hidden non–Abelian group. In this latter case the exotic states are confined at
the scale where the gauge coupling of the hidden group becomes strong [15]. Clearly,
for a given number of matter representations, the higher the rank of the group, the
larger the confinement scale. As a third possibility, one may consider the modification
of the charge operator (31) by the inclusion of additional U(1) factors. In the present
construction, we will discuss in some detail the last two possibilities. Later, we will
give a brief account for their possible relevance on recent cosmological observations.

Let us point out here that the observable spectrum of the model respects the symmetry
discussed in Section 2 with respect to the simultaneous interchanges 2L ↔ 2R and 4 ↔ 4̄.
In particular, left handed generation superfields are interchanged with right handed ones,
while there is a similar change of roles of the SU(4) higgs and mirrors. We will also see in
the following sections that the tree–level and higher order Yukawa interactions remain also
unaltered under the above interchanges. The above symmetry is broken however, by the
vacuum when consistent F– and D–flatness solutions are found. We will discuss this when
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the superpotential of the theory is presented and the corresponding flatness conditions are
derived in the next sections.

4 Symmetry breaking and hypercharge embedding in

the string model.

We will discuss now two related issues, the gauge symmetry breaking pattern and the
various consistent embeddings of the weak hypercharge. After defining the consistent set
of boundary conditions (26) described previously, one is left with an effective theory based
on the symmetry (28) with the following general characteristics. There is an effective
unification scale, namely the string scale Mstring, where all couplings – up to threshold
corrections – attain a common value. At this point one is left with an effective N = 1
supergravity theory while the gauge group structure is of the form G =

∏
nGn, containing

an ‘observable’ and a ‘hidden’ part. The two worlds are not completely decoupled. Hidden
and observable fields are charged under five Abelian factors. The first symmetry breaking
occurs when some of the singlet fields acquire vevs to cancel the D–term. Depending of
the choice of the singlet vevs several (at most four) of the above U(1)’s break, the natural
breaking scale MA being of the order of the D−term, i.e,

MA ∼
√
ξ

=

√
TrQA

192

gstring
π

MP l =

√
3

2π
gstringMP l (32)

where TrQA = 72 is the trace of the anomalous U(1)A and MP l ≈ 4.2 × 1018GeV is the
reduced Planck mass. We note here that, if only the singlets were allowed to obtain a non–
vanishing vev, at most four of the U(1)’s break; no singlet is charged under the Abelian
symmetry U(1)′ which remains unbroken at this stage. The observable part SU(4) ×
SU(2)L × SU(2)R has a rank larger than that of the MSSM symmetry, which breaks
down to the SM–gauge group at an intermediate scale MGUT , usually some two orders of
magnitude below the string scale. The breaking occurs in the way described in Section
2. The necessity of the SU(4) × SU(2)R symmetry breaking together with the D− and
F–flatness conditions require at least two of the U(1) factors to break at a high scale.

There is finally the hidden SU(8) part. This symmetry stays intact, as long as the 8
and 8 fields do not acquire vevs. Note also that the octets are charged under U(1)′. In
many flat directions which will be discussed subsequently, phenomenological requirements
force some of the octets to obtain vevs and the symmetry SU(8)×U(1)′ breaks to a smaller
one. Now, a crucial observation (see the relevant Table in the Appendix A) is that all 8’s
come with U(1)′ positive charge (+1) whilst all 8’s appear with the opposite (−1) charge.
It is easy to show then, that, no matter how many of the available octet fields receive a
non–zero vev, there is always a U(1)′′ unbroken which is a linear combination of the U(1)′

and one of the generators of the SU(8). Therefore, the hidden matter conserves a new
U(1)′′ symmetry which stays unbroken down to low energies. Its cosmological implications
will be discussed in a subsequent section.
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ω sin2 θW
0 3

8

1 3
22

Table 1: The values of the weak mixing angle at the Unification scale, for two definitions
of the weak hypercharge. In the second case, an additional U(1)-factor is assumed.

We turn now our discussion to the hypercharge embedding. As mentioned above, due
to the appearance of extra U(1)–factors, the hypercharge generator is not uniquely de-
termined. It can be any linear combination of the U(1)B−L the five available U(1)’s of
the model and possible unbroken generators of the hidden gauge symmetry, provided the
minimal supersymmetric low energy particle spectrum is generated. The standard weak
hypercharge assignment – as this is defined in the original PS–symmetry – does not in-
volve any of the surplus U(1) factors discussed above. It is solely determined in the usual
sense from the diagonal generators of the PS–symmetry as in (31). Under this definition
in addition to the representations accommodating the MSSM–fields, the states found in
(4, 1, 1) + (4̄, 1, 1) and (1, 1, 2) + (1, 2, 1) representations obtain the exotic charges dis-
cussed above, while they are rather unusual in the grand unified models.

We will discuss here in some detail another possible definition of the hypercharge oper-
ator which is obtained by including the U(1)′-generator:

Y ′ =
1√
6
T4 +

1

2
TL +

1

2
TR − ω

2
Q′ (33)

where Q′ is related to the U(1)′ charge of the particular massless state and ω is the appro-
priate normalization constant. Choosing for example ω = 1, all extra doublets XL,R obtain
integral charges (±1, 0). On the other hand, this new embedding leads to the normalization
of the hypercharge generator

k =
5 + 12ω2

3
. (34)

The value of the weak mixing angle at Mstring is sin2 θW (Mstring) = 1
1+k

. Its values for

the two lower ω’s are given in Table 1. For ω = 0, we obtain the standard GUT sin2 θW
prediction but the exotic states have fractional charges, whereas for ω = 1 theXL,R doublets
as well as the (4, 1, 1) and (4̄, 1, 1) representations, obtain charges like those of the ordinary
down quarks and leptons. It should not escape our attention that in this new hypercharge
definition Y ′ the octet fields now appear with fractional charges ±1/2. This is not however
a real problem. The coupling of the SU(8) group becomes strong at a high scale, leading
to a confinement (in close analogy with QCD), and forcing the octets to form bound
states with the corresponding octet–bar fields. We should note here that this situation
opens up the possibility of giving vevs to these condensates at a smaller scale and create
new mass terms for the ordinary matter through their superpotential couplings. The new
hypercharge definition predicts a low value for the weak mixing angle which is essentially
the value obtained in a Kac–Moody level k = 2 string construction [9]. Starting however,
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from such a small initial value for sin2 θW at Mstring, there is no obvious way how the larger
low energy value can be obtained in this case.

Let us close this section with a short comment on one more possibility of symmetry
breaking. One can give vevs directly to the exotic SU(2)R-doublet fields XiR. (Both
their components are charged (Qem = ±1/2) under the standard hypercharge assignment
(31)). The vev should be taken along the neutral direction defined by the proper linear
combination. This will essentially lead to a definition of the hypercharge as in the case of
ω = 1. However, this approach has the advantage that the small initial value of sin2 θW is
defined now at the SU(2)R-breaking scale which can be taken to be much lower that the
string scale. This case requires a separate treatment since there are new fields entering the
flatness conditions while new mass terms appear in the superpotential. Moreover, exotic
doublets now look like the ordinary electron doublets while far reaching phenomenological
implications appear.

5 The Superpotential of the string version.

We proceed now to the calculation of the perturbative superpotential. Clearly, the number
of fields in the string version is significantly larger than those of its surrogate GUT discussed
in Section 2. In fact, in the model of Section 2, the construction of the superpotential was
rather easy since only gauge symmetries had to be respected. Here, however, not all gauge
invariant terms are allowed; additional restrictions from world–sheet symmetries have to be
taken into account since they eliminate a large portion of the gauge invariant superpotential
terms. A short description of the calculation [16, 17] of the renormalizable as well as the
non–renormalizable superpotential terms is given in the Appendix B.

The tree–level superpotential is

W3

g
√

2
=

F 5RF4Lh4 + F 3RF3Lh2 +
1√
2
F 5LF4Lζ2 +

1√
2
F 5RF4Rζ3 +

+ F 5LF 5LD4 + F4LF4LD1 + F2LF2LD2 + F1LF1LD1 + F1LH4X7L +

+ F 1RF 1RD1 + F4RF4RD3 + F 2RF 2RD2 + F 5RF 5RD2 + F 2RH4X3R +

+
1

2
Φ2

(
ζiζ i + ξiξi + h3h4 +H4H4

)
+ Φ4

(
ζ1ζ3 + ζ3ζ1

)
+ Φ5

(
ζ2ζ4 + ζ4ζ2

)
+D1D2Φ12 +D1D4Φ

−
12 +D2D3Φ

−
12 +D3D4Φ12

+ h2ξ1h4 + h2ξ4h3 + h2X10LX10R + h1ξ1h3 + h1ξ4h4 + h1X9LX9R

+ Φ12

(
ξ4ξ1 + h3h3 + Z3Z3

)
+ Φ

−
12

(
ζ iζ i + ξ3ξ2 +X9RX10R

)
+ Φ−

12

(
ζiζi + ξ2ξ3 +X9LX10L

)
+ Φ12ξ1ξ4 + Φ12h4h4 +

+
1√
2

(
ζ1X1RX6R + ζ3Z4Z5 + ζ4X2RX5R + ζ2Z5Z4 + ζ4X1LX6L + ζ1X2LX5L

)
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+ ξ1Z5Z5 + ξ2X2RX6R + ξ2X1LX5L + h3X2RX5L + h4X1LX6R . (35)

The fourth order superpotential terms are

w4 = F 5LF4LX1LX6L + F 5LF3LZ3Z4 + F 5LF1LX4LX6L + F 5RF4RX1RX6R +

F4RF 3RZ3Z4 + F4RF 2RX1RX8R + F 2RF2Lζ4h4 + F 1RF1Lζ1h4 +

ζ1ξ1Z1Z1 + ζ2h4X8LX8R + ζ2ξ3X7RX8R + ζ2ξ2X7LX8L +

ζ2h3X7LX7R + ζ2ξ2X7RX8R + ζ2ξ3X7LX8L + ζ3h3X3LX3R +

ζ3ξ3X3RX4R + ζ3ξ2X3LX4L + ζ3h4X4LX4R + ζ3ξ2X3RX4R +

ζ3ξ3X3LX4L + ζ4ξ1Z2Z2 + Z1Z4X3RX5R + Z2Z4X2LX7L +

Z4Z5X2LX5L + Z5Z4X2RX5R +X3LX4RX10LX9R +X4LX3RX9LX10R +

X1LX2RX9LX10R +X2LX1RX9LX10R +X5LX6RX10LX9R +

X6LX5RX10LX9R +X7LX8RX10LX9R +X8LX7RX9LX10R , (36)

where in each terms an O(1)g/MP l multiplicative factor. Higher order terms up to sixth
order have been also calculated and are presented in the Appendix B.

Having obtained the spectrum of the model, as well as the available superpotential
terms, we need to determine the vacuum of our theory, by making an appropriate choice
of the vacuum expectation values of the Higgs fields (fourplets, bidoublets and a sufficient
number of singlets) and possibly some of the hidden SU(8) multiplets. All these choices
should be consistent with the D− and F− flatness conditions. A complete account of all
possible solutions of these conditions will be given subsequently, however, not all of those
solutions are satisfactory from the phenomenological point of view. A final conclusion
about the viability of a certain flat direction however cannot be drawn before adequately
high order NR–terms are taken into account. There are two main reasons for this: first, it is
possible that a particular viable flat direction at a certain order, is destroyed when higher
order NR–terms are included in the calculation. Second, even if a phenomenologically
promising flat direction can be proven to persist at higher orders, it is possible that the new
NR superpotential terms create undesired mass terms. For example, a usual phenomenon
is that they fill in many entries in the Higgs mass matrix, so it is possible that there is
no massless higgs left to break the symmetry. As a consequence, one may have further
constraints on the particular flat direction by forcing some additional fields to obtain a
zero vev. This will be discussed in a subsequent section.

From the above remarks, it is evident that the right choice of the vacuum of the model is
not an easy task. In the next section our endeavor will be concentrated in the classification
of all flat directions and their relevance to the low energy phenomenological expectations.
It is useful therefore, in order to pin down the few promising vacua from the hundreds
of available solutions, to summarize the basic observations which will help us to complete
this task. This will enable us to determine the right flat direction and choose those singlet
(and possibly hidden) field vevs that guarantee a successful description of the low energy
phenomenological theory.

• We start with the Higgs mechanism; we first observe that there is only one pair
of Higgs fields available to break SU(4) symmetry, namely the fourplet F4R and
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in general one linear combination of the fields F̄1,2,3,5. Thus, in order to keep F4R

massless and prevent a mass term through the tree–level coupling F4RF̄5Rζ̄3, we need
to impose 〈ζ̄3〉 = 0.

• In addition to the three generations expected to appear at low energies, the model
predicts also the existence of one additional (4, 2, 1) representation plus its mirror
F̄5L = (4̄, 2, 1). Since no mirror families appear in the low energy spectrum, we need a
mass term of the form 〈χi〉FiLF̄5L (where χi some of the singlets with non–zero vevs)
to give a heavy mass to the mirror F̄5L. A candidate term could be ζ2F̄5LF4L which
exists already at the tree–level. At fourth order there is also the term F̄5LF3LZ3Z̄5.
Thus, up to fourth order, we obtain∑

i

〈χi〉FiLF̄5L = (ζ2F4L + F3LZ3Z̄4 + · · ·)F̄5L (37)

where {· · ·} stand for possible higher order NR–terms involving fields that may ac-
quire vevs. Clearly, if we wish to make the mirror multiplets heavy with superpo-
tential terms up to fourth order, we should demand from flatness conditions either
ζ2 6= 0, or Z3Z̄5 6= 0. Solutions with higher order NR–terms are also possible as it
will be clear later.

• A number of sextet fields, Di, i = 1, ..., 4 containing colour triplets as well as triplets
surviving the Higgs mechanism appear also in the spectrum. In order to avoid possible
proton decay problems we need also mass terms for those coloured fields. As far as
the sextet fields are concerned, the sextet matrix at tree–level is

D1D2Φ12 +D1D4Φ
−
12 +D2D3Φ

−
12 +D3D4Φ̄12 (38)

Their eigenmasses in terms of the scalar components of the singlet fields are

mDi
= ±1

2

(
ΣΦ2 ±

√
(ΣΦ2)2 − (Φ12Φ̄12 − Φ−

12Φ̄
−
12)

2

)
(39)

with

ΣΦ2 = Φ2
12 + Φ̄2

12 + Φ−
12

2
+ Φ

−
12

2
(40)

The above eigenvalues are all non–zero whenever the condition

Φ12Φ̄12 − Φ−
12Φ̄

−
12 6= 0

is fulfilled. Therefore, a satisfactory flat direction should keep the appropriate singlets
with non–zero vevs. It will be clear later that in most of the phenomenologically viable
string vacua, higher order NR–contributions will prove necessary to make all sextet
fields massive.

In forming the mass matrices for triplets, we should also take into account the fact
that there are also coloured triplets in the Higgs pair (4̄, 1, 2) + (4, 1, 2). Thus,
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recalling in mind the sextet decomposition D4 → D3̄
4 +D3

4, the term F4RF4RD4 gives
a heavy mass to d̄c4RD

3̄
4 and the terms

F̄5RF̄5RD2 + F̄2RF̄2RD2 + F̄1RF̄1RD1

make another 3̄ − 3 combination massive. This linear combination depends on the
choice of the fields which are going to accommodate the families and higgses. This
will be precisely determined as long as a specific flat direction is chosen.

• There is a new interesting feature of this version; There are two candidate terms at
fourth order to provide masses to the second generation

F̄1RF1Lh4ζ1 + F̄2RF2Lh4ζ̄4 (41)

They are expected to be of the right order, provided that at least one of the singlets
ζ1, ζ̄4 gets a non–zero vev.

After this preliminary analysis, we are ready now to explore other important aspects of
the model. In the next section we will find all tree–level and higher order solutions to the
flatness conditions which determine the consistent string vacua.

6 The solutions of the F– and D–flatness conditions

One of the main concerns in constructing effective supersymmetric models from super-
strings, is to find the flat directions along which the scalar potential vanishes. String
models in general contain several flat directions which are lifted by higher order corrections
to the superpotential and supersymmetry breaking effects. The latter set also the scale of
the scalar potential. Another interesting fact in string model building concerning these flat
directions, is the existence of a D–term contribution [18, 19]. As has been discussed in the
previous section, there is a linear combination of the four surplus U(1) factors accompa-
nying the observable gauge group of the model, which remains anomalous. The standard
anomaly cancellation mechanism [19] results to a shift of the vacuum where several scalar
components of the singlet (and possibly hidden) superfields develop non–zero vevs. Their
magnitude is determined by the solution(s) of the complete system of the F - and D-flatness
constraints.

Derivation of the flatness constraints

The F -flatness equations are easily derived from the superpotential. They are the set of
equations resulting from the differentiation of W with respect to the fields of the massless
spectrum fi,

∂

∂fi
W = 0

In this paper we will mainly concentrate on an analysis of the flatness conditions involving
fields only from the observable sector. For completeness, we also give in the Appendix B
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the relevant contributions to the flatness conditions taking into account hidden field vevs
as well as higher order corrections from NR–terms.

Taking the derivatives of the renormalizable superpotential W with respect to the ob-
servable fields, we obtain

Φ2 : ζiζ̄i = −ξiξ̄i (42)

Φ4 : ζ1ζ̄3 = −ζ̄1ζ3 (43)

Φ5 : ζ2ζ̄4 = −ζ̄2ζ4 (44)

Φ12 : ξ1ξ̄4 = 0 (45)

Φ̄12 : ξ4ξ̄1 = 0 (46)

Φ−
12 : ζiζi = −ξ2ξ̄3 (47)

Φ̄−
12 : ζ̄iζ̄i = −ξ3ξ̄2 (48)

ξ1 : φ2ξ̄1 = −Φ12ξ̄4 (49)

ξ̄1 : φ2ξ1 = −Φ̄12ξ4 (50)

ξ2 : φ2ξ̄2 = −Φ−
12ξ̄3 (51)

ξ̄2 : φ2ξ2 = −Φ̄−
12ξ3 (52)

ξ3 : φ2ξ̄3 = −Φ̄−
12ξ̄2 (53)

ξ̄3 : φ2ξ3 = −Φ−
12ξ2 (54)

ξ4 : φ2ξ̄4 = −Φ̄12ξ̄1 (55)

ξ̄4 : φ2ξ4 = −Φ12ξ1 (56)

ζ1 : φ2ζ̄1 + Φ4ζ̄3 + 2Φ−
12ζ1 = 0 (57)

ζ̄1 : φ2ζ1 + Φ4ζ3 + 2Φ̄−
12ζ̄1 = 0 (58)

ζ2 : φ2ζ̄2 + Φ5ζ̄4 + 2Φ−
12ζ2 + F̄5LF4L/

√
2 = 0 (59)

ζ̄2 : φ2ζ2 + Φ5ζ4 + 2Φ̄−
12ζ̄2 = 0 (60)

ζ3 : φ2ζ̄3 + Φ4ζ̄1 + 2Φ−
12ζ3 = 0 (61)

ζ̄3 : φ2ζ3 + Φ4ζ1 + 2Φ̄−
12ζ̄3 + F̄5RF4R/

√
2 = 0 (62)

ζ4 : φ2ζ̄4 + Φ5ζ̄2 + 2Φ−
12ζ4 = 0 (63)

ζ̄4 : φ2ζ4 + Φ5ζ2 + 2Φ̄−
12ζ̄4 = 0 (64)

On the left of the above equations we show the field with respect to which the superpotential
is differentiated . In equations (59,62) both SU(2)L and SU(2)R fourplet fields have been
included to exhibit the invariance of the equations under a straightforward generalization
of the transformations (19). Indeed, it can be observed now that the F–flatness equations
as well as the Yukawa interactions remain unaltered under the interchanges mentioned in
previous sections. In particular, when 4̄ and 2R are interchanged with 4 and 2L respectively,
it can be seen that the superpotential remains invariant under the following renaming of
the fields

F5, F̄5 ↔ F4, F̄4 F1, F̄1 ↔ F2, F̄2 D1, D3 ↔ D2, D4 (65)

ζ1, ζ2 ↔ ζ̄4, ζ̄3 ζ̄1, ζ̄2 ↔ ζ4, ζ3 Φ1,Φ4 ↔ Φ3,Φ5 (66)

ξ2, ξ3 ↔ ξ̄2, ξ̄3 Φ−
12 ↔ Φ̄−

12 Φ2 ↔ Φ2 (67)
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This symmetry is also preserved by higher order Yukawa terms as can be easily checked
from the terms presented in the Appendix. Nevertheless, theD–equations are not invariant.
Clearly, any solution of them defines a vacuum which does not preserve the symmetry.
In the subsequent, we make a definite choice with regard to this symmetry putting all
〈FiL〉 = 0.

The D–flatness equations for anomalous or non–anomalous U(1) factors with hidden
field contributions are also derived in the Appendix C. In the absence of non–zero hidden
field vevs, they can be written in the following compact form

(D1) : f3 = x2 + x3 (68)

(D2) : f4 − f1 = x2 +
ζ

2
− φ̄ (69)

(D3) :
∑
i xi = −ξ

3
(70)

(D4) : φ = x1 +
ξ

2
(71)

(D5) : f4 − f1 = f2 + f3 + f5 (72)

where, we have defined,

xi = |ξ̄i|2 − |ξi|2; ζ =
∑
i(|ζ̄i|2 − |ζi|2) (73)

φ = |Φ̄12|2 − |Φ12|2; φ̄ = |Φ̄−
12|2 − |Φ−

12|2 (74)

f4 =
1

2
|F4R|2; fi = 1

2
|F̄iR|2, i = 1, 2, 3, 5 (75)

Tree and higher level solutions of F– and D–flatness constraints

A consistent phenomenological analysis of the model requires a complete knowledge
of all vacua, therefore, a systematic approach to classify all D– and F–flat directions is
needed. When this is done, we will be able to know which fields acquire non–zero vevs in
any specific flat direction2. These vevs will determine completely the masses of fermion
and scalar fields through their superpotential couplings.

In the remaining of this section we present a systematic analysis of the above constraints,
taking into account basic phenomenological requirements. This will limit considerably the
number of possible solutions. Thus, for example, as already has been pointed out, it is
necessary to impose the constraint 〈ζ̄3〉 = 0, in order to prevent a mass term for the
Higgs field F4R at tree–level. This, by no means ensures the existence of a consistent
solution. We postpone the complete presentation after we obtain the set of mathematically
consistent cases. In the present paper we restrict the analysis of the flatness conditions in
the case where only observable fields acquire non–zero vevs. Solutions with hidden field
vevs are much more involved and may result to interesting new vacua. Although a detailed
investigation of the latter will not considered here, a brief discussion of their role is given
later in this paper.

2For similar systematic analyzes in other models, see [20, 21, 22, 23].
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We find it convenient to start our analysis from the F–flatness conditions (44,45) which
imply four distinct cases:

(i) ξ̄1 = ξ1 = 0 , ξ4 6= 0; (ii) ξ1 = ξ4 = 0;
(iii) ξ4 = ξ̄1 = 0; (iv) ξ̄4 = ξ̄1 = 0 , ξ1, ξ4 6= 0 .

From the above cases, only (iii, iv) have consistent solutions. Let’s first explain why cases
(i) and (ii) are rejected.

Cases (i) and (ii)

From Eqs. (55,56) we deduce φ2 = 0, while ξ4 6= 0 in Eq. (50) imposes Φ̄12 = 0. This
however leads to inconsistency with equation D4, since the left side of the equation is
negative while the right side is positive and non–zero. Similarly case (ii) where ξ1 = ξ4 = 0,
is not soluble as can be easily seen from the equation (D3)+(D1). We consider the two
remaining cases (iii) and (iv)separately.

Case (iii)

From Eq. (50), we find φ2 = 0. Further, D4–flatness tells us that ξ1 and Φ̄12 cannot be
simultaneously zero. Then, combining this with conditions (54) and (55) we conclude that

Φ12 = 0, ξ̄4 = ξ4 = 0, ξ1 6= 0, φ2 = 0 (76)

while ξ̄1 · Φ̄12 = 0.

Proceeding further, we classify all solutions in this case according to their number of free
parameters and fields with zero vevs. At the tree–level, there are 17 solutions consistent
with the F– and D–flatness conditions. These are cases 1–17 of Table 9 of the Appendix D.
Several of these flat directions are lifted when higher order NR–terms are included. On the
other hand, other tree–level flat directions remain flat when additional constraints have are
imposed on the field vevs. There are cases where a single tree–level flat direction results to
more than one distinct cases at a higher level since the solution of the constraints may be
satisfied for various choices of field vevs.

When NR contributions to flatness conditions up 6th order are taken into account, the
above tree–level solutions reduce to the first thirteen cases presented in Table 2. The first
column numbers the solutions, while the last one denotes the number of free (complex)
parameters left. The five columns in the middle show the fields with zero vevs, where for
presentation purposes abbreviations in the field notation have been used. Thus, in the
second row, the numbers 12, 12, 12−, 12

−
, denote the fields Φ12,Φ12,Φ

−
12,Φ

−
12, and so on.

The fields which are forced to obtain zero vevs due to higher order NR–contributions in the
Yukawa potential, are included in curly brackets. Thus, for example, in the fourth column
of the first case, the symbol {2̄} means that 〈ξ̄2〉 has a zero vev due to the inclusion of NR–
terms. Further, for the same reason in the fifth column we also use the notation {1̄}, {2̄}
which should be translated to the conditions F̄1R = F̄2R = 0 imposed by NR–terms. In
this notation, one can see the effect of NR–terms in the tree–level solutions presented in
Appendix D. For example, the first solution in Table 9 (in the appendix) results to the first
two distinct cases of Table 2 and so on.

Note that in Table 2 we present only the vanishing vev’s of each particular solution.
Substitution in the F– and D–flatness conditions, results to a number of constraints char-
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acterizing each solution. These constraints are not presented in Table 2 but they have
been taken into account in the calculation of free parameters. Specific examples will be
presented later in Section 7. Due to the existence of free parameters, each solution of Table
2 can in principle generate a number of phenomenologically distinct cases. We will see
in a subsequent section how some of these free parameters are forced to obtain zero vevs
following the requirements of low energy phenomenology.

Case (iv)

In a similar manner, we proceed also in this case where ξ̄1 = ξ̄4 = 0. Eqs. (50), (54) lead
to two sub–cases depending on whether φ2 is zero or not.

• (iv)a When φ2 = 0, the analysis proceeds in analogy with case (iii). Thus, we find
eight solutions at the tree–level which cases 18-25 of Table 9.

• (ivb) For the case φ2 6= 0, a tedious analysis leads to the unique tree–level solution

ξ2,3 = ξ̄i = ζi = ζ̄i = F̄3R = F̄5R = 0 (77)

with Φ2 = 4 Φ12 Φ̄12 6= 0

This is also included as case 26 in the complete list of the tree–level solutions of Table 9
in Appendix D. When NR–contributions are taken into account various flat directions are
lifted and the total number of solutions is reduced to 4 which are shown in Table 2 (cases
(14)-(17)).

Having obtained all consistent solutions, let us try to apply the preliminary phenomeno-
logical discussion of the previous section. We first point out that in eight of the cases above,
all four Φ12’s fields in the second row have zero vevs. Although nothing can be definitely
said until a complete analysis with higher NR–terms is done, we consider them as less
favored since they leave all four sextet fields massless at tree–level. Another two solutions
on the other hand, has all ζi = ζ̄i = 0. Again, according to our previous analysis, it
would be desirable to obtain a mass term for the second generation at fourth order where
a natural fermion mass hierarchy is obtained. Such a solution should admit at least ζ1 6= 0
and 〈F̄1R〉 = 0, or ζ̄4 6= 0 and 〈F̄2R〉 = 0. From this point of view, the cases admitting
non–zero vevs for some of the ζi, ζ̄i are more preferable. Few of them leave only the fourplet
F̄1R 6= 0 to be interpreted as the second SU(4)× SU(2)R breaking higgs, (the other being
definitely F4R), while there are several cases with 〈F̄3R〉 6= 0. Moreover, since in most of
the cases 〈F̄5R〉 = 0, this latter field together with F4L, are suitable to accommodate the
third generation fermions who may receive a tree–level mass term via the Yukawa coupling
F̄5RF4Lh4.

7 Higgs fields and fermion mass textures

We start our phenomenological analysis of the string model with the discussion on the Higgs
sector. Clearly, all the consistent solutions of the flat directions considered in the previous
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Φ12s Φi ξi, ξ̄i ζi, ζ̄i F̄i f.p.

1 12, 12−, 12
−

2, 4, 5 4, 1̄, {2̄}, 4̄ 3, 3̄ {1̄}, {2̄}, 5̄ 6

2 12, 12−, 12
−

2, 4, 5 4, 1̄, 4̄ 3, 3̄ {1̄}, {3̄}, 5̄ 7

3 12, 12−, 12
−

2, 4, 5 4, 1̄, {2̄}, 4̄ 1̄, 3̄ {1̄}, {2̄}, 5̄ 6

4 12, 12−, 12
−

2, 4, 5 4, 1̄, 4̄ 1̄, 3̄ {1̄}, {3̄}, 5̄ 7

5 12, 12, 12−, 12
−

2, 4, 5 4, [1̄], {2̄}, 4̄ 3, 3̄ {1̄}, {2̄}, 5̄ 5

6 12, 12, 12−, 12
−

2, 4, 5 4, [1̄], {2̄}, 4̄ 1̄, 3̄ {1̄}, {2̄}, 5̄ 6

7 12, 12−, 12
−

2, 5 4, 1̄, 4̄ 3, 1̄, 3̄ {1̄}, {3̄} 7

8 12, 12−, 12
−

2, 5 4, 1̄, {2̄}, 4̄ 1, 3, 1̄, 3̄ {1̄}, {2̄}, {5̄} 5

9 12, 12−, 12
−

2, 5 4, 1̄, 4̄ {1}, 3, 1̄, 3̄ {2̄}, {3̄}, {5̄} 6

10 12, 12, 12−, 12
−

2, 5 {2}, 4, [1̄], 4̄ {1}, 3, 1̄, 3̄ {1̄}, {2̄}, {5̄} 4

11 12, 12, 12−, 12
−

2, 5 4, [1̄], {3̄}, 4̄ 1, 3, 1̄, 3̄ {1̄}, {2̄}, {5̄} 4

12 12, 12−, 12
−

2, 4 4, 1̄, 4̄ 2, 3, 4, 2̄, 3̄, 4̄ {1̄}, {3̄}, 5̄ 5
13 12 2 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ {2̄}, {3̄}, 5̄ 6

14 12, 12, 12−, 12
−

2, 4, 5 1̄, {2̄}, 4̄ 3, 3̄ {1̄}, 5̄ 9

15 12, 12, 12−, 12
−

2, 4, 5 1̄, {2̄}, 4̄ 1̄, 3̄ {1̄}, 5̄ 9

16 12, 12, 12−, 12
−

2, 5 1̄, {2̄}, 4̄ 3, 1̄, 3̄ {1̄} 9
17 2, 3, 1̄, 2̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ {2̄}, 3̄, 5̄ 7

Table 2: The solutions to the F– and D–flatness equations with contributions of NR–terms
up to sixth order. The fields appearing in the table have zero vevs. Those appearing in
curly brackets {} are forced to have zero vevs form NR–contributions, while those in square
brackets [] are set to zero to ensure the existence of at least one massless Higgs doublet. In
the last column f.p. stands for the number of free parameters.
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section automatically ensure the existence of one Higgs pair in (4, 1, 2) + (4̄, 1, 2) to break
the SU(4)×SU(2)R symmetry. Our next task is the securing of a massless pair of SU(2)L
Higgs doublets in order to break the electroweak symmetry. It suffices the existence of only
one massless Higgs bidoublet (1, 2, 2), since after the first stage of symmetry breaking two
electroweak doublets with the correct quantum numbers arise

h(1, 2, 2) → hu(1, 2,
1

2
) + hd(1, 2,−1

2
) (78)

The Higgs matrix receives the following contributions from the available tree–level super-
potential couplings

mh =


0 0 ξ1 ξ4
0 0 ξ̄4 ξ̄1
ξ1 ξ̄4 Φ̄12 φ2

ξ4 ξ̄1 φ2 Φ12

 , (79)

No further contributions to the Higgs matrix exist up to sixth order. We will explore the
eigenvalues of the above matrix in conjunction with the flatness solutions discussed in the
previous section. In order to have at least one zero eigenvalue, the determinant of mh

should be zero

Det(mh) = (ξ1ξ̄1 − ξ4ξ̄4)
2 = 0 (80)

We notice that the determinant of the Higgs matrix does not depend on the fields vevs
Φ12, Φ̄12 and φ2.

We now come to the particular flat directions of Table 2. We observe that 13 solutions
arising from cases (iii), (iv) have automatically ξ̄1 = ξ̄4 = 0. In the remaining 4 solutions
the additional constraint ξ̄1 = 0 has to be imposed in order to ensure the existence of at
least one massless Higgs doublet. These are the cases (5,6,10,11) where the symbol [1̄] in
the third column is used to declare the Higgs matrix constraint on the singlet vev ξ̄1.

By inspection of the D–flatness equations (68)-(72) we infer that two pairs of bidoublets
are always massive. Going to specific cases we find that the Higgs matrix in solutions (1-
13) has exactly two zero eigenvalues corresponding to the pure states h2, h4, while rest are
massive. Solutions (14-16) have two massless bidoublets. These are h2 and the combination
h′ ∝ −ξ4h3 + ξ1h4 The remaining solution (17) has only one massless bidoublet and more
particularly h2.

Each one of the above cases leads to a distinct phenomenological model. It is convenient
to classify them with respect to the (4̄, 1, 2) multiplet available for the Higgs mechanism.

• There are seven cases, namely (1,3,5,6,8,10,11), where the only available field of this
type is F̄3R since, as can be seen from the table, 〈F̄(1,2,5)R〉 = 0.

• In one single case (7) the (4̄, 1, 2)–Higgs in general can be a linear combination of
F̄2R, F̄5R

• Only three solutions admit 〈F̄1R〉 6= 0. These are (9,13,17).
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• There are three solutions where the higgs may be a linear combination of F̄(2,3)R

(14,15) or F̄(2,3,5)R, SU(4) (16) multiplets.

• Finally, solutions (2,4,12) admit only 〈F̄2R〉 6= 0.

Let us emphasize at this point that the above distinction between the solutions together
with the massless electroweak Higgs field classification, is in accordance with common phe-
nomenological characteristics. For example, solutions of the first kind above which impose
〈F̄3R〉 6= 0, have a rather larger number of Yukawa couplings available for fermion mass
generation, making them more appealing. Also, from a further inspection of the superpo-
tential terms, the second class of solutions with 〈F̄5R〉 6= 0 implies a mass for the hu4 higgs
via the tree–level term 〈F̄5R〉F4Lh4. This fact leaves only one Yukawa coupling available for
the up quarks, up to fifth order making these solutions less interesting. In what follows,
we will work out in some detail some representative cases from Table 2.

CASE 1:
Let us start with the first solution in Table 2. Along this flat direction, the following 15
fields are required to have zero vevs

Φ12 = Φ−
12 = Φ̄−

12 = Φ2,4,5 = ξ4 = ξ̄1,2,4 = ζ3 = ζ̄3 = F̄1,2,5 = 0 . (81)

Among them, ξ̄2 and F̄5R are constrained to have zero vevs from sixth order contributions.
Substituting the above condition to the full system of D– and F– flatness equations we
obtain a reduced system of 9 equations for the remaining fields. These are

ξ̄2 ξ̄3 + ζ2
1 + ζ2

2 + ζ2
4 = 0 (82)

ζ̄2
1 + ζ̄2

2 + ζ̄2
4 = 0 (83)

ξ3ξ̄3 + ζ1ζ̄1 + ζ2ζ̄2 + ζ4ζ̄4 = 0 (84)

ζ2ζ̄4 + ζ4ζ̄2 = 0 (85)
1

2
|F̄3R|2 + |ξ2|2 + |ξ3|2 − |ξ̄3|2 = 0 (86)

|F̄3R|2 + 2 |ξ2|2 + |ζ1|2 + |ζ2|2 + |ζ4|2 − |ζ̄1|2 − |ζ̄2|2 − |ζ̄4|2 = 0 (87)

1

2
|F̄3R|2 − |ξ1|2 = −ξ

3
(88)

|ξ1|2 + |Φ̄12|2 =
ξ

2
(89)

|F4R|2 − |F̄3R|2 = 0 (90)

Taking into account that the total number of fields available to obtain vevs are 30 (assuming
that hidden sector fields do not develop vevs), we end to a 6 parameter solution. This is the
number of free parameters (f.p.) presented in the last column of Table 2. As seen from the
above equations consistency of the solution requires a minimum number of the remaining
15 fields

F̄3R, F4R, Φ1,3, ξ1,2,3, ξ̄1,2,3, ζ1,2,4, ζ̄1,2,4, Φ̄12 6= 0 (91)
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to be non–zero. These are ξ1 , ξ̄3 , F̄3R , F4R and at least one of ζ1, ζ2, ζ4. The F4R and
F̄3R vevs are not imposed by flatness but are required in order to obtain SU(4)× SU(2)R
breaking. Thus the higgses in this case, in the notation of Section 2, are

F4R ≡ H(4, 1, 2); F̄3R ≡ H̄(4̄, 1, 2) (92)

To explore the hierarchy of the fermion mass spectrum, we note first that since 〈F̄3R〉 6= 0,
the tree–level Yukawa coupling F̄3RF3Lh2 cannot be used for a fermion mass term. Clearly,
F3L is more appropriate for a mirror partner for F̄5L. Therefore F̄5R and F4L are suitable to
accommodate a family and more particularly the heaviest one as indicated by the tree–level
superpotential term F̄5RF4Lh4. In this case we need to impose 〈ζ2〉 = 0, to avoid a mass
term of the form 〈ζ2〉F4LF̄5L.

Then, condition (85) results to two distinct cases, either 〈ζ4〉 = 0, or 〈ζ̄2〉 = 0, each of
them leading to a different phenomenological model. Although at this level of calculation
it cannot be decided which of the two cases is appropriate, we consider the case 〈ζ4〉 6= 0
as more favorable since it gives a tree–level mass term to a pair of exotic states. Thus we
choose to explore the case 〈ζ̄2〉 = 0.

To determine further the low energy parameters, we investigate the SU(4) breaking
scale constraints as well as the singlet vevs entering the mass operators. From (88),(89) it
follows that the SU(4) breaking scale has a well defined upper limit, determined exclusively
from the D-term

|F̄3R| ≤
√
ξ

3
=
gstring

2π
MP l (93)

For perturbative values of gstring (93) gives a bound around the mass scale 1017GeV. Further,
from (87) we also conclude that |ζ1| < |ζ̄4|. Up to fifth order, we find the following Yukawa
couplings suitable for charged fermion masses

F̄5RF4Lh4 +
¯〈ζ4〉
MP l

F̄2RF2Lh4 +
〈ζ1〉
MP l

F̄1RF1Lh4 (94)

The last two terms appear at the fourth order, thus an additional mass parameter in their
denominators appears. (In the Appendix B the mass parameters in the denominators are
omitted in order to simplify the notation.) These two terms are obviously hierarchically
smaller than the first term which gives masses to the third generation; further, taking
into account the flatness constraints, we infer that the second and first generations are
accommodated in F̄2R, F2L and F̄1R, F1L respectively. From the constraints above, we are
able to choose ζ1 � ζ̄4, so that we satisfy the mass hierarchies. Moreover, this implies
that F̄3R ∼ ζ̄4. Recalling that F̄3R plays the role of the SU(4)–breaking higgs at the scale
MGUT , we find that the top–charm relation will determine further these vevs to be of the
order

MGUT

MP l
≡ 〈F̄3R〉

MP l
≈ m0

c

m0
t

(95)

It is worth noticing that this relation which correlates the SU(4) breaking scale with that
of the scale M ∼ MP l through the charm–top ratio at Mstring, is in excellent agreement
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with both, the flatness condition (93) as well as the unification scale of the minimal unifi-
cation scenario. We thus conclude that in the flat direction under consideration the flavor
assignments of the light standard model quarks and lepton fields are as follows

F1L : (u, d), (e, νe) ; F̄1R : uc, dc, ec, νce
F2L : (c, s), (µ, νµ) ; F̄2R : cc, sc, µc, νcµ (96)

F4L : (t, b), (τ, ντ ) ; F̄5R : tc, bc, τ c, νcτ

Up to now, we have a rather successful picture of the fermion mass spectrum which is
also in agreement with the string constraints. The above accommodation of the fermion
generations and Higgs fields leaves no arbitrariness as far as the extra vector–like states are
concerned: these are F3L and F̄5L. The only mass term available at tree–level using fields
of the observable sector, is proportional to the singlet vev 〈ζ2〉 however this is zero in the
present case. Nevertheless, we observe that there are terms involving hidden fields which
may acquire non–zero vevs and give a heavy mass to the mirror particles. For example,
this can be obtained with a non–zero vev of the combination 〈Z3Z̄4〉 6= 0 while they are
constrained by the D–flatness to have equal vevs |〈Z3〉| = |〈Z̄4〉| 3.

We turn now to the neutrino sector. The three terms in (94) imply also Dirac masses
for the corresponding neutrinos with initial conditions at Mstring being the same as those
for the up–quarks. Therefore a see–saw mechanism is necessary to bring them down to
experimentally acceptable scales. An available term exists already in the tree–level su-
perpotential, which couples the right handed neutrino νc5 ∼ F̄ c

5R with the singlet field ζ̄3
via the vev 〈F4R〉. This leads to a see–saw mechanism of the type discussed in Section
2. If we wish to find a final solution within the observable sector field vevs, however, a
complete account of the neutrino mass problem needs the calculation of even higher non–
renormalizable terms. Restricting ourselves to contributions of NR–terms up to fifth order,
the see–saw mechanism, in principle, can be effective for all neutrino species only when
additional hidden fields acquire vevs. In this case it is easily checked that the following
additional terms are generated

Aνc5φ2 + Bνc2φ2 + Cνc2ζ̄3 +Dνc1ζ̄2 (97)

arising from the hidden sector non–renormalizable contributions:

A = 〈F4RZ4Z̄5〉, B = 〈F4RZ4Z̄2〉, C = 〈F4RZ2Z̄4〉, D = 〈F4RZ1Z̄4〉. (98)

The terms (97) complete the mechanism for all three flavours of neutrinos and lead to an
extended see–saw of the type (11). We note however that the inclusion of the above hidden
vevs requires a re–examination of the flatness conditions.

We come now to the fields having fractional charges. Since no ±1/2-charge particle
has been observed, the doublet states XL,R should also receive masses at some point,
presumably higher than the electroweak scale. If we write the doublet XiR = (χ+

i , χ
−
i ),

3A similar mechanism has also been used in the flipped–SU(5) case [21]
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then a possible mass term would be of the form:

WX = 〈φ〉εabXa
iRX

b
jR

= 〈φ〉(χ+
i χ

−
j − χ−i χ

+
j ) (99)

where εab is the SU(2) antisymmetric tensor. φ can be any combination of fields acquiring
vevs resulting to an effective singlet along the neutral direction. A similar term can also
exist for the left doublets XL. Terms mixing left with right doublets are also possible,
however, they lead to masses of the order of the electroweak scale and are not of interest
here. At the tree–level, in the present flat direction we have the following mass terms

W 3
X = 〈ζ4〉X2RX5R + 〈ξ2〉X2RX6R + 〈ζ1〉X1RX6R (100)

and similarly there are two terms for the left doublet fields. Notice that we have now
made used of the non–zero vev 〈ζ4〉 6= 0 which, according to the flatness conditions (85)
implies 〈ζ̄2〉 = 0. There are still three and four pairs of right and left doublets respectively
needed to take masses at some scale well above mW . All possible terms up to fifth order,
have been collected in Appendix B. By an inspection of the relevant (to this flat direction)
terms up to this order, it follows that few of the octet fields Zi, Z̄i of the hidden sector with
non–zero vevs, are adequate to make all of them massive. As has already been pointed
out, however, this will require a re–examination of the flatness conditions [24]. All the
same, the observable singlet vevs may prove to be sufficient if higher order contributions
are calculated. A similar term may also appear for the two SU(4) fourplets H4 = (4, 1, 1),
H̄4 = (4̄, 1, 1).

There is finally the rather important issue concerning the triplet fields related to the
stability of the proton. Recall first from the detailed analysis in Section 2 that the triplets
live only in the sextets and the fourplet Higgs fields. There are two types of terms here
to render them massive. In the present case, there is only one mass term available for the
sextet fields at three level, namely Φ̄12D3D4, while the terms F 2

4RD3 and ζ̄2
1,4F

2
4RD4 offer

additional couplings with the uneaten Higgs triplet of F4R. Thus, up to fifth order, three
triplet pairs remain light. Higher order NR–terms will make them massive. In particular,
an inspection of the related seventh order non–renormalizable superpotential mass terms
shows that there are plenty of available couplings rendering all but one pair massive

W≤7
D = D1D2ξ1Z3Z̄3Z5Z̄5 +D1D3

[
ζ4ξ1Z2Z̄2(1 + Φ1) + ξ1Z2Z̄2Z5Z̄4

]
+ D1D4

[
ζ2
1Z5Z̄5ξ1 + ζ̄2

4ξ1Z5Z̄5

]
. (101)

It can be checked that the only coloured field which remained uncoupled is the triplet dc3 of
the Higgs field H̄ ≡ F̄3R leading to a pair of massless triplets. This has to do with the fact
that fields arising from the second b3 and being charged under peculiar U(1)4 factor make
only few non–zero Yukawa couplings with other fields. For the same reason, quarks and
lepton fields do not also have dangerous couplings with this triplet field up to this order.
At higher orders, singlet fields with non–zero U(1)4 charge are expected to form NR–term
mass terms for dc3 and its partner so that proton decay could be avoided.
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CASE 7
Here we have the following zero vevs

Φ−
12, Φ̄

−
12,Φ2,5, ξ4, ξ̄1,4, ζ3, ζ̄1,3, F̄1R, F̄3R = 0 (102)

Following the steps of the analysis of the previous case we find that flatness reduces to 10
equations and thus the number of free parameters is 7. The SU(4)–breaking Higgs fields
are F4R and a linear combination of the fourplets F̄2R and F̄5R. We now restrict to use the
case 〈F̄2R〉 = 0. Thus, the higgses are

F4R ≡ H(4, 1, 2); F̄5R ≡ H̄(4̄, 1, 2) (103)

Since 〈ζ2〉 6= 0, the trilinear term F̄5LF4Lζ2 makes massive the extra vector–like states. On
the other hand the terms

F̄5RF4Lh4 + F̄5LF4Lζ2 → (〈νc5〉hu4 + 〈ζ2〉 ¯̀5)`4 (104)

mix a combination of the Higgs doublet in h4 with ¯̀
5 in F̄5L leaving massless the combination

hu = cosφhu4 − sinφ¯̀
5, tanφ =

〈ζ2〉
〈νc5〉

(105)

Once we have determined the electroweak Higgs eigenstates we are in a position to examine
the available fermion mass terms. As previously, we will analyze Yukawa couplings up to
fifth order. It is natural to accommodate the third generation in the representations arising
from the sector b3; due to the existing fermion hierarchy the heavy fermions are expected
to obtain their mass through the only available tree–level term

F̄3RF3Lh2 → 〈hu2〉(ttc + ντν
c
τ ) + 〈hd2〉(bbc + ττ c)

Then the lighter generations receive masses from non–renormalizable terms,

〈h4ζ̄4(1 + Φ1)〉F̄2RF2L + 〈h4〉〈(ζ1(1 + Φ3) + F̄5RF4R)〉F̄1RF1L (106)

where denominators of proper powers of Mstring in the various NR–contributions are omit-
ted. Taking into account (105), the first term of (106) becomes

F̄2RF2Lh4ζ̄4 → cosφ〈ζ̄4hu′〉(Q2u
c
2 + νc2`2) + 〈hd4〉(Q2d

c
2 + `2e

c
2) (107)

and similarly for the other terms. Additional contributions may arise when higher order
NR–terms are taken into account.

The triplet mass matrix in the present case, receives contributions from terms involving
the above non–zero vevs. Assuming the sextet decompositions Di = D3

i + D̄3
i the triplet

matrix takes the following form in the basis D1, D2, D3, D4, d̄
c
4,

D3
1 D3

2 D3
3 D3

4 d̄c4(F4R)
D̄3

1 0 x x x 0
D̄3

2 x 0 0 F4Rζ̄
2
i F4Rζ̄

2
i

D̄3
3 x 0 0 Φ̄12 F4R

D̄3
4 x 0 Φ̄12 0 0

d̄c5R
(F̄5R)

F̄5Rζ̄
2
i F̄5R 0 0 0

(108)
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where ζ̄i stands for the non–vanishing vevs ζ̄2, ζ̄4. The symbol x in the first row and column
of the above matrix represents possible contributions from NR–terms involving fields from
the hidden sector. These are

WH
D = D1D2(ζ̄2Z3Z̄3Z5Z̄4 + ξ1Z3Z̄3Z5Z̄5) +D1D3ζ4ξ1Z2Z̄2

+ D1D4(ζ̄2ζ̄
2
4Z5Z̄4 + ζ̄2

4ξ1Z5Z̄5 + ζ̄2
4ξ1Z5Z̄4)

As can be seen from the mass–matrix, observable sector contributions up to seventh order
make all but one pair of the coloured triplets massive. If hidden fields also acquire vevs
then all triplets could become massive.

CASE 13
We briefly comment now on another characteristic case of Table 2, namely solution (13).
This case is distinguished by two remarkable properties which are worth mentioning:
(i) First we observe that all coloured sextets become massive at tree–level. This can be
seen from the mass formula (39) and the fact that only one of the four singlets involved in
the tree–level mass matrix is required to have a zero vev (namely 〈Φ12〉 = 0).
(ii) Second, we point out that the two lighter generations are not pure states, since they
appear to mixing appears already at tree–level. To see this, we check first from Table 2
that the solution requires 〈F̄2,3,5〉 = 0, thus the SU(4) × SU(2)R Higgs fields are now F4R

and F̄1R. A possible mass term for the mirror states may appear now at a higher order
(unless – as previously – hidden fields obtain non–zero vevs). The fermion mass terms are
in this case

F̄3RF3L〈h2〉+ F̄5R

(
F4L〈h4〉+ F1Lh2〈F̄1RF4Rh4

)
〉 (109)

Clearly, the right–handed fields leaving in F̄5R mix with both F1L and F4L. The flavor
assignments are now

F1L : (u′, d′), (e′, ν ′e) ; F̄2R : uc
′
, dc

′
, ec

′
, νce′

F2L : (c′, s′), (µ′, ν ′µ) ; F̄2R : cc
′
, sc

′
, µc

′
, νc

′
µ (110)

F3L : (t, b), (τ, ντ ) ; F̄3R : tc, bc, τ c, νcτ

where primes are used to denote that there is mixing in the two lighter generations. We
should point out here that the third family remains essentially decoupled due to the peculiar
properties of the fourth U(1). Only very high order NR–terms are possible to mix this family
with the lighter ones. This fact of course predicts smaller mixing angles between the third
family with the rest of the fermion spectrum in consistency with the phenomenological
expectations.

8 A brief discussion on the role of the hidden sector

fields

Up to now, we dealt with solutions of the flatness conditions considering only non–zero vevs
for observable fields. In the phenomenological analysis of the previous section, however,
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we have seen that couplings involving only observable–sector field vevs are not adequate
to make all exotic particles massive. There are mainly two important issues to be further
investigated before this model is confronted with the low energy physics world. First, higher
order NR–terms have to be calculated in order to find all possible contributions to the mass
matrices of fermions, triplets and other fields presented in the previous section. On the
other hand, hidden fields can also play a very important role on the determination of the
true vacuum of the model. Since they carry no charge, they can also develop non–zero vevs
and contribute to the masses of the light fields through their Yukawa interactions. This
fact has been clear already in the three examples used in the previous section. Neutrino
masses, exotic states, and few of the triplet fields become massive only when hidden fields
are included. At the same time, in both cases, the additional terms contribute also to
the flatness conditions, thus the new non–zero vevs have to be carefully chosen so that
they define a consistent F– and D–flat direction. For such an investigation, one has to
modify the flatness solutions, starting again from the tree level cases which are included
in Appendix D. A systematic analysis of this general case is possible, however, this goes
beyond the scope of the present work [24]. For completeness, the D−flatness conditions, in
the presence of non–zero hidden field vevs is given in Appendix C. Moreover, the F−flatness
conditions are written with the hidden fields contributions up to fourth order in the same
Appendix. Higher order NR–corrections with hidden as well as observable field vevs are
easily extracted from the terms presented in Appendix B. In the following, we give a brief
account of the possible solutions the hidden fields may give to some of the unanswered
questions of the present string construction.

Several constraints have to be carefully derived before some of the hidden representa-
tions acquire vevs. An important constraint arises from the demand of existence of massless
electroweak Higgs doublets. Although up to sixth order we have found no extra contribu-
tions to the Higgs doublet matrix, such terms may well exist in higher order, in particular
when hidden fields are allowed to obtain non–zero vevs. It should be noted that due to the
existence of high vevs associated with the U(1)A breaking scale MA ∼ 10−1MP l securing the
existence of massless electroweak doublets is not an easy task for any superstring model.
To be more specific, assume a generic form of doublet mass term

g
(

Φ

MP l

)n
Φh h

with Φ representing a typical singlet field obtaining a vev of the order 〈Φ〉 ∼MA. It is easy
to see then that even a n = 14 order NR–term would in principle produce higgs masses
above the electroweak scale. Of course the existence of superfluous doublet fields –as is the
case of the model under consideration– provides the hope that even at this high order of
calculation there exist flat directions that preserve at least one pair of doublets massless.

Another severe constraint arises from the necessity to keep the large SU(4) × SU(2)R
breaking Higgs field F4R massless. Up to sixth order, this can be ensured if the following
combinations of vevs are zero

ζ̄3, Z̄3Z4, φ2Z4Z̄5,

φ2Z̄2Z4, ζ̄2Z1Z̄4, ξ1Z1Z̄5,
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Φ3Φ3Z̄3Z4, ζ̄1ζ3Z̄1Z4, ζ̄1ξ1Z̄1Z5. (111)

One might think that the above constraints demand most of the hidden fields Zi, Z̄j to
obtain zero vevs. We would like to point out however that it is possible to have a condition
of the form 〈ZiZ̄j〉 = 0, while at the same time both fields may have non–zero vevs, 〈Zi〉 6= 0
and 〈Z̄j〉 6= 0. This happens whenever the fields Zi and Z̄j obtain their non–zero vevs in
orthogonal to each–other directions.

When some of the SU(8) hidden fields acquire non–zero vevs, the SU(8)× U(1)′ sym-
metry is broken to a smaller group. However, independently of the number of the hidden
states which develop non–zero vevs, there is always at least one unbroken U(1)′′ generator
left, which is in general a linear combination of the U(1)′ and one of the generators of
SU(8). On the other hand, we note that the maximum number of U(1) factors which may
remain unbroken in this model is two. Indeed, it can be checked that the breaking of the
SU(4)× SU(2)R symmetry on one hand and the consistency of the flatness conditions on
the other require at least the fields F4R, F̄1R and Φ̄12, ξ1 to develop non–zero vevs. These
vevs break three of the five Abelian factors.

The survival of U(1) symmetries in lower energies would imply the stability of lightest
observable and/or hidden fields being charged under these symmetries. In all flat directions
which were previously analyzed, when the various singlet fields obtain their vevs, they break
four out of five U(1) factors. Thus, only the aforementioned U(1)′′ remains at low energies
whilst, as a consequence the lightest hidden state will be stable. This fact has important
cosmological implications which we now briefly discuss:

The last few years there is accumulating evidence from astronomical observations that
the universe is dominated by invisible non–baryonic matter. According to a recent proposal
[25, 26] the dark matter of the universe –which is expected to be ten times more that the
luminous one– might be composed from non–thermal superheavy states produced in the
early universe provided that the following two conditions are met: i) candidate particles Y
should have a lifetime longer that the age of the universe, τY ≥ 1010y, and ii) they should
not reach local thermal equilibrium with the primordial plasma. To avoid this constraint
while having the correct number of Y to form the cold dark matter of the universe, it was
suggested that these particles are created through the interaction of the vacuum with the
gravitational field. Their mass is found to be around mY ∼ 1013GeV 4.

In the string vacua found in the previous sections, a number of the hidden states Zi, Z̄i
in the present string construction receive masses at scales which are of the order of the
string mass. There are few of Zi, Z̄i states however, which remain in the massless spectrum
to lower scales. It is possible that in certain string vacua the lightest hidden state has a
mass in the range MY ∼ 1013GeV as required in the above scenario. As an example, we
construct here the octet mass matrix for the solution 1 of Table 2. In the basis Z1,...,5, the
contributions up to sixth order involving only the non–zero vev observable fields give the

4For a similar discussion on the role of the hidden matter fields in other string models see also [27].
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following texture 
ξ1ζ̄1 0 0 0 0
0 ξ1ζ̄4 0 0 0
0 0 0 F4RF̄3R 0
0 0 0 ζ̄2 0
0 0 0 0 ξ1

 (112)

In this case, four out of five hidden octet/octet–bar pairs receive masses of the order of the
U(1)A breaking mass scale MA ≥ MGUT . If hidden fields are also allowed to obtain vevs,
then, Z4,5 are further mixed via the mass terms 〈ξ1Z1Z̄1〉Z̄4Z5 + 〈Φ3Z1Z̄1〉Z̄5Z4. There is
only one massless state (namely Z3) up to this order. It is expected that higher order terms
will provide a higher order NR–contribution and make the remaining lightest hidden pair
massive at the right scale, which is of course much lower that the mass scale MA of the
other Zi-fields, as required by the above cosmological scenario.

9 Conclusions

In this paper, we have worked out an SU(4) × SU(2)L × SU(2)R model derived in the
context of the four dimensional free fermionic formulation of the heterotic superstring.
Choosing a set of nine vectors of boundary conditions on the world–sheet fermion phases
and appropriate GSO projection coefficients, we derived a three–generation model sup-
plemented by a mirror family and just the necessary Higgs representations to break the
symmetry down to the standard model. In addition to the observable gauge symmetry, the
string model possesses also five U(1)’s as well as a hidden SU(8) gauge group. The model
predicts the existence of new states beyond those of the minimal supersymmetric standard
model massless spectrum. These involve a large number of neutral singlet fields, coloured
SU(4)–sextets, SU(8)-octet hidden fields and exotic states with fractional charges under
the standard hypercharge definition.

The superpotential of the model has been derived taken into account string selection
rules. All fermion mass terms have been worked out in detail up to fifth order and the
fermion and Higgs mass matrix textures have been assiduously analyzed. The model is
found to possess an anomalous U(1)-symmetry implying the generation of a D–term which
is canceled by vacuum expectation values of singlet fields along D– and F–flat directions
of the superpotential.

To work out the phenomenological implications, we have performed a detailed analysis of
all D– and F– flat directions including contributions of non–renormalizable superpotential
terms up to sixth order. At tree–level, 26 solutions to the flatness conditions were found
and were classified with respect to the fields which are demanded to have zero vevs in
each particular case. It was further shown that, when sixth order NR–terms are included
the solutions reduce to seventeen. Each solution is characterized by a the number of free
parameters which are essentially the field vevs left undetermined by the particular solution.
Particular attention has been paid in the determination of those conditions necessary to
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ensure the existence in the massless spectrum of the SU(4) breaking higgses and at least
two Higgs electroweak doublets in order to break the GUT and SM gauge symmetries
respectively. These conditions have been imposed as additional constraints on the consistent
D– and F–flat directions and all phenomenologically acceptable string vacua have been
determined.

Three distinct flat directions, characterized by their SU(4)-higgs properties are investi-
gated in detail and the predictions of the corresponding field theory models are discussed.
a). The first of these predicts that the MGUT/Mstring–ratio is related to the up quark
mass ratio of the second and third generations. The choice of the GUT breaking Higgs
representations leaves a sufficient number of Yukawa couplings which produce naturally a
hierarchical fermion mass spectrum for all three generations through tree–level and fourth
order non–renormalizable superpotential terms. Further, an analysis of the superpotential
NR–terms up to sixth order shows that all but one of the colour triplet fields become mas-
sive. It is worth noting that there are no dangerous proton decay operators up to this order
of calculation since the massless triplet pair does not couple to ordinary matter fields up to
the sixth order. The absence of Yukawa couplings between this triplet and ordinary matter
fields may be attributed to the properties of peculiar U(1)-symmetry of the specific string
basis–vector generating this particular state. It is likely however that higher order terms
may provide a heavy mass to the remaining colour triplet pair.
b). In a second case analyzed in this work, a similar hierarchical fermion mass pattern is
found, while all triplets become massive if in addition hidden fields are allowed to acquire
non–zero vevs. On the other hand, in contrast to the first model analyzed in Section 7,
here the GUT scale has only an upper bound determined by the U(1)A breaking scale.
c). Finally, a third effective field theory model is analyzed where all colour sextet fields be-
come massive at the tree–level. This model has fewer Yukawa couplings available for masses,
however, additional fermion mass terms may arise from higher order non–renormalizable
terms.

A novel feature of the effective field theory is the existence of an additional U(1)-
symmetry which survives down to low energies, and it is possessed by exotic states and the
hidden sector fields. It is argued that if the lightest of these states receives mass at some
intermediate scale, may play a role in the dark matter of the universe.

In the present paper our phenomenological explorations have been restricted mainly
with respect to the following two issues: First, while there exist various ways to define the
electric charge operator of the model (due to the existence of surplus U(1) factors), only
the standard hypercharge embedding has been considered in the phenomenological analysis.
We believe that it is worth exploring also different types of embedding although one has
to face difficulties mainly with low initial sin2 θW values. Second, the investigation of flat
directions has been limited in the cases where only ‘observable’ fields are allowed to obtain
non–zero vevs. Certainly, the inclusion of the hidden states in the analysis will lead to a
large number of new mass terms, the breaking of the hidden symmetry and modifications
of the flat directions found in this work. Yet, such a possibility has to be compared with
analogous investigations of higher order NR–terms will may or may not prove sufficient to
obtain realist low energy effective theory.
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10 Appendix A: The spectrum

We collect here the massless observable and hidden superfield spectrum of the model.
Fermionic string models contain always an untwisted –usually called Neveu–Schwarz (NS)–
sector where all world–sheet fermions are antiperiodic. In this sector, the GSO projections
leave always in the massless spectrum the multiplet which contains the graviton, the dilaton
and the two–index antisymmetric tensor. The NS–sector includes also the gauge bosons
and other Higgs and singlet fields. Twisted (R) sectors provide the generations and other
matter fields.

The states are classified in four separate tables according to their transformation prop-
erties under the various parts of the gauge symmetry. In the first column of each table
we give the symbol of the representation as this is used in the text. In the last column
we show the relevant sector of the string basis. In all other columns we exhibit the gauge
group properties of the states. Thus, Table 3 contains the observable fields, which have
non–trivial transformation properties under the PS–symmetry. These are obtained from
the sectors b1,2,3,4,5 and S+b4+b5. They include the three generations, the higgses and other
fields. Table 4 includes the PS singlets with their charges under the four U(1) symmetries.
In Table 5 we present the hidden SU(8) fields with the corresponding charges under the
five U(1)s. Finally, in Table 6 we collect all exotic states with fractional charges under the
standard hypercharge assignment.

field SU(4)× SU(2)L × SU(2)R U(1)1 U(1)2 U(1)3 U(1)4 sector
F 5L (4̄, 2, 1) 0 0 −1

2
0 b5

F 5R (4̄, 1, 2) 0 0 +1
2

0
F4L (4, 2, 1) 0 +1

2
0 0 b4

F4R (4, 1, 2) 0 −1
2

0 0
F 3R (4̄, 1, 2) −1

2
0 0 +1

2
b3

F3L (4, 2, 1) +1
2

0 0 +1
2

F 2R (4̄, 1, 2) 0 0 +1
2

0 b2
F2L (4, 2, 1) 0 0 +1

2
0

F 1R (4̄, 1, 2) 0 +1
2

0 0 b1
F1L (4, 2, 1) 0 +1

2
0 0

D1 (6, 1, 1) 0 −1 0 0 S
D2 (6, 1, 1) 0 0 −1 0
D3 (6, 1, 1) 0 +1 0 0
D4 (6, 1, 1) 0 0 +1 0
h1 (1, 2, 2) 0 0 0 +1
h2 (1, 2, 2) 0 0 0 −1
h3 (1, 2, 2) 0 +1

2
+1

2
0 S + b4 + b5

h4 (1, 2, 2) 0 −1
2

−1
2

0

Table 3: Observable sector spectrum of the SU(4)× SU(2)L × SU(2)R model.
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field U(1)1 U(1)2 U(1)3 U(1)4 sector
ΦA , A = 1, . . . , 5 0 0 0 0 S
Φ12 0 +1 +1 0
Φ−

12 0 +1 −1 0
Φ12 0 −1 −1 0

Φ
−
12 0 −1 +1 0

ζi , i = 1, . . . , 4 0 −1
2

+1
2

0 S + b4 + b5
ζi , i = 1, . . . , 4 0 +1

2
−1

2
0

ξ1 0 −1
2

−1
2

−1
ξ2 −1 −1

2
+1

2
0

ξ3 −1 +1
2

−1
2

0
ξ4 0 +1

2
+1

2
−1

ξ1 0 +1
2

+1
2

+1
ξ2 +1 +1

2
−1

2
0

ξ3 +1 −1
2

+1
2

0
ξ4 0 −1

2
−1

2
+1

Table 4: Non–Abelian singlet fields and their U(1)4 quantum numbers (all these fields have
zero U(1)′- charge).

field U(1)1 U(1)2 U(1)3 U(1)4 U(1)′ SU(8) sector
Z1 0 0 +1

2
+1

2
+1

2
8 b1 + b6(+ζ)

Z̄1 0 0 +1
2

+1
2

−1
2

8̄
Z2 0 +1

2
0 +1

2
+1

2
8 b2 + b6(+ζ)

Z̄2 0 +1
2

0 +1
2

−1
2

8̄
Z3 −1

2
+1

2
+1

2
0 +1

2
8 b3 + b6(+ζ)

Z̄3 +1
2

+1
2

+1
2

0 −1
2

8̄
Z4 0 0 −1

2
−1

2
+1

2
8 b4 + b6(+ζ)

Z5 0 0 +1
2

+1
2

+1
2

8
Z̄4 0 −1

2
0 −1

2
−1

2
8̄ b5 + b6(+ζ)

Z̄5 0 +1
2

0 +1
2

−1
2

8̄

Table 5: Hidden sector states and their U(1)4 × U(1)′ × SU(8) quantum numbers.
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field SU(4)× SU(2)L × SU(2)R U(1)1 U(1)2 U(1)3 U(1)4 U(1)′ sector
X1L (1, 2, 1) −1

2
0 +1

2
0 −1 b1 + α

X2L (1, 2, 1) +1
2

0 +1
2

0 −1
X1R (1, 1, 2) −1

2
0 −1

2
0 −1

X2R (1, 1, 2) +1
2

0 −1
2

0 −1
X3L (1, 2, 1) −1

2
0 −1

2
0 +1 b4 + α

X4L (1, 2, 1) −1
2

0 +1
2

0 −1
X3R (1, 1, 2) +1

2
0 −1

2
0 −1

X4R (1, 1, 2) +1
2

0 +1
2

0 +1
X5L (1, 2, 1) −1

2
−1

2
0 0 +1 b1 + b4 + b5 + α

X6L (1, 2, 1) +1
2

−1
2

0 0 +1
X5R (1, 1, 2) −1

2
+1

2
0 0 +1

X6R (1, 1, 2) +1
2

+1
2

0 0 +1
X7L (1, 2, 1) −1

2
−1

2
0 0 +1 b1 + b2 + b4 + α

X8L (1, 2, 1) −1
2

+1
2

0 0 −1
X7R (1, 1, 2) +1

2
−1

2
0 0 −1

X8R (1, 1, 2) +1
2

+1
2

0 0 +1
X9L (1, 2, 1) 0 −1

2
+1

2
−1

2
+1 b2 + b3 + b5 + α

X10L (1, 2, 1) 0 −1
2

+1
2

+1
2

−1
X9R (1, 1, 2) 0 +1

2
−1

2
−1

2
−1

X10R (1, 1, 2) 0 +1
2

−1
2

+1
2

+1
H4 (4, 1, 1) −1

2
0 0 0 +1 S + b2 + b4 + α

H4 (4̄, 1, 1) +1
2

0 0 0 −1

Table 6: Exotic fractionally charged states and their SU(4)×SU(2)L×SU(2)R×U(1)4×
U(1)′ quantum numbers.
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11 Appendix B: Non–renormalizable contributions

In the first part of this Appendix we give a brief description of the techniques used to
calculate the tree–level and higher order NR–superpotential terms of the model. In the
second part we give a list of the non–renormalizable superpotential terms involving mass
terms (up to fith order) and F–flatness conditions (up to sixth order).

1)The calculation of non–renormalizable contributions to the superpotential in the con-
text of free–fermionic formulation is a straightforward but rather tedious task. The rules
for calculation of NR terms have been presented in [17] while explicit calculation for various
models have been presented in [20, 28, 29]. In general, a superpotential term involving the
chiral superfields Φ1,Φ2, . . . ,ΦN is proportional to the correlator

Φ1 Φ2 . . .ΦN ∼
〈
V f

Φ1
V f

Φ2
V b

Φ3
. . . V b

ΦN

〉
where V f

Φ stands for the fermionic part of the vertex operator corresponding to the field Φ
and V b

Φ for the bosonic part. The correlators can be calculated using conformal field theory
techniques developed in [30, 32, 31]. An important subtlety is that in order to guarantee
conformal invariance the bosonic vertex operators V b

Φ4
, . . . , V b

ΦN
need to be pictured changed

to the zeroth picture.

A superpotential term vanishes if the corresponding correlator vanishes otherwise it
leads to an O(1) coupling. There are two systematic sources of zeros in the superpotential.
The first is group invariance, the second are the internal symmetries associated with the
fermionized compactified coordinates. The former is obvious while latter has been explored
in [16] where a set of selection rules has been derived. Since these selection rules help
significantly to the reduction of candidate superpotential terms we summarize here the
basic results.

The fermions χ1, χ2, . . . , χ6 corresponding to the compactified coordinates can be bosonized
as follows

(χ1 ± ıχ2)/
√

2 = exp{±ıS12}
(χ3 ± ıχ4)/

√
2 = exp{±ıS34}

(χ5 ± ıχ6)/
√

2 = exp{±ıS56}

N = 2 world–sheet superconformal symmetry implies the existence of an extra current,
which is expressed in terms of Sij as follows

J(q) = ı∂q(S12 + S34 + S56) (113)

and which is promoted to three U(1)’s generated by S12, S34, S56. The relevant part of the
vertex operators has the form

V f

− 1
2

∝ e(α−
1
2
)S12e(β−

1
2
)S34e(γ−

1
2
)S56

V b
−1 ∝ eαS12eβS34eγS56 (114)
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N total
selection rule
invariants

group
invariants

final

3 73150 11719 372 66
4 595665 128928 339 34
5 16559487 2268256 10886 339

Table 7: The total number of candidate superpotential terms (for N=3,4,5) and their
number after application of the selection rules, group invariance and the final number after
complete evaluation of the correlators for the model under consideration.

where −1
2
, (−1) are the ghost numbers for fermions and bosons respectively. Physical states

can now separated in two types NS (untwisted) and R(twisted). Each type can be further di-
vided in three categories (the three orbifold planes in the orbifold language). In the notation
of Eq. (114) the three categories of NS–fields have charges (α, β, γ)={(1, 0, 0), (0, 1, 0), (0, 0, 1)}
while for R–fields (α, β, γ)={(0, 1

2
, 1

2
), (1

2
, 0, 1

2
), (1

2
, 1

2
, 0)} respectively.

Using the terminology explained above we can derive a set of selection rules based on the
conservation of the three U(1) charges S12, S34, S56. These selection rules are presented in
Table 8 for NR–terms up to ninth order. The notation we use is to write in square brackets
the allowed partition of fields in each of the categories for given order N . The allowed field
type (NS or R) appears as a subscript. As an example let us explain the allowed fifth order
couplings. From the table we read [3R, 2R, 0] when the number of NS–fields is zero and
[2R, 2R, 1NS] when the number of NS–fields is one. The first selection rule means that in
any non–vanishing coupling between twisted fields the three of them have to belong to a
common plane while the other two should both reside in one of the other planes. In the
case that one untwisted field participates in the coupling, the twisted ones should reside in
the other two planes and there should be exactly two of them in each one. As seen from
the table, all 5th order couplings which contain more that one NS field, vanish.

In order to see the effect of the above selection rules we present in Table 7 the number of
couplings that are eliminated (forN ≤ 5) from this source in the model under consideration.
We also present the number of couplings surviving group invariance and the final number
of non–vanishing superpotential couplings. Going further to the evaluation of correlators
one finds another source of zeros. These are the Ising type correlators arising due to the
existence of non–trivial left–right paired world–sheet fermions. For tree–level couplings,
the non–vanishing Ising correlators are

〈σ+σ+〉 , 〈σ−σ−〉 , 〈σ+σ−f〉 , 〈σ+σ−f̄〉 (115)

for higher order terms one can follow the rules of [32].

The whole problem of deriving the superpotential terms can be automated using a
computer program [33]. The selection rules are initially used to reduce the number of
candidate couplings, then group invariance is checked and finally all Ising type correlators
are evaluated. The whole calculation takes a few seconds on a personal computer for N = 5
and comparable time for selected N = 6 couplings.

Using this program we have calculated non–vanishing superpotential couplings.
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0
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S

1
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2
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]
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S
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S
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S
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R
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S
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2)Here we present fifth and sixth order NR–contributions to the superpotential. For
finiteness we list only terms related to fermion masses and flatness conditions.

a)The 5th order superpotential terms involving masses for observable fields are:

w5 = F̄2RF2Lh4ζ̄4Φ1 + F̄1RF1Lζ1h4Φ3 + F̄5RF4RF̄1RF1Lh4

+ F̄ 2
5L

(
(F 2

4L + F 2
1L + F̄ 2

1R)Φ̄−
12 + F 2

4RΦ12 +D1(h
2
3 + ξ̄1ξ4) +D3(ζ

2
i + ξ2ξ̄3)

)
+ F̄5L

(
F̄5R

(
D1ζ̄2h3 +D3ζ2h4

)
+ F4LF̄2RF2Lh4 + F4R(F̄2RF2Lζ̄3 + F̄1RF1Lζ2)

)
+ F̄ 2

5R

(
(F 2

4L + F 2
1L + F̄ 2

1R)Φ̄12 + F 2
4RΦ−

12 +D1(ζ̄
2
i + ξ̄2ξ3) +D3(h

2
4 + ξ1ξ̄4)

)
+ F̄5RF4LF̄3RF3Lξ1 + F4LF4R

(
D2ζ3h3 +D4ζ̄3h4

)
+ F 2

4L

(
(F̄ 2

2R + F 2
2L)Φ̄12 +D2(ζ

2
i + ξ2ξ̄3) +D4(h

2
4 + ξ1ξ̄4)

)
+ F 2

2R

(
(F̄ 2

1R + F 2
1L)Φ̄12 +D1(ζ̄

2
i + ξ̄2ξ3) +D3(h

2
4 + ξ1ξ̄4)

)
+ F 2

2L

(
(F̄ 2

1R + F 2
1L)Φ̄12 +D1(ζ̄

2
i + ξ̄2ξ3) +D3(h

2
4 + ξ1ξ̄4)

)
+ F 2

4R

(
(F̄ 2

2R + F 2
2L)Φ−

12 +D4(ζ̄
2
i + ξ̄2ξ3) +D2(h

2
3 + ξ̄1ξ4)

)
+

(
F 2

1L + F̄ 2
1R

) (
D2(ζ

2
i + ξ2ξ̄3) +D4(h

2
4 + ξ1ξ̄4)

)
(116)

b)The 5th order superpotential terms involving masses for exotic fields are:

w′5 = F 5RF4RΦ4X1RX6R + F 5RF4RΦ5X1RX6R + F 5RF4Rζ3X9RX10R + ξ2Z1Z4X4LX5L

+ F4RF 2RΦ4X1RX8R + F4RF 2RΦ5X1RX8R + F4RF 2Rζ3X6LX8L + ξ2Z2Z4X1LX7L

+ F4RF 2Rζ3X5RX7R + F4RF 1Rζ4X3RX5R + F4RF 1Rζ4X4LX6L + F4RF 1Rξ2X3RX6R

+ F4RF 1Rξ2X4LX5L + Φ1ζ2ξ2X7LX8L + Φ1ζ2ξ2X7RX8R + Φ1ζ2ξ3X7LX8L

+ Φ3ζ3ξ2X3RX4R + Φ3ζ3ξ3X3RX4R + Φ3ζ3ξ2X3LX4L + Φ3ζ3ξ3X3LX4L

+ Φ4Z1Z4X3RX5R + Φ4Z2Z4X2LX7L + Φ4Z4Z5X2LX5L + Φ4Z5Z4X2RX5R

+ Φ5Z1Z4X3RX5R + Φ5Z2Z4X2LX7L + Φ5Z4Z5X2LX5L + Φ5Z5Z4X2RX5R

+ ζ1Z2Z4X1RX8R + ζ1Z2Z4X2LX7L + ζ2Z5Z4X9RX10R + ζ2Z1Z4X3LX2L

+ ζ2Z1Z4X4RX1R + ζ3Z2Z4X6LX8L + ζ3Z2Z4X5RX7R + ζ3Z4Z5X9LX10L

+ ζ4Z1Z4X3RX5R + ζ4Z1Z4X4LX6L + ξ2Z1Z4X3RX6R + ξ2Z2Z4X2RX8R

+ ξ1Z1Z5X3LX2L + ξ1Z1Z5X4RX1R + ξ1Z2Z5X6LX8L + ξ1Z2Z5X5RX7R (117)

c) 5th and 6th order contributions to the F−flatness are 5:

w′′5 = Φ1ζ4ξ1Z2Z2 + Φ2F 5RF4RZ4Z5 + Φ2F4RF 2RZ2Z4 + Φ3ζ1ξ1Z1Z1

+ Φ12F 5RF 5RF 1RF 1R + Φ12F 2RF 2RF 1RF 1R + Φ
−
12Z2Z2Z4Z4 + Φ

−
12Z4Z4Z5Z5

+ Φ−
12F 5RF 5RF4RF4R + Φ−

12F4RF4RF 2RF 2R + Φ−
12Z1Z1Z4Z4 + Φ−

12Z5Z5Z4Z4

+ F4RF 2Rζ3Z2Z4 + F4RF 1Rζ2Z1Z4 + F4RF 1Rξ1Z1Z5 + ζ2Z1Z1Z4Z4

+ ζ3Z2Z2Z4Z4 + ξ1Z1Z1Z4Z5 + ξ1Z2Z2Z5Z4 (118)

5For convenience, we include here some of the terms listed above since they can contribute in both
categories depending on the generation assignment.
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w6 = Φ1Φ1ζ4ξ1Z2Z2 + Φ1F4RF 2Rζ3Z2Z4 + Φ1ζ3Z2Z2Z4Z4 + Φ1ξ1Z2Z2Z5Z4

+ Φ2Φ5F4RF 2RZ2Z4 + Φ3Φ3F4RF 3RZ3Z4 + Φ3Φ3ζ1ξ1Z1Z1 + Φ3F4RF 1Rζ2Z1Z4

+ Φ3F4RF 1Rξ1Z1Z5 + Φ3ζ2Z1Z1Z4Z4 + Φ3ξ1Z1Z1Z4Z5 + Φ4Φ12F 5RF 5RF 1RF 1R

+ Φ4Φ12F 2RF 2RF 1RF 1R + Φ4Φ
−
12Z1Z1Z4Z4 + Φ4F4RF 1Rζ2Z1Z4 + Φ4F4RF 1Rξ1Z1Z5

+ Φ4ζ2Z1Z1Z4Z4 + Φ4ξ1Z1Z1Z4Z5 + Φ5Φ12F 2RF 2RF 1RF 1R + Φ5Φ
−
12Z2Z2Z4Z4

+ Φ5Φ
−
12Z2Z2Z4Z4 + Φ5Φ

−
12F4RF4RF 2RF 2R + Φ5F4RF 2Rζ3Z2Z4 + Φ5ζ3Z2Z2Z4Z4

+ Φ5Φ
−
12Z2Z2Z4Z4 + Φ5Φ

−
12F4RF4RF 2RF 2R + Φ5F4RF 2Rζ3Z2Z4 + Φ5ζ3Z2Z2Z4Z4

+ Φ5Φ
−
12Z2Z2Z4Z4 + Φ5Φ

−
12F4RF4RF 2RF 2R + Φ5F4RF 2Rζ3Z2Z4 + Φ5ζ3Z2Z2Z4Z4

+ Φ5Φ
−
12Z2Z2Z4Z4 + Φ5Φ

−
12F4RF4RF 2RF 2R + Φ5F4RF 2Rζ3Z2Z4 + Φ5ζ3Z2Z2Z4Z4

+ Φ5ξ1Z2Z2Z5Z4 + F 5RF 5RF 3RF 3Rξ1ξ2 + F4RF4RF 3RF 3Rξ4ξ2 + F4RF4RF 1RF 1Rζ1ζ3

+ F4RF4RF 1RF 1Rζ1ζ3 + F4RF 3Rζ1ζ1Z3Z4 + F4RF 3Rζ2ζ2Z3Z4 + F4RF 3Rζ3ζ3Z3Z4

+ F4RF 3Rζ3ξ1Z3Z5 + F4RF 3Rζ4ζ4Z3Z4 + F4RF 3Rξ2ξ2Z3Z4 + F4RF 3Rξ3ξ3Z3Z4

+ F4RF 3Rξ1ξ1Z3Z4 + F4RF 3Rξ4ξ4Z3Z4 + F4RF 1Rζ1ζ3Z1Z4 + F4RF 1Rζ1ζ3Z1Z4

+ F4RF 1Rζ1ξ1Z1Z5 + F 3RF 3RF 2RF 2Rξ1ξ2 + F 3RF 3RF 1RF 1Rξ1ξ3 + ζ1ζ3Z1Z1Z4Z4

+ ζ1ζ3Z1Z1Z4Z4 + ζ1ξ1Z1Z1Z4Z5 + ζ2ζ4Z2Z2Z4Z4 + ζ2ζ4Z2Z2Z4Z4

+ ζ4ξ1Z2Z2Z4Z5 + ξ2ξ4Z3Z3Z4Z4 + ξ2ξ4Z3Z3Z4Z4 (119)

12 Appendix C: F– and D–flatness equations

The identification of the flat directions in the scalar potential requires the vanishing of
the F− and D−terms. In Section 6, the complete F−flatness conditions with tree–level
superpotential contributions were presented. Hidden field contributions are also easily
calculated from the superpotential (35). Fourth order contributions from both hidden and
observable sectors can also be found from the superpotential terms (36) presented in the
same section. Higher order terms have also been calculated and are given in Appendix B.
For convenience, the contributing fifth and sixth order NR superpotential terms are written
separately in the w′′5 and w6 pieces of the NR superpotential.

D–flatness
The D–flatness equations for the non-Anomalous U(1)i factors are given by

(Di) :
∑
φj

Qi
j |φj|2 = 0 , i = 1, 2, 3 (120)

On the other hand, the Green–Schwarz anomaly cancellation mechanism in string theory
generates a constant Fayet-Iliopoulos contribution to the D–term of the anomalous U(1)A.
This is proportional to the trace of the anomalous charge over all fields. To preserve
supersymmetry the following D–flatness condition should be satisfied,

(DA) :
∑
φj

QA
j |φj|2 = −ξ (121)
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where the sum extends over all singlet fields (including the SU(4) × O(4) breaking ones)
and ξ = 3

8π2 e
ΦD . If hidden fields acquire vevs, they should also be included in the above

expressions.

Taking the combinations (D1),
1
2
((D1) + (D2)),

1
2
((D3)− (D4)),

1
2
(D4) we obtain

1

2

∣∣∣F 3R

∣∣∣2 + |ξ2|2 −
∣∣∣ξ2

∣∣∣2 + |ξ3|2 −
∣∣∣ξ3

∣∣∣2 +H1 = 0 (122)

1

4

(∣∣∣F 2R

∣∣∣2 − ∣∣∣F 1R

∣∣∣2 +
∣∣∣F 3R

∣∣∣2 + |F4R|2
)

+ (123)

+ |ξ2|2 −
∣∣∣ξ2

∣∣∣2 +
∣∣∣Φ̄−

12

∣∣∣2 − ∣∣∣Φ−
12

∣∣∣2 +
1

2

4∑
i=1

(
|ζi|2 −

∣∣∣ζ i∣∣∣2) +H2 = 0 (124)

1

2

∣∣∣F 3R

∣∣∣2 +
∣∣∣ξ1

∣∣∣2 − |ξ1|2 +
∣∣∣ξ4

∣∣∣2 − |ξ4|2 +H3 = −ξ
3

(125)

|ξ1|2 −
∣∣∣ξ1

∣∣∣2 +
∣∣∣Φ̄12

∣∣∣2 − |Φ12|2 +H4 =
ξ

2
(126)

H1,2,3,4 stand for hidden vev contributions. These are

H1 =
1

2

(
|Z̄3|2 − |Z3|2

)
H2 =

1

4

(
|Z̄2|2 + |Z2|2 + 2 |Z̄3|2 + |Z̄5|2 − |Z̄4|2

)
H3 =

1

4

(
−|Z̄2|2 − |Z2|2 + |Z̄3|2 + |Z3|2 + |Z̄4|2 − |Z̄5|2

)
H4 =

1

4

(
|Z̄1|2 + |Z1|2 + |Z̄2|2 + |Z2|2 − |Z̄4|2 − |Z4|2 + |Z̄5|2 + |Z5|2

)
We finally have the D–flatness conditions for the non-Abelian part of the gauge symmetry.
For the SU(4)× O(4), ∣∣∣F 1R

∣∣∣2 +
∣∣∣F 2R

∣∣∣2 +
∣∣∣F 3R

∣∣∣2 − |F4R|2 = 0 (127)

while in the presence of the hidden non-zero vevs, the SU(8) and U(1)′ D−flatness condi-
tions should also be satisfied

(DU(8)) :
∑5
i=1

(
|Z̄i|2 − |Zi|2

)
= 0, (128)

(DU(1)′) :
∑
χj
Q′
j |χj|2 = 0 . (129)

where χj stand for all fields carrying U(1)′ charge.

F–flatness
For completeness, we also write here the F -flatness conditions including superpotential
contributions up to fourth order and hidden fields. Fifth and sixth order contributions are
easily calculated from the NR–terms presented in Appendix B.

Φ2 : ζiζ̄i + ξiξ̄i = 0 (130)

Φ4 : ζ1ζ̄3 + ζ̄1ζ3 = 0 (131)
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Φ5 : ζ2ζ̄4 + ζ̄2ζ4 = 0 (132)

Φ12 : ξ1ξ̄4 = 0 (133)

Φ̄12 : ξ4ξ̄1 + Z3Z̄3 = 0 (134)

Φ−
12 : ζiζi + ξ2ξ̄3 = 0 (135)

Φ̄−
12 : ζ̄iζ̄i + ξ3ξ̄2 = 0 (136)

ξ1 : φ2ξ̄1 + Φ12ξ̄4 + Z5Z̄5 + ζ̄1Z1Z̄1 + ζ4Z2Z̄2 = 0 (137)

ξ̄1 : φ2ξ1 + Φ̄12ξ4 = 0 (138)

ξ2 : φ2ξ̄2 + Φ−
12ξ̄3 = 0 (139)

ξ̄2 : φ2ξ2 + Φ̄−
12ξ3 = 0 (140)

ξ3 : φ2ξ̄3 + Φ̄−
12ξ̄2 = 0 (141)

ξ̄3 : φ2ξ3 + Φ−
12ξ2 = 0 (142)

ξ4 : φ2ξ̄+Φ̄12ξ̄1 = 0 (143)

ξ̄4 : φ2ξ4 + Φ12ξ1 = 0 (144)

ζ1 : φ2ζ̄1 + Φ4ζ̄3 + 2Φ−
12ζ1 = 0 (145)

ζ̄1 : φ2ζ1 + Φ4ζ3 + 2Φ̄−
12ζ̄1 + ξ1Z1Z̄1 = 0 (146)

ζ2 : φ2ζ̄2 + Φ5ζ̄4 + 2Φ−
12ζ2 + 1√

2
F̄5LF4L = 0 (147)

ζ̄2 : φ2ζ2 + Φ5ζ4 + 2Φ̄−
12ζ̄2 + Z5Z̄4/

√
2 = 0 (148)

ζ3 : φ2ζ̄3 + Φ4ζ̄1 + 2Φ−
12ζ3 + Z4Z̄5/

√
2 = 0 (149)

ζ̄3 : φ2ζ3 + Φ4ζ1 + 2Φ̄−
12ζ̄3 + F̄5RF4R/

√
2 = 0 (150)

ζ4 : φ2ζ̄4 + Φ5ζ̄2 + 2Φ−
12ζ4 + ξ1Z2Z̄2 = 0 (151)

ζ̄4 : φ2ζ4 + Φ5ζ2 + 2Φ̄−
12ζ̄4 = 0 (152)

Z1 : ζ̄1ξ1Z̄1 = 0 (153)

Z̄1 : ζ̄1ξ1Z1 = 0 (154)

Z2 : ζ4ξ1Z̄2 = 0 (155)

Z̄2 : ζ4ξ1Z2 = 0 (156)

Z3 : Φ̄12Z̄3 + F̄5LF3LZ̄4 = 0 (157)

Z̄3 : Φ̄12Z3 + F4RF̄3RZ4 = 0 (158)

Z4 : ζ3Z̄5/
√

2 + F4RF̄3RZ̄3 = 0 (159)

Z5 : ζ̄2Z̄4/
√

2 + ξ1Z̄5 = 0 (160)

Z̄4 : ζ̄2Z5/
√

2 = 0 (161)

Z̄5 : ζ3Z4/
√

2 + ξ1Z5 = 0 (162)

F 5R : F4Rζ3 = 0 (163)
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13 Appendix D: Tree–level flat directions.

We present here the tree–level flat directions of the model. As has been explained in Section
6, the solutions are classified in four distinct cases according to whether the singlet vevs
ξ1,4, ξ̄1,4 are zero or non–zero. It was shown there that only the cases ξ1 = ξ4 = 0 ( assigned
as case (iii) in Section 6) and ξ̄1 = ξ̄4 = 0 (with ξ1,= ξ4 6= 0, referred as case (iv) in the
same section) have solutions consistent with F− and D− flatness constraints.

Our analysis proceeded as follows: First we solved the constraints taking into account
contributions only from the tree–level Yukawa superpotential. An exhaustive analysis shows
that at tree–level there are 17 solutions for case (iii) and 9 solutions for case (iv). These
solutions are presented in Tables 9. The five columns in the middle show the fields with
zero vevs and the last column the number of free parameters. For further details in the
notation, see explanation in section 6. Higher order NR–contributions up to sixth order,
reject several of these cases, resulting to those presented in Section 6.

The complete list of the tree–level solutions given in Table 9 is related to flatness
constraints involving fields only from the observable sector. These are easily extended to
solutions involving hidden fields by using the flatness conditions of Appendix C. Solutions
involving hidden field contributions of higher NR superpotential terms are more involved
and need a separate treatment.
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Φ12s Φi ξi, ξ̄i ζi, ζ̄i F̄i f.p.

1 12, 12−, 12
−

2, 4, 5 4, 1̄, 4̄ 3, 3̄ 5̄ 9

2 12, 12−, 12
−

2, 4, 5 4, 1̄, 4̄ 1̄, 3̄ 5̄ 9

3 12, 12, 12−, 12
−

2, 4, 5 4, 4̄ 3, 3̄ 5̄ 9

4 12, 12, 12−, 12
−

2, 4, 5 4, 4̄ 1̄, 3̄ 5̄ 9

5 12, 12−, 12
−

2, 5 4, 1̄, 4̄ 3, 1̄, 3̄ 9

6 12, 12, 12−, 12
−

2, 5 4, 4̄ 3, 1̄, 3̄ 9

7 12, 12−, 12
−

2, 5 4, 1̄, 4̄ 2, 3, 1̄, 2̄, 3̄ 8

8 12, 12−, 12
−

2, 4 4, 1̄, 4̄ 2, 3, 4, 2̄, 3̄, 4̄ 5̄ 7

9 12, 12, 12−, 12
−

2, 4 4, 4̄ 2, 3, 4, 2̄, 3̄, 4̄ 5̄ 7

10 12, 12−, 12
−

2 2, 3, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄, 2̄ 6

11 12, 12
−

2, 4, 5 2, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 3̄ 5̄ 8

12 12, 12
−

2, 5 2, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 3̄ 5̄ 8

13 12, 12
−

2, 4 2, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 2̄, 3̄, 4̄ 5̄ 7

14 12, 12
−

2 2, 3, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄ 7

15 12, 12, 12
−

2 2, 3, 4, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄ 6
16 12 2 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄, 3̄ 7

17 12, 12, 12−, 12
−

2 3, 4, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄, 2̄ 8

18 12, 12, 12−, 12
−

2, 4, 5 1̄, 4̄ 3, 3̄ 5̄ 9

19 12, 12, 12−, 12
−

2, 4, 5 1̄, 4̄ 1̄, 3̄ 5̄ 9

20 12, 12, 12−, 12
−

2, 5 1̄, 4̄ 3, 1̄, 3̄ 9

21 12, 12, 12−, 12
−

2, 4 1̄, 4̄ 2, 3, 4, 2̄, 3̄, 4̄ 5̄ 7

22 12, 12, 12
−

2, 4, 5 2, 1̄, 3̄, 4̄ 1, 2, 3, 4, 3̄ 5̄ 8

23 12, 12, 12
−

2, 5 2, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 3̄ 5̄ 8

24 12, 12, 12
−

2, 4 2, 1̄, 3̄, 4̄ 1, 2, 3, 4, 2̄, 3̄, 4̄ 5̄ 7

25 12, 12, 12
−

2 2, 3, 1̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 5̄ 7
26 2, 3, 1̄, 2̄, 3̄, 4̄ 1, 2, 3, 4, 1̄, 2̄, 3̄, 4̄ 3̄, 5̄ 7

Table 9: The tree–level solutions to the F– and D–flatness equations. The fields appearing
in the table have zero vevs. In the last column f.p. stands for the number of free parameters.
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