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ELECTROWEAK BARYOGENESIS WITH COSMIC STRINGS?

J.R. ESPINOSA

CERN TH-Division
CH-1211 Geneva 23, Switzerland

I report on a critical analysis of the scenario of electroweak baryogenesis mediated
by nonsuperconducting cosmic strings. This mechanism relies upon electroweak
symmetry restoration in a region around cosmic strings, where sphalerons would
be unsuppressed. I discuss the various problems this scenario has to face, present-
ing a careful computation of the sphaleron rates inside the strings, of the chemical
potential for chiral number and of the efficiency of baryogenesis in different regimes
of string networks. The conclusion is that the asymmetry in baryon number gen-
erated by this scenario is smaller than the observed value by at least 10 orders of
magnitude.

1 Introduction

Electroweak baryogenesis 1 is a beautiful idea which fails (or is about to fail) in
the best motivated models we have for physics at the Fermi scale (∼ 100 GeV ).
In the Standard Model, LEP II experiments set a lower bound on the mass
of the Higgs boson of about 97 GeV, implying that the electroweak phase
transition in that model is not first order but rather a crossover 2. In the
Minimal Supersymmetric Standard Model the electroweak phase transition
can be first order and sufficiently strong to allow for electroweak baryogenesis,
but this occurs in a very small region of parameter space 3 which presumably
will be ruled out by LEP II in a couple of years.

One may take the previous negative results as indication that the asym-
metry in baryon number was not created at the electroweak epoch, but rather
related to the physics of B − L violation and neutrino masses. To stick to
electroweak baryogenesis one can consider extensions of the particle content
of the model to get a stronger electroweak phase transition (e.g. extensions
which include singlets). In this talk I will consider another possibility: how the
remnants of physics at energy scales higher than the electroweak scale (cosmic
strings in this case) can be useful to overcome the problems of having a weak
electroweak phase transition.

Electroweak baryogenesis requires the co-existence of regions of large and
small 〈ϕ〉/T , where T is the temperature and 〈ϕ〉 the (T -dependent) Higgs
vacuum expectation value. At small or zero 〈ϕ〉/T sphalerons are unsuppressed
and mediate baryon number violation, while large 〈ϕ〉/T is needed to store the
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created baryon number (for 〈ϕ〉/T ≥ 1 sphaleron transitions are ineffective
and baryon number is conserved). Below the critical temperature T EW

c of the
electroweak phase transition and irrespective of whether it is first or second
order, 〈ϕ〉/T grows until sphaleron transitions are shut-off. For baryogenesis
to be possible at those times, we need some region where 〈ϕ〉 is forced to
remain zero or small. The idea we examine in this talk is that this can be
the case along topological defects (like cosmic strings) left over from some
other cosmological phase transition that took place before the electroweak
epoch 4. If the electroweak symmetry is restored in some region around the
strings, sphalerons could be unsuppressed in the string cores while they would
be ineffective in the bulk of space, away from the strings. The motion of the
string network, in a similar way as the motion of bubble walls in the usual
first-order phase-transition scenario, will leave a trail of net baryon number
behind.

Some problems with this scenario come immediately to mind. First, it is
clear that the space swept by the defects is much smaller than the total volume,
so there will be a geometrical suppression factor with respect to the usual
bubble-mediated scenario 4. Another suppression factor arises from the fact
that there is a partial cancellation between front and back walls of the string,
which tend to produce asymmetries of opposite signs 4. Another problem comes
from the condition that the symmetry restoration region (which naively would
be of size Rrest ∼ 1/

√
λ〈ϕ〉, where λ is the quartic Higgs coupling) should be

large enough to contain sphalerons (which in the symmetric phase have size
Rsph ∼ 1/g2T ), while outside the strings, sphalerons should be suppressed
(〈ϕ〉/T ≥ 1). Combining both conditions one obtains λ ≤ g4, which means
the scenario would require small values of the Higgs mass, in conflict with
experimental bounds. LEP II tells us that λ is at least of order g2, so that
sphalerons won’t fit in the restoration region. In other words, for realistic values
of the Higgs mass sphalerons are not going to be fully unsuppressed. We will
measure how effective they are by writing the rate of sphaleron transitions
per unit time and unit of string length as Γl = κlα

2
wT 2. For a string with

Rrest = Rsph, one has ΓlR
2
rest equal to the rate in the symmetric phase,

corresponding to κl ∼ 1. Values of κl much smaller than 1 would mean that
sphalerons are not really unsuppressed inside the strings.

In the rest of the talk I review the careful analysis of this mechanism
contained in ref. 5, to which I refer the interested reader for further details.
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2 Strings with electroweak symmetry restoration

Cosmic strings 6 are 1-dimensional solitons, stable by topological reasons, that
can form in the spontaneous breaking of a symmetry G where I consider the
simplest case, G = U(1), in this talk. A model with a complex scalar S and
lagrangian

L = ∂µS∗∂µS − λS(S∗S − S2
0)2, (1)

admits global strings: configurations with S = 0 along some line (say the z-
axis) and S(r) = f(r)S0e

iθ, with f(∞) → 1, where r is the distance to the
z-axis and θ the azimuthal angle. The radius of these strings (where most of
the energy is trapped) is set by the scale 1/mS ≡ 1/

√
λSS0.

If the U(1) is made local, in addition to the S field, a non-zero gauge field is
also present, Aµ = −a(r)∂µθ/qS , with a(∞) = 1, where qS is the U(1) charge
of the S field. This gauge field is such that the covariant derivative DµS goes
to zero for large r resulting in a finite energy per unit length of string.

We assume that S-strings (global or local) form at some temperature T S
c >

T EW
c and are present at the time of the electroweak phase transition. To force
〈ϕ〉 → 0 in the cores of the strings, the Higgs field must interact either with
the S field or the Aµ field (if the strings are local):

2.1 S − ϕ interaction

Suppose the scalar potential has the form

V (S, ϕ) = λS(|S|2 − S2
0)2 − γ(|S|2 − S2

0)(|ϕ|2 − ϕ2
0) + λ(|ϕ|2 − ϕ2

0)
2, (2)

with γ > 0. The mass squared of the Higgs field in the string background
is m2

ϕ(r) ∼ γ(S2
0 − |S(r)|2) − 2λϕ2

0, which is negative outside the string core
but can be positive inside, so that electroweak symmetry tends to be restored
along the strings. Exploring the (S0, λS , γ, λ) parameter space, the typical
case, with λSS2

0 � λϕ2
0 leads to Rrest ∼ 1/mϕ(∞). The best posible case

to get a large restoration region has λS � γ � λ and S0 � ϕ0 and gives
Rrest ∼

√
γ/λS/mϕ(∞).

2.2 S −Aµ interaction

In this case we assume that the Higgs field carries a charge qϕ under the extra
U(1) responsible for the strings, so that its covariant derivative has an extra
piece. As we saw, the Aµ field in the string goes like −1/qSr at large r to
cancel the azimuthal derivative of S, give vanishing DµS and minimize energy.
In Dµϕ, the Aµ contribution is now proportional to qϕ/qS and the azimuthal
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derivative of ϕ can cancel Dµϕ only if qϕ/qS is an integer. If that is not
the case, a Zµ boson condensate is induced until the covariant derivative is
cancelled 7. In any case, a non-zero winding of ϕ forces ϕ → 0 in the string
core (r = 0). The restoration region around r = 0 is larger in the presence of
a non-zero Zµ string (case of non-integer qϕ/qS).

3 Sphaleron rates and CP asymmetry in the string cores

In general, with no tuning of potential parameters nor a Zµ condensate, 〈ϕ〉
is zero only at the string core (r = 0) and rises inmediately away from that
line. As the symmetry is never really restored in a wide region, the energy of
the sphaleron in such background (it can be computed in the lattice looking
for a saddle point of the energy functional) is only about a factor 0.7 smaller
than the sphaleron energy in the broken phase (alternatively κl ∼ 10−6: that
is, sphalerons are not really unsuppressed in this type of strings).

The situation is better when a Zµ-field is induced, in which case κl ∼
1/30 for 〈ϕ〉/T ∼ 1 (this number can be obtained in the lattice using a fully
non-perturbative approach and tracking Chern-Simons number in real time
evolution). However this number is very sensitive to T and drops significantly
when T decreases.

Fully unsuppressed sphalerons can only be obtained in the global U(1)
case for large enough γ/λS . In fact, to obtain an asymmetry of the order of
the observed one, one would need γ/λS ∼ 1014. On the other hand, stability
of the potential requires 4λ/γ > γ/λS, so that λ/λS ∼ 1028. Such an ad-hoc
and wild fine-tuning of the parameters prevents us from taking this particular
case seriously.

Unsuppressed sphaleron transitions inside the string cores are not sufficient
to generate the baryon asymmetry: they must occur in a background with CP
asymmetric particle distributions so that the sign of the B-violation is biased.
This asymmetry comes about if the interactions between the particles in the
plasma and the string walls violate CP. In that case the walls of a moving
string act as sources of chiral-number flux (which would be zero if the string
velocity vS were zero). This asymmetry diffuses away from the walls and
only that inside the string is useful to create baryons (for geometrical reasons
it is also clear that this diffusion effect is less efficient for strings than for
bubbles). In conclusion, we have to compute the chemical potential µ for
chiral number inside the strings. General arguments (confirmed by detailed
analysis of particular models) give the result µ = Kv2

ST for small vS , with
K <∼ 0.01 and µ = K ′T for vS ∼ 1 with K ′ of order 1.
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4 Evolution of string networks and efficiency of baryogenesis

To get a final number for the asymmetry generated by this mechanism, we need
to know how many strings there are and how quickly they are moving (the best
case being that of a dense network of fast moving strings). We can describe the
string network by a mean average separation between strings R(t) and a mean
average velocity vS(t). The evolution of these quantities with time t is governed
by Hubble expansion (H ∼ 1/2t); energy loss by loop formation; and friction
with the plasma. The friction force goes like F ∼ vST 3: it is important at early
times when it dominates the dynamics of the evolution. This is the friction
dominated or Kibble regime, with R(t) ∼ t5/4 and vS(t) ∼ t1/4 ∼ HR(t).
Eventually, friction will no longer be important and a scaling regime is reached
with R(t) ∼ 1/H and vS ∼ 1.

In conclusion, to get the final number for the baryon asymmetry we start
with the equation for the rate of change of baryon number NB per unit time
and unit length of string:

dNB

dLdt
= 1.5[κlα

2
wT 2]

µ

T
. (3)

If we use the results for κl and µ previously discussed, and integrate eq.(3) in
one Hubble time (this is because κl is shut-off quickly with decreasing T ) using
the network evolution results just presented we end up with the result that[

NB

Nγ

]
strings

<∼ 10−10

[
NB

Nγ

]
observed

. (4)

That is, the mechanism just studied is uncapable of generating a sufficiently
large matter-antimatter asymmetry.
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