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Abstract The current state of analysis of e+e− annihilation below 2.0 GeV and of the vector component
of τ -decay is reviewed. The evidence for and against the presence of hybrid vectors is discussed. It is
concluded that the data strongly favour their inclusion, and the consequences of this are outlined.

1 Introduction

It has been recognised for some time that the data on vector meson decays appears to be in conflict
with the predictions of the 3P0 model which has become the standard for calculating meson decays.
One solution has been to suggest that the physical light vectors are mixed qq̄ and hybrid vectors, as
the latter have appropriate decay characteristics. However this has never been quantified, nor have
alternative non-hybrid explanations been actively sought. Here we explore the limits of the 3P0 model
and apply a specific non-3P0 model to the vector decays in an attempt to avoid the introduction of
hybrids. Constraints placed on these models by other decays, in particular those of the pseudoscalars
η(1295) and π(1300), are sufficient to prevent them from providing a solution to the vector decay problem.
Given that the inclusion of hybrids is unavoidable, we consider the advantages and disadvantages of the
flux tube model and the constituent gluon model of hybrids in the context of the vector decays. The data
prefer the constituent gluon model, and we outline briefly the consequences elsewhere of this choice.

The current information on light-quark vectors from e+e− annihilation and τ decay is discussed in Section
2, and the decay problems identified. Present understanding of gluonic excitations in general and of hybrid
models in particular is summarised in Section 3. In addition to the standard 3P0 approach, which models
the string breaking, we suggest a specific hadronic ansatz for relevant light quarkonia decays in analogy
to the decays of heavy quarkonia. These two approaces are evaluated in the context of pseudoscalar
decays, specifically η(1295) and π(1300), in Section 4 and limits put on the corresponding vector decays.
These latter results are confronted with the data in Section 5, where it is shown that the limits are too
restrictive to resolve the problems identified in Section 2. This leads naturally to a detailed consideration
of the two available models for hybrids, and the data appear to favour the constituent gluon model over
the flux tube model. Our conclusions and their consequences are summarised in Section 6.

2 e+e− Annihilation and τ Decay

The existence of the isovector ρ(1450) and ρ(1700), and their isoscalar counterparts ω(1420) and ω(1600)
is now well established [1].
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The key experimental results in determining the existence of the two isovector states were e+e− → π+π−

[2] and e+e− → ωπ [3]. These original data sets have subsequently been augmented by data on the
corresponding charged channels in τ decay [4, 5], to which they are related by CVC. These new data
confirm the earlier conclusions. The data on e+e− → π+π−π+π− [6] and e+e− → π+π−π0π0 [6, 7]
(excluding ωπ) and the corresponding charged channels in τ decay [5] are compatible with the two-
resonance interpretation [8, 9]. However the 4π data alone do not provide such good discrimination
despite 4π being the major decay channel. The reason for this is straightforward. In ωπ and ππ there
is strong interference with the tail of the ρ, which is absent in the case of 4π. It was also found that
the e+e− → ηπ+π− cross section is better fitted with two interfering resonances than with a single state
[10], with parameters in fair agreement with those found in the analysis of other channels. Independent
evidence for two JP = 1− states was provided in a high statistics study of the ηππ system in π−p charge
exchange [11]. Decisive evidence for both the ρ(1450) and ρ(1700) in their 2π and 4π decays has come
from the study of p̄p and p̄n annihilation [12].

The data initially available for the study of the corresponding isoscalar states ω(1420) and ω(1600) were
e+e− → π+π−π0 (which is dominated by ρπ) and e+e− → ωπ+π− [13]. The latter cross section shows a
clear peak which is apparently dominated by the ω(1600). The former cross section shows little structure,
but is appreciably larger than that calculated from the tails of the ω and φ. This implies an additional
contribution and a best fit is obtained with two states [8], although a fit with only the ω(1600) cannot
be excluded completely. Data on p̄N annihilation may help to clarify the situation, but analysis is still
at a preliminary stage [14].

Although there is general consensus on the existence of the ρ(1450), ρ(1700), ω(1420) and ω(1600) there
is considerable disparity on the parameters of these resonances. These show variation from one reaction
to another and, even within one particular process, are dependent on the analysis techniques employed.
Results from channels for which there is strong interference with the tail of the ρ or of the ω and φ are
sensitive to the choice of model used to estimate this contribution. For the ρ(1450) the most extreme
low mass comes from an analysis of the π+π− spectrum in the reaction K−p → π+π−Λ [15], which
gives 1266± 14 MeV. However such a low mass is not supported by any other analysis and does require
confirmation. Most of the results of the analyses of e+e− annihilation, τ decay and p̄N annihilation are
clustered round the preferred PDG values [1], which are the ones we use here. These are given in Table
1.

Resonance ρ(1450) ρ(1700) ω(1420) ω(1600)
Mass(MeV) 1465± 25 1700± 20 1419± 31 1649± 24
Width(MeV) 310± 60 240± 60 174± 59 220± 35

Table 1: Experimental masses and widths of the higher vector mesons.

A natural explanation of these states is that they are the first radial, 23S1, and first orbital, 13D1,
excitations of the ρ and ω as the masses are close to those predicted by the quark model [16]. This
interpretation is given further credence by the observation of φ(1680) which has the appropriate mass to
be a candidate for the first radial excitation of the φ.

Despite the reasonable agreement of the observed masses with the quark model predictions, the ratio of
the e+e− width of the ρ(1700) to that of the ρ(1450) is surprisingly large. In the non-relativistic limit the
e+e− width of the 13D1 state vanishes, and although some non-zero width will be created by relativistic
corrections this is expected to be small. Additionally the data on the 4π channels in e+e− annihilation
and in τ decay do not appear at first sight to be compatible with those expected for the vector radial
and orbital excitations of the qq̄ system. This statement is of course model dependent as it assumes
that we can predict the hadronic decays of the vector qq̄ excitations. The 3P0 model [17, 18, 19, 20, 21]
does appear to allow this with some accuracy. A systematic study of known light qq̄ decays shows that a
3P0-type amplitude dominates, and widths which are predicted to be large or small are found respectively
to be so. More quantitatively, calculated widths agree with data to within 25− 40%.
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The success of the 3P0 model for well-known decays can be used to justify its application to predicting
other decays, and in particular those of the radial and orbital excitations of the ρ and ω. In its simplest
form the 3P0 model contains only two parameters: an inverse length scale β which controls the meson
form factors, and the pair creation strength γ. These are not known precisely, but are reasonably well
constrained with β ∼ 0.4 GeV, γ = 0.39 GeV. Assuming that their masses are respectively 1.45 and 1.70
GeV, the 3P0 partial widths for ρ2S and ρ1D are given in Table 2.

Channel ππ πω ρη πh1 πa1 ρρ ρσ other total
ρ2S 68 115 18 1 3 10 1 80 295
ρ1D 27 23 13 104 105 6 0 137 415

Table 2: The 3P0 partial widths for ρ2S and ρ1D

In Table 2 “other” includes KK̄, K∗K̄ + c.c. and 6π channels, and the σ is the broad S-wave ππ
enhancement. Altogether 16 channels have been incorporated in the calculation [21][22].

It is not necessary to go through a detailed analysis to show that these 3P0 model results exclude
interpreting the e+e− and τ decay data in terms of the ρ2S and ρ1D if the model is strictly applied. As
already implied, the key is in the 4π decays. From Table 2 one can see that the 4π decays of the ρ2S are
negligible, and so the ρ2S effectively makes no contribution to the 4π channel. In contrast the 4π decays
of the ρ1D are large, and the two dominant ones, h1π and a1π, are comparable. Now h1π contributes
only to the π+π−π0π0 channel in e+e− annihilation, but a1π contributes to both this and to π+π−π+π−.
An immediate consequence is that we would expect σ(e+e− → π+π−π0π0) > σ(e+e− → π+π−π+π−),
after subtraction of the ωπ cross section from the total π+π−π0π0. This contradicts observation. Despite
considerable uncertainty in the π+π−π0π0 cross section, enhanced by the need to subtract the ωπ cross
section, it is undeniably appreciably smaller than the π+π−π+π− cross section over most of the relevant
energy range.

One explanation of this has been to suggest that the qq̄ vector states are mixed with a hybrid vector [23][24]
as this decays predominantly to a1π in flux tube models [24], and to a1π and ρ(ππ)S in constituent gluon
models [25]. Both the π+π− and the π+π−π0π0 channels are accessed by the a1π and ρ(ππ)S decays
so, in either case, e+e− annihilation and the corresponding τ decays should in principle be explicable in
terms of some suitable combination of ρ, ρ2S , ρ1D and hybrid ρH , and with the implication that there
must be very little ρ1D to ensure the dominance of π+π−π+π− over π+π−π0π0. The surprisingly large
ratio of the e+e− widths is also a good indicator of mixing.

However such evidence as we have from the isoscalar states indicates that the picture might not be quite
as simple as this. The 3P0 widths for the ω2S and ω1D are given in Table 3 [21] assuming that their
masses are respectively 1420 and 1650 MeV.

Channel ρπ ωη b1π ωσ Other Total
ω2S 328 12 1 8 36 385
ω1D 101 13 371 0 53 561

Table 3: The 3P0 widths for the ω2S and ω1D

The large widths of the bare states predicted by the 3P0 model are well in excess of the quoted exper-
imental total widths [1]. There must be strong mixing in the isoscalar channel as the e+e− widths of
the ω′1 and ω′2 are almost the same, and one would not expect either the ω1D or the ωH to have an
electromagnetic coupling comparable to that of the ω2S . In the flux tube model the width of the ωH is
predicted to be small, ∼ 20 MeV [24], and is essentially all to ρπ. The ωH width can be appreciably
larger in constituent gluon models [25] but again the ρπ decay dominates although some ω(ππ)S decay is
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allowed [25]. Thus omitting the ω1D, in analogy with the isovector case, would seem difficult to reconcile
with the integrated cross section for e+e− → ωππ which, up to 1.8 GeV, is about 60% of the integrated
e+e− → ρπ cross section and could be taken to imply some significant ω1D component.

The arguments relating to the ρ(ππ)S and ω(ππ)S decays of ρ2S and ω2S presuppose that there is no
mechanism which can generate these in any significant way. A possible approach is to invoke an inherent
uncertainty in the 3P0 model when applied to the decays of radial excitations to the ground state plus
an S−wave ππ pair. In the 3P0 model the decays of the ρ2S to ρ(ππ)S and of the ω2S to ω(ππ)S are
strongly suppressed by a cancellation between two terms, one of which is strongly dependent on the model
parameters. If these decays could be sufficiently enhanced within the structure of the model then the 4π
problem in the isovector sector and the comparatively large ωππ in the isoscalar sector could possibly be
resolved. Note that the ρ(ππ)S and ω(ππ)S decays of the ρ1D and ω1D respectively are strictly forbidden
in the 3P0 model.

Further, many radial excitations are known to decay preferentially to the ground state, or a lower radial
excitation, plus (ππ)S .The most obvious ones occur in higher quarkonia. The branching fractions of these
decays are: ψ(2S) → ψ(1S), 50.8 ± 3.7%; Υ(2S) → Υ(1S), 27.3 ± 1.4%; Υ(3S) → Υ(1S), 6.5 ± 0.4%,
Υ(3S) → Υ(2S), 4.8 ± 0.7%. These decays cannot proceed via string breaking and are all specifically
non-3P0 decays. A similar phenomenon is seen in light quarkonia: for example η′(1295) → η(ππ)S and
π(1300) → π(ππ)S , assuming for the moment that both η′(1295) and π(1300) are radial excitations. Both
of these latter decays are essentially zero in the 3P0 model with standard parameters. Whether a similar
mechanism is operating here as for heavy quarkonia, or whether these decays arise from the sensitivity
of the 3P0 model for radial decays involving (ππ)S , is undetermined.

Before applying these various ideas to the vector meson decays we consider the current status of hybrid
mesons and of radial decays to the corresponding ground state plus (ππ)S in light quarkonia.

3 Hybrid Mesons

Evidence for the excitation of gluonic degrees of freedom has emerged in several processes. There are
two independent indications of an isovector JPC = 1−+ exotic resonance ρ̂(1600) in π−N → π+π−π−N ,
specifically in the ρ0π− channel. The E852 collaboration [26] quote a mass of 1593± 8 MeV and width
of 168 ± 20 MeV, which are consistent with the preliminary claim of the VES collaboration [27] of a
resonance at 1620±20 MeV with a width of 240±50 MeV. There is also evidence for this state in the η′π
channel [27][28]. It has been argued that the ρπ, η′π and ηπ couplings of this state support the hypothesis
that it is indeed a hybrid meson, although other interpretations cannot be eliminated entirely [29]. A
peak in the ηπ mass spectrum at 1.4 GeV with JPC = 1−+, in the reaction π−N → ηπ−N , has also been
interpreted as a resonance [30]. Additional evidence for the same state in the same mode is provided by
the Crystal Barrel collaboration [31], in an analysis of pp̄ → ηπ+π−. In this case the signal is deduced
from a phase variation in the JPC = 1−+ amplitude seen as interference in the Dalitz plot. There is
evidence from the VES collaboration [32] for two isovector 0−+ states in the mass region 1.4 to 1.9 GeV.
One is the well-established π(1800) [33] with a mass of 1790 ± 6 ± 12 MeV and width of 225 ± 9 ± 15
MeV, and one a new state, the π(1600), with a mass of 1580± 43± 75 MeV and width of 450± 60± 100
MeV. The quark model predicts only one state in this mass region. Thus there is evidence for degrees
of freedom beyond qq̄, and the unusual decay pattern of the π(1800) encourages the belief that it has a
strong hybrid component [21, 24].

The interpretation of the peak in the ηπ mass spectrum at 1.4 GeV as a resonance [30] has been challenged
[34]. It was shown that the E852 ηπ peak and phase can be obtained without the need to invoke the
presence of an exotic resonance. The two key ingredients are the presence of a strongly coupled threshold
in this mass region (taken to be b1π) with rescattering to produce the ηπ signal. A Deck-type background
interfering with a hybrid resonance of higher mass, for which the ρ̂ at 1.6 GeV is an obvious candidate, was
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considered as the production mechanism. The Deck mechanism also provides the predominant natural
parity exchange for the 1.4 GeV peak which is observed experimentally, in contrast to the 1.6 GeV state
which has a significant contribution from unnatural parity exchange. Of course the Deck mechanism is
not applicable to the pp̄ annihilation experiment [31], but the strongly-coupled threshold with rescattering
can generate sufficient phase variation without requiring a resonance at 1.4 GeV.

If the above is the correct interpretation of the ηπ data then the ρ̂(1600) is the lowest mass exotic hybrid.
An alternative viewpoint is to accept that the 1.4 GeV ηπ signal really is an exotic resonance [25] and
to explore the consequences. One of these, which will be relevant for our subsequent discussion, is that
the JPC = 0−+ π(1300) is predominantly a hybrid meson, although there may be some admixture of
the qq̄ 21S0 state which has the same quantum numbers. One argument usually given in favour of the
hybrid interpretation is the large π(ππ)S branching fraction, much larger than πρ. This is in complete
disagreement with the predictions for the qq̄ 2S level in the 3P0 model for which the π(ππ)S mode is
strongly suppressed. However if the π(1300) is a qq̄ radial excitation then, as noted in Section 2, the
decay is very sensitive to the 3P0 parameters. The decay may also be generated by a non-3P0 mechanism.
Thus the π(ππ)S decay may be possible without invoking a hybrid. This possibility will be explored fully
in Section 4.

Ideally we would have mass predictions for hybrids comparable to those for the qq̄ states. Unfortunately
the absolute mass scale for light-quark hybrids is not precisely determined, with predictions for the lightest
hybrids lie between 1.3 and 1.9 GeV. Bag models [35, 36] tend towards the lower end of this range, but
it is not clear just how reliable their results are. Parameters are tuned to fit the qq̄ spectrum and it is
questionable whether the same parameters should be used for the qq̄g states. Attempts to accomodate
this lead to considerable variation in the predictions, giving a mass value for the lightest hybrid in the
range 1.4 to 1.7 GeV. However it is perfectly possible to accomodate a 0−+ at ∼ 1.3 GeV and a 1−+ at
∼ 1.4 GeV with the lightest 1−− hybrid at ∼ 1.65 GeV. Flux tube models [37] predict hybrid masses to be
considerably higher than these, at about 1.9 GeV. The constituent gluon model [38] gives the light-quark
hybrid mass at 1.7 - 1.8 GeV. In principle QCD sum rules could resolve the issue of mass scale as they
are a powerful tool for the understanding of hadron properties in terms of the vacuum condensates of
QCD. However even here there is a major divergence of view, either giving an upper limit of 1.5 GeV on
the mass of the 1−+ hybrid [39], with a preference for a somewhat lower value, or putting it somewhere
in the range 1.6 to 2.1 GeV [40], with a preference for the upper end. The principal difference between
the two calculations is the application of a low-energy theorem in [39] which in turn gives an important
rôle to the g3〈G3〉 term with the effect of lowering the mass. This is acknowledged in [40].

However it does seem to be generally agreed that the mass ordering is 0−+ < 1−+ < 1−− < 2−+. This is
certainly the case for bag models [35, 36], and also appears to hold in the heavy-quark sector [41]. The
same mass ordering emerges if one assumes that the splittings are due to the spin-spin contact interaction
[25]. The heavy-quark expansion of QCD in Coulomb gauge [42] demonstrates that spin-orbit splitting
of low-lying hybrids with JPC = J−+ and J+− is such that J = 1 lies between J = 0 and J = 2, and the
ordering is the same for both sets. However either of J = 0 or J = 2 can be the lowest-lying. In lattice
QCD calculations of heavy-quark hybrid states it is found that 0+− < 2+− [43] so that combining the two
results gives 0−+ < 1−+ < 2−+ (and 0+− < 1+− < 2+−). Whether it makes sense to extrapolate these
heavy-quark results to the light quark sector is debatable, but nonetheless the qualitative agreement with
the bag and constituent model results is encouraging.

The lack of precision in mass estimates is matched by uncertainty on decay modes. Again the two standard
approaches are the constituent gluon model [25, 44] and the flux tube model [24, 37]. In the former the
hybrids are considered specifically as having three components: quark, antiquark and gluon. Decays
proceed by dissociation of the constituent gluon [44]. In the latter it is assumed that the hybrids are
quark-antiquark states moving on an adiabatic surface generated by an excited flux tube of gluons, with
the standard qq̄ mesons corresponding to the unexcited flux tube. Decays of hybrids and qq̄ mesons then
proceed by the same phenomenological pair-creation mechanism, for example the 3P0 model, coupled
with a flux tube overlap [37]. While there are many common features in the decay modes predicted
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by these approaches there are some substantial differences which become rather crucial in interpreting
data, and which are caused partly by the different level of flexibility allowed within the models. In the
constituent model the decay strength is proportional to the strong coupling constant αs(q2) given at some
characteristic scale q2. As the present level of modelling does not permit definition of this scale, the decay
strength was treated as a model parameter in [25, 44]. The analysis in [25] was based on the assumption
of ρ̂(1400) being a hybrid and some upper limits of its ρπ mode, which were used as an input to define the
decay strength. In the original version [37] of the flux tube model the decay strength was defined from
the data on qq̄ decays. In principle, in the flux tube model the quark pair creation vertex is uncorrelated
with the gluonic modes of the hybrid. This permits the inclusion of different decay vertices within the
same overall structure. One has recently been proposed [45], motivated by the heavy-quark limit of the
QCD Hamiltonian, and its predictions compared with those of the standard 3P0 vertex [42]. Once again
there are many similarities but some major differences which should be amenable to experimental test
although present data cannot distinguish.

The hybrid decays of particular interest to us here are those of the isovector 0−+ and 1−+, and both the
isovector and isoscalar 1−−. There are some substantial differences between the flux tube model [37, 45]
and the constituent gluon model [25, 44] for these.

0−+: In the flux tube model, the principal decay modes are ρπ and, if the hybrid is sufficiently massive,
f0(1370)π. The ρπ width in the constituent gluon model is comparable to that of the flux tube model,
but it also has a very large π(ππ)S width which dominates the decay.

1−+: In this case the flux tube model and the constituent gluon model are in reasonable accord. The
principal decay modes are ρπ and b1π, with the latter the larger of the two.

1−−: The flux tube model predicts a rather narrow isovector state, with a1π as the dominant mode. In
contrast the constituent gluon model predicts a much larger width, still with a1π dominant, but with
significant ρ(ππ)S and ωπ components. For the corresponding isoscalar, the flux tube model predicts a
very narrow state decaying almost entirely to ρπ. Again the constituent gluon model predicts a much
larger width, having ρπ as the largest decay mode but also with a significant ω(ππ) fraction.

We would like to comment here on an important point concerning decays which include (ππ)S in the final
state. The flux tube calculations do not consider such decays at all, on the grounds that the complicated
dynamics of the (ππ)S final state is incompatible with the simple decay chain of qq̄ in the 3P0 state
going into ππ. It has even been suggested that an effective Lagrangian approach may provide a better
simulation of dynamics when the (ππ)S system is involved [46]. Nevertheless, as the 3P0 qq̄ couples
strongly to ππ, it should participate in the ππ dynamics even if there exists a non-qq̄ mechanism which
generates this dynamics. So there is no reasons to neglect the decay channels with qq̄ in the 3P0 state,
unless the corresponding amplitude is very small per se.

The interaction in the (ππ)S channel is very strong and requires the unitarised coupled channel analysis,
but the ππ phase shift can be described with the 3P0 qq̄ as an intermediate state (see the detailed analysis
of [47] and a simple model in Appendix A). It is not surprising that a naive quark model, such as the
3P0 one, fails to describe the low-mass part of the ππ S-wave phase shift, where constituent quarks are
not the proper degrees of freedom and chiral physics enters the game instead. It still remains an open
question of how to incorporate the chiral symmetry constraints into the quark model unless it is done
in a purely phenomenological way. In the simple model described in Appendix A the 3P0 amplitude is
modified to interpolate smoothly between the chiral perturbation theory regime with Adler zeroes and
the confinement regime with string-breaking modelled by the 3P0 mechanism.

In summary there are two main lines which can be followed.

(i) Hybrids are comparatively light, the π(1300) and ρ̂(1400) are hybrid states (or, in the former case,
predominantly hybrid) and the mass of the hybrid ρH , ωH ∼ 1.6 GeV. This would allow strong mixing
of the vector hybrids with the radial and orbital excitations of the ρ and ω, but is not compatible with
flux tube models.
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(ii) Hybrids are comparatively heavy, the ρ̂(1600) is the lightest 1−+ state and the π(1600) presumably
the corresponding 0−+ hybrid (or at least contains a significant hybrid component). This scenario is
compatible with flux tube models, but puts the 1−− vector hybrid mass at ∼ 2.0 GeV, making strong
mixing with the radial and orbital excitations unlikely.

4 Pseudoscalar Decays to Ground State plus (ππ)S

We have already commented that in the constituent gluon model of hybrids the decays of the 0−+ state is
very different from those predicted by the flux tube model. It has been suggested [25] that if the ρ̂(1405)
does exist then the π(1300) should have a large hybrid admixture and the π(1300) decays would then
allow a test of the two models. We explore both this hypothesis and the hypothsis that the π(1300) is a
qq̄ state, specifically the first radial 21S0 excitation of the π. For the latter assumption we can use the
decays of the η(1295) as a control. To begin with we summarise the current experimental situation with
respect to the decays of both these mesons.

4.1 η(1275)

The most detailed study of the decay η(1295) → η(ππ)S comes from the E852 charge-exchange reaction
π−p → ηπ−π+n [48]. The data are sufficiently precise to allow a separation of the a0π and η(ππ)S

decays despite the similarity of these two channels. The a0π/η(ππ)S branching ratio is estimated to be
0.48 ± 0.22, although this may contain a large systematic error due to the difficulty of distinguishing
unambiguously between the a0π and η(ππ)S decays. This ratio disagrees with the GAMS result of
1.86± 0.60 [49], although it also is possibly subject to similar systematic errors. The total width of the
η(1295) is rather well defined: 66± 13 MeV from E852, 53± 6 MeV from Fukui et al [50]. Assuming that
the two results for the Γ(a0π)/Γ(η(ππ)S) branching ratios give reasonable upper and lower limits, we can
conclude that the partial width for η(1295) → η(ππ)S) is in the approximate range 20 to 40 MeV.

4.2 π(1300)

Until recently there has been little information on the π(ππ)S branching fraction of the π(1300), and
there is still considerable uncertainty in the total width, which can lie somewhere in the range 200 to 600
MeV [1]. The recent VES data [32, 33] show a clear π(1300) peak in 3π, with a width of Γ ∼ 400 to 500
MeV in both π(ππ)S and πρ. The latter appears particularly strong and it has been suggested [21] that
as the size of the Deck background in π(ππ)S is uncertain it could provide the totality of the π(ππ)S

signal. If this is correct then the dominant decay would be ρπ. In contrast the E852 experiment [51]
claims three decay modes of the of the π(1300): πρ, πf2(1270) and π(ππ)S . No comment is made on the
mass or width of the π(1300) other than it is broad. As for the VES experiment, the genuine resonance
signal could be confused by interference with the Deck background.

An uncertain Deck background is not a problem for pp̄ annihilation experiments. In their study of
f0(1500) decays int 4π0 in pp̄→ 5π0 at rest, the Crystal Barrel experiment [52] found a very substantial
improvement in their fit when the ππ(1300) decay of the f0(1500) was included. As the final state in this
case is all π0 the decay of the π(1300) cannot be to πρ and must be to π(ππ)S . However because of the
restriction to the purely neutral channel nothing can be said about the π(ππ)S branching fraction. The
parameters of the π(1300), if left free in the fit, are determined to be M = 1.114 GeV, Γ = 340 MeV.
Errors on these are not quoted. The Obelix experiment [53], in their analysis of pp̄→ 2π+2π− also find a
significant improvement in their fit if the π(1300) is included in the decay chain. The π(1300) parameters
are found to be M = 1.275 ± 0.015 GeV, Γ = 218 ± 100 MeV. Both the π(ππ)S and πρ modes were
required by the fit, and the ratio between them was found to be large: (π(1300) → π(ππ)S))/(π(1300) →
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Figure 1: Width of the decay η′(1295) → η(ππ)S as a function of β. The solid line is calculated using the
3P0 ππ phase shift and the dashed line using the 3P0 ππ phase shift modified to include the Adler zero.

πρ) = 5.25± 0.7. This is appreciably more than the result ∼ 2.12 obtained from analysing much earlier
data [54], and must be assumed to supersede it. In conclusion, there seems to be little doubt that the
decay π(1300) → π(ππ)S not only exists, but is large and dominant. It is perhaps significant that the pp̄
annihilation experiments find a smaller width than the πp→ (3π)p production experiments, which could
be due to the effect of the Deck background on the latter. If this is the case, then a total width of ∼ 300
MeV would seem reasonable, with a partial width for π(ππ)S of more than 200 MeV.

4.3 Pseudoscalar decays in the 3P0 model

For this part of the discussion we assume that the π(1300) is a qq̄ state, specifically the first radial 21S0

excitation of the π. For calculating decays in the 3P0 model we also assume that the (ππ)S is contained
in that model and is the 13P0 state. A two-channel model which reproduces the experimental S-wave ππ
amplitude is described in Appendix A. Both versions of the (ππ)S amplitude described there were used
in these calculations i.e. without and with the Adler zero included. The results are very much the same
in both cases.

In the 3P0 model, with standard wave-function parameters, the decay of a radial excitation to the corre-
sponding ground state plus (ππ)S is small, a few MeV at most. This is true for ρS , ωS , η(1295), π(1300).
It is caused by a node in the wave function, with the consequence that the decay is very sensitive to the
parameter β. Of course there are limits within which β can vary. A good guide to these limits is provided
by [20]. Of the standard decays used to specify β and γ, a1 → ρπ provides no constraint because of the
very large experimental uncertainty on its width; h1 → ρπ provides only a weak constraint (0.3 ≤ β ≤ 0.5
GeV), again because of experimental uncertainty coupled with a rather weak theoretical dependence on
β; and b1 → ωπ also provides only a weak constraint, in this case because the theoretical width is almost
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Figure 2: Width of the decay π(1300) → π(ππ)S as a function of β. The curves are as in Figure 1.

independent of β over quite a wide range. In contrast the theoretical widths of f2 → ππ, a2 → ρπ and
ρ → ππ vary strongly with β. The two former favour a value of β close to the mean of 0.4 GeV, but
the latter prefers a much smaller value, ∼ 0.3 GeV. In contrast the D/S ratios for the decays b1 → ωπ
and a1 → ρπ, which are sensitive tests of the 3P0 model, prefer a larger value, particularly the latter,
which could go as high as β ∼ 0.5 GeV. Taking everything into account, 0.3 GeV and 0.5 GeV do seem
to provide extreme lower and upper limits on β, with 0.35 GeV and 0.45 GeV being more reasonable.

The variation of the η(ππ)S width of the η(1295) is given in Fig.1 as a function of the value of β for (ππ)S .
Clearly the experimental limits on the η(1295) width provide a strong constraint on the allowed values
of β, independently of other decays. In the 3P0 model with standard values of the parameters β and γ
the width Γ(π′ → πρ) ∼ 200 MeV and the width Γ(π′ → π(ππ)S) ∼ 0 MeV [21]. The πρ partial width
does have quite a strong dependence on β, decreasing from ∼ 300 MeV at β = 0.3 GeV to ∼ 100 MeV
at β ∼ 0.5 GeV [21]. The variation of the π(ππ)S width is much stronger, due to the effect of the node
in the wave function. This variation is shown in Fig.2, where we have taken into account the effect of
symmetrization of like pions. The procedure for this is outlined in Appendix B. The constraints imposed
by the η(1295) decay width clearly restrict the maximum partial width for the π(1300) → π(ππ)S to
about 60 MeV.

So we conclude that the 3P0 model can not be used to explain the large π(ππ)S width of the π(1300).
However before using this as an argument in favour of a hybrid interpretation we need to consider an
alternative non-3P0 mechanism.

4.4 Non-3P0 decays of the pseudoscalars

The decays of heavy-quarkonia radial excitations to the ground state, or to a lower radial, plus (ππ)S

raise the possibility of analogous non-3P0 decays in the light-quark sector. The detailed mechanism is
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presumably rather different from that of the models applied to the decays of heavy quarkonia as they rely
on a multipole expansion of the gluon field [55]. The interactions of gluons with a wavelength λ much
larger than the radius rQQ̄ of quarkonia are suppressed in the multipole expansion by powers of rQQ̄/λ.
So although it is reasonable to consider only the leading operator for heavy quarkonia it is not so for
light quark states.

An alternative mechanism which does not rely on a multipole expansion, “vacuum excitation”, has been
suggested [56]. This is applicable in principle to both light and heavy quarkonia. The essential idea is
that a radial excitation decays to a lower radial excitation or to the ground state by exciting a virtual
state from the vacuum into reality. This naturally has the quantum numbers of the vacuum, i.e. I = 0,
J = 0 which of course are precisely those of (ππ)S . For our present purposes we simplify the calculation
by considering relative phase-space as the spatial wave-functions of the η(1295) and π(1300) are identical,
and so overlap integrals will be the same. We consider both unweighted and weighted phase space, using
for the latter the same S-wave ππ amplitude of Appendix A. It is irrelevant whether this is or is not a
genuine qq̄ state. All that is required is an accurate representation of the amplitude. We find that the
ratio of (π(1300) → π(ππ)S)/(η(1295) → η(ππ)S) is 3.6 for unweighted phase space and 7.7 for weighted
phase space. Thus given a width of 20 to 40 MeV for the η(1295) decay it is not difficult to generate the
required large width for the π(1300) decay.

So we conclude that this particular non-3P0 mechanism can correlate the η(1295) and π(1300) decays and
provide a large π(ππ)S width for the latter without the need to invoke a hybrid. Of course this remains
a hypothesis as we do not have a specific model with which to calculate these decays for light quarks.

5 The Vector States

We now consider the implications of the results of the previous sections for the interpretation of the data
from e+e− annihilation and τ decay. We consider two extremes.

1. The vector hybrids are too heavy to permit significant mixing with the qq̄ states in the relevant
kinematical region. The ρS and

ωS decays are some combination of 3P0 and direct hadronic decay to ρ(ππ)S and ω(ππ)S respectively.
The ρD and ωD decays are purely 3P0. Some mixing between the 2S and 1D states can be allowed.

2. The vector hybrids are sufficiently light to allow strong mixing with the qq̄ states. For completeness
we consider the predictions of both the flux tube model and the constituent gluon model for the hybrid
decays. However it must be remembered that the flux tube model prefers a higher mass for the vector
hybrid.

5.1 No Vector Hybrids

The width of the decay ρ2S → ρ(ππ)S in the 3P0 model is shown in Fig.3. Not surprisingly it is too
small to account for the observed large 4π width of the ρ(1450), even at the maximum acceptable value
of β. To extend the non-3P0 decay process suggested in Section 4.4 to the decay of the ρ2S requires the
assumption that only S-waves are relevant. This is certainly in accord with the decay of heavy quarkonia.
The matrix element for the decay of η(1295) or π(1300) is simply a constant, fS say. The general form
of the matrix element for the decay of ρ2S is

Aµν = f
{−gµν +

kµkν

k2
+
qµqν
q2

− (kq)kµqν
k2q2

}
+ g

{(kq)kµ

k2
− qµ

}{
kν − (kq)qν

q2
}
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Figure 3: Width of the decay ρ(2S) → ρ(ππ)S as a function of β. In contrast to Figures 1 and 2 only
one curve is shown as the results of using the different phase shifts are indistinguishable

where k and q are respectively the four-momenta of the ρ2S and the ρ. If only S-wave is present then

f = fS g = −fS/m0(m1 + E1)

where m0 and m1 are the masses of the ρ2S and ρ, and E1 is the energy of the ρ in the ρ2S rest frame.
One has then to calculate 1

3A
∗
µνAµν which is simply f2

S . So the only difference between the decays of the
vector radial excitations and the pseudoscalar radial excitations is due to phase space. As the available
phase space for the decay ρ2S → ρ(ππ)S is not very different from that for the decay η(1295) → η(ππ)S ,
the partial width will be comparable.

Thus neither mechanism by itself can explain the 4π decays of the ρ(1450). Nor can one add them to
increase the width, as the combined strength is controlled by the η(1295) decay. It should be recalled
that mixing of the ρ2S and the ρ1D is unlikely to resolve the difficulty as, even with an increase in the
ρ(ππ)S width of the former within the limits allowed, the π+π−π0π0 cross section will still exceed the
π+π−π+π− cross section. This conclusion is not affected by adjusting the 3P0 parameters for the ρ1D

decays, as the a1π and h1π widths move in unison and the equality remains essentially unchanged. Thus
we are forced to conclude that the e+e− → 4π data can not be explained in terms of conventional qq̄
dynamics.

The partial width for the decay ω2S → ω(ππ)S in either of these models is comparable to that of the
corresponding ρ2S decay. This does not pose any particular problem for the isoscalar sector and does not
provide any further insight into the likely mechanisms as it is not nearly sufficient in itself to provide the
requisite integrated ωππ fraction. Thus we remain with the earlier conclusion that within the isoscalar
qq̄ structure there must be a significant ω1D component.
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5.2 Vector Hybrids

It is now apparent that the inclusion of a isovector vector hybrid is essential to explain the e+e− → 4π
data, and consequently the corresponding isoscalar vector hybrid must be included in any discussion of
the e+e− → ρπ, ωππ data. It is reasonable to assume that the hidden-strange vector hybrid is sufficiently
massive not to affect the discussion.

The real question is, what can be inferred about the nature of these hybrids? The flux tube model with
its dominant a1π decay would appear to resolve the problem in the isovector sector. To achieve strong
mixing with the ρ2S and ω2S requires a comparatively low mass. We have seen in Section 3 that the mass
scale for the flux tube model is high, making strong mixing unlikely. However spin-dependent forces may
lower the mass of the hybrid ρ and ω, which are spin S = 0 in contrast to the conventional qq̄ components
which are S = 1, sufficiently to allow strong mixing between hybrid and conventional quarkonia. There is
perhaps less of a problem with the constituent gluon model, but it is still a concern. However accepting
the low-mass hybrid scenario, one could then have∣∣V 〉

= cosφ
{
cosθ

∣∣23S1

〉
+ sinθ

∣∣13D1

〉}
+ sinφ

∣∣VH

〉
To explain the predominance of the π+π−π+π− channel in this model it is necessary to take θ ∼ 0, so
that ρ′1 is given by ∣∣ρ′1〉 ∼ cosφ

∣∣ρS

〉
+ sinφ

∣∣ρH

〉
This simple scheme would make the π+π−π+π− and π+π−π0π0 widths of the ρ(1450) the same, with only
the rather small ρ(ππ)S decay of the ρH contributing to the observed difference. Further this suppression
of the ρ1D contribution is not compatible with the isoscalar data. Without the ω1D there is no source
for the strong ωππ channel observed experimentally. The ω(ππ)S decay of ωH is not sufficient to redress
the imbalance. The dynamics would be complex indeed if the 3D1 state were absent, or nearly so, in the
isovector channel but gave a significant contribution in the isoscalar channel. This is perhaps not entirely
implausible as the isoscalar channel is complicated by the presence of the φ2S right in the middle of the
relevant mass range. Hadronic mixing with the nearby ω2S , ω1D and ωH will certainly occur at some
level, modifying the isoscalar mixing pattern. However this mixing would have to be remarkably strong
to produce the differences observed.

The opposite view, that the hybrid mass is high, also does not permit a simple mixing scheme. Mixing
essentially between the hybrid and the 3D1 state is immediately ruled out by the ρ(1450) decays, although
it would appear a sustainable option for the isoscalar hadronic decays. Further the e+e− widths of the
ρ(1700) and ω(1650) demand mixing with the ρ2S .

The necessity to consider a complicated mixing scheme brings us back to the problem of the hybrid mass
scale. The simplest way to achieve strong mixing between ρ2S and the hybrid is to have them nearly
degenerate, which means that the hybrid is very light, about 1.4 GeV. Setting the mass scale in such
a way opens up exciting possibilities for the spectroscopy of states with nonexotic quantum numbers,
along the lines discussed in [25]. It has the additional advantage of being compatible with the sum rules
result [39], which we consider as the most reliable of the sum rules analyses. Nevertheless, the exotic ρ-π
signals at 1.6 GeV from BNL and VES appear sound, and an alternative explanation of the BNL signal
at 1.4 GeV has been proposed. Moreover, it is very improbable to have two exotic hybrids so close to
each other. Another argument against such a light hybrid comes from the pseudoscalar sector: if there is
no need to invoke a hybrid interpretation to explain the decay pattern of π(1300), the new pseudoscalars
π(1600) and π(1800) from VES can be economically considered as admixtures of 3S qq̄ and hybrid states.
It should be remembered that the hybrid interpretation of the π(1800) [21, 24] emerges from its decay
properties.

An alternative scenario is to let the hybrid mix strongly with the 1D state through their near-degeneracy,
and then let the lower of the two mixed states mix with the 2S. This would mean that the 4π decays of
the two observed physical states would be quasi-identical. This also suggests that the third state is put
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rather high and, in addition, does not have much electromagnetic coupling. This scenario assumes the
vector hybrid at ∼ 1.7 GeV, which makes the mass problem easier to swallow and is compatible with the
exotic and pseudoscalar hybrid sector, including the splitting ordering.

However this scenario is no longer the straightforward two-level mixing scheme initially proposed for the
isovector channel. All three states must be included, and in the isoscalar channel one cannot ignore
the possible additional complications arising from the φ2S . The results of such mixing depend on the
fine details of the positions of the bare states and the mixing strengths. It is worth mentioning here
that one could expect rather strong mixing between quarkonia and hybrids in the constituent model via
constituent gluon emission/absorption. On the other hand, there are no distinguishable gluons in the
flux tube model, and, consequently, no obvious mechanism to provide such mixing.

We have not attempted to construct a detailed mixing scheme here as it requires consideration of all
channels and a theoretically-constrained fit to the data [58]. As a first step we present below a simple
three-level mixing model which describes qualitatively the isovector data.

5.3 A Simple Mixing Scheme

We consider the mixing of the 2S, the 1D and the hybrid H0. For the 3 × 3 mixing matrix use the
standard PDG one without the phase: c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 (1)

Then

|ψ1〉 = c12c13|2S〉+ s12c13|H0〉+ s13|1D〉
|H〉 = − [s12c23 + c12s23s13] |2S〉+ [c12c23 − s12s23s13] |H0〉+ s23c13|1D〉
|ψ2〉 = [s12s23 − c12c23s13] |2S〉 − [c12s23 + s12c23s13] |H0〉+ c23c13|1D〉 (2)

We hypothesize that we want no direct mixing between the |2S〉 and the |1D〉 so set s13 ∼ 0 and c13 ∼ 1.
Thus we have

|ψ1| = c12|2S〉+ s12|H0〉
|H〉 = −s12c23|2S〉+ c12c23|H0〉+ s23|1D〉
|ψ2〉 = s12s23|2S〉 − c12s23|H0〉+ c23|1D〉 (3)

Obviously we identify |ψ1| with the ρ(1450). In the absence of a proper dynamical model of the mixing
we are free to identify ρ(17000) either with |H〉 or with |ψ2〉. For definiteness we choose the former, but
the subsequent discussion follows analogously for the latter.

It is reasonable to assume that the bare hybrid |H0〉 has no direct electromagnetic coupling. We make no
specific assumption on the electromagnetic coupling of the bare |1D〉 other than that it should be small
compared to the |2S〉. The e+e− amplitudes for the physical states are

〈e+e−|ψ1〉 = c12〈e+e−|2S〉
〈e+e−|H〉 = −s12c23〈e+e−|2S〉+ s23〈e+e−|1D〉
〈e+e−|ψ2〉 = s12s23〈e+e−|2S〉+ c23〈e+e−|1D〉 (4)

We see immediately that provided s12c23 > 0 (and s23 > 0 as the electromagnetic coupling of |1D〉 has
the oppposite sign to that of |2S〉) we will get the correct relative signs of the electromagnetic couplings
of the observed states [8]. In the limit of a vanishing electromagnetic width for the |1D〉 then we require
s12c23 to be ∼ 1

2 to agree with the data analyses.
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We know that the ρ(1700) has a small ωπ width, which puts another constraint on the mixing. The ωπ
amplitudes are

〈ωπ|ψ1〉 = c12〈ωπ|2S〉
〈ωπ|H〉 = −s12c23〈ωπ|2S〉+ s23〈ωπ|1D〉
〈ωπ|ψ2〉 = s12s23〈ωπ|2S〉+ c23〈ωπ|1D〉 (5)

We have already established that s12c23 > 0 and, in principle, that s23 > 0. The latter is important as
it allows here some cancellation between the two terms for the ωπ decay of the |H〉. A very small width
is thus not ruled out in principle, although in practice it may not be quite so simple as in the 3P0 model
the |2S〉 width is very much larger than the |1D〉 width.

Finally look at the 4π decays. We can ignore the a1π and h1π decays of the |2S〉 but we can let it have
some ρ(ππ)S decay generated by other means. We should also let the bare hybrid have some ρ(ππ)S

decay as well. The amplitudes are then:

〈a1π|ψ1〉 = s12〈a1π|H0〉
〈a1π|H〉 = c12c23〈a1π|H0〉+ s23〈a1π|1D〉
〈a1π|ψ2〉 = −c12s23〈a1π|H0〉+ c23〈a1π|1D〉 (6)

and

〈h1π|ψ1〉 = 0
〈h1π|H〉 = s23〈h1π|1D〉
〈h1π|ψ2〉 = c23〈h1π|1D〉 (7)

and

〈ρ(ππ)S |ψ1〉 = 〈ρ(ππ)Sc12|2S〉+ s12〈ρ(ππ)S |H0〉
〈ρ(ππ)S |H〉 = −s12c23〈ρ(ππ)S |2S〉+ c12c23〈ρ(ππ)S |H0〉
〈ρ(ππ)S |ψ2〉 = s12s23〈ρ(ππ)S |2S〉 − c12s23〈ρ(ππ)S |H0〉 (8)

None of these are qualitatively inconsistent with observation. They all seem reasonable, particularly the
lack of any h1π decay of |ψ1〉. Note that |ψ2〉 has a non-zero e+e− width, and is presumably somewhere
“off-stage”. There is some evidence for isovector states in the vicinity of 2.0 GeV which decay strongly
into 6π [57]. One of these could be the missing member of the trio.

6 Conclusions

Our general conclusion is that the e+e− annihilation and τ decay data require the existence of a “hidden”
vector hybrid in both the isovector and isoscalar channels. The argument is based strongly on the pattern
of the observed decays to ρ(ππ)S for the isovectors and to ω(ππ)S for the isoscalars. The strong mixing
evident from the electromagnetic widths is also a key feature. Before coming to our general conclusion we
explored the limits of the 3P0 model and proposed a specific non-3P0 model in an unsuccessful attempt
to explain these data without going beyond the qq̄ sector.

More specifically we are inclined towards the constituent gluon model rather than the flux tube model to
describe the characteristics of the hybrids. This is based on two aspects: the constituent gluon model can
more readily encompass a hybrid mass in the relevant range; and the hybrid decays in the constituent
gluon model are the more compatible with the data. The mixing is non-trivial, involving the first radial
and the first orbital qq̄ excitations and the ground-state vector hybrid.
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The suggestion that the ground state vector hybrid is comparatively light, i.e. about 1.6 GeV, has major
consequences. Given the hybrid spin-parity sequence discussed in Section 3, namely 0−+ < 1−+ < 1−−, it
reopens the question of a hybrid component in the π(1300) [25] and emphasizes the urgency of clarifying
the status of the ρ̂(1405).
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Appendix A: The (ππ)S Amplitude

The simple 3P0 model for the ππ S-wave amplitude assumes that the scattering takes place via 0++

intermediate states. There are two such states in this case, one is 1√
2
(uū+ dd̄) and the other is ss̄.

The ππ phase shift δ and the inelasticity η are given by

tan(2δ) =
ab1 − a1b

aa1 + bb1
,

η2 =
(aa1 + bb1)2 + (ab1 − a1b)2

a2 + b2
,

where
a = a(s) = 1 +

1
(s− s1)(s− s2)

((Im∆12)2 − Im∆11Im∆22),

b = b(s) =
1

s− s1
Im∆11 +

1
s− s2

Im∆22,

a1 = a1(s) = 1 +
1

(s− s1)(s− s2)
((Im∆̃12)2 − Im∆̃11Im∆̃22),

b1 = b1(s) =
1

s− s1
Im∆̃11 +

1
s− s2

Im∆̃22.

In these formulae
√
s1 and

√
s2 are the masses of intermediate states, and

Im∆ab =
∑

j

Im∆ab(j),

Im∆̃ab = Im∆ab − 2Im∆ab(ππ),

where a, b = 1, 2 label the intermediate states, and j = ππ,KK̄ are the coupled channels taken into
account.

The quantities Im∆ab(j) are calculated in the framework of 3P0 model as

Im∆ab(j) =
pj

8π
√
s
fa(j)fb(j)

with the 3P0 form factors fa(j) defined as in [18].

This model is an oversimplified version of a coupled channel method and preserves unitarity but not
analyticity; in contrast to the much more sophisticated model [47] the physical resonance positions

√
sa

are taken to be constants and are not defined via dispersion relations.

The ππ S-wave phase shift given by the 3P0 model is shown as the solid line in Figure 4. To improve
the agreement with the data close to the ππ threshold the Adler zero is now introduced. We make it
pragmatically by substituting

fa(ππ) → f̃a(ππ) = fa(ππ)F (s)

with F (s) being a smooth function of s. F (m2
π

2 ) = 0, F (s) → 1 when s increases. In such a way we have

the Adler zero at s0 = m2
π

2 in the ππ amplitude as required by chiral symmetry. The ππ S-wave phase
shift with this modification is shown as the dashed line in Figure 4 for the simple choice

F (s) = θ(s1 − s)
{−( √s−√s0√

s1 −√s0
)2 + 2

( √s−√s0√
s1 −√s0

)}
with

√
s1 = 0.7 GeV so that chiral dynamics and quark dynamics are matched at 0.7 GeV.
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Figure 4: The S-wave ππ phase shift. The solid curve is the result of the 3P0 calculation and the dashed
curve is the result of the low-energy modification to include the Adler zero. The data are from [59]

The idea to insert Adler zeroes into the quark model form factors was suggested in [47]. Our procedure
differs from that one. In contrast to [47] we believe that the soft pion physics governs only the lower end
of the ππ mass spectrum and does not affect the whole mass range available, leaving room for the strong
interaction of quarks at higher energies. Moreover it is our belief that with the more QCD-motivated
model for hadronic decays [42], which takes into account the Goldstone nature of pions, the quark model
description is valid at lower ππ masses as well. This makes the Adler zero constraints responsible for
only a rather small energy range just above the ππ threshold.
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Appendix B: The Piprime Decay Width

The width of the decay of π′0 into π+π−π0 is given by

dΓ =
2
3

1
(2π)3

1
32m3

π′
|Mc|2ds12ds13

|Mc|2 = D

and the width into three neutral pions is

dΓ =
1
3

1
(2π)3

1
32m3

π′
|M0|2ds12ds13

|M0|2 = D + 2I

D = f2
π′(s12)f2

σ(s12)P (s12)

I = fπ′(s12)fπ′(s13)fσ(s12)fσ(s13)P (s12)P (s13)

((s12 −m2
σ)(s13 −m2

σ) + Im(s12)Im(s13))

fπ′(s) = fπ′σπ(m2
π′ , s,m2

π)

fσ(s) = fσππ(s,m2
π,m

2
π)

P (s) = [(s−m2
σ)2 + Im2(s)]−1

Im(s) =
1

8π
√
s
p(s,m2

π,m
2
π)f2

σ(s)

The total widths of these decays are given by

Γ =
∫ s12max

s12min

∫ s13max

s13min

dΓ

s13max =
m2

π′ + 3m2
π − s12

2
+ 2

√
(s12 − 4m2

π)
4

(m2
π′ −m2

π − s12)2 − 4m2
πs12

4s12

s13min =
m2

π′ + 3m2
π − s12

2
− 2

√
(s12 − 4m2

π)
4

(m2
π′ −m2

π − s12)2 − 4m2
πs12

4s12

s12max = (mπ′ −mπ)2

s12min = 4m2
π
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